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Abstract

The generalisation mystery is the gap in our understanding of why commonly used Deep Learn-
ing algorithms produce neural networks that generalise to unseen data, even using large archi-
tectures with capacity far greater than that required to fit their training data exactly. Solving
this puzzle would theoretically ground the astonishing empirical success of neural networks,
potentially enabling them to be used with greater understanding and with quantitative per-
formance guarantees. We make three contributions towards answering this question. First, we
extend a classic PAC-Bayesian generalisation bound to provide more information-rich test time
guarantees. Second, we demonstrate that PAC-Bayesian bounds on deterministic networks can
be tightened by relating their performance to compressible neighbouring networks. Finally,
we take a more empirical approach and show that the generalisation ability of a network is

connected to its compressibility via distillation.
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Notation

All notation is introduced at the appropriate time in the body of the thesis. The following

table is for ease of reference for the most commonly used notation.

Symbol Description

X An input space

y An output space

h:X—=Y A hypothesis, predictor, or, for finite ), a classifier
HCY¥ A hypothesis class

A =2 AN The set of tuples of elements of A

Se X x)Y)* A sample

A(A) The set of probability measures on the set A
D e A(X x)) A data-generating distribution

S~ D" An i.i.d. sample of size n drawn from D

P,Q e A(H) Stochastic “prior” and “posterior” hypotheses

A (XX —=H
A (XX V)= A(H)
0 HX (X xY) SR

(:)? 5 R

(:YxY =R

lor(9,y) = 1[5 # ]

ty(h(x),y)

Rp(h) = E_[((h(x).5)

Rs(h) = & ¥ ((h(z).y)
(@)

Rp(Q) = hIEQ[RD(h)]

Rs(@) = E [Rs(h)]

A learning algorithm

A stochastic learning algorithm

A loss function

A loss function (alternative formulation)

A loss function (alternative formulation)

The zero-one loss

The margin loss 1[h(z), <+ max;., h(z);]
The (true) risk of h on D

The empirical risk of A on .S

The (true) risk of @ on D

The empirical risk of @) on S

12



N={1,2,...} The natural numbers (excluding zero)

No={0,1,...,} The natural numbers including zero

[n] The integers {1,2,...,n}

ReLU(z) = max(zx,0) The Rectified Linear Unit activation function

MLP (kg k1, ka1 ka) The set of d-layer ReLU activated multilayer perceptrons
(MLPs) with input dimension kg, output dimension k4, and
hidden dimensions ki, ..., kq_1

MLP The set of all ReLU activated MLPs

v The measure v is absolutely continuous with respect to

g—; The Radon—Nikodym derivative, defined for v <

KL(v||p) = [ g—;dl/ The Kullback-Leibler divergence of v from pu

B(p) The Bernoulli distribution with probability of success p

kl(g|lp) = KL(B(q)||B(p)) ~ The “small k1"

kl™(¢|B) The “inverse” small kI sup {p € [0,1] : kl(¢q||p) < B}

JAVS The simplex {w € [0,1]" : Y7 u; = 1}

ki(gllp) = > i ailn The vector “small kI” for g,p € A,

[Wiltrob = /22 22 W The Frobenius norm of the matrix W

W lspec = Tmax (W) The Spectral norm of the matrix W, where op,.(W) is the

largest singular value of the matrix W

|s| The length of a binary string s € {0, 1}*
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Chapter 1
Introduction

We study the problem of explaining the empirically observed generalisation ability of overpa-
rameterised neural networks. A model is often considered overparameterised if its number of
parameters is much larger than the number of samples used to train it. A more accurate view is
that a model is overparameterised if it has the capacity to perfectly fit the training data in ways
which do not generalise. The fact that ordinary training methods such as Stochastic Gradient
Descent (SGD) nevertheless produce models that generalise well even in the overparameterised
regime then immediately presents a puzzle, articulated in Zhang et al. ( ) and Belkin et
al. ( ) among others, often called the generalisation mystery—what is it about the inter-
play between the network architectures, data-generating distributions and learning algorithms
commonly used in Deep Learning (DL) that enables the algorithms to pick out interpolating
solutions that generalise, rather than one of the many that do not? In more common parlance,
why do neural networks large enough to overfit frequently avoid doing so?

In order to give a more precise formulation of the generalisation mystery, we first give the
following general definition of a learning problem, which encompasses many applications of DL,
including regression and classification. We then define what it means for a learning problem to

be overparameterised, and finally give a more precise statement of the generalisation mystery.

Definition 1. (Learning problem). A learning problem is defined as a tuple (X, Y, D, S, H, (),
where X is an input space, ) is an output space, D € A(X x }) is a data-generating distri-
bution, S ~ D" is an i.i.d. sample, H C V¥ is a hypothesis class (also called a model) and
C:H x (X x)Y)— Ris aloss function. The data-generating distribution D is considered to

be unknown.

The goal of a learning problem is to find a hypothesis h € H with low true risk

Rp(h) := Eq g~ [((h, (,9))]. (1.1)

Since the distribution D and hence the true risk Rp(h) is unknown, it is common to choose a

hypothesis h that minimises the empirical risk

Rs(h) =t 3 D, (,)) (12)



Choosing h in this way is called Empirical Risk Minimisation (ERM).

To see how neural networks fit into this framework, suppose we have a fixed network archi-
tecture with input dimension d;,, output dimension d,;, and parameters w € R? considered as
a single vector. Such a network can be used when X C R%» and either Y C Rut or ) = [dout)-
In the case where ) = R%ut, for example regression, one can simply take the hypothesis class
to be H = {hy : w € R}, where hy, : X — ) is the function expressed by the neural net-
work with parameters w. In the case where ) = [doy], for example classification, one may
instead let ¢, : X — ) denote the function expressed by the neural network, and then define
hy () = arg maxje(q,..] ¢w(2);, namely the coordinate j of the largest value of the vector output
Pw(x) € Ré%ut of the neural network. This extra step is required to ensure that the codomain
of hyy 18 Y = [dout]. In either case, we say that the hypothesis class has been induced by the
network architecture.

The question now arises as to the choice of architecture. In particular, how flexible it should
be in terms of the functions it can express. Conventional wisdom holds that there is a sweet
spot. If the architecture is too small, the expressivity of the network will be so limited that
there will not exist parameter settings for which Rp(hy) is low. This is termed underfitting,
and the network is said to be underparameterised. Conversely, if the architecture is too large,
the network will be so expressive that there will exist parameter settings for which Rg(hy,) is
low yet Rp(hy) is high, and algorithms such as ERM are then liable to choose such parameter
settings. The traditional view then holds that in either case the true error Rp(hy,) will be
higher than it would be with an architecture whose size lies somewhere in the middle.

The case where the network architecture is too large is frequently called overfitting. This is
appropriate in the case of noisy data!, where the network is liable to fit the noise as well as the
signal. But the existence of parameter settings for which Rg(h,,) is low yet Rp(hs,) is high is
clearly problematic for algorithms such as ERM even in the absence of noise. For this reason,

we call this case overparameterisation rather than overfitting, as in the following definition.

Definition 2. (Overparameterised regime). Let (X,Y, D, S, H, ) be a learning problem, where
the hypothesis class H = {h, : w € R?} is induced by a neural network architecture with
parameters w € RY. We say that the learning problem (or simply the neural network) is

overparameterised, or is in the overparameterised regime, if there exists a parameter setting
w € R? such that Rg(hy,) is low while Rp(hy,) is high.

Informally, we say that a network is overparameterised if it is flexible enough to express
functions that perform well on the sample while performing badly on the distribution. In
other words, it can express functions that do not generalise. Intuitively, one should not expect
training an overparameterised neural network by minimising Rg(h,,) via SGD, without any
explicit regularisation, to yield good results. After all, why should this process not locate a
parameter settin for which Rg(hy,) is low while Rp(hy,) is high, which we know to exist? But

it is an empirical fact that this does in fact frequently succeed, in the sense that it frequently

LA data-generating distribution D € A(X x ) for a classification task is termed noisy if there does not exist
a function f: & — Y for which P, ,y.p(f(z) =y) = 1.
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yields parameter settings for which both Rg(hy,) and Rp(hy) are low. In other words, it yields
functions h,, that generalise. The unexplained empirical success of DL in the overparameterised

regime is termed the generalisation mystery, which we formalise in the following definition.

Definition 3. (Generalisation Mystery) The generalisation mystery is the mystery of why, in
the overparameterised regime, learning algorithms commonly used in the field of Deep Learning,
such as minimisation of the empirical risk Rg(h,,) via SGD, frequently yield parameter settings

w for which the true risk Rp(h,,) is low, even in the absence of explicit regularisation.

It may be objected that our formalisation of the generalisation mystery and the overparam-
eterised regime fail to specify thresholds for what counts as low empirical risk and high true
risk. This is not possible since the thresholds depend on properties of the learning problem,
such as the range of the loss function or the irreducible risk of the data-generating distribution
(i.e. the Bayes error in the classification setting), and other contingent or subjective factors.
However, in DL practice the difference is often quite stark. For example, in classification with
deep neural networks, one can commonly find parameter settings with essentially zero train er-
ror and 50% test error, as shown by Zhang et al. ( ) on the CIFARI10 dataset (Krizhevsky,
Hinton, et al., ).

Further, one may object that the term overparameterisation is not ideal, since what char-
acterises the overparameterised regime in Definition 2 is not the number of parameters d of
the neural network per se, but rather the neural network’s capacity to express different func-
tions. Indeed, one can trivially construct neural networks with arbitrarily many parameters
but low expressivity. For example, if the first hidden layer has dimension one, then the net-
work will be severely restricted in its expressivity however many subsequent layers there are
of whatever size. Conversely, one can construct highly expressive networks with only a single
parameter by appropriate choice of activation function. For example, it can be shown that
hy(x) = 1[sin(wax) > 0], which can be considered a very simple neural network with activation
functions sin and sign, is highly expressive while having only a single parameter. Nevertheless,
commonly used architectures almost invariably increase in expressivity with increasing numbers
of parameters, making the terminology largely unproblematic in practice.

What would it mean to solve the generalisation mystery? One approach, taken by Statistical
Learning Theory (SLT), is to prove generalisation bounds (Bousquet et al., ; Vapnik, ).
These typically bound (with high probability) the generalisation gap, namely the difference
Rp(h) — Rs(h) between the true and empirical risks. Early SLT focused on uniform bounds on
the generalisation gap, where the value of the bound does not depend on h, and the bound holds
with high probability for all A € H simultaneously. This forces the bound to be loose enough
to accommodate the worst-case generalisation gap, which, in the overparameterised regime, is
by definition large. Uniform bounds are therefore incapable of explaining the generalisation
mystery, as the bound will be too loose to explain the small generalisation gap of the learned
network. In the classification setting, such bounds are typically vacuous, meaning they are
larger than 1 and so fail to constrain the generalisation gap at all.

PAC-Bayesian theory, pioneered in the seminal works McAllester ( ) and Shawe-Taylor
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and Williamson ( ), is a more modern branch of SLT used to derive non-uniform general-
isation bounds, which has enabled it to have much greater success in producing non-vacuous
generalisation bounds in the overparameterised regime (Dziugaite and Roy, ; Pérez-Ortiz
et al., ; Zhou et al., ). However, non-uniform bounds alone also cannot resolve the gen-
eralisation mystery, since they simply shift the question of why commonly used DL algorithms
pick out parameter settings for which the true risk is low, to the question of why they pick
out parameter settings for which the bound is small. That empirical fact is left unexplained.
While this is not an issue for PAC-Bayes-inspired learning algorithms, which employ the bound
as a training objective (e.g. Dziugaite and Roy ( )), it is primarily the generalisation of
commonplace learning algorithms that we wish to explain. Other obstacles to PAC-Bayesian
theory resolving the generalisation mystery are discussed in Chapter 2.

An independent approach to explaining the generalisation mystery is to search for measures
of neural networks that are empirically predictive of generalisation across a large dataset of
networks (Jiang et al., ; Neyshabur et al., ; Unterthiner et al., ). This may
be motivated by an appeal to Occam’s razor; of all the interpolating solutions, perhaps the
simple ones are more likely to generalise. Such measures are often termed complexity measures.
Ideally, one is able to find a complexity measure that is both predictive of generalisation and
corresponds to some intuitive notion of complexity. Further, it should be the case that an
increase in the complexity measure is causally responsible for an increase in generalisation gap,
rather than merely correlated.

These lines of research are complementary. On the one hand, empirical discoveries of pre-
dictive and causal complexity measures motivate the search for rigorous generalisation bounds
leveraging such complexity measures. On the other hand, tight non-uniform generalisation
bounds suggest complexity measures that can be studied empirically. A full explanation of the
generalisation mystery will likely require a synthesis of the two approaches.

We now outline our three contributions to the investigation of this question.

1. One hope for generalisation bounds is that they may ultimately be tight enough to enable
self-certified learning. This is where test set bounds are replaced by generalisation bounds,
eliminating the need to withhold data from the training algorithm in order to validate
its output. In the ideal case the certificate is information-rich. For example, rather than
bounding simply the error rate of a classifier, it should provide rich information on which
misclassification errors the classifier is more or less likely to make. We take one step
in this direction in Chapter 3 by proving a very flexible generalisation of a well-known
PAC-Bayes bound. Our generalisation constrains the entire distribution of the output
of a predictor (such as a neural network) over a set of user-specified error types, and
therefore is not limited to multiclass classification in particular. Further, we show that
controlling the entire distribution over error types implies bounds on every possible linear
combination of the error types, which all hold simultaneously with the same probability

as the original bound.

2. PAC-Bayesian theory predominantly addresses stochastic models which, for neural net-
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works, generally equates to a distribution over the weights, where a fresh sample from
this distribution is drawn for each prediction. This is counter to common DL practice
and therefore constitutes a significant obstacle in the ability of the PAC-Bayesian theory
to explain the generalisation mystery. In Chapter 4 we investigate whether the empir-
ically observed compressibility of neural networks trained by ordinary methods can be
exploited to do away with the stochasticity usually required by PAC-Bayesian theory,
while still obtaining non-vacuous generalisation bounds. In other words, we investigate
the ability of PAC-Bayesian theory to produce tight generalisation bounds for determin-
istic networks trained by ordinary methods, which should be the ultimate goal of SLT.
We prove a result which bounds the true error of a deterministic neural network in terms
of the empirical margin loss of its compression, plus a term that measures the size of the
compressed network. The required margin is smaller for higher fidelity compressions. In
other words, we show that if a network has large margin on the train set, and there exists

a high-fidelity compression, then this network generalises.

3. Many neural network complexity measures proposed in the literature, including some
derived from rigorous generalisation bounds, have been empirically shown to negatively
correlate with generalisation gap (Jiang et al., ). While this still makes them pre-
dictive of generalisation gap (for which only positive mutual information between the
complexity measure and the generalisation gap is required), a complexity measure worth
the name should positively correlate with generalisation gap. In Chapter 5 we propose
a novel neural network complexity measure we call the distillation complexity and show
that it is indeed positively correlated with generalisation gap across a suite of models.
Further, we see that our distillation complexity does not grow with model size, in contrast
to many other complexity measures. We also provide some evidence that it plays a causal

role in determining the value of the generalisation gap.

1.1 Motivation

Why seek an explanation of the generalisation mystery? Should the academic community not
be satisfied with having discovered algorithms which do in fact produce models which generalise
very successfully? No, and for a number of reasons, three of which we now give.

First, basic research can produce significant down-stream benefits. Attacking the core mys-
teries of a field occasionally yields deep insight, which can revolutionise the discipline in ways
that are hard to predict in advance. In the case of DL, the field resembles a bag of poorly under-
stood tricks, with post-hoc explanations of empirically successful methods sometimes turning
out to be wrong (e.g. Santurkar et al. ( ) in the case of batch normalisation). An explanation
of the generalisation mystery, which would necessarily address the interplay between architec-
ture, learning algorithm, and data-generating distribution, may yield a principled science of DL.
This could allow a much more judicious application of the tricks discovered so far, and a more

directed search for new ones. The current situation is one in which it is possible to believe that
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the field progresses mostly in a trial-and-error fashion, and produces post-hoc explanations for
successful methods that produce little understanding of what is actually going on. This makes
training large models financially risky, especially at the enormous scale of frontier models. For
example, the lack of rigorous theory means that hyperparameter settings for large models must
be extrapolated from sweeps across smaller models, with no guarantee that these extrapolated
values will be optimal. While scaling laws (Hoffmann et al., : Kaplan et al., ) relating
training loss to model size, training time and sample size have been empirically observed to
hold over many orders of magnitude, and surely inform decisions on high-budget training runs,
without theoretical grounding these laws provide limited assurance that a given training run
will turn out to be a good investment.

Second, a rigorous understanding of the generalisation mystery may be a prerequisite for a
predictive theory of domain shift. The lack of such a theory is currently a significant obstacle to
the deployment of neural networks in high stakes environments, where domain shift is frequently
unavoidable (Koh et al., ; Quinonero-Candela et al., ). A deeper understanding of
when a neural network is likely to generalise to a new environment could produce significant
savings in cases where testing in each new environment is costly and time-consuming. And it
could allow safer deployment to unstable environments when continual testing is not practical.

Third, and more speculatively, a deep understanding of generalisation may enable not just
the final loss values of foundation models such as Large Language Models (LLMs) or image
generators to be predicted in advance of training, but also their specific capabilities. Despite
the controversy over the meaning and existence of so-called emergent capabilities, it is not
disputed that currently the capabilities of these models cannot be predicted in advance of
training, even knowing their final loss (Ganguli et al., ). Instead, we discover what tasks
they can and cannot accomplish at the end of training through extensive evaluation (Srivastava
et al., ; Wei et al., ,b). This is an ongoing process, with some capabilities only
discovered long after deployment. As models become more capable, it does not bode well that
we can unintentionally train models with dangerous capabilities that are only discovered after

training or even deployment.
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Chapter 2

Background: SLT and the

Generalisation Mystery

The goal of Statistical Learning Theory (SLT) is to bound the discrepancy between the empir-
ical and true risks of a hypothesis—the so-called generalisation gap—even when the hypothesis
in question is dependent on the sample used to evaluate the empirical risk. While bounding the
discrepancy for a fixed hypothesis is straightforward, the difficulty introduced by the freedom to
choose the hypothesis based on the sample is significant. In this chapter we outline two broad
approaches found in SLT. First, classical SLT provides a number of uniform generalisation
bounds, uniform in the sense that they bound the generalisation gap of all hypotheses simul-
taneously by a constant. The constants of the various bounds involve measures of complexity
of the hypothesis class, thus providing different formalisations of the intuition that while the
hypothesis class may be large—even uncountably infinite—one may still expect the worst-case
generalisation gap to be small if the class is relatively simple in terms of the functions it can
express. The fact that the bound holds for all hypotheses simultaneously means it in particular
holds for any sample-dependent choice of hypothesis, such as that returned by some learning

algorithm.

While the theory is elegant, we will see that uniform bounds cannot explain generalisation
in the overparameterised regime. Further, although the classical theory can be extended to non-
uniform bounds in a number of ways, it is only with the advent of PAC-Bayesian theory that
we witness non-uniform bounds that plausibly have the potential to explain the generalisation
mystery. PAC-Bayesian theory considers stochastic hypotheses, namely distributions over the
hypothesis class that predict according to a (deterministic) hypothesis randomly drawn from
the distribution, with a fresh hypothesis drawn for each prediction. While this constitutes
a step away from usual Deep Learning practice, the dramatically improved tightness of the
resulting bounds compared to classical SLT indicates that it may nevertheless be a step towards
understanding the generalisation mystery. Indeed, in Chapter 4 we explore how we can reconcile
the stochastic hypotheses of PAC-Bayesian theory with the deterministic hypotheses of ordinary
DL practice.
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2.1 Classical SLT

Let H C V¥ be a hypothesis class and £ : H x (X x Y) — [0, C] be a bounded loss function.
Given a data-generating distribution D € A(X x )), the goal of a learning algorithm is to find
a hypothesis h € H with low true risk Rp(h), defined as the expected loss of h on a single draw

from D, namely
RD(h) = E(:c,y)ND [E(h, (ZL‘, y))} .

However, the distribution D is typically unknown. Instead, we commonly assume we are
provided with an i.i.d. sample S ~ D™, and can only evaluate h according to the empirical risk

Rg(h), defined as the mean loss of h across the sample S, namely

1

(z,y)€eS
A familiar choice of loss function is the zero-one loss lyi(h, (x,y)) = 1[h(z) # y] used
in classification tasks with ) = [N]. It is then common to denote the loss as a function

lor : Y* — {0,1}, where the domain is ) rather than H x (X x ). In such cases, we define

the true and empirical risks to be

RD(h) = IE’(:l:,y)wD [g(h(x)vyﬂ and RS(h) = m Z f(h(l’),y), (21)

(z,y)ES

respectively, which we can then call the true and empirical errors.

Since the zero-one loss is not differentiable, a common procedure is to first learn a function
H : X — Ay with low cross-entropy loss lcg(H, (z,y)) = —In(H(z),), and then classify
according to the hypothesis h(z) = argmax;cy H (z);. In this case, it is common to denote the
loss as a function {cg : Y X Y — R, where Y = Ay. Note we need to be sure that the function
defined by h(z) = argmax;cyH (z); is indeed an element of H. We can then define the true
and empirical risks of H by substituting H for h in Equations (2.1). Going forward, it will
always be clear from the context whether the domain of the loss function is H x (X x V), V?

or Y x ), and therefore which definitions of the true and empirical risks are being employed.

Given a learning algorithm A : (X x Y)* — H, i.e. a function taking a sample S of arbitrary
length and returning a learned hypothesis A(S) € H, the goal of learning theory is to upper
bound the unknown true risk Rp(A(S)). This is typically done by bounding the generalisation
gap Rp(h) — Rg(h) for all h € H simultaneously, where the bound can be a function of all
known quantities, e.g. the sample .S, the hypothesis h, the entire hypothesis class H, the bound
C' on the loss function, and so on. Such bounds are termed generalisation bounds, and when

the bound is independent of h, we say that it is uniform.

As a first step toward a generalisation bound, suppose we are interested in bounding the

generalisation gap Rp(h) — Rs(h) of a single hypothesis h € H. This can be achieved by a
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straightforward application of one of many concentration inequalities. As a simple example!,

using Chebyshev’s inequality we have

Pg..pn (RD(h) — Rs(h) > 6) < PS~D”(’RS h )‘ > 6) (22)

= Pg.p» (|RS h ES’ND[RS’( )” > 6) (23)

< Vsepr (Rs(h)) (2.4)

_ Viay) ~D(R{ aay)}(h)) (2.5)

<< 26)

and so
C2
]PSND" (RD(h) - Rg(h) S 6) 2 1— @

This says that the true risk Rp(h) is at most € larger than the empirical risk Rg(h) with
probability at least 1 — C?/ne®. A frequent substitution at this point is § = C?/ne?, so that

the bound becomes o
Psopn | Rp(h) — Rg(h) < — ) > 1—0. 2.7
swin (o)~ Re(t) < =) (27)
This form is useful when one wishes to find the minimum sample size n such that the bound

fails with probability at most §, where J is deemed an acceptable threshold.

Suppose now that we have a learning algorithm A : (X x ))* — H. While it is tempting to
make the substitution h = A(S) into Inequality (2.7), this would not yield a valid bound. To
see why, notice that line (2.5) uses the fact that the ¢(h, (z;,y;)) are i.i.d., which is not the case
for £(A(S), (z;,v:)). To get an intuitive feel for what is happening here, suppose we have 1000
biased coins, each with a possibly different bias. If we pick any particular coin and toss it 100
times, then the proportion of heads will be approximately the bias of the coin. However, if we
toss all 1000 coins 100 times each, and then consider the one that came up heads least often, this
coin’s proportion of heads will likely be a significant underestimate of its bias. Analogously,
while Rg(h) may be a good estimator of Rp(h) for every particular h € H, the hypothesis
returned by the Empirical Risk Minimiser (ERM) algorithm Aggn(S) = argming ., Rs(h) is
likely to have empirical risk Rg(h) significantly lower than Rp(h).

One approach to solving this problem is to bound sup,cy (Rp(h) — Rs(h)), which will then
bound Rp(A(S)) — Rs(A(S)) as a particular case. Such a bound is termed a uniform bound,
as the same bound applies uniformly to every h € H. This is the approach taken by most of
classical SLT. While there are many such bounds—far too many to cover in this brief overview—
we present the following three classes of bound with illustrative examples; union bounds over
a countable H, bounds based on the Vapnik-Chervonenkis dimension of H, and those based on

the Rademacher Complexity of H on S.

Much better concentration inequalities, such as Hoeffding’s inequality are available, but our purpose here
is simply illustration.
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2.1.1 Union bounds

Suppose we have a finite hypothesis class H = {hq, ..., hx}. Then from Inequality (2.7) we see
that

Vk € [K] Ps.pn (RD(hk) — Rg(hy) < \/%> >1-0.

Our goal is to get the quantifier Vk € [K] inside the probability so that the bound holds for
all h € H simultaneously, and in particular the hypothesis A(S) returned by our learning
algorithm.

The key technique, used over and again in SLT, relies on the elementary fact that P(E; U
Ey) < P(E)) + P(FE,) for any events Ej, Ey, not necessarily independent, and any probabil-
ity distribution P. Sometimes termed Boole’s inequality, this extends to arbitrary finite or

countably infinite collections of events

P (UE) <> P(E), (2.8)

1€ €T

where Z C N. Moreover, the union bound can be used to deal with the quantifiers “v” and “3”
by expressing them as unions. Indeed, suppose that for each ¢ € Z we have a random variable
Zi, aset Bi CR and an event E; = {Z, € B;}. Then

PVieT Z,€B)=1-PFiel Z ¢ B

:1—IP><UEE>
>1-) P(E)

1€l

=1-> (1-P(Z € B)).

1€T

Applying this to our case gives

—~

Pg..pn (Vk S [K] Rp hk) - Rs(h,k) < \/%)

(1 — Pgpn (Rp(hk) ~ Rs(h) < %))

Now, since ¢ was arbitrary, we can replace it with §/K to obtain

Pg..pn <\V/k € [K] RD(hk> — R,g(hk) < C\/%) >1-— (5, (29)
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and thus, in particular,

Pspr (RD<-’4(S>) — Rs(A(9)) < C\/%) >1-9, (2.10)

for any learning algorithm A. Therefore, in this illustrative example, the cost of permitting the

hypothesis h € {hy,...hk} to be sample-dependent is an increase in the bound by a factor of
VK.

Going back to our coin tossing example, the intuition is that while we may be confident
that for any particular coin the proportion of heads from 100 tosses is within e of the bias, we
must increase € if we want to be confident that this is the case for all 1000 coins simultaneously,
which is one way to guarantee this is the case in particular for the coin that comes up heads

the fewest times.

The fact that we must increase the bound by a factor of VK in order to apply a union
bound over K hypotheses is not optimal, and comes from the poor dependence on ¢ in the
original bound (2.7) derived using Chebyshev’s concentration inequality. There are a variety
of concentration inequalities however, and applying Hoeffding’s yields the following bound for

a particular h € ‘H with much better dependence on ¢ than (2.7)

1 2
Pspn (RD(h) ~ Rg(h) < Cy/5-In 5) >1-04. (2.11)

The logarithmic dependence on ¢ in this bound makes it much cheaper to take union bounds;
decreasing ¢ by a factor of K increases the argument of the square root by only %ln K.
Indeed, following the same process as before, we obtain the following uniform bound for our
finite hypothesis class H = {hq, ..., hx}

Pg..pn <Vk € (K] Rp(h) — Rs(hi) < C 2i1n %) >1-4 (2.12)

n

2.1.2 Union bounds with a prior over the hypothesis class

The derivation of the union bounds (2.9) and (2.12) relies on the fact that the failure probabil-
ities /K of the individual bounds sum to §, the desired failure probability of the union bound.
Viewed in this way, it becomes clear that we can combine countably many bounds provided
their probabilities of failure still sum to §. To that end, suppose we have a countable hypothesis
class H = {hy : k € T}, where Z C N, and let 7 € A(H) be a distribution over A such that
m(h) > 0 for all h € H. Then we can combine countably many bounds of the form (2.11), one
for each h € H, by setting J;, = m(h)d, to obtain

1 2
n — < — >1—o. .
Ps-p (\m € Rp(h) = Rs(h) < Cy/5-1In T ) >1-6 (2.13)
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The derivation is a straightforward application of the union bound:

1 2
]P)SND" (Vh cH RD(h) — R5<h) <(Cy/=—1n >

2n - w(h)é
1 2
>1- 1 —Ps.pn | Rp(h) — Rs(h) < C —ln—)}
};{{ ° ( 5 2n w(h)d
>1-Y w(h)s
heH
=1-0.

Note that the bound in (2.13) is no longer uniform; its value depends on the hypothesis h
via the probability 7(h). Observing that the bound is smallest for values of h for which 7(h)
is large, we see that a natural choice for 7 is to put greater mass on hypotheses h we believe
our learning algorithm is more likely to return. In fact, by doing so we can interpret 7 as our
prior beliefs of the hypotheses our algorithm will return.

Moreover, the fact that the bound is no longer uniform over H opens up a second strategy

for picking h aside from ERM; pick the hypothesis A which has the smallest true risk bound,

. 1 2
Asin-bound (S) = argming, 4, (Rg(h) +Cy/ o In )3 ) ) (2.14)

If 7 is chosen to reflect our prior beliefs on which h have low true risk, Ainbounda can then be

namely

interpreted as a balance between our prior beliefs 7w(h) and evidence Rg(h). Bound minimisation
as a learning algorithm is a frequently employed concept in both classical SLT and PAC-
Bayesian theory, as we will see.

Note that the dependence on n of the generalisation bounds we have seen so far is as 1/4/n.
This is typical in the so-called “non-realisable” setting, where there does not exist h € ‘H such
that Rp(h) = 0. In the realisable setting the dependence on n is as 1/n, which is much better.

Indeed, through a very simple argument, the following bound was proven in McAllester ( ).

Theorem 1. (McAllester ( ), Preliminary Theorem 1) Let H C Y% be a countable hypoth-
esis class, [ : Y? — {0,1} the zero-one loss function ((4,y) = 1[§ # y|, and D € A(X x Y)
a data-generating distribution such that there exists h € H with Rp(h) = 0. Then for any
7€ A(H) and § € (0,1],

n

1 1
~Dn . = — . 1
Ps..p (Hh eH Rg(h> 0 and RD(h) > (111 W(h)(;)) ) (2 5)
If we take as our learning algorithm Aprm(S) € {h € H : Rg(h) = 0}, we have

Ps.pr (RD<AERM<S>) <o (m m)) >1-4 (2.16)

Suppose that instead of representing our prior beliefs, we simply wish to choose 7 so as

25



to minimise the bound (2.13) in expectation over the random draw S ~ D". This strategy
was first suggested in Langford and Blum ( ) (see Section 2.1). They note that if, for any
algorithm A, we define the distribution p € A(H) by p(h) = Psupa(A(S) = h), then the

expectation of the bound given in (2.16) can be written as

%ES,\/D'H ln% —i—lnm] = l111% + lz:,o(h)ln%.
heH

It is then immediate from Gibbs’ inequality that this is minimised by m = p. While this is
a perfectly legitimate choice—p is independent of S—it is not practical as p depends on the
unknown data-generating distribution D. Nevertheless, it demonstrates that a good choice of
prior 7 is one that “anticipates” which hypotheses are likely to be returned by the algorithm
A on the distribution D, a property we will see mirrored in PAC-Bayes bounds in Section 2.3.

It is important to note that while taking union bounds with a non-uniform prior 7 € A(H)
may yield empirically tighter generalisation bounds for our chosen algorithm A, this is at the
expense of reduced explanatory power for the success of A. Instead of being able to say that
A(S) has small generalisation gap because the sample size n is large enough that all h € H have
small generalisation gap, we may end up in a situation where the bound on the generalisation
gap of A(S) is tight only because of our choice of prior m, where a different choice of 7 may have
produced much worse bounds. In such a case, we are lucky that our prior 7 placed large mass
on the hypothesis that .4 happened to return, and this luckiness is a gap in our explanation for
why A performs well. Even if our algorithm is Ain-bounda defined in Equation (2.14), which is
explicitly biased towards h for which 7(h) is large, there is an element of luckiness in whether
there exists h € H that achieves both low Rg(h) and high m(h) simultaneously. We discuss this

element of luck more in Section 2.2.

2.1.3 Uncountable hypothesis classes

The previous section introduced union bounds as a method to combine countably many gener-
alisation bounds, one for each hypothesis in a countable class. However, most commonly used
hypothesis classes, such as the set of Multi-Layer Perceptrons (MLPs) of a given architecture,
are uncountable. Of course in practice these hypothesis classes must be representable on a
finite computer and are therefore themselves necessarily finite. However, this implicit finite hy-
pothesis class is typically too large to produce non-vacuous generalisation bounds. Moreover,
treating the hypothesis class simply as a finite set obscures relevant structure that SLT can
take advantage of. This section introduces two generalisation bounds that do exactly that; they
bound the generalisation gap by formalising the capacity of H to fit data in arbitrary ways.
One informal takeaway of the previous section is that the more freedom we have in our
choice of hypothesis h (i.e. the larger H), the more suspicious we should be that its empirical
risk Rg(h) is a good measure of its true risk Rp(h). Intuitively, however, our degree of choice
should not be measured in terms of the cardinality of 4, but rather in terms of the capacity of H

to make arbitrary predictions. For example, if we know that there exists @ = (z1,...,z,) € A"
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such that for any possible labelling y = (y1,...,y,) € V" we will always be able to find a
hypothesis h € H that produces labels y on @ (or at least achieves very low loss on x), then
this means H has the capacity to fit the noise as well as the signal. Therefore we should
certainly be suspicious that the empirical risk of Aggrm(S) € H is a good proxy for the true
risk when S is around this size. In common DL parlance, we say that the class H has the
capacity to overfit. Conversely, if we know that above a certain sample size n the class H is
severely restricted in how it can label any sample of size n, then the class is restricted in how
much of the noise it can fit in addition to the signal, meaning a low empirical risk of Agrn(.S)
above this sample size is strong evidence that the true risk is also low. Crucially, this is the
case even if |H| is very large, perhaps uncountably infinite. This intuition was formalised as

the Vapnik-Chervonenkis dimension (Vapnik and Chervonenkis, ), to which we now turn.

2.1.4 Vapnik-Chervonenkis dimension

Consider the case of binary classification with zero-one loss, namely label space Y = {0,1},
hypothesis class H C {0,1}%, loss function £y (h(x),y) = 1[h(z) # y], and true and empirical
risks Rp(h) and Rg(h) defined as in Equations (2.1). We have the following definitions.

Definition 4. Let H C {0,1}*. The set © € X™ is shattered by H if
{(h(z1),...,h(zn)) : h € H} ={0,1}",

namely if H has the capacity to produce every possible binary labelling y € {0,1}" of x.

Definition 5. (Vapnik-Chervonenkis definition) Let H C {0,1}*. The VC-dimension dyc(H)
is defined as the largest n such that there exists & € A" shattered by H, or oo if no largest n

exists.

It was shown in Vapnik ( ) that this notion of complexity of H can be leveraged to bound
the maximum generalisation gap over the hypothesis class provided dyc(H) is finite. We give

the following form of the bound which more straightforward to parse.

Theorem 2. (Abu-Mostafa et al. (2012), Theorem 2.5) For any H C {0,1}* such that
dyo(H) < oo, any data-generating distribution D € A(X x {0,1}), confidence level § € (0, 1]
and sample size n, with probability at least 1 — & over the sample S ~ D™, for all h € H

simultaneously,

Rp(h) — Rs(h) < \/S (dvc(H) (m (#?H)) + 1) +In %) (2.17)

where Rp(h) and Rg(h) denote the true and empirical error of the hypothesis h, respectively.

Ignoring logarithmic factors, this bound is O(y/dvc(H)/n), meaning we need n > dyc(H) in
order to achieve tight bounds. Is the sample size n in fact much larger than the VC-dimension

dyc in ordinary DL practice? While determining the exact VC-dimension of a hypothesis
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class induced by a neural network architecture is difficult, various asymptotic lower bounds for
fully connected neural networks have been established that scale at least with the number of
parameters (weights and biases) of the network (Bartlett et al., : Bartlett, : Bartlett

et al., ; Maass, ). For example, the following lower bound was proved in Bartlett et al.

(2019).

Theorem 3. (Bartlett et al. (2019), Theorem 8) There exists a universal constant C' such that
for any number of weights n,, and number of layers n; such that n, > Cn; > C?, there exists

a ReL U network with at most n; layers and at most n,, parameters with VC-dimension at least

Ny In(ny, /1) /C.

In particular, this result shows that for a hypothesis class H corresponding to a fully con-
nected neural network with n,, parameters, we have that dyc(H) is €2(n,,). Loosely, combining
this with the above observation means we require n > n,, in order for Theorem 2 to produce
tight bounds. Unfortunately this is not usually the case in DL, where the number of parame-
ters typically far exceeds the sample size. While this is only a heuristic argument, the order of
the bounds, combined with the fact that the performance of neural networks does not always
degrade as the number of parameters becomes very large (for example, see Loog et al., ;
Nakkiran et al., ), indicates that Theorem 2 is unlikely to produce tight bounds for typical

neural networks.

2.1.5 Rademacher complexity

The VC dimension was motivated by the intuition that if, for a sample size n, there exists
x € A" that can be arbitrarily labelled by H, then there is a risk that our sample S €
(X x V)™ corresponds to this @, in which case observing low Rg(Agrm(S)) is not good evidence
that Rp(Agrm(S)) is also low. This worst-case analysis was required in order to obtain a
generalisation bound independent of the sample S. But since S is known, can we not inspect
whether it in fact matches x&? Surely, if the capacity of H to produce arbitrary labellings of
our sample is in fact highly restricted, then we are quite unlikely to fit the noise on S, even if
there exist other samples for which we could fit arbitrary noise. What this indicates is the need
for a sample-dependent bound involving a sample-wise complexity measure of H. Indeed, this
is exactly what the Rademacher complexity measures, in a way that produces a corresponding

generalisation bound.

Definition 6. (Rademacher complexity) Let H C Y? be a hypothesis class, S € (X x Y)"
a sample, £ : H x (X x )) — [0,C] a bounded loss function, and o = (01,...,0,) a tuple
of Rademacher random variables, such that P(o; = 1) = P(o0; = —1) = 1/2 for all . The

Rademacher complexity of H on S given £ is

R(H,¢,S)=E, |sup — Zaz  (@is yi))

heH T
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In the case of binary classification with zero-one loss, for each value of o we can write
S =S, US_, where Sy = {(z;,y5) € S:0; =1} and S_ = {(x;,4;) € S : 0, = —1}. The
supremum then optimises over h € H the number of incorrect classifications on S, minus the
number of incorrect classifications on S_, divided by the sample size n. Averaging this over all
values of o then yields the Rademacher complexity. In the case where H is flexible enough to
label the z; in arbitrary ways, the supremum will be equal to %Z?:l 1[o; = 1], which, when
averaged over all values of o, equals 1/2.

The first generalisation bounds based on the Rademacher complexity were due to Bartlett
and Mendelson ( : ) and Koltchinskii and Panchenko ( ). We give the following

example.

Theorem 4. (Shalev-Shwartz and Ben-David (201/), Theorem 26.5) For any H C Y%, data-
generating distribution D € A(X x ), loss function £ : H x (X x ) — [0,C], confidence level
d € (0,1] and sample size n, with probability at least 1 — & over the sample S ~ D", for all
h € ‘H simultaneously,
2In(4/6
Rp(h) — Rs(h) < 2R(H, ¢, S) + 4C M, (2.18)

n

where Rp(h) and Rg(h) denote the true and empirical error of the hypothesis h, respectively.

Note that the bound (2.18) depends on S and so is a random variable, in contrast to the
constant sample-independent generalisation bound (2.17). Further, since the inequality holds
for all h € H simultaneously, it holds in particular for h = Agrym(S) or any other choice of
algorithm.

We can now ask whether this sample-dependent bound can explain the observed generali-
sation of neural networks. Unfortunately, the answer is again no. This is demonstrated most
clearly in Zhang et al. ( ). There they show that network architectures and training pro-
cedures commonly used to successfully learn CIFAR10 and ImageNet classification tasks still
yield networks with near 100% train accuracy (i.e. Rg(h) ~ 0), even when the labels of the
sample S are randomised. While it would be computationally infeasible to repeat this exper-
iment for every possible labelling of the sample and thereby measure R(H, ¢, S) exactly, the
fact that they achieved Rg(h) = 0 for a random labelling is evidence that the hypothesis class
‘H implied when employing neural networks is flexible enough to label S arbitrarily. As noted
after Definition 6, this would imply that R(H,¢,S) ~ 1/2, which would make the bound in
Theorem 4 vacuous.

Previously, a folk theory for the effectiveness of regularisation techniques such as weight
decay or dropout was that they reduced the effective capacity of the network to overfit. This
reduced effective capacity then means that the empirical risk is a better proxy for the true risk
across the hypotheses likely to be generated by the training procedure. However, the experi-
ments in Zhang et al. ( ) included such regularisation, demonstrating that typical regulari-
sation does not in fact limit the capacity of the network to overfit. Indeed, further experiments

in the paper show that low train error is achieved even when the input images themselves are
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replaced with Gaussian noise, showing that the capacity is very large indeed. Moreover, the
fact that networks trained on true data generalise well even without any regularisation shows
that whatever capacity constraint regularisation does provide is unnecessary.

Together, this suggests that the capacity of H, even measured in a sample-dependent way, is
far too large to explain generalisation in the overparameterised regime. Clearly, if our hypothesis
class H and sample S are such that we can find two hypotheses hy, ho € H that both fit S
very well, namely such that Rg(hi) ~ 0 and Rg(h2) ~ 0, yet which have starkly different
true errors, say Rp(h1) ~ 0 and Rp(hy) ~ 0.5, then any generalisation bound that is not
a function of h will fail to distinguish between them. The bound will then be loose for h;
as it is forced to also be valid for hy. Since the existence of such hy, hs is exactly what is
demonstrated in Zhang et al. ( )—training on random labels produces networks with trivial
test error—we can conclude that neither Theorem 2 nor Theorem 4 can explain generalisation
in the overparameterised regime, and that to do so we must seek hypothesis-dependent bounds.
PAC-Bayes generalisation bounds move in this direction, but before we introduce PAC-Bayesian
theory, let us take a step back to consider at a high level what it would mean to explain the

generalisation mystery.

2.2 What might an explanation of the generalisation mys-

tery look like?

The bounds given by Theorems 2 and 4 are uniform; they work by showing that for sufficiently
large sample sizes all hypotheses will have empirical risk Rg(h) that is representative of their
true risk Rp(h), and so in particular this will be the case for the learned hypothesis A(S). As we
have seen, uniform bounds will produce trivial results in the overparameterised regime, since in
this scenario the capacity of H is large enough and the sample size n is small enough that there
exist hypotheses h for which Rg(h) is not at all representative of Rp(h). The generalisation
mystery cannot, therefore, be explained by uniform generalisation bounds.

We are therefore forced to search for non-uniform bounds that are a function of the hy-
pothesis h. While this is necessary in the overparameterised regime, it produces bounds with
diminished explanatory power. To see why, suppose our learning algorithm produces a hypoth-
esis h for which Rg(h) is low and the generalisation bound is low, so that we can conclude
Rp(h) is low. But by definition of the overparameterised regime, there exists a hypothesis h’
for which Rg(h') is also low yet the generalisation bound is high, since the bound must acco-
modate the large generalisation gap of h'. Thus the question of why our algorithm selected
from the set of hypotheses with low empirical risk a hypothesis which also has low generali-
sation bound, would remain unanswered. Just as the Rademacher complexity based bound in
Theorem 4 produces low bounds only if we are “lucky” that the sample S we obtain yields low
Rademacher complexity R(H, S), non-uniform bounds can be low only if we are “lucky” in the
way in which our hypothesis class H, sample S and learning algorithm A interact to produce

A(S). The cost of non-uniform bounds is therefore a shift in the generalisation mystery to this
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empirically observed luckiness, sometimes termed the inductive bias of the hypothesis class, the

learning algorithm, or their interaction. We highlight this conclusion as the following claim.

Claim 1. Generalisation bounds alone cannot resolve the generalisation mystery, even if they

are non-uniform and tight.

How then can the generalisation mystery be resolved? The preceding discussion suggests a
two-pronged strategy. First, while generalisation bounds alone cannot resolve the generalisation
mystery, empirically tight bounds formalise notions of luckiness or inductive bias that we can
seek to explain. In other words, we may seek a theoretical answer to the remaining question
above, namely why commonly used learning algorithms may be biased towards hypotheses for
which the bound is low. Second, formal characterisations of observed implicit biases motivate
the search for generalisation bounds expressed in terms of such characterisations. A full expla-
nation of the generalisation mystery may then follow the structure suggested in the following

claim.

Claim 2. The generalisation mystery may be explained by the derivation of two theorems. One
theorem demonstrating that the learning algorithms typically used in DL have an implicit bias
towards hypotheses h with some property P, and a second theorem demonstrating that hypotheses

with property P have small generalisation gap.

More generally, property P may be replaced by a continuous metric, often called a com-
plexity measure of the hypothesis h, not to be confused with complexity measures of the entire
hypothesis class H. The theorems would then state that our learning algorithms are biased
towards hypotheses with low complexity, and that low complexity hypotheses have small gen-
eralisation gap.

Possibilities for properties or metrics P that have been suggested for neural networks in-
clude having low parameter norm (e.g. Bartlett et al. ( ) give a proof that networks with
small spectral norms have low generalisation gap), being located in a flat minimum of the
loss landscape (e.g. Hochreiter and Schmidhuber ( ) argue that flatter minima correspond
to simpler hypotheses with lower generalisation gap, and Keskar et al. ( ) investigate this
empirically by varying the batch size), having low Kolmogorov complexity (e.g. Schmidhuber
( ) attempts to find neural networks with low Kolmogorov complexity, arguing that they
should generalise better), or having low minimum description length (MDL) according to the
MDL Principle (first posited in Rissanen ( ), discussed in the context of DL in Griinwald
and Roos ( ), and used as a regulariser to improve generalisation in Hinton and Van Camp
(1993)).

A complementary approach may be to make assumptions on the data-generating distri-
bution, for example realisability, smoothness, Lipschitz continuity, convexity, noise or margin
conditions, the existence of a low dimensional manifold, and so on (Shalev-Shwartz and Ben-
David, ). While such assumptions can yield tighter bounds, they are often infeasible to

verify in practice given we only have access to a sample. Therefore while this approach could
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potentially resolve the generalisation mystery, it may be at the cost of making unverifiable
assumptions.

It is worth noting here an interesting subtlety distinguishing philosophical approaches to
statistics. A Bayesian may have as a starting point that, for real-world distributions D, “sim-
pler” hypotheses h are more likely to have low true risk Rp(h), formalised as an Occam prior
over H. She therefore does not in fact require a generalisation bound to explain the general-
isation mystery; it is sufficient to have a proof that the learning algorithm is more likely to
produce hypotheses that both fit the data S and have low complexity, and therefore approx-

2 Conversely, a Frequentist, not willing to take a position on

imate the Bayesian posterior.
the prior probabilities of hypotheses, does not argue that simpler hypotheses h are more likely
to have true risk Rp(h). Instead, she seeks to show that they are more likely to have small
generalisation gap Rp(h) — Rg(h). She can also leverage the fact that there are fewer simple
hypotheses than complex ones to demonstrate a kind of soft capacity control—a learning algo-
rithm that is more likely to return a simple hypothesis is more likely to output a hypothesis in
a smaller class (the class of simple hypotheses) and therefore more likely to return a hypothesis
with small generalisation gap. Combining the fact that the empirical risk Rg(h) is low and the
generalisation gap Rp(h) — Rg(h) is also low, she can conclude that Rp(h) is low. As we will
now see, soft capacity control is one way of interpreting what PAC-Bayesian theory formalises,

which, despite the name, is a Frequentist approach.

2.3 PAC-Bayesian generalisation bounds

In Section 2.1.2 we saw how non-uniform generalisation bounds could be derived for a countable
hypothesis class H = {h;,i € Z} (Z C N) by using a union bound and a distribution 7 over Z;
the generalisation bound for each individual h; is loosened to hold with the higher probability
1 — m(2)d, so that all of the bounds then hold simultaneously with probability 1 — §. Eliding

some of the details for clarity, we found that from
VieZ Psupn (RD<hi) — Rs(hi) < e(n, 5)) >1-—49,
we could derive
Ps..pn (w €7 Rp(hi) — Rs(hi) < ei(n,w(i)5)> >1-4.

In a near identical manner, if we have one uniform generalisation bound for each of countably
many hypothesis classes {H;,i € Z} (Z C N) and a distribution 7 over Z, we can combine these
into a non-uniform generalisation bound valid for all h € ‘H = U;czH;, where the value of the

bound for a hypothesis h € H depends on the hypothesis class H; to which h belongs. Again

2The Occam prior can be partially justified by noticing that for any unbounded notion of complexity, not
just Kolmogorov complexity, there will be more complex hypotheses than simple ones, and so more complex
hypotheses must necessarily receive lower prior mass, at least asymptotically. This argument can be found in
the enjoyable read Yudkowsky ( ). This leaves open of course what the right notion of complexity is.
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eliding details for clarity, from

we can derive
Py (W €T VheH; Ro(h) — Rs(h) < a(n, w(¢)5)) >1-4

For example, given a fixed neural network architecture, for each ¢ € N we could take H; to be
the hypothesis class corresponding to all ways of setting the parameters w such that ||w||y < ¢,
and take 7(i7) = 27*. We refer to Shalev-Shwartz and Ben-David ( ) for a deeper discussion
of this technique and its relation to non-uniform learnability.

If one chooses as a learning algorithm the function which returns the hypothesis minimising
this non-uniform bound, one has an example of Structural Risk Minimisation (SRM), an alter-
native to Empirical Risk Minimisation (ERM), which balances fit to data with a preference for
particular classes H;, expressed by the distribution 7. The concept of SRM is due to Vapnik
and Chervonenkis ( ).

The PAC-Bayesian theory does something similar to combining countably many bounds
weighted by a prior 7, but in a much more elegant way. The strategy can be thought of as
constructing a “continuous union bound” as described in Erven ( ), avoiding chopping up
the hypothesis class into discrete portions. Doing this however requires generalising to stochastic

hypotheses, defined as follows.

Definition 7. (Stochastic hypothesis). For a hypothesis class H C V¥, a stochastic hypothesis
is a distribution @ € A(H) which makes predictions according to a sampled h ~ @, with a fresh
h sampled for every prediction. For a sample S € (X x ))* and data-generating distribution
D € A(X x )), its true and empirical risks are defined to be

Rp(Q) = Enwq[Rp(h)] and  Rg(Q) = Enq[Rs(h)],

respectively.

Instead of holding with high probability for all deterministic hypotheses h € H simultane-
ously, and therefore in particular for the learned hypothesis Aqe(S) € H, PAC-Bayes bounds
hold with high probability for all stochastic hypotheses @) € A(H) simultaneously, and there-
fore in particular for the learned stochastic hypothesis Agioen(S) € A(H), where the algorithm
Astoen @ (X x V)* — A(H) returns stochastic hypotheses. PAC-Bayes bounds then control
the generalisation gap of a stochastic hypothesis @, namely Rp(Q) — Rs(Q). The “soft capac-
ity control” is typically formalised as the complexity measure KL(Q||P), the Kullback—Leibler
divergence of the stochastic hypothesis ) from a fixed (sample-independent) stochastic hypoth-
esis P. While the PAC-Bayesian theory goes back to the pioneering works McAllester ( )
and Shawe-Taylor and Williamson ( ), we illustrate it with the following theorem, originally

due to Catoni ( ). The exact form stated here can be found in Alquier et al. ( ).
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Theorem 5. Let H C Y be a hypothesis class and £ : Y* — [0,C] a loss function. For any
fized stochastic hypothesis P € /\(H), data-generating distribution D € N(X x )), confidence
level 6 € (0,1] and X\ > 0, with probability at least 1 — § over the sample S ~ D™ we have that
for all stochastic hypotheses QQ € A(H) simultaneously

AC? | KL(@Q|IP) + 1

Rp(@) < Rs(@) + ;

(2.19)

Since the bound holds with high probability for all @@ € A(H) simultaneously, it holds in
particular for a sample-dependent @) = Ao (S). On the other hand, the bound states that
P € A(H) must be fixed. For this reason (and because of the historical origins of PAC-Bayesian
theory as a Frequentist analysis of Bayesian learning), the sample-independent P is termed the
“prior” and the possibly sample-dependent () is termed the “posterior”. We use quotes as the
“prior” P need not have any relation to the practitioner’s prior beliefs about which hypotheses
are more likely, and the “posterior” () need not be derived from P and S via Bayes’ rule.

Nevertheless, since the terminology is commonplace, we henceforth drop the quotes.

A second PAC-Bayes bound, which we frequently employ in this thesis, was originally
proved in Langford and Seeger ( ) and Seeger ( ). We give here the somewhat tighter
version proved in Maurer ( ). Instead of upper bounding Rp(Q) — Rs(Q) directly, the
result constrains the deviation between the true and empirical risks via the so-called “small kl”
kl(Rs(Q)|[Rp(Q)), defined by

1 —

q
kl(ql[p) = qln}—) +(1—g)lng

1" for ¢,pel0,1), (2.20)
p

namely the ordinary KL divergence between two Bernoulli distributions with bias Rg(®) and
Rp(Q).> We note that Maurer’s version required that n > 8, while this restriction was later

shown to be unnecessary in Germain et al. ( ).

Theorem 6. (Maurer (200/), Theorem 5) Let H C Y% be a hypothesis class and ¢ : Y* — [0, 1]
a loss function. For any fized stochastic hypothesis P € A(H), data-generating distribution
D € A(X x Y) and confidence level § € (0,1], with probability at least 1 — § over the sample
S ~ D™ we have that for all stochastic hypotheses Q € A(H) simultaneously

K(Rs(Q)|[Ro(Q) < SHQID + 57 (2.21)

n

One practical benefit of this bound over Theorem 5 is that it does not include a scalar A
that must be chosen before seeing the sample. In order to obtain a bound on Rp(Q) one can

invert the small kl with respect to its second argument by defining

kI (¢|B) = sup {p € [0,1] : Kl(¢|lp) < B}. (2.22)

3With the usual convention that Oln% =0 for all p € [0,1] and ¢In § = oo for ¢ > 0.
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Inequality (2.21) then becomes

Rp(Q) < k™ (Rs(Q) (2.23)

KL(Q||P) +1n%ﬁ> |

n

One interesting feature of this bound is that if Rg(Q) is not trivial, namely if Rg(Q) < 1, and
the right hand side of (2.21) is finite, then the bound (2.23) on Rp(Q) is guaranteed to be non-
vacuous, i.e. strictly less than one. This is in sharp contrast to the bound in Theorem 5, which
can be arbitrarily large. In practice however, the right hand side of (2.21) is frequently so large
that calculating the inverse kl becomes numerically difficult. In such cases, one can alternatively
employ Pinsker’s inequality, which in this context gives kl(¢||p) < B = p < ¢+ \/B_/Q, which
gives a bound on Rp(Q) that is O(1/4/n). It should be noted however that this bound is always
looser than (2.23), and can be significantly looser when Rg(Q) ~ 0.

Both Theorem 5 and Theorem 6 exhibit a tradeoff between low empirical risk Rg(Q) and
low complexity, where the complexity of @ is formalised as KL(Q||P). This can be seen as a
kind of soft capacity control, where if our algorithm Ag,e, returns a stochastic hypothesis Q)
close in KL divergence to the fixed P then, since this is a constrained set, we can conclude
that the generalisation gap is likely not that large. Now, while this soft capacity control will
be present for any fixed prior P, poor choices of P will reduce the chance that there exists a
posterior () for which both Rg(Q) and KL(Q||P) are low. Thus there is an element of luck in
the PAC-Bayes framework in terms of the choice of prior, and this luck constitutes a gap in
the ability of the framework to explain the generalisation mystery. This is the same tradeoff
as was observed in the countable case presented in Section 2.1.2. Some theoretically motivated

choices of prior do however reduce this element of luck, as we will see in Section 2.3.2.

2.3.1 Choosing the posterior

What is a good choice for Q(S) in Theorem 57 A first thought may be to choose Q(S) to

minimise the empirical risk, namely

Q(S) = argminQeA(H)Rs(Q).

In most cases however this will yield a very poor generalisation bound. To see why, note
that Q(S) reduces to a point mass on h(S) = argmin, ., Rs(h), resulting in KL(Q(S)||P) =
—InPy.p(h = h(S)), which will be infinite except under special conditions, since P must be

chosen independently of S.

A more sensible choice is to take Q(S) to be the minimiser of the bound—a perfectly
legitimate choice since all the quantities in the bound are fixed in the theorem statement before
the quantifier VQ) € A(H). Remarkably, using Donsker and Varadhan’s variational formula

(Donsker and Varadhan, ), it can be shown that this optimal posterior is the so-called
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Gibbs posterior Q¢(.5), defined by the Radon-Nikodym derivative

dQG(S) e~ ARs(h)

dP (h) = ]Eh/NP[ef)\Rs(hl)] .

(2.24)

For continuous or discrete P with probability density or mass function fp : H — R, respec-
tively, defining the Gibbs posterior Qs (S) via the Radon—Nikodym derivative (2.24) above is
equivalent to defining Q¢(S) to have probability density or mass function fg,s) : H — R,
respectively, given by fous)(h) o< e M5 fp(h). This formulation clarifies the intuition that
Qc(S) exponentially re-weights the density P places on h according to the empirical loss Rg(h).
As A — 0 the Gibbs posterior Q¢(.S) becomes simply the prior P, which makes sense since the
KL(Q||P) term in (2.19) then dominates. Conversely, as A — oo the posterior tends to a point
mass on hggrwm, since in this scenario minimising (2.19) reduces to minimising Rg(Q). Thus,
using the Gibbs posterior, the constant A in Theorem 5 acts as an inverse temperature.

Unfortunately, the Gibbs posterior is highly impractical in the context of DL, as the nor-
malisation constant in the denominator of (2.24) typically cannot be calculated, meaning one
is unable to sample from Q(S) in order to make predictions. One may approximate samples
using MCMC, or approximate the Gibbs posterior directly using Variational Bayes (see Alquier
et al. ( ) for a theoretical analysis of the second method).

An alternative to the Gibbs posterior is to directly minimise the bound (2.19) over the set
of Gaussian posteriors. More precisely, if our hypothesis class is H = {h, : w € R?}, where
hy, : X — ) is the function corresponding to a neural network with weights w, we may take
Q € A(H) to be the pushforward of a Gaussian distribution on the weight space RZ. If the prior
P is also taken to be a (sample-independent) Gaussian distribution on the weight space, the
term KL(Q|| P) has a differentiable closed form.* The entire bound (2.19) can then be optimised
via gradient descent with the aid of the pathwise gradient trick to approximate derivatives for
Rs(Q). This was the strategy employed by Dziugaite and Roy ( ) (optimising the bound in
Theorem 6 above) along with some other tricks to achieve the first non-vacuous generalisation
bound for a deep neural network trained on the MNIST dataset. We outline their process
in much greater detail in Chapter 3 where we use it to optimise our PAC-Bayes bound. This
method can be flexibly applied to various PAC-Bayes bounds, whereas the Gibbs posterior is the
minimiser only for “linear” PAC-Bayes bounds of the form Rp(Q) < aRgs(Q) + 0KL(Q||P) + ¢,
such as Theorem 5 but not Theorem 6.

A third choice is to take ) to be the pushforward of a Gaussian distribution centred around
the weights w(.S) returned by an ordinary DL algorithm. Whether this is a better choice than
(approximately) minimising the bound depends on our reason for using the PAC-Bayes bound.
If our goal is to find a stochastic hypothesis ) which we can use for prediction and be confident
in, the first choice may be more appropriate as it returns the ) with lowest bound on the true

risk Rp(Q). On the other hand, if our goal is to explain the empirical success of typical DL

4Strictly speaking, if Q and P are the pushforward of Gaussian distributions @, and P, on the weight
space, then KL(Q||P) can be replaced by the differentiable proxy KL(Q||Pw), which, by the data-processing
inequality (see e.g. Van Erven and Harremos ( )), is an upper bound on KL(Q| P).
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algorithms in the overparameterised regime, the second choice is much more appealing as the
only modification to the training procedure is the addition of some (possibly small) Gaussian
noise to the network weights (with fresh noise sampled for each prediction). We may then
ultimately hope that the effect of this modification can be rigorously analysed, so that the

performance of the original deterministic network can be bounded.

2.3.2 Choosing the prior

We give a brief overview of three choices for the prior found in the literature; the theoretically

optimal prior, the distribution-dependent “localised” prior, and data-dependent priors.

First, consider the theoretically optimal prior for Theorem 5. Suppose we have made our
choice of data-dependent posterior Q(S). We may then ask what choice of prior P would
minimise Theorem 5 in expectation over the random draw S ~ D™, which is equivalent to
minimising Eg.pn [KL(Q(S)||P)]. This is analogous to the strategy suggested in Langford and
Blum ( ) for countable hypothesis classes discussed in Section 2.1.2, and indeed the solution

is also analogous; the optimal choice is

P* =Es.pn[Q(S)], namely P*(B)=Eg.p:[Q(S)(B)] for measurable B € H.

This follows from the so-called golden formula (Polyanskiy and Wu, ), also known as
Tropsge’s identidy (Topsge, ). A derivation can be found in Lever et al. ( ), and the
result was already noted in Catoni ( ). Again, as in the countable case, this prior is a

legitimate choice (it is sample independent) but it not practically useful as it depends on the
unknown data-generating distribution D. Nevertheless, it shows that a good choice of prior
is one that “anticipates” where Q(S) is likely to put mass. Further, note that this so-called
“oracle prior” P* is only optimal for PAC-Bayes bounds where minimising them in expectation
amounts to minimising the KL divergence in expectation, which is the case for Theorem 5 but

not Theorem 6.

Remarkably, some choices of distribution-dependent prior can nevertheless yield practically
useful empirical bounds if the KL divergence can be upper bounded by known quantities. For
example, given a distribution 7 € H, and f > 0, Catoni ( ) suggests the localised prior
P = m_gp,, defined by the Radon-Nikodym derivative

dr B Eh,w[efﬁRD(h/)],

the intuition being that we should put more weight on hypotheses h with low true risk Rp(h).
Defining the Bernstein function g : R — R

ef—1—x
1‘2 ) x % 07
0, xz =0,
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the following theorem is proven in Catoni ( ). Note that the localisation to 7_gg,, ) is done

internally so does not appear explicitly in the theorem.

Theorem 7. (Catoni (2005), Lemma 6.2) Let H C Y be a hypothesis class and ¢ : Y* — [0, 1]
a loss function. For any fized distribution m € A(H) (note this does not play the role of the
PAC-Bayes prior), data-generating distribution D € /A\(X x )), sample size n, confidence level
6 € (0,1, A >0 and & € [0,1) such that (1—&)— (1+&)g(2)2 > 0, with probability at least 1—§
over the sample S ~ D™ we have that for all stochastic hypotheses Q € A(H) simultaneously

Rp(Q) <

Y

KL(Q[m-exrs) + (1 — E)ARs(Q) + (1 +&)In2
(1-Or— (1+g(2)2

where the distribution T_¢xgy 15 defined by the Radon—Nikodym derivative

dﬂ-*f)\RS h - €_£>\Rs(h)
dr - Epr [e—gARs(h/)].

Other nice theorems demonstrating the feasibility of distribution-dependent priors and appli-
cations to Support Vector Machines (SVMs) can be found in Lever et al. ( ).

Finally, we discuss data-dependent priors. While the prior is not permitted to depend on

the sample S appearing in the PAC-Bayes bound, it is free to depend on a second sample. This
suggests splitting the sample S, using the first half to choose a prior and the second half for the
bound, a strategy first proposed in Seeger ( ) and followed by many others (Ambroladze
et al., ; Clerico et al., ; Parrado-Hernandez et al., ; Perez-Ortiz et al., ;
Pérez-Ortiz et al., ). For clarity, we restate Theorem 6 in this context.
Theorem 8. Let H C YV be a hypothesis class and £ : Y? — [0,1] a loss function. For any
data-dependent prior and posterior maps P : (X x V)" — A(H) and Q : (X x V)" — A(H),
data-generating distribution D € A(X x Y), and confidence level § € (0, 1], with probability at
least 1 — & over the sample S = (S1,52) ~ D™ @ D™™™ we have that

KL(Q(S)||P(Sy)) + m@'

n—m

KI(Rs(Q(S))|| Rp(Q(S))) <

(2.25)

Importantly, note that while the prior may only depend on S, the posterior can depend on
the entire sample S = (51, S3), since Theorem 6 holds with high probability for all posteriors
simultaneously. Further, since S; plays the role of S in Theorem 6, the bound is evaluated
with sample size |Sy| = n — m. Therefore, when choosing the size |S;| = m of the sample P is
permitted to depend on, we face a clear tradeoff; a larger S; will allow a more informed prior
that will hopefully better predict Q(S) and lead to a reduced KL divergence term, but it will
also decrease the denominator of the bound. The optimal amount of data to use for the prior
depends on details of the learning setup, as can be seen from the experiments in Perez-Ortiz
et al. ( ) (see Table 3) and Pérez-Ortiz et al. ( ) (see Table 5).

In the context of neural networks, the map P : (X x V)™ — A(H) can be taken to be

the pushforward of a Gaussian distribution centred around the weights w(S;) returned by
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an ordinary DL algorithm, a strategy that has been mentioned already in Section 2.3.1 for
choosing the posterior. Indeed, this strategy for choosing the prior combined with the bound
minimisation strategy for choosing the posterior (mentioned in Section 2.3.1) was used in Pérez-
Ortiz et al. ( ) to achieve remarkably tight bounds for deep CNNs (up to 15 layers) on the
CIFARI10 dataset.

2.4 PAC-Bayes and the generalisation mystery

As already briefly mentioned in Section 2.3.2, the PAC-Bayes bound Theorem 6 was employed
with Gaussian prior and posterior in Dziugaite and Roy ( ) to obtain the first non-vacuous
generalisation bound for overparameterised neural networks. For example, working with a
binarised version of the MNIST dataset, they obtain an error bound of Rp(Q) < 0.201, where @
is an isotropic Gaussian over the weights of an MLP with three hidden layers each of dimension
600, trained to minimise a proxy of the bound given in Theorem 6. The prior is also taken
to be an isotropic Gaussian over the weights, centred at the initialisation used for training Q).
This architecture is in the overparameterised regime—it has around 1193 000 parameters, much
greater than the sample size of 60 000, and they show that the same architecture with only one
hidden dimension can achieve Rg(h) = 0.007.

This result was a significant step in demonstrating the value of PAC-Bayes theory, but it

does not constitute an explanation of the generalisation mystery for three reasons:

1. It applies only to stochastic networks, rather than the deterministic networks typically
used in DL.

2. The stochastic networks are trained in a non-standard way—by minimising the PAC-

Bayes bound.

3. There is an element of luck in whether the prior P is chosen such that there exists a
posterior () with both low empirical risk Rg(() and for which the bound is tight.

As for the first obstacle, several solutions have been proposed and analysed in the literature to
derandomise stochastic hypotheses into deterministic hypotheses in such a way that preserves
or minimally loosens the PAC-Bayes bound. It should be noted that while demonstrating non-
vacuous bounds for such deterministic hypotheses in the overparameterised regime is certainly a
step forward, the problem remains that these are not the deterministic hypotheses returned by
typical DL algorithms (with the exception of Clerico et al. ( )), meaning the explanatory

power of such bounds remains limited.

2.4.1 Derandomisation of PAC-Bayes bounds

Given a stochastic hypothesis Q € A(H), we may derive the following deterministic predictors:
1. h ~ (@), a single sample from @),
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2. fo(x) = Epglh(x)], the Q-weighted majority vote,
3. fu, where w* = E,o[w], the “mean” hypothesis applicable when H = {h,, : w € W}.

Note fo may not be an element of H, so we refer to it as a predictor rather than a hypothesis.
Further it must be the case that fo(x) € ), which is true if Y is convex, for example. If
this is not the case, one may project back on to ); in the case of binary classification with
Y = {-1,1}, one may take

2. folx) = sign(Epqlh(z))]),

as in Lacasse et al. ( ) and Langford and Shawe-Taylor ( ), and in the more general case

of multiclass classification, one may take

27, fo(x) = argmax,cyPrq (h(x) = y),

as in Biggs et al. ( ). The mean hypothesis h,~ is applicable when # is parameterised by
w, for example if H = {h, : w € R¢}, where h,, : X — Y is the function corresponding to a
neural network with weights w. We will now give examples of such derandomisation schemes
in the PAC-Bayes literature.

2.4.2 PAC-Bayes bounds on a sample from the posterior

PAC-Bayes bounds generally take the form

Pgpm (VQ e A(H) Rp(Q) < e(KL(QHP),RS(Q),n, 5)) >1-4, (2.26)

namely a bound on Rp(Q) that holds with high probability over the sample S ~ D™ for all @
simultaneously, where the bound e is typically a function of KL(Q|| P), the empirical risk Rg(Q),

the sample size n, and the confidence level §. But many also have a so-called disintegrated form

VQ: (X x V)" = AH) Progs), spn (RD(h) <e (m (%}S)(m) ,Rs(h),n,5> >1-4,

(2.27)
which says that for any data-dependent posterior (), with high probability over the sample
S ~ D™ and then h ~ Q(S) we get the same bound on Rp(h) as in (2.26) with the substitution

KL(Q(S)IP) = Bavars [1n (202 m) | = w (4 a).

These so-called disintegrated PAC-Bayes bounds were first proposed in Catoni ( ) (Theorem
1.2.7) and Blanchard and Fleuret ( ).
While sampling from () may at first sight appear to be a bad idea—it increases the “riski-

ness” of the bound by removing the smoothing over h ~ ()—derandomisation brings us closer

to common DL practice, and, with a careful interpretation, the sampled h ~ () can in fact be
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made to correspond exactly to the deterministic hypothesis h returned by some ordinary DL
algorithms such as Gradient Descent (GD). The trick, developed in Clerico et al. ( ), is
to note that with GD the neural network is initialised to h,,, where wy ~ 7 is sampled from
some weight initialisation distribution 7. Fixing a sample S and other training details such as
the learning rate and number of epochs, 7 then induces a distribution over the final trained
network h,,. Taking this induced distribution as the PAC-Bayes posterior (), sampling wg ~ 7
and training h,, through GD corresponds exactly to sampling from (), allowing disintegrated
PAC-Bayes bounds to apply. The difficulty of course is in estimating %(hw) for this implic-
itly defined posterior. In Clerico et al. ( ) they consider the ideal situation of continuous
training dynamics which allows some clever gradient flow accounting but unfortunately brings

us away from common DL practice.

A general disintegration framework is derived in Viallard et al. ( ) by generalising from
the KL divergence to the Rényi divergence. Their bounds are highly practical and can be
used as training objectives. Another relevant work is Banerjee et al. ( ) which derives
derandomised PAC-Bayes bounds for MLPs with ReLLU activations.

2.4.3 PAC-Bayes bounds for majority votes

The Q-weighted majority vote predictor fg has received attention in the PAC-Bayes literature,
perhaps because it is well-known that majority votes can improve performance if the errors of
the individual predictors are uncorrelated. In the context of binary classification, a very simple
“folk theorem” in Langford and Shawe-Taylor ( ) (Lemma 4.1) gives that Rp(fo) < 2Rp(Q)
for any stochastic hypothesis @), showing that doubling any bound on Rp(Q) (such as Theorem
6) produces a bound on Rp(fg). They then show that the factor 2 can be reduced to 1+ € for

large margin classifiers.

It is noted in Lacasse et al. ( ) that this is unsatisfying since in practice fg usually
has lower error than (), so it would ideally enjoy a smaller rather than a larger bound. By
incorporating a bound on the variance of the zero-one error of @ over (z,y) ~ D, namely a
bound on V, )~ pEpql[h(x) # yl, they derive a PAC-Bayes error bound for the majority vote

classifier fg that can indeed be much smaller than the error of Q.

It is noted in Letarte et al. ( ) that if the loss ¢ : Y* — Riis linear, then Rp(fg) = Rp(Q),
so that PAC-Bayes bounds on () apply directly to fo without modification. While commonly
used loss functions are not linear, they note that the zero-one loss £y (3, y) = 1[sign(y) # v]
in particular can be upper bounded by #;,(9,y) = 1 — gy in the case where y € {—1,1} and
the predictor returns g € [—1, 1]. Applying PAC-Bayes bounds with £}, they obtain bounds on
Rp(Q) and hence Rp(fg). Short of being linear, £ may still be convex in which case Jensen’s
inequality gives Rp(fg) < Rp(Q), again enabling PAC-Bayes bounds on Rp(Q) to be carried
over to Rp(fg), as discussed in Section 2.2 of Alquier et al. ( ) along with other properties

of the loss function that allow transfer of bounds to the majority vote predictor.
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2.4.4 PAC-Bayes bounds for the mean of the posterior

Since in practice the posterior is frequently chosen to be a Gaussian centred around the weights
learned by some ordinary DL algorithm, derandomisation to the “mean” hypothesis A« is
the ideal choice since it reduces to bounding the output of the ordinary DL algorithm, the
performance of which we ultimately want to explain. This is very difficult however due to the

highly complex dependence of h,(x) on w. Indeed, the two terms

Rp(Q) = Euweg[Rp(h)],  Ro(hu) = Ro(he, o))

may be very different. A remarkable result is proved in Banerjee et al. ( ) for MLPs with
ReLU activations, showing that the expected error Rp(Q) of a stochastic network with Gaussian
Q centred at w* can be upper bounded in terms of the expected margin loss® R}, (h,-) of the
mean network h,, the ordinary KL(Q||P) term, a curvature term involving the diagonal of
the Hessian of the loss landscape at w*, and some other terms. They empirically show that the
curvature terms are very small.

A second work to successfully apply this form of derandomisation is Biggs et al. ( ),
which, in the context of multiclass classification with a finite hypothesis class H = {hy, ..., hx},
considers the task of learning a good majority vote classifier fq,(z) = argmax,cyPrq, (h(x) =
y) for some Qg € AA(H), a categorical distribution over H with parameter 8 € Ay. Interest-
ingly, they do not bound Rp(fg,) by first bounding Rp(Qe) and then derandomising to the
majority vote as in Section 2.4.1 item (2”). Instead, they lift to the hypothesis class of majority
vote classifiers H' = {Qg : 0 € Ak} and apply a PAC-Bayes bound to stochastic majority
vote classifiers represented by Dirichlet distributions Q, = Dir(ar) € A(Ag) with parameter
a € (0,00)%. Sampling 8 ~ Q. then gives a majority vote classifier Q. By choosing & = \@
for some A > 0 so that Eg..q,,[0'] = 6, they derandomise to the mean classifier Qg as in
Section 2.4.1 item (3), achieving remarkably tight bounds. Bypassing any need for doubling of
the bound often encountered in PAC-Bayes bounds for majority votes, they incur only a very

small penalty for derandomisation.

2.5 PAC-Bayes and self-certified learning

A second goal of the PAC-Bayesian theory is to generate self-bounding algorithms (Freund,

), namely algorithms that return both a learned hypothesis and a risk bound on that learned
hypothesis, also called self-certified learning. This is distinct from explaining generalisation
since, as argued in Section 2.2, tight bounds are not sufficient to explain generalisation. The
alternative to self-certified learning is test set bounds, examples of which we give shortly. These
require withholding some of the data from the training procedure, typically leading to a worse

learned hypothesis. In contrast, the promise of self-certified learning is to be able to use all of

®The margin loss is defined in classification settings with Y = [m] and f(z) € R™ by £, (f(x),y) = f(z), —
max;zy f(x);.
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the data for training while still obtaining a risk bound on the learned hypothesis, a so-called
risk certificate. This is most important in the low-data regime, where withholding data from
the training procedure is especially costly. As we will see however, test set bounds are very

tight and prove a difficult baseline to beat.

2.5.1 Test set bounds

Test set bounds withhold a so-called test set Siest € S from the training procedure in order to
evaluate the learned hypothesis in an unbiased way by using the Chebyshev (2.7) or Hoeffding
(2.11) concentration inequalities discussed earlier, replacing S with Sies; and h with the learned
A(S). More precisely, given a sample S € (X x V)", we take Syain = (21,21)s -+ (T, Ym)) €
(X x V)™ and Siest = ((Tma1, Ymats -« -5 (Tn, Yn)) € (X X V)™, use Sipain to learn a hypothesis
A(Sirain) € H and Sies; to evaluate it using a test set bound. This then gives

C
PStest"’anm RD (“A(Strain)) S RStest (A(Strain)) + 2 11— (57 (228)
(n—m)d

or

Pg,esmpn—m (RD (A(Strain)) < Rione (A(Strain)) + C m 1D§ ) >1-—9, (2.29)
for the Chebyshev and Hoeffding test set bounds, respectively, where recall C' was the bound
on the loss function.

In the special case of the zero-one loss, |Siest| Rs,... (A(Strain)) is a binomial random variable
with |Siest| trials and bias Rp (A(Strain)), meaning various confidence intervals for the bias of a
binomial distribution can be applied. The ideal choice, due to its exact coverage, is the binomial
tail test set bound based on the Clopper—Pearson confidence interval (Clopper and Pearson,

), given as Theorem 3.3 in Langford and Schapire ( ).

Theorem 9. (Langford and Schapire (2005), Theorem 3.3)

]P)StescND"*m <RD (A<Strain)) < m(” —m, RSWSt (A(Strain)) s 5)) >1- (5, (230)
where

Bin(m, k, ) == max {p € [0,1] : Bin(m, k,p) > 5}, Bin(m, k,p) = i (T)p](l —p)m.
(2.31)

In words, the binomial test set bound is the largest p € [0, 1] such that, with probability at
least 0, a binomial random variable with |Sies| trials and bias p has number of successes at
most the number of errors of the learned hypothesis A(Sain) on the test set Sies;. Calculating

the function Bin(m, k, §) is straightforward using bisection on the interval [0, 1].
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While the binomial tail test set bound is the ideal choice due to its exact coverage (which
comes from the exact coverage of the Clopper—Pearson confidence interval), it can be difficult
to calculate if [Siess] = n — m is large and Rg, ., (A(Sirain)) % 0, since the binomial coeffi-
cients become large. As discussed in Langford and Schapire ( ), in the special case where

Rs,... (A(Sizain)) = 0, the approximation (1 — p)"~™ < e~("=™P gives the following closed form

n—m

Ini
]P)StQSEND”*m (RStrain (A(Strain)) - 0 — RD (A(Strain)) S - g ) Z 11— 57 (232)

which is numerically much more manageable.

2.5.2 Can PAC-Bayes achieve self-certified learning?

The important feature to note about the test set bound given by (2.32) is that it is O(1/]Sest]),
meaning only a small amount of data needs to be withheld from the training procedure in order
to obtain a tight bound (provided we get zero training error). This sets a very high bar for
self-certified learning in the overparameterised regime where datasets are typically large, since
it is unlikely that withholding the very small proportion of the sample required for the test set
bound will have much of a deleterious effect on the training procedure. Another point in favour
of test set bounds is that since the posterior () in PAC-Bayes is typically trained by minimising
a PAC-Bayes bound (rather than optimising for performance), even if the PAC-Bayes bound is
tight the stochastic classifier () may be poor.

Indeed, the generalisation bounds achieved in Perez-Ortiz et al. ( ), although remarkably
tight, are usually worse than simple test set bounds on the mean of the prior, as can be seen
in Table 2.1, which we have adapted from Perez-Ortiz et al. ( ) to include test set bounds
calculated on the mean of the prior, which, in their experiments is a deterministic network
trained through ordinary DL methods. We observe that in most cases these test set bounds are
lower than the corresponding PAC-Bayes bounds. Further, the mean of the prior often performs
better than the posterior (as measured on a test set), meaning the PAC-Bayes procedure not
only produced a worse bound but a worse classifier! We are not the first to note this; the
observation is also made in Lotfi et al. ( ).

It may also be noted that they report very small values for KL(Q||P), with the average
value across the 12 experiments in Table 2.1 being 0.4903. Since the MLPs they train have
~10° parameters, this implies only a very small shift in the mean weights of the posterior and
prior during the PAC-Bayes training, suggesting that the PAC-Bayes bounds are in effect test
set bounds in disguise.

These results were calculated with the PAC-Bayes generalisation bound in Theorem 6. Given
that there are many PAC-Bayes bounds, it may be the case that others offer more promise for
self-certified learning. To that end, Foong et al. ( ) investigate a very general unifying
PAC-Bayes theorem proven in Germain et al. ( ), for which many PAC-Bayes bounds are
special cases. We give the later form of the bound found in Bégin et al. ( ) (substituting

their constant m’ > 0 with the common choice m’ = n), which is slightly looser but written
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Prior mean (deterministic) Posterior (stochastic)
Dataset Val. | Test error | Test set bound | Test error | PAC-Bayes bound
X 0.077 0.088 0.082 0.140
Spambase (ncert = 1840)
v 0.056 0.066 0.065 0.127
. X 0.261 0.281 0.267 0.318
Bioresponse (7¢ert = 1500)
v 0.248 0.267 0.257 0.291
X 0.024 0.028 0.021 0.035
Har (ncert = 4119)
v 0.020 0.024 0.024 0.037
B x 0.221 0.226 0.214 0.223
Electricity (ncert = 18124)
v 0.205 0.210 0.212 0.221
X 0.015 0.019 0.015 0.022
Mammography (ncert = 4473)
v 0.017 0.021 0.017 0.023
X 0.025 0.027 0.026 0.034
MNIST (neers = 30000)
v 0.028 0.030 0.027 0.030

Table 2.1: Copy of Table 2 from Perez-Ortiz et al. (

concerned with risk certificates.
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) with added test set bounds (calculated
according to (2.30)) on the mean of the prior distribution, which is a classifier learned by
ordinary SGD on the training set. The Val. column indicates whether a small subset of the
data was used to determine when to stop training the prior. While the PAC-Bayes bounds are
tight (the final two columns are very close) we see that better risk certificates are obtained in
most cases by taking the test set bound on the mean of the prior (compare Test set bound with
PAC-Bayes bound), meaning PAC-Bayes does not enable self-certified learning in most cases.
Further, the extra data used to learn the posterior results in a worse classifier (compare two
Test error columns), meaning this extra data should be considered wasted even if one is not




solely in terms of known quantities.

Theorem 10. (Bégin et al. (2016), Theorem 4) Let H C Y% be a hypothesis class with Y =
{=1,1}, €: Y* = {0,1} be the zero-one loss function ((§,y) = 1[§ # y] and d : [0,1]* — R
be jointly convex. For any fized stochastic hypothesis P € A(H), data-generating distribution
D € A(X x Y) and confidence level § € (0,1], with probability at least 1 — § over the sample
S ~ D™ we have that for all stochastic hypotheses Q € A(H) simultaneously

Zi(n)
A(Rs(Q), Rp(@)) < SL@IP) TIn 75 (2.33)

n

where

Zy(n) == sup Ez ginnr) [e”d(Z/”’ T)] .
ref0,1]

Choosing d(q,p) = kl(q||p) defined in Equation (2.20) recovers a looser version of Theorem 6
in the case of binary classification, found in Langford and Seeger ( ) and Seeger ( ).
Taking taking d(q,p) = 2(¢ — p)? produces a bound due to McAllester ( ). And setting
dg(q,p) = —In(1 + p(e™® — 1)) — Bq for any B > 0 gives Theorem 1.2.1 from Catoni ( ).
A few more specialisations to existing theorems are discussed in Bégin et al. ( ). Note
that for any choice of d we can define its inverse with respect to its second argument as
d~'(q, B) == sup{p € [0,1] : d(q,p) < B} (with supf) := 1) just as we did for the small kI in
Equation (2.22).

The goal of Foong et al. ( ) was to see whether there exists a choice of convex function
d for which Theorem 10 beats the test set bound baseline in the small data regime (they take
n =~ 30-60), where self-certified learning could be especially beneficial. First, they show that
if one illegally chooses d in an S-dependent way, the best result is achieved by dg for some
value of 5 > 0, which, incidentally, yields the Chernoff test set bound (Langford and Schapire,

) in the case where ) = P, which is looser than the binomial tail test set bound (2.30).
Since choosing d in a sample independent way can only do worse, this result restricts how tight
bounds produced by Theorem 10 can be.

While they observe in Foong et al. ( ) that Theorem 10 cannot beat the binomial tail
test set bound in the case () = P, this leaves open the question of whether better choices of
(), perhaps learned by minimising the PAC-Bayes bound, can nevertheless beat the binomial
test set bound (in expectation over S) for some choice of d. To investigate this question, they
meta-learn both an optimal d and a stochastic algorithm A : (X x V)* — A(H) across data-
generating distributions D € A(X x )) sampled from some meta-data-generating distribution
T € A(A(X x Y)). Unfortunately, even in this highly favourable (and usually unrealistic)
scenario, they find that PAC-Bayes bounds derived from Theorem 10 are unable to beat bi-
nomial tail test set bounds in expectation over S ~ D, D ~ T. Of course, it may still be
the case that it is possible to beat binomial tail test set bounds for choices of 7 other than
theirs, or for PAC-Bayes bounds that are not special cases of Theorem 10. Their results are at
least suggestive however that self-certified learning will not be achieved by any specialisation
of Theorem 10.
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Chapter 3

Controlling Multiple Errors
Simultaneously with a PAC-Bayes
Bound

3.1 Introduction

Much of the PAC-Bayes literature focuses on the case of binary classification, or of multiclass
classification where one only distinguishes whether each classification is correct or incorrect.
This is in stark contrast to the complexity of contemporary real-world learning problems, such
as medical diagnosis where the severity of Type 1 and Type II errors may be crucial and
context-dependent. This chapter aims to bridge this gap by deriving a generalisation bound
that provides information-rich measures of performance at test time by controlling the proba-
bilities of errors of any finite number of user-specified types. More precisely, we bound the KL
divergence between the empirical and true distributions over the different error types. From
this single bound one can derive bounds on arbitrary linear combinations of these error proba-
bilities, which will all hold simultaneously with the same probability as the original bound. In
addition, these bounds are guaranteed to be non-vacuous (this follows since the KL divergence
blows up on the boundary of the simplex).

As a concrete example, if the severity of Type I and Type II errors of a medical test are
context-dependent, one would want to be able to bound arbitrary linear combinations of these
error probabilities. Existing bounds could only bound finitely many pre-specified weightings by
employing a union bound, which would also degrade the bound. In contrast, by constraining
the KL divergence between the true and empirical error probabilities, our bound constrains all
of the uncountably many weightings of the error probabilities simultaneously.

The most common setting of PAC-Bayesian theory is that of binary classification with
the zero-one loss, as in Theorem 10 from Section 2.5.2, namely a binary label space ) =
{—1,1} with the zero-one loss £(g,y) = 1[y # y]. Recall that this bound, originally due to
Germain et al. ( , ) and streamlined in Bégin et al. ( ), unifies various PAC-Bayes

bounds. The bound is binary in the sense that ) contains two elements, but a more subtle

47



way to look at this is that only two cases are distinguished—correct classification and incorrect
classification. It can in fact be applied to multiclass classification provided one maintains the
second binary characteristic by only distinguishing correct and incorrect classifications. It is
this heavy restriction that our result lifts, by considering the new framework of error types.

By a framework of error types, we mean a user-specified finite partition of the space ) x )
into error types i, ..., Ey, where ) is an arbitrary (not necessarily finite) label space. Our
bound then simultaneously constrains the probability with which errors of each type occur.
In multiclass classification for example, one can choose the error types to be the set of all
different possible misclassifications, in which case our bound will control the entire confusion
matrix, bounding how far the true confusion matrix (i.e. expected over the data-generating
distribution) can diverge from the empirical one (i.e. on the training set). From this one can
derive bounds on the probabilities with which each misclassification may be made, and arbitrary
linear combinations of these error probabilities, and all of these will hold simultaneously with
the same probability as the original bound. Our bound therefore paints a far richer picture of
the performance of the final learned model than can be provided by any existing PAC-Bayes
bound.

More formally, we let E;,..., Ey be a user-specified disjoint partition of }? into a finite
number of M error types, where we say that a hypothesis h € H makes an error of type 7 on
data point (z,y) if (h(z),y) € E;. By convention, every pair (7,y) € Y? is interpreted as a
predicted value gy followed by a true value y, in that order. It should be stressed that not all
of the £ need correspond to mislabellings—indeed, some of the £; may distinguish different

correct labellings.

3.2 Related work

Our framework of a finite number of user-specified error types includes multiclass classification
as a particular case, and it is in this field that one finds the work most closely related to ours.
Little is known about multiclass classification from the theoretical perspective of generalisation
bounds in the DL regime. To the best of our knowledge, only a handful of relevant strategies
or generalisation bounds can be compared to work presented in this chapter.

Closely related is Morvant et al. ( ), which establishes a PAC-Bayes bound on the
spectral norm of the difference between the true and empirical confusion matrices. Our bound
differs from theirs in two respects. First, they consider the confusion matrix, whereas ours
applies to the more general setting of a finite number of error types, which can be the set of all
misclassifications or some partition thereof, and is even applicable beyond classification to tasks
with continuous label spaces. Second, they deal with the spectral norm, whereas we employ
the KL divergence. Since the KL divergence follows a simple formula, we can much more easily
infer bounds on the individual error probabilities, which is challenging for the spectral norm.

The follow-up work Kogo and Capponi ( ) shows how a proxy of the spectral norm bound

can be used as a training objective that may deal with imbalanced classes. In the present work,
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we show how our bound can be used as a differentiable training objective directly (without
the need of a proxy) and that it can more sensitively deal with imbalanced classes, or errors
of different severity, by assigning each error type a user-specified loss value. Benabbou and
Lang ( ) present a streamlined version of some of the results from Morvant et al. ( )
in the case where some examples are voluntarily not classified, for example in the case of high
uncertainty. This is the work most closely related to ours, except our proof is far more involved

leading to a tighter bound.
Laviolette et al. ( ) extend the celebrated C-bound in PAC-Bayes to ensembles, obtaining

a bound on the risk of the majority vote classifier in the case of multiclass classification. In
this context, our bound is able to distinguish different misclassifications and control them,
whereas they bound the scalar risk which lumps all misclassifications together. The C-bound
has alternately been generalised by Lacasse et al. ( ) (see also Germain et al. ( )) to
simultaneously control three metrics, namely the so-called expected disagreement, expected joint
success and expected joint error of the posterior. While they restricted themselves to the ternary
case, some of their proof techniques share similarities with ours. In cases where one has exactly
three error types, for example the {—1,0,1}-valued excess loss, the work of Wu and Seldin
( ) is applicable; they construct so-called ‘split-kl’ inequalities (both classical and PAC-
Bayesian) which deftly handle this specific scenario.

Pires et al. ( ) present a comprehensive analysis of convex surrogate losses in cost-
sensitive multiclass classification, providing conditions for consistency, bounding the excess loss
of a predictor, and extending the analysis to the “Simplex Coding” scheme. We consider the
generalisation gap rather than the excess loss. Lei et al. ( ) study data-dependent bounds
for multiclass classification. Their analysis is restricted to SVMs however, whereas ours applies
to arbitrary hypothesis spaces. Feofanov et al. ( ) derive bounds for the error rate of
a majority vote classifier in the scenario of multiclass classification with partial labels. They
bound the individual elements of the confusion matrix, whereas our bound constrains the entire

distribution.

Outline. We fix notation in Section 3.3. Theorem 11 in Section 3.4 is our main result—a
PAC-Bayes bound on the KL divergence between the true and empirical error distributions.
For multiclass classification with a fully refined partition this becomes a bound on the KL
divergence between the true and empirical confusion matrices. Proposition 1 then bounds the
individual error probabilities. Our second main result, Theorem 12 in Section 3.5, allows us
to use bounds on linear combinations of error probabilities as training objectives. We prove
Theorem 11 in Section 3.6 via Proposition 4, which bounds the distribution of errors via a
general convex function d, and may be of independent interest. Section 3.7 outlines positive
empirical results! from using our bound as a training objective for neural networks, and Section

3.8 gives perspectives for future work.

1Code available here: https://github.com/reubenadams/PAC-Bayes-Control
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3.3 Notation

We are interested in simple hypotheses h : X — Y and soft hypotheses H : X — A(Y).
For example, a neural network outputting scores (logits) in Rl is converted to a simple or
soft hypothesis, respectively, by passing the scores through the argmax or softmax function,
respectively. For any A C ), H(x)(A) can be interpreted as the probability according to H
that the label of x is in A. We will see in Section 3.5 that soft hypotheses permit more flexible
training procedures and a more fine-grained analysis. Note that while soft hypotheses output
distributions, they do so deterministically, always returning the same distribution for the same

input z, and so are distinct from the stochastic classifiers introduced shortly.

For a simple hypothesis h : X — Y and j € [M], define the j-risk of h to be R} (h) :=
Py~p((h(x),y) € E;), namely the probability that » makes an error of type £ for a randomly
sampled (x,y) ~ D. For a soft hypothesis H : X — A()) define the j-risk of H to be
R}, (H) := Pl yyupgorn) (0, y) € E;), namely the probability that one would make an error of
type E; on a randomly sampled (z,y) ~ D if one predicted by sampling ¢ from the distribution
H(z) € A(Y). From now until Section 3.5 it will not matter whether we are dealing with
simple or soft hypotheses. So, unless stated explicitly, we refer to both simply as hypotheses,
denote both by lowercase h, and refer to the hypothesis class H, whether it is a subset of Y* or
A(Y)*. For ease of setting up notation, let D(S) € A(X x ) denote the empirical distribution
D(S) = %Z(Ly)es d(z,), namely the distribution consisting of delta masses of mass 1/n on

each of the data points in S.
Our goal is to control the true risk vector Rp(h) := (R5(h),..., R¥(h)), since controlling

this vector controls all linear combinations of j-risks. Since this is unobservable, we will control
it by bounding how far it diverges from its empirical counterpart Rs(h) := Rpg)(h), which
we term the empirical risk vector. Note that Eg.pnRs(h) = Rp(h), and that, for a simple
hypothesis h € Y%, Rg(h) is the vector of proportions of the sample on which & makes an error

of type £, which can be seen as follows

(Rs(h)), = Ry g (0) = Py (). ) € B)) = 37 1[(hl), ) € B].
(z,y)eS

Since the E; partition Y?, Rp(h) and Rg(h) are elements of the M-dimensional simplex
Ny o= {u € [0,1™ : uy + -+ +up = 1}. Thus we can choose our divergence measure
to be kI(Rs(Q)||Rp(Q)), where for q,p € Ay we define

M
q4
kl(q|lp) == > ¢;In -2,
j=1 Pj

following the usual convention that 0 In % =0forz >0and xln§ = oo for v > 0. When M = 2
we abbreviate kl((¢,1 — ¢q)||(p,1 — p)) to kl(g||p), which is then the conventional definition of
kl(-]|-) found in the PAC-Bayes literature, defined in Equation (2.20) from Section 2.3. We define
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the true and empirical risk vectors of Q) as Rp(Q) = Ep.qRp(h) and Rs(Q) := EpgRs(h),
respectively, and seek a bound on kl(Rg(Q)||Rp(Q)). Note we still have Eg[Rs(Q)] = Rp(Q),
this time using Fubini. Moreover, for a sample S of size n, we have that Rs(Q) = K /n where
K ~ Mult(n, M, Rp(Q)). Recall that for n, M € N and r € Ay, the multinomial distribution
Mult(n, M, r) has probability mass function

M
n H k; n ' n!
MU1t<k§n> M 7’) a <k1 ky - kM) j=1 A where (kl ky - kM) . W

j=1"5"

for k € S, a = {(/{:1, o ky) € Né” cki o+ ky = n}, and zero otherwise. As a final piece
of notation, we let A7) := Ay N (0,1)M and S, := S, NN denote the vector elements of

Ay and Sy, ar, respectively, that have no zero components.

3.4 Main result

We now state our main result, which bounds the KL divergence between the true and empirical
risk vectors Rp(Q) and Rg(Q), interpreted as probability distributions. As is conventional in
the PAC-Bayes literature, we refer to sample independent and dependent distributions P, Q €
A(H), i.e. stochastic hypotheses, as priors P and posteriors Q) respectively, even if they are

not related by Bayes’ theorem.

Theorem 11. Let X and Y be arbitrary sets and E., ..., Ey be a disjoint partition of )?
into M error types. Let D € A(X x Y) be a data-generating distribution and H be a simple
(H C YY) or soft (H C AN(Y)?Y) hypothesis class. For any prior P € A(H), § € (0,1] and
sample size n > M, with probability at least 1 — & over the random draw S ~ D™, we have
that simultaneously for all posteriors Q@ € A(H), the divergence kl(RS(Q)HRD(Q)) is upper
bounded by

% [KL(QHP) +In M} . where
oty = ()T 3 (1) () (457) ot

2=0
The fact that the logarithmic term is of order O(M In(nM/J)) means the bound is linear in
M up to logarithmic terms. While this may seem excessive, one should note that the quantity
that our theorem bounds also depends on M. Further, the bound has been successfully used
by Biggs and Guedj ( ) to improve on state of the art PAC-Bayes bounds.
To see how our bound compares to existing PAC-Bayes bounds for binary classification,
take Y = {—1,1}, M =2, and

El = {(17 _1)7 <_17 1)}7 and E2 - {(17 1)7 <_17 _1)}7

corresponding to incorrect and correct classification, respectively. The argument of the loga-
rithm then reduces to %el/(m") (2 + w/%) < 1.25y/n when n is large. The corresponding term
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in Maurer ( ) (given as Theorem 6 in Section 2.3) is 24/n, which is only larger because
Maurer relaxes the term for aesthetics. Therefore our bound gracefully reduces to Maurer’s in
the case of binary classification with zero-one loss.

Suppose after a use of Theorem 11 we have a bound of the form kl(Rs(Q)||Rp(Q)) < B.
We can then derive bounds on the individual j-risks R{)(Q) or, more generally, on linear
combinations thereof. While one could obtain such bounds perhaps more directly with existing
PAC-Bayes bounds, the significance of our bound is that all such derived bounds hold with
high probability simultaneously. Existing PAC-Bayes bounds would require the use of a union
bound in order to bound multiple combinations simultaneously, whereas ours bounds all of the
uncountably many combinations simultaneously, as a package. As for the individual j-risks

R%(Q), the following proposition then yields the bounds
L; < Rp(Q) < Uj,
where
L; = inf {p e [0,1]: KI(RL(Q)|]p) < B},
Uy s=sup {p € [0,1] : KI(RL(Q)||p) < B}.

Moreover, since in the worst case we have kl(Rg(Q)||Rp(Q)) = B, the proposition shows that
the lower and upper bounds L; and U; are the tightest possible, since if RJD(Q) & [L;,U;] then
KI(RL(Q)||R%(Q)) > B implying kl(Rs(Q)||Rp(Q)) > B. For a more precise version of this

argument and a proof of Proposition 1, see Appendix A.3.4.

Proposition 1. Let q,p € Ay. Then kl(q;||lp;) < kl(q||lp) for all j € [M], with equality when
pi = 12iqs. for alli # j.

Going beyond bounds on the individual j-risks, suppose we can quantify how costly an error

of each type is by means of a loss vector £ € [0,00)M, where ¢; is the loss we attribute to an

error of type E;. We may then be interested in bounding the total risk

Rp(Q) = £ Bp(Q) = > GRL(Q).

Then, given a bound kl(Rs(Q)||Rp(Q)) < B from Theorem 11, we can deduce
RH(Q) <sup {€-7:7r € Ay, K(Rs(Q)lIr) < B} = -k (Rs(Q)|B).

where we define kl, ' (u|c) € Ay as follows. To see that it is indeed well-defined (at least when

u € A7)), see the discussion at the beginning of Appendix A.3.5.

Definition 8. For u € Ay, ¢ € [0,00) and £ € [0,00)™, define kI, *(u|c) to be an element
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v € /Ay solving the constrained optimisation problem

Maximise: fo(v) :=£- v, (3.1)
Subject to:  kl(ullv) <ec. (3.2)

This motivates the following training procedure: search for a posterior () for which the bound
£k, (Rs(Q)|B) on the total risk R5(Q) is minimised. While this requires a particular choice of
loss vector £, we emphasise that at the end of training, Theorem 11 bounds kl(Rs(Q)||Rp(Q)),
and so can be used to bound any linear combination of the j-risks, not just the one given
the loss vector € chosen for training. It is this flexibility which is the main advantage of our
bound; changes in the severity of different error types over time do not require union bounds
or retraining.

In the next section we provide a theorem for calculating kl, ' (u|c) and its derivatives so that

the training procedure can be executed.

3.5 Construction of a differentiable training objective

We now state and prove Theorem 12, which provides a speedy method for approximating
kl;l(u|c) and its derivatives to arbitrary precision, provided ¢ > 0 and Vj u; > 0. The only
approximation step required is that of approximating the unique root of a continuous and
strictly increasing scalar function. Thus, provided the u; themselves are differentiable, Theorem
11 combined with Theorem 12 shows that the upper bound on the total risk can be used as
a tractable and fully differentiable training objective. See Appendix A.1 for more details,
including a pseudocode algorithm and an implementation. Since the proof of Theorem 12 is
rather long and technical, we defer it to Appendix A.3.5. The requirement that the ¢; are not

all equal serves only to rule out trivial cases where RE(Q) is independent of Rp(Q).

Theorem 12. Fiz £ € [0,00)™ such that not all {; are equal, and define fo: Ny — [0,00) by
fe(v) := ij‘iléjvj. For all @ = (u,c) € AP x (0,00), define v*(w) := kI, *(ulc) € Ay and let
(@) € (—oo, —max; ¢;) be the um’que solution to ¢ = ¢e(), where ¢p : (—o0, —max; ;) — R
is gien by ¢e(p) := In(— Z;”l M+£ )+ Zj LU In(—=(p+¢5)), which is continuous and strictly
increasing. Then v*(@) = kl, ' (ulc) is given by

v'(u); = <) - for j € [M], where X( (ZM* j) : (3.3)

(a) J=1
Further, defining f; : A7) % (0,00) — [0,00) by f;(@) := fe(v*(w)), we have that

gzi( @) =\ (a )<l—l—ln - ) and %’Z’f( ) = —N(@). (3.4)

v*(u);

A final wrinkle in evaluating our bound is that while the empirical risk vector Rg(Q) =

Ej-gRs(h) does not depend on the data-generating distribution D, the expectation over @
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may still be intractable. This would be the default case when () is a Gaussian over the weights

of a multilayer perceptron, for example. In such cases, we can estimate Rg(Q) via a Monte

~

Carlo sample Rg(Q) = + SN  Rg(h,) (where the hy, are drawn ii.d. from Q) and use the
following two results. Proposition 2 shows that the kl(R%(Q)||R}(Q)) can be simultaneously
bounded, whence Proposition 3 can be used to obtain a bound on kl(Rs(Q)||Rp(Q)).

Proposition 2. Let X ~ Multinomial(N, M, p). Then for any 6 € (0,1), with probability at
least 1 — § we have that for all j € [M] simultaneously

In 24
)
pj) SN

Proof. Each bound holds separately with probability at least 1 — /M by Theorem 2.5 in
Langford and Caruana ( ). They then hold simultaneously by application of a union bound.
O

1
Kl (NXJ»

Proposition 3. Suppose q,p,q € Ay are such that kl(q|lp) < By and k1(g;]|q;) < By for all
j € [M]. For each j, define 4= inf{r € [0,1] : kI(g;||r) < Bs}. Then

M . .
1—d. ‘
kl(g|p) < MB; — E (1—¢;)In Gy By maxq—j — B, as By —0.
, 1—gq. i q.
J=1 =J =J
Proof. Deferred to A.3.1. O

The fact that the bound on kl(g||p) — B; as By — 0 ensures that as we increase the size
of our Monte Carlo sample for estimating Rg(Q) the bound on kI(Rg(Q)||Rp(Q)) approaches
that of kI(Rs(Q)||Rp(Q)), meaning in the limit we pay an arbitrarily small price in the bound

for the approximation.

3.6 Proof of the main bound

We split the proof of Theorem 11 into three parts. First, we prove Proposition 4, a bound on
d(Rs(Q), Rp(Q)) for an arbitrary convex function d, which may be of independent interest.
Second, we prove Corollary 1 by specialising Proposition 4 to the case d(-,-) = kl(+||-). Finally,

we show that the bound in Theorem 11 is a loosened version of the bound in Corollary 1.

Proposition 4. Let d : A3, — R be jointly convex. In the setting of Theorem 11, for any

g >0

Id(”?ﬁ)
o

d(Rs(Q), Rp(Q)) < % [KL(QHP) +1In } ,  where (3.5)

Za(n, ) := sup Z Mult(k; n, M, r) exp (ﬁd (%,r))

r€AM kGSn,]w

54



This is a generalisation of the unifying PAC-Bayes bound given in Bégin et al. ( ) where
we replace the scalar risk quantities Rg(Q) and Rp(Q) with their vector counterparts Rg(Q)
and Rp(Q). To see this, note that we can recover it by setting Y = {—1,1}, M = 2, E; =
{(—y,y) : y € Y} and Ey = {(y,y) : y € Y}. Then, for any convex function d : [0,1]*> — R,
apply Proposition 4 with the convex function d’ : A%, — R defined by d'((uy,us), (vi,v2)) :=
d(uy,v1) so that Proposition 4 bounds d'(Rs(Q), Rp(Q)) = d(Rs(Q), RH(Q)) which equals
d(Rs(Q), Rp(Q)) in the notation of Bégin et al. ( ). Further,

Z Mult(k; n, 2, 7) exp (5d’(§,r) ) = i Bin(k; n, ) exp (5d (%,m) )7

keSy 2 k=0

so that the supremum over r; € [0, 1] of the right hand side equals the supremum over r € A,
of the left hand side, which, when substituted into (3.5), yields the bound given in Bégin et al.
(2016).

To prove Proposition 4 we require the following two lemmas. The first is the well-known
change of measure in equality (Csiszar, : Donsker and Varadhan, ). The second is a
generalisation from Binomial to Multinomial distributions of a result found in Maurer ( ),

the proof of which we defer to Appendix A.3.2.

Lemma 1. For any set H, any P,Q € A(H) and any measurable function ¢ : H — R,

< .
E 6(h) < KL(QIP) +1n B exp(6(h)
Lemma 2. Let X,..., X, be i.i.d Ays-valued random vectors with mean p and suppose that
f: A% — R s conver. If X1,..., X are i.i.d. Mult(1, M, ) random vectors, then

E[f(X1,..., X,)] <E[f(X], ..., X})].

The consequence of Lemma 2 is that the worst case (in terms of bounding d(Rgs(Q), Rp(Q)))
occurs when Ry, (h) is a one-hot vector for all (z,y) € S and h € H, namely when H C
A(Y)?* only contains hypotheses that, when labelling .S, put all their mass on elements § € Y
that incur the same error type?. In particular, this is the case for hypotheses that put all their
mass on a single element of ), equivalent to the simpler case H C Y* as discussed in Section
3.3. Thus, Lemma 2 shows that the bound given in Proposition 4 cannot be made tighter only

by restricting to such hypotheses.

Proof. (of Proposition 4) The case H C Y7V follows directly from the more general case by
taking
H = { € DY) 30 € M such that Vo € X () = by |

where y,) € A(Y) denotes a point mass on h(z). For the general case H C A(Y)¥, using
Jensen’s inequality with the convex function d(-, -) and Lemma 1 with ¢(h) = Sd(Rs(h), Rp(h)),

“More precisely, when Vh € H V(z,y) € S 3j € [M] such that h(z)[{g € Y : (J,y) € E;)}] = 1.
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we see that for all Q € A(H)

~

Bi(Rs(Q). R (@) = 5 Rs(0), 5 Roh) )

< E 8d(Rs(h), Rp(h))

< KL(Q|IP) +1In (| E _exp (Bd(Rs(h), Rp(1)) ))
= KL(Q||P) + In(Zp(9)),

where Zp(S) := Epwpexp (8d(Rs(h), Rp(h))). Note that Zp(S) is a non-negative random
variable, so that by Markov’s inequality

P (ZP(S) < M) >1-—06.
S~Dn )

Thus, since In(-) is strictly increasing, with probability at least 1 — § over S ~ D", we have
that simultaneously for all Q € A(H)

E Zp(S)

Bd(Rs(Q), Rp(Q)) < KL(Q||P) +In $=2"

: (3.6)

To bound Eg..prnZp(S’), let X; := Ry, y)y(h) € Ay for i € [n], where (x;,y;)" is the
i'th element of the dummy sample S’. Noting that each X; has mean Rp(h), define the
random vectors X/ ~ Mult(1, M, Rp(h)) and Y := > | X! ~ Mult(n, M, Rp(h)). Finally
let f: A%, — R be defined by

flz,. .. x,) == exp (Bd (%in,RD(h))> ,

which is convex since the average is linear, d is convex and the exponential is non-decreasing
and convex. Then, by swapping expectations (which is permitted by Fubini’s theorem since the
argument is non-negative) and applying Lemma 2, we have that Eg/..p»Zp(S’) can be written

as

=E [E exp
h~P §'~D"

EsnpnZp(8) = E = E exp <5d(RSf(h) RD(h))>
(ﬁd(Rs«h),RD(h)))

]E (
Xn
<
exp( ( x ))
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= hLEp Z Mult(k:; n, M, RD(h)) exp (ﬁd(ﬁ, RD(h))>

kESn,]y[

< sup | 3 Mult(k;n, M, r) exp (5d(E, 7)) |

kESn,M

which is the definition of Zy(n, 8). Inequality (3.5) then follows by substituting this bound on
Es/pnZp(S’) into (3.6) and dividing by f. O

We now specialise Proposition 4 to the case d(-,-) = kl(-||-) to obtain Corollary 1.

Corollary 1. In the setting of Theorem 11,

K(Rs(Q)|| Ro(Q) < % {KL(QHP) +in M}  where (3.7)

Mk
M -
o =2 5 113,
kGSn M Jj=1
Proof. Applying Proposition 4 with d(-,-) = kl(+||-) and 5 = n gives that with probability at
least 1 — § over S ~ D", simultaneously for all posteriors Q € A(H),

K(Rs(@)|Ro(Q) <+ {KL(QH P)+1n w} |

where

Tia(n,n) :== sup Z Mult(k; n, M, r) exp (nkl(%“r)) . (3.8)
PEAM | kg ar
Thus it suffices to show that Ziy(n,n) < n(n, M).
To prove this, for each fixed r = (r1,...,7m) € Ay let J. = {j € [M] : r; = 0}. Then
Mult(k;n, M,r) = 0 for any k € S, such that k; # 0 for some j € J,. For the other
k € S, a, namely those such that k; = 0 for all j € J,, the probability term can be written as

M
Mult(k;n, M,7) = ——— k'Hrj == IT 5.
H J* =1 J¢Jr k! J&Jn

and (recalling the convention that 0In 2 = 0) the term exp(nkl(%||r)) can be written as

M ks k; k. ko \ " 1 E\ P
o (w3 ) = (S =TT () = ST (2)
j=1 J & J & J igde N7

where the last equality is obtained by recalling that the k; sum to n. Substituting these two

expressions into the definition of Zy(n, n) and only summing over those k € S,, 5 with non-zero
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probability, we obtain

Z Mult(k;n, M, r) exp <nk1( H )) = Z Mult(k; n, M, r) exp (nkl( H )>

keSy m k€S, ar:
Vi€ Jp ;=0

- Y o eaT(E)

k€S, M i¢JIr i€ Jj¢Jr
Vi€, kj=0

n! ;
= 2 1l

kesn,]&{: jgjr

Viedr ijO
k,
nl oy Ky’ 0°
=— E H 1 (because & = 1)
n |
kS, ar: j=1 7
Vi€ Ty k=0
n! M k;cj
AP ON | b
— ki’
keSy a j=1 7

which is n(n, M). Since this is independent of 7, it also holds after taking the supremum over
r € Ay of the left hand side, showing that Zy(n,n) < n(n, M). O

The final step in obtaining Theorem 11 is to loosen the bound given in Corollary 1 (which
is intractable when m is large) to the tractable form given in Theorem 11. For this we require

the following technical lemma, the proof of which we defer to Appendix A.3.3.

Lemma 3. For integers M > 1 and n > M,

M M-2

> T o
M
k€S>O H] 1 ?

Proof. (Of Theorem 11) It suffices to show that for all n > M > 1 we have n(n, M) < &(n, M).
We achieve this by applying Stirling’s approximation v/2wn ( ) <nl <2 ( ) etzn (valid
for n > 1) to the factorials in n(n, M) and then using Lemma 3.

Since Stirling’s approximation requires that all the k; are at least one, we partition the
sum in 7(n, M) according to the number of coordinates of k at which k; = 0. Let z index the
number of such coordinates. Defining f : |J3,_, Snr — R by f(k) = H'k‘ fj/k;j! and noting

that f is symmetric under permutations of its arguments, we then have

s =" % w=2Y (V) T s (3.9)

RSy KEST
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Stirling’s approximation can now be applied to each k € Si %

k]‘

I ey

An application of Lemma 3 now gives

e Moo
— H - ~ (2m)MP2 31;[1 NG

M—z M—2 M—2—2 M—z—2

en 1 e mT 2 N ) en -
f(k) < - < _ e |
ke% z ke%f(z%yg j=1 \/k_] (QW)% F(MT) 2“2 F( )

Substituting this into equation (3.9) and bounding n! using Stirling’s approximation, we have

V2rnel/(2n) M m et S
ntn ) < 2 S () iy = €0
z=0 27z F( )

which completes the proof of the bound. As for the order of the bound, it is sufficient to bound
In¢(n, M) using the crude approximations (%) < M, (2/n)*/? <1 and I'(M — z2)/2) > L.
O

3.7 Numerical experiments

We use binarised versions of MNIST and HAM10000 (Tschandl et al., ). In both cases we
partition Y? into Ey = {(0,0), (1,1)}, F1 = {(0,1)} and E> = {(1,0)}, and take £ = (0,1, 3).
Each dataset is split into prior and certification sets. We take H to be the set of two-layer
ReLU-activated MLPs. As is common in the PAC-Bayes literature, we restrict P and @ to
be isotropic and diagonal Gaussian distributions over the parameter space, respectively. The
mean of P is set to the parameters of an MLP trained on the prior set, and this is also taken
as the initialisation of the means of (). The mean and variance of ) and the variance of P
are tuned via Theorem 12 to minimise the bound on the total risk R5(Q). See Appendix
A.1 for pseudocode, Appendix A.2 for full experimental details and https://github.com/
reubenadams/PAC-Bayes-Control for code. The results for MNIST can be seen in Figure 3.1.

We estimate Rg((Q) with a Monte Carlo approximation and obtain a PAC-Bayes bound on
RE(Q) by combining Proposition 2 (with § = 0.01 and N = 100,000) and Proposition 3. We
obtain RT(Q) < 0.2640 for MNIST and RE(Q) < 0.8379 for HAM10000, where both bounds
hold with probability at least 1 —0.05—0.01 = 0.94. While these bounds are far from vacuous—
the maximum possible value of R} (Q) is 3 for our choice of £—one might wonder whether one
can do better by bounding each error probability individually using Maurer’s inequality, Maurer
( ), and then unioning these bounds. As with our Theorem 11, this would also constrain
the entire distribution of error types since for any £, one could then calculate the maximum
value of RL(Q) that satisfies all of these constraints. Both methods constrain the region of the

simplex in which Rp(Q) can lie (with high probability), and a reasonable metric by which to
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compare them is the volumes of these regions. This can be estimated via a Monte Carlo sample
by uniformly sampling points r from Aj; and counting how many are legal values of Rp(Q)
according to each method. The 95% confidence intervals for the volumes of the two regions are
given in Table 3.1. A more comprehensive table for synthetic values of Rg(Q) can be found in
Appendix A.2.

Inspecting Figure 3.1a, we see that our training method successfully reduces the bound
on the total risk RE(Q), with Figure 3.1b showing this is achieved by a reduction in the
probabilities of error types F; and FE,. The fact that both of these error probabilities were
able to decrease—implying an increase in the accuracy of the final stochastic classifier ()—is
evidence that the additional data used to optimise the bound results in additional learning, in
contrast to test set bounds.

While the bound on the total loss decreases, Figure 3.1c shows that the bound on the
divergence kl(Rgs(Q)||Rp(Q)) increases. This is to be expected—since @ is initialised to P, and
P is independent of the data used to evaluate the bound, Rg(() is initially an unbiased estimate
of Rp(Q), so Rs(Q) and Rp(Q) can be expected to lie near each other in the simplex. As
training progresses however, () becomes dependent on the data used to evaluate the bound, and
so in the worst case, which we cannot rule out, Rg(Q) and Rp(Q) drift apart. Nevertheless, the
fact that the increase in the bound on kl(Rs(Q)||Rp(Q)) is modest, means that one maintains
reasonably tight bounds on the total risk for all choices of risk vector £ simultaneously, not just
the one chosen for training.

It is worth emphasising that while one is forced to make a choice of risk vector £ to optimise
the bound via Theorem 12, the value of our method lies in the fact that it preserves bounds
on all linear combinations of the error probabilities simultaneously. In contrast, if one were
instead to straightforwardly apply Maurer’s bound to the scalar total risk R%(Q) for a fixed
choice of risk vector, and train the parameters of () to minimise this bound, then bounding the
total risk for a second risk vector would require a second bound and therefore a second sample.

Our method dispenses with this requirement entirely.

Dataset Volume Our Region Volume Maurer Region
MNIST 0.0025 (0.002498, 0.002504) | 0.0028 (0.002793, 0.002800)
HAM10000 | 0.0012 (0.001207, 0.001211) | 0.0011 (0.001142, 0.001146)

Table 3.1: Point estimates and 95% confidence intervals for the volumes of the confidence regions
for Rp(Q) given by Theorem 11 and a union over M individual Maurer bounds, respectively.
Our method is superior for MNIST and inferior for HAM10000.

3.8 Conclusion

We introduce the framework of error types, considering the vectors Rg(Q) and Rp(Q) of empir-
ical and true probabilities of errors of different types. We prove a PAC-Bayes bound (Theorem

60



Bound on Total Risk Empirical Error Probabilities Bound on kI(R_S(Q)||R_D(Q))

1 0.01
0.3
0.8 0.008
028 |
’ 06 0.006
0.26
l 0.4 0.004
0.24
0.2 0.002
0.22
Epoch
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
(a) (b) (c)

Figure 3.1: Experimental results for binarised MNIST. (a) The PAC-Bayes bound on the total
risk decreases when tuning the posterior via Theorem 12. (b) This is achieved by a shift in
the empirical error probabilities. (c) The bound on kl(Rs(Q)||Rp(®)) is not substantially
increased, meaning we still retain good control of Rp(Q) after optimising @ for this particular
choice of €.

11) on kI(Rs(Q)|| Rp(Q)) which controls the entire distribution of error probabilities, and hence
can be used to derive bounds on arbitrary linear combinations of the error probabilities, all
of which hold simultaneously with high probability; this cannot be achieved with any existing
PAC-Bayes bound.

We construct a differentiable training objective based on our bound by introducing the
vectorised kl inverse, providing a recipe for quickly computing its value and derivatives (Theo-
rem 12). Our framework is flexible enough to encompass multiclass classification or discretised
regression, but also structured output prediction, multi-task learning and learning-to-learn.

Another potential application of our work is to the excess risk, since under a misclassification
loss there are three different error types, corresponding to excess losses of {—1,0, 1}. Biggs and
Guedj (2023) adapted Theorems 11 and 12 to this setting, leading to an empirically tighter
PAC-Bayes bound for certain classification tasks.

We require i.i.d. data, which in practice is frequently not the case or is hard to verify.
Further, the number of error types M must be finite. In continuous scenarios, it would be
preferable to be able to control the entire distribution of loss values without having to discretise

into finitely many error types. We leave this direction to future work.
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Chapter 4

PAC-Bayes and Compression

4.1 Introduction

Many papers have derived non-vacuous bounds for neural networks in the overparameterised
regime. Relatively few of these works however explain the generalisation of neural networks
trained through ordinary methods. Instead, they explain the generalisation of neural networks
constructed with modified training methods inspired by their bounds—e.g. minimising a PAC-
Bayes bound—or networks altered via pruning or some other form of compression. Further, the
focus is usually on stochastic neural networks, in contrast to the deterministic neural networks
most commonly used in practice.

For example, Dziugaite and Roy ( ) achieve non-vacuous bounds for a stochastic neural
network trained to minimise the classical PAC-Bayes bound from McAllester ( ), which
explains little about the generalisation of deterministic networks trained via ordinary meth-
ods. And Zhou et al. ( ) bound the performance of stochastic neural networks that have
been heavily pruned, losing up to 98.5% of their parameters, which explains little about the
deterministic unpruned networks. An exception is Nagarajan and Kolter ( ), which bounds
uncompressed deterministic networks, but their bounds are orders of magnitude larger than
one, making them uninformative in practice.

As argued in the introduction to this thesis, a mature statistical learning theory should
not have to rely on such modifications. Rather, it should explain the empirically observed
generalisation of deterministic and uncompressed neural networks trained without consideration
to statistical learning theory. An alternative approach, which we take in this Chapter, is to
search for a compression scheme that allows bounds on the compressed network to be rigorously
carried over to the original deterministic network with minimal degradation.

Following Lotfi et al. ( ), we dispense with stochastic neural networks by employing
PAC-Bayes theory with a posterior equal to a point mass on the deterministic network, and
using a simplicity prior that puts exponentially more weight on networks that can be expressed
in a smaller number of bits (for some fixed encoding scheme). This then yields a bound on the
deterministic network in terms of the number of bits required to describe it. While such bounds

are typically very loose when the bit description is simply the raw parameters of the network,
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the hope is that one can find a “nearby” network that also performs well while being expressible
in fewer (or lower precision) parameters, and therefore fewer bits. This network would then
enjoy a tighter bound and, if its performance can be related to the original network, this bound
may be extended to the original network with minimal degradation.

The now old observation that neural networks trained via gradient descent tend to find flat
minima (see e.g. Keskar et al. ( )) makes the existence of a nearby compressible network
plausible, as the flatter the minimum the larger the region in which the parameters can be
varied without substantially increasing the loss. This suggests the compression scheme of
weight quantisation, wherein the weights are either truncated or replaced with their closest
centroid after an application of the k-means algorithm.

Building on Neyshabur et al. ( ), in Lemma 4 we bound the discrepancy in output of
the original and compressed networks in terms of the spectral norms of the differences in the
weight matrices of the two networks. This bound naturally suggests low-rank approximations
via truncation of the Singular Value Decompositions (SVDs) of the weight matrices as a com-
pression scheme, since this yields the low-rank approximations closest in spectral norm (see the
Eckart—Young theorem Eckart and Young ( )). Further, in Lemma 5, we show that a small
discrepancy in output of the two networks implies a small discrepancy in accuracy provided the
margin of the compressed network is large. This is what allows us to transfer bounds from the
compressed network to the original network in Theorem 14, our main result.

Informally, our result bounds the true error of the original network in terms of the empirical
margin loss of its compression, plus a term that is O(\/W) ignoring logarithmic terms, where
|s| is the length of the bit string representation of the compressed network, and the margin is
smaller for higher fidelity compressions. That is, we show that if a network has large margin
on the train set, and there exists a high-fidelity compression, then this network generalises.

Our theoretical results highlight the following tradeoff; as the degree of compression is
increased, the tightness of the generalisation bound on the compressed network also increases
(due to its short representation), but the performance of the compressed network is likely
impacted and the degradation incurred by the bound when it is transferred to the original
network also increases. It is the empirical balance between these factors that we investigate for

different compression schemes in Sections 4.4 and 4.5.

4.2 Related work

Our approach in this work is inspired by Neyshabur et al. ( ), which provides a bound
on the error rate of an uncompressed deterministic network. They achieve this by proving a
bound on the change in output of an MLP in terms of a perturbation to its weights, and then
randomising over this perturbation in order to apply the PAC-Bayes theory. Our bound in
Lemma 5 is an adaptation of their perturbation bound which dispenses with their technical
restriction on the perturbation, instead relating any two MLPs of the same architecture. Our

result also permits the MLPs to have bias terms. Further, they loosen their bound in several

63



ways for aesthetics and do not test their bound empirically, whereas we trade aesthetics for
tightness and conduct empirical experiments, in some cases finding non-vacuous bounds that

would not be achieved without our method.

The work of Neyshabur et al. ( ) was continued in Arora et al. ( ), where it was
shown that the output of a trained neural network is more stable to noise injected into earlier
rather than later layers. This allowed them to achieve tighter bounds on a stochastic compressed
form of the network by applying more severe compression to earlier layers. Our compression
approach also allows the severity of compression to vary across layers, but in contrast to their

work, our result continues to bound the original deterministic network.

The first non-vacuous bounds for realistic architectures classifying ImageNet were estab-
lished in Zhou et al. ( ), later improved by Lotfi et al. ( ). Both works employ a discrete
prior over the hypothesis space, placing mass inversely proportional to the description length
of the hypothesis encoded by their compression scheme. The bounds in Zhou et al. ( )
apply to networks compressed by weight pruning and quantisation. In the MNIST case they
prune around 98.5% of the weights and quantise the non-zero weights with a 4-bit codebook.
While the bounds are impressive, it is doubtful that the performance of the original and com-
pressed networks can be related given their aggressive compression scheme, and so the results
do not explain the empirically observed generalisation of the original networks. The tighter
bounds found in Lotfi et al. ( ) suffer this drawback to a greater degree, as in addition they

significantly modify the training procedure to ensure the final network is highly compressible.

The goal of the present Chapter is to evaluate whether the observed compressibility of
networks trained via ordinary methods can be leveraged to tighten bounds on the original

network, without the addition of stochasticity or data-dependent priors.

4.3 Theory

In this section we prove our main result, Theorem 15, a bound on the true error of an MLP
classifier in terms of the empirical margin loss and string length of its compression, where
the margin appearing in the bound depends on the discrepancy between the network and its

compression.

We prove Theorem 15 in four steps. First, Lemma 4 bounds the maximum difference in
output between the original and compressed networks. Second, Lemma 5 shows that if the
maximum difference in output of two classification functions (not necessarily MLPs) is small,
then the true margin loss of one can be bounded in terms of the true margin loss (with a
different margin) of the other. Third, combining these two Lemmas yields Theorem 14, which
states that the true error of the original network is bounded by the true margin loss of the
compressed network, where the margin is a function of the two networks. Finally, Theorem 15
loosens the true error bound in Theorem 14 to be in terms of empirical quantities by applying

a classic PAC-Bayes bound stated here as Theorem 13.
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4.3.1 Discrete PAC-Bayes

We start with the classic PAC-Bayes theorem found in Maurer ( ), a form of which was
originally proved in Langford and Seeger ( ). Originally stated for the zero-one loss, it
applies to any bounded loss function, so we state it here in terms of the margin loss. For
classification with labels ) = [k] and predictions g € Y = R*, the margin loss of a classifier
h: X — R for any v € R is defined as

ly:Hx (X xY)—{0,1}, where £4,(h,(z,y))=1 [h(az)y <7+ rglj;(h(az)]], (4.1)

namely a loss of 1 if and only if the classifier fails to predict correctly with a margin greater than
~. Note that ¢, corresponds to the ordinary zero-one loss. For any data-generating distribution
D e A(X x)Y), sample S € (X x V)" and margin 7 € R, the true and empirical margin loss

of h are then

R (h) = Egapen | (0, (2,9)]| = Biapon | (x), < 7+ maxh(e);]  and

1< 1
Rg(h) =~ ; by(h, (23, 93)) = — ; 1 [h(l"z’)yi <7+ %@fh(ﬁi)j} :
respectively. Note that R),(h) and R}(h) are increasing in v and are elements of [0,1]. Ex-
tending this to stochastic classifiers @ € A(H), which classify according to a sampled h ~ @,

with a fresh sample for each classification, we have the true and empirical margin losses

R}H(Q) =Enq[Rp(h)] and  RYUQ) = Epwq[Ri(h)],
respectively. In this setting Maurer’s bound can be written as follows.

Theorem 13. (Maurer (200/), Theorem 5) For any data-generating distribution D € A(X X))
with label set Y = [k], hypothesis class H C V¥ with prediction space Y= R¥, prior distribution
P € A(H), confidence level § € (0,1], margin v > 0 and sample size n, with probability at least
1 — 90 over the random draw S ~ D", we have that simultaneously for all posterior distributions
Q€ A(H)
KL(Q||P) + In 2

n

KI(RUQ)||RH(Q)) <

This establishes a bound on R},(Q) by inverting the kl with klI™'(¢|B) = sup{p € [0,1] :
kl(q|lp) < B}. Alternatively, Pinsker’s inequality gives kl(¢||p) < B = p<q+ \/B_/Q This
second method allows for much easier comparison between methods if they happen to produce
empirically loose bounds.

While data-dependent priors can be made admissible by splitting the dataset—a common
technique in the literature (e.g. Dziugaite and Roy ( ), Parrado-Herndndez et al. ( ), and
Perez-Ortiz et al. ( ))—we eschew their use here as their utility in explaining generalisation
is limited. As already discussed in depth in Section 2.5, the tight PAC-Bayes bounds achieved
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through data-dependent priors for the most part simply shifts the generalisation mystery to
the unexplained success of the data-dependent prior itself. While this may not be a problem
for self-certified learning, our purpose here is to shed light on the generalisation mystery.
Since we are seeking bounds on deterministic rather than stochastic classifiers, we follow
Zhou et al. ( ) (and later Lotfi et al. ( )) in taking the posterior @ to be a point
mass on the hypothesis h(S) produced by the learning algorithm on the sample S, so that
RL(Q) = RL(R(S)). In order for KL(Q||P) to be finite, this then demands that we take P to
be a discrete distribution over a countable subset of P that includes h(S). Since P may not
depend on S, this in turn means that h(S) must lie in a prespecified countable subset of H,
independently of S, at which point we have KL(Q||P) = —In P(h). While this can be trivially
achieved by noting that any hypothesis returned by a computer will be given to finite precision,
and therefore comes from a finite set known in advance, this finite set may be so large that a
uniform prior P would yield such a large KL(Q||P) that the PAC-Bayesian theory produces
trivial results. The goal of compression therefore is to limit the size of this finite set, so that P

does not need to be spread so thinly. We discuss our compression schemes in Section 4.4.

4.3.2 Bounding the discrepancy in output between two MLPs

Here we bound the discrepancy in output between two Multi-Layer Perceptrons (MLPs) with
ReLU activation functions. More specifically, we consider two MLPs of identical architecture
(dimensions of the layers) differing in their weights only—their biases must be equal. Our bound
in Lemma 4 then bounds the discrepancy in their output in terms of the spectral norms of the
differences of their weight matrices, and the spectral norms of the weight matrices themselves.

We define a d layer MLP hy g : R — RF with weights W = (W, ..., W,) € RF>ko x
coo x Rkaxka—1hiases B = (By,...,By) € RM x ... x R¥ and ReLU activation function

¢(r) = max(z,0) recursively as follows

hivg(x) == Wiz + B,
h%;/r-’lB(JI) = WZ‘+1¢( %4/73(25)) + Bi+1 for i Z 1.

The MLP hy,p is then simply A{j, 5. Let MLP denote the set of all MLPs with ReLU activa-
tions and MLP(, .k, € MLP those with input dimension kg, output dimension k; and hidden
dimensions ki, ..., kq_1.

Lemma 4 builds on Lemma 2 from Neyshabur et al. ( ) but differs in two respects.
First, we permit the MLPs to have bias terms (which is more realistic) provided they are
identical. This is not a severe limitation, as bias terms are frequently left unchanged during
compression as they make up a negligible proportion of the parameters. Second, since we are
aiming for empirical tightness rather than a form of the bound that makes the order of terms
most legible, we make as few relaxations as possible.

Our goal is to bound the change in the output of an MLP Ay g after the weights W are

perturbed (by compression) to W, leaving the biases B fixed. More precisely, we seek a bound
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on

sup {|hw,p (@) = b () |
x€R¥0

As it stands, this cannot succeed, as in general arbitrarily small changes in the weights can yield
arbitrarily large changes in the output when the input x € R* is unbounded. We therefore

stipulate that the input is bounded in /,-norm by some constant C'.

Lemma 4. Let hyp and hy p be two d-layer MLPs from R¥ to R with ReLU activations
and identical hidden layer dimensions. Fix C > 0 and let Xo = {x € R¥ : ||z||, < C}. Then

sup ||hWB(x) - hW’,B($)||2 S 5(Wa Wla B,C),

TEXC

where B(W, W' B,C) = Bs(W, W', B,C) is defined recursively by
ag(W',B,C)=C and Bo(W,W' B,C)=0
and, fori>1,

a;(W', B,C) = [W{|l20:-1(W', B, C) + || Bi2
5Z(I/I/7 leB>C) = HVVZHQBzfl(M& W/a B7C) + HW’L - WiIHQOéifl(WCBa C)

Proof. We first show that sup,c,. |k g(2)[l2 < (W', B,C) for i = 1,...,d by induction.

For the base case, we have

sup ||y 5 (@)l = sup [[Wiz + Bl
:IIEXC :IIEXC

< sup (IWillollzll2 + | Bill2)

reEXo

< [[Will2C + | Bill2 = en (W, B, C).
And for the induction,

sup ||h%/_v|—/13($>||2 = sup ||W, +1¢(hW' (z)) + Bis|l2

zeXc TeEXC
< sup (Wl oy (o)) + 1Biva )
z€Xc
< Wil sup Iy, @)z + |Biallz (using |é(w)] < Jul)

TEXC
<N Wi lleei(W', B,C) + || Big]|2 (by the inductive hypothesis)
= OdiJrl(W/, B, O)

For the main result, let

Ai(W, W', B,C) = sup |hyp(r) — hy p(2)|

reXC
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for i = 1,...,d. We will prove using induction that A;(W, W' B,C) < B;(W, W', B,C) for

1 =1,...,d. For the base case, we have

AW, W', B,C) = sup |lhyp(x) = hyr p(2)|2

r€EXC
= sup ||Wiz + By — (Wiz + By)|)2
rE€EXC
= sup [|[(W1 — W7)z||»
TEXC
< [|[W1 — Wiz sup ||zl
reXc
= C||Wy — Wil
= Bl(VVa W/7B7C)'

And for the induction,

Ain(W,W', B,C) = sup |[hiy5(x) — hyjr 5 ()2

-
= s [ Wosad(hiy (@) + Biss = [Wia0(0iy () + B i
= sup [ Weal0(his(2)) = by, p(e)] + (Wea = Wiy )0y p(a)
< [Wisalla 5up [19(hiv5(2) = 0w 5 (@)l

1 Wair = Wiialle sup [[(hiy ()]l

zeXc

< [Wisallz sup ||k, p(2) = Ay p(@)]l2

reEXo

[ Wisr = Will2 sup by p(@)ll2 - (using [é(u) — ¢(v)] < [u—v])

rzeXc
< [Wigall28:(W, W', B, C)
+ [Wisr — Wiz sup [|hiyr 5(2)])2 (by definition of A;)

pEXC
< |Winll28:(W, W', B, C)

+ | Wit1 — Wi |loas (W', B, C) (by the inductive hypothesis)
= 5z‘+1(Wa W', B, C)-

4.3.3 Relating the margin loss of close classifiers

We have the following lemma, which converts a bound on the discrepancy between the output
of two classifiers h, g to a bound on the true margin loss of A in terms of the true margin loss
of g, but for a larger margin. It quantifies the intuition that if A and g have close output across
the domain, then any input = correctly classified by g with large enough margin will also be

correctly classified by h, though possibly with a smaller margin.
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Lemma 5. If sup,cy ||h(z) — g(z)||2 < €, then for all v € R we have R),(h) < R]fﬂg(g).

Proof. Recall that the margin loss ¢, defined by Equation (4.1) is {0, 1}-valued. We will show
that

g’y(hv (377y)) =1 = g'y-‘,-\/ia(g? (3773/)) =1,

for arbitrary (x,y) € X x [k], after which the result follows by taking expectations over D.
Fix (z,y) and define

Jn = argmax,, h(r); and j, = argmax;,, g(7);.

Let u = e, — e;,, where e; € R” is the basis vector with 1 in coordinate j. Suppose that
ly(h, (z,y)) =1, ie.
h(x)y <7+ h(x)j,. (4.2)

The Cauchy-Schwarz inequality gives w - (g(z) — h(z)) < |Jull2|lg(z) — h(z)|]2 < V2¢, and the
definition of j; and j, gives g(z);, — g(x);, <0, whereupon

g(x)y — g(x);, = (9(x)y = D(x)y) + (W(x)y = h(2);,) + ((2);, — 9(x);,) + (9(2);, — 9(2);,)
=u- (g(x) = h(x)) + (h(x), — h(x);,) + (9(2);, — 9(x);,)
<V2+~+0.

Rearranging and using the definition of j, gives
9(w)y <7+ V2e +maxg(x);
77y
and so £, 5. (g, (z, y)) = 1. Finally, by taking probabilities over (z,y) ~ D we have

R’E(h) = ]P)(z,y)wD |:€'y (ha (IL’, y)) = 1] S ]P)(x,y)ND |:€'y+\/§g (97 (‘Ta y)) - 1} = R%+ﬁ8(g)

]

4.3.4 Bounding the error of an MLP in terms of the margin loss of

its compression

Combining Lemmas 5 and 4 yields the following theorem.

Theorem 14. Let hy g and hy g be two d-layer MLPs from R¥ to R* with ReLU activations
and identical hidden layer dimensions. Fiz C > 0 and let Xo = {x € R* : ||z||y < C}. Then

for any distribution D over Xo x R*  we have
R}, (hwp) < Rfﬁ(W’WI’B’C)(hW/,B%

where B(W, W' B,C) is defined as in Lemma 4.
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Proof. Immediate upon substituting Lemma 4 into Lemma 5, with domain X = A, classifiers
h = hwpg, g=hw g, margin vy =0 and ¢ = (W, W', B,C). ]

4.3.5 A PAC-Bayes compression bound

We now define a (weights-only) compression scheme. We focus on weights-only compression
schemes as the biases make up only a small proportion of the parameters. All of the compression

schemes we discuss in Section 4.4 fit Definition 9.

Definition 9. A compression scheme is any pair of functions Encode : MLP(, . .y — {0,1}°
and Decode : {0,1}* — MLP(,. k.- Encode and Decode need not be inverses—lossy com-
pression is permitted. The compression scheme is termed a weights-only compression scheme
if the reconstruction hy- g = Decode(Encode(hw p)) is always such that B’ = B. We call the

bit string Encode(hw ) the compressed representation of hy .

While our main result below appears at first sight to be a straightforward combination of
Theorem 13 and Theorem 14, note that Theorem 13 requires a fixed margin while in Theorem
14 the margin depends on the MLP hy p and its compression hy g, which, in the context of
Theorem 15 are data-dependent. We get around this data-dependence of the required margin by
augmenting the hypothesis space MLP with an arbitrary margin. The margin will be represented
by a single 32 bit float which we will include in the bit string representations. To that end,
let r : {0,1}** — R be the function mapping the string representations of 32 bit floats to
the corresponding real numbers, so that I' = {r(s;) : s € {0,1}"} C R is the set of reals
representable by a single 32 bit float.

Theorem 15. (Main result) Fiz a weights-only compression scheme Encode : MLP (. . kou) —
{0,1}"* and Decode : {0,1}" — MLP, Fiz C >0 and let Xo = {x € RFn : ||z]|, < C}.

For any distribution D over Xo X [kow), confidence level § € (0,1] and sample size n, with

inv---vkout) *

probability at least 1 — & over the random draw S ~ D™, we have that simultaneously for all

neural networks hy,p € MLP, 1.y, both

R%(hWB)gkrl(Rg"(hW,,B)]g) and RY(hw.g) < RL (hwp) +/C/2,
where

hw p = Decode (Encode(hwyg)),
7* = min {7 el:v> \/ﬁﬁ(W',W',B,C)},

(= 1 ((b+32)1n2+lnM),
n o

with BW, W' B,C) defined as in Lemma /.
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Proof. We apply Theorem 13 with fixed margin v = 1, X = Az, hypothesis class

@Decode(sl) (x),

H = {931,52 : 51 €{0,1}°, 55 € {0, 1}32}, Gsy.(T) =

and prior
P(gsrss) =27 g €M1 g = g0},

namely the push-forward measure of a uniform distribution on {0, 1}* x {0,1}3? (we make this
choice as the gs, 5, € H may not all be unique). In particular, this gives that with probability

at least 1 — ¢, simultaneously for all point mass posteriors () on gs, 5, € H, we have

KU (RY (g, 0) [ B (90,.2)) < <KL(QHP) +ln %ﬁ) . ((b+32) 2+ In %) e

(4.3)
where the first inequality comes from Theorem 13, the second by noting that KL(Q||P) =
—In P(gs,.5,) < (b+32)In2, and the final equality from the definition of (.

Now for any hw,p € MLP (1, . kou), We have by Theorem 14 that

R (hw.s) < RYPVW B (s ) < RY (hw ), (4.4)

where the second inequality is from the fact that R},(-) is monotonically increasing in 7. Noting
that
,%*hW’,B = s1,80 € H (45)

for s; = Encode(hw ) and sy = r~(v*), and recalling that hy p was arbitrary, we can substi-
tute (4.5) into Inequality (4.3) to see that with probability at least 1 — ¢, simultaneously for
all hW,B € MLP(kin7~-~kout)7

kl (Rg*(thB)HRE(hW',BD =kl (Ré(éhch)HRb(#hwm)) <,
and so
R}, (hwr p) < KITH(RY (hwe p)|¢)  and  R) (hwr ) < RY (hwp) +\/C/ (4.6)

where the two inequalities follow by inverting the kl and applying Pinsker’s inequality, respec-

tively. The result then follows by chaining Inequalities (4.6) with Inequality (4.4). O

4.4 Compression schemes

We consider six compression schemes, each compressing only the weights and leaving the biases

alone:

1. weight quantisation by an application of k-means,

2. weight quantisation by truncation of the weights,
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3. low-rank approximation,

4. low-rank approximation combined with quantisation of the decomposed matrices via k-

means,

5. low-rank approximation combined with quantisation of the decomposed matrices via trun-

cation,
6. no compression.

Where the final null compression scheme serves as a baseline. We also attempted compression by
training a hypernetwork to reproduce the weights of the original network, including tricks such
as predicting the bits in the binary representations of the weights rather than their scalar values.
This approach failed however as the size of hypernetwork required to reproduce the weights of
the original network within a reasonable tolerance was always larger than the original network.

For each of these six compression schemes, we take a network hy,p € MLP 4, . 1, and return
a compressed network Ay p € MLP(, 1, of the same architecture, representable by a string
swr g of length |sy p|. Since |sy~ p| will depend only on the architecture of hy,p (rather than
its specific weights and biases) and the compression scheme, in each case we can take the prior

P to be uniform over all strings of length |sy p|, which yields (as discussed in Section 4.3.1)
KL(Q|P) = —In P(hy» p) = —In27*w sl = |5y | In2. (4.7)

For the baseline approach of no compression, we represent hy, g by its raw bits, forming a
string of length
d
|sw,p| = 32(|vec(W)| + |vec(B)|) = 32 Z kiki—1 + k;.
i=1
A uniform prior P over all strings of this length then gives KL(Q||P) = |sw.p|In2. The lengths

of the strings for the six different compression schemes are summarised in Table 4.1.

4.4.1 Quantisation via k-means

To compress an MLP hyy g via quantisation with k-means, we run the k-means algorithm with
k = 2¢ on vec(W), replacing each weight with its nearest centroid to form the compressed MLP
hywe p. We can then form a codebook of the centroids using 2¢ bit strings of length 32. Thus
hwe g can be represented by a bit string sy g of length |swe g| = c|vec(W)| + 32 - 2¢, made
up from a bit string of length c|vec(W)| encoding the compressed weights W€ in terms of their
associated centroids, and a bit string of length 32 - 2¢ encoding the 2¢ centroids themselves to
32-bit precision. Note this is only an improvement if c|vec(W)| + 32 - 2¢ < 32|vec(W)], so we
restrict ourselves to such values of c. In fact, due to the computational cost of running the

k-means algorithm with a large number of centroids k£ = 2¢, we also restrict to ¢ < 10. We then
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Quantisation String Length of Compressed Model

Method Full Rank Low Rank
d d
None 32 Z kiki—1 +k; 32 Z(kﬂ“i +r ik + ki)
i=1 i=1
d d d d
k-means CZ kiki,1 + 32 Z kl + 32 - 2¢ CZ(ki’f’i + Tikifl) + 32 Z(’I’Z + kz) + 32 2¢

i=1 =1

d d d
Truncation | (14 be+bm) Y kikio1r +32) ki | (1+be +bm) Y (kiri + rikiy +32Z (ri + k)
=1

=1 i=1 i=1

Table 4.1: String lengths (in bits) for different neural network compression schemes. Parame-
ters: k; (layer dimensions), r; (low-rank approximation ranks), ¢ (bits per weight in k-means
quantisation with 2¢ centroids), and b, by, (bits for exponent and mantissa in truncation quan-
tisation). In each case, the prior is taken to be uniform over strings of the given length, so that
the corresponding KL(Q|| P) is obtained by adding 32 (to account for the 32 extra bits required
for the margin v* defined in Theorem 15) and then multiplying by In2 as in Equation 4.7.

have
|swe B| = c|lvec(W)| 4 32|vec(B)| + 32 - 2¢

d d
- cZkiki_l +322ki + 32 2¢.
=1 =1

Since |swe | depends only on the architecture and the number of centroids 2¢ of the k-means
algorithm, both of which we will specify in advance, we can use a prior P, taken to be uniform
over all bit strings of this length, which yields KL(Q||P.) = |swe | In2 as in Equation 4.7.

4.4.2 Quantisation via truncation

Recall that the weights of the neural network are typically stored as 32-bit floating point
numbers which, as per the IEEE Standard for Floating-Point Arithmetic (IEEE 754) have 1
sign bit, 8 exponent bits and 23 mantissa bits. To quantise an MLP Ay, p by truncation, for
any b, € {0,1,...,23} we zero out the 23 — b, least significant bits of the mantissa for each
weight, so that each weight takes only 1 + 8 + b,,, bits to represent rather than the usual 32.
This minimally changes the value of each weight, taking advantage of the possible flatness of
the minimum located by SGD.

Optionally, for b, € {0,...,8} we also clip the exponent of each weight so that it takes b,
bits to represent and the whole weight takes 1 + b, + b,, bits. As before, we leave the biases
alone. Clipping the exponent is a bit more involved, partly because exponents are biased by
adding 127 in IEEE 754. Intuitively, we clip the (unbiased) exponents to be closer to zero,

which is unlikely to have a significant effect on the output of the network for two reasons:
1. Very large positive (unbiased) exponents correspond to extremely large weights, which
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are rarely observed in ML.

2. Very large negative (unbiased) exponents correspond to extremely small weights, and

changing these to be merely very small will have a minimal effect.

Precisely, we clip the exponents as follows; we unbias the exponents by subtracting 127, clip
them to the range [—(2%~! — 1), 2%~! — 1], rebias by adding 127, and then reinstate exponents
originally containing all zeros bits so that zeros and subnormal numbers are preserved. In the
particular case b, = 0 we set all unbiased exponents to zero as this preserves the best range
of values for the weights. After this process the new exponent takes on one of 2% values (easy
check) and so can be represented by b, bits. As an example of the second point above, in the
case b, = 6 this process maps the unbiased exponent —61 to —31, meaning extremely small

weights of order 275! are compressed to still very small weights of order 2731

Under this compression scheme we have
|swesm p| = (14 be + by, ) [vec(W)| 4 32|vec(B)|

d d
= (1 + be + bm) Z kik}i—l + 32 Z k,

i=1 i=1

As before, a uniform prior P, ,, over strings of this length gives KL(Q|| Py, ,,) = |Swte.bm 5|In2.

4.4.3 Low-rank approximation

As for compression via low-rank approximation, for a given tuple of ranks r = (ry,...,74) € N4
we form the compression W7 as follows. For each 7 we take the singular value decomposition
Wi = U;S;V;" and form the low-rank approximation W’ = U/S!/V' by taking the first r;
columns of U; and S;, and the first r; rows of V;. While W, € R¥>**i-1 ig made up from k;k;_1
parameters, the decomposition of W) contains k;r; + r; + r;k;—1 values. Since this is a genuine
compression only if r; < k;k;_1/(k; + 1+ k;_1), we restrict ourselves to choices of r for which
this is the case for all i. As with quantisation, we specify the architecture and r in advance, so

that we can represent hy g by a bit string syr p of length

d
|Swr,3‘ =32 Z(k}ﬂ“z “+r; + T’iki,1 + k}),

=1

since layer i consists of k;r; values in U/, r; values in S!, r;k;_; values in V/ and k; bias values,
each requiring 32 bits. As |syr p| depends only on the architecture and r, both of which we
will specify in advance, we can use a uniform prior P, over all bit strings of this length to get

KL(Q||PT) = |SW’“,B’ In 2.
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4.4.4 Combined approaches

Finally, we combine low-rank approximation with the two quantisation methods by first taking
the low-rank approximation and then quantising the values of the U/’s and V}’s for each layer,
leaving the S!’s and the biases unchanged as they make up a negligible proportion of the
parameters. For low-rank approximation combined with quantisation via k-means with 2°¢

centroids, this produces a bit string of length

d d
‘SW’I‘,C7B| = CZ(kiri + riki—l) + 32 Z(?"l + k’l> + 32 - 20,

=1 i=1

and, again with a uniform prior P, ., we have KL(Q||Pr.) = |swr.e g|In2.
For low-rank approximation combined with quantisation via truncation to b. exponent bits

and b,, mantissa bits, we have

d d
[syrbenm | = (L4 be + b)) Y (kirs + rikiza) +32 ) (ri + ky),
=1

=1

and, with a uniform prior Py, .., KL(Q||Prp. b,.) = [Swrbesm p|In2.

4.5 Experiments

To empirically evaluate whether our compression approaches can tighten PAC-Bayes bounds,
we train multiple MLPs on the MNIST1D dataset proposed in Greydanus and Kobak ( ).
MNISTI1D is a procedurally generated, reasonably low-dimensional dataset (40 dimensions
rather than MNIST’s 784) that replicates many of the features of deep learning (e.g. double
descent, the existence of lottery tickets etc.). We opt for this low-dimensional dataset rather
than the more familiar MNIST or CIFAR-10 datasets as it is more likely that for smaller
networks the compression required to obtain non-vacuous PAC-Bayes bounds using a discrete
prior is not so much that the outputs of the compression diverge significantly from the original
network. This is the requirement for Theorem 15 to produce good results.

We generate train and test samples of size 50,000 and 10, 000 respectively, using the same
dataset for training all of the MLPs. Since part of the procedural generation is addition of
Gaussian noise, the support of the data-generating distribution is unbounded. Thus we clip
the data to [—4, 4] in each dimension so that Theorem 14 can be applied with C' = Cyomain =
8v/40 ~ 50.6. Since the support of the data-generating distribution may in fact be contained
in a much smaller ¢5-ball, we also experimented with setting C' = Cyan = max{||z||2 : z € S},
where S is the training sample. While this is only a hypothetical result rather than a rigorous
bound, it gives an indication of whether future work could improve our results by rigorously
bounding C' over the support of the data-generating distribution. Interestingly, we found that
it produced only negligible changes in our results, showing that reducing C' is not the bottleneck

for tighter bounds using this approach.
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The MLPs we train have 1,2,3 or 4 hidden dimensions of equal width, where the width is
in {4,8,16,...,512}. Each is trained with a batch size of 128 using the Adam optimiser with
a learning rate of 0.001. All models are trained to convergence, namely until the train loss on
the entire dataset stops decreasing.

We conduct three experiments in the choice of quantisation level k& and ranks 7r;

1. quantisation only, taking a union bound over k € {2!,...,2°}, where c is the maximum

value resulting in a genuine compression;

2. low-rank approximation only, taking a union bound over {r € N : Vi r; < k;k;_1/(k; +

ki—l)};

3. low-rank approximation and quantisation, taking a union bound over both {r € N :
Vi r; < kiki—1/(ki + ki—1)} and then, for each 7, the values of k resulting in a genuine

compression.

Although trained and compressed 32 networks in total (4 values for the number of layers,
times 8 values for the hidden layer width), we illustrate the effects of the compression schemes
by focusing on the network hw,p € MLP(40323210) With two hidden layers each of width 32
trained on the MNIST1D dataset.

4.5.1 Quantisation via k-means

Recall that for quantisation via k-means with k = 2¢ centroids, the codebook itself requires
32 - 2¢ bits to represent. Since many of the networks we evaluate are small compared to those
commonly trained on real-world tasks, values of ¢ larger than around 10 do not in fact result in
a compression representation as the size of the codebook itself is too large. Unfortunately, as
can be seen from Figure 4.1, it is only at around this level of ¢ that the margin loss Rg*(hmm B)
from Theorem 15 becomes non-trivial, which is in turn necessary for the error bounds to become
non-trivial. In Appendix B we show that this compression scheme does produce non-vacuous
bounds tighter than for the uncompressed model for one of the 32 models we train, but only
just.

We conclude therefore that this compression scheme is only likely to result in reduced error
bounds for larger models, since then one can choose the number of centroids to be large enough
such that the compressed network hy~ g is close to the original network hy p. However, while
reduced, such bounds are likely to still be vacuous (or near-vacuous) using the current discrete

PAC-Bayes approach.

4.5.2 (Quantisation via truncation

This is the most successful compression scheme for the network hy,p € MLP (432 32,10y We focus
on. Indeed, it is the only compression scheme that that successfully reduces the error bounds, as

seen in Figure 4.2. The success is partly due to the fact that it is the only compression scheme

76



=
o
L

=] =
© o

et o
© ©
L |
o
©
L

e
9
4
NN}

0.6 -

o
o
|

0.5 A

Error on train set, R2(hy: p)
o
w

0.4 -

Margin loss on train set, Rg’*(thB)
o
-

03t

o
w

1.8
1.00 A

0.98 1
1.6

~ .
2 3
— 4
g 096 2
2 [
= ~ 1.4
- 4 ©
5 0.94 o
c >
> (=]
8092 il 2
5 i g 2]
= 1 =
w
= 090 i
L AT
1 1
1 1.01 1
0.88 - ! !
1 1
1 1
1 1
T T T T T T T T 1 T T T T T T T T 1
5000 10000 15000 20000 25000 30000 35000 40000 5000 10000 15000 20000 25000 30000 35000 40000
String length String length
—— k-Means ---- No Compression’

Figure 4.1: Effects of quantisation via k-means on a network hy, g € MLP(4932,32,10) trained
on 50,000 samples from MNIST1D, where k € {2,4,...,1024}. Values of k exceeding 1024 are
not used as they produce “compressed” representations larger than the original uncompressed
representation. String length increases monotonically in k; the dotted vertical line representing
the string length of the uncompressed network. Top left: As k increases the error of the
compressed network converges to the error of the original (horizontal dotted line). Top right:
The margin loss of the compressed network remains trivial until £ = 1024. Bottom left:
The large margin loss of the compressed network yields essentially trivial error bounds (when
inverting the kl) on the original network which always exceed the discrete PAC-Bayes bound
without compression (horizontal dotted line). Bottom right: The error bounds (when using
Pinsker’s inequality) increase with k& up until & = 10 where there is a small decrease, but k
cannot increase further; they all exceed the discrete PAC-Bayes bound without compression
(horizontal dotted line).
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that can achieve compression factors close to one, i.e. only slight compression; quantisation via
k-means requires a growing codebook which prevents close approximation of the uncompressed
network since the size of the codebook eventually makes the compressed representation larger
than the original. And low-rank approximation cannot accommodate values of r near full rank
as this also would increase rather than decrease string length because one ends up storing
more rather than fewer parameters. Conversely, with quantisation via truncation one may
choose values of b, and b, all the way up to their maxima without increasing the string length,
permitting very close approximations.

Figure 4.2 demonstrates the benefit of this compression scheme in reduction of the error
bounds when inverting the kl or using Pinsker’s inequality. It also shows a clear trade-off in the
amount of compression. Aggressive compression yields poor bounds as the compressed network
has high margin loss (both because the compressed network performs poorly—R%(hy g) is
large—and the required margin v* from Theorem 15 is large), which outweighs the advantage
of the low KL (recall the KL is proportional to string length). Conversely, mild compression
yields poor bounds as the compressed network has high KL, which outweighs the advantage of
the small margin loss. An optimal compression factor lies in the middle.

For our example network hy,p € MLP(403232,10), both error bounds are minimised when
b. = 5,b, = 16, at which point the error bound with inverse kl is 0.8723—reduced from
0.9174 in the uncompressed case—and the error bound with Pinsker’s inequality is 0.9592—
reduced from 1.0625 in the uncompressed case. We note that in the case of Pinsker’s inequality,
compression made the difference between a vacuous and a non-vacuous bound.

The success of this compression scheme was not limited to the network hw,p € MLP (40 32,32,10)
so we show the full results for all 32 models in Table 4.2. We see that the bounds produced by
inverting the small kl are improved for almost all of the 32 models. The bounds produced by
Pinsker’s inequality are improved for every model and in a number of cases compression makes

the difference between a vacuous and a non-vacuous bound.

4.5.3 Low-rank approximation

Recall that the low-rank approximation of the weight matrix W; € RF>*¥i-1 to rank r; only
results in a reduction in the number of parameters if r; < k;k;_1/(k; + 1+ k;—1). Since this
is usually much less than min{k;, k;_; }-for example if W; € R32*32 then we have r; < 15—
this compression scheme is restricted in how well the compressed network can approximate the
uncompressed network unless the weight matrices of the uncompressed network are already
approximately low-rank.

This is made clear in Figure 4.3, where we see that compression via low-rank approxima-
tion leads to significant deterioration in the error of our network hy,p € MLP(4032,32,10) for all
permissible values of r, namely for all values that lead to a reduction in string length. Indeed,
the lowest error R%(hy p) achieved on the train set is 0.6199, far above the error of the un-
compressed network which is 0.2887. Further, the margin loss Rg*(hwl, p) is trivial (equal to

one) for all values of r, reflecting the fact that margin v* required by Theorem 15 is too large.
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Figure 4.2: Effects of quantisation via truncation on a network hy,p € MLP 403232 10)
trained on 50,000 samples from MNIST1D. String length increases monotonically with both
the number of exponent and mantissa bits, b, and b, respectively. The vertical dotted lines
represent the string length of the uncompressed network. Top left: As both b, and b, increase
the error of the compressed network converges to that of the original (horizontal dotted line).
Top right: The margin loss of the compressed network approximates the error of the uncom-
pressed network once b, > 5 and b,, > 15, at which point the compressed representation is
around 75% the size of the uncompressed representation. Bottom left and bottom right: The
error bounds (when inverting the kl or using Pinsker’s inequality) dip below that of the un-
compressed network (horizontal dotted line) for b, > 5.
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Size Error bound inverse kl | Error bound Pinsker
Depth Width | No Comp. Comp. No Comp. Comp.
1 4 0.788 0.767 0.812 0.786
1 8 0.790 0.761 0.820 0.781
1 16 0.785 0.736 0.817 0.753
1 32 0.866 0.807 0.946 0.849
1 64 0.933 0.878 1.112 0.973
1 128 0.984 0.952 1.387 1.185
1 256 0.999 0.994 1.846 1.385
1 512 1.000 1.000 2.494 1.542
2 4 0.792 0.775 0.819 0.796
2 8 0.803 0.776 0.838 0.802
2 16 0.826 0.784 0.876 0.814
2 32 0.923 0.878 1.077 0.970
2 64 0.990 0.971 1.469 1.280
2 128 1.000 1.000 2.361 1.466
2 256 1.000 1.000 4.212 1.812
2 512 1.000 1.000 8.028 2.491
3 4 0.776 0.765 0.799 0.784
3 8 0.817 0.798 0.858 0.831
3 16 0.909 0.882 1.028 0.968
3 32 0.956 0.927 1.193 1.087
3 64 0.999 0.995 1.767 1.352
3 128 1.000 1.000 3.082 1.599
3 256 1.000 1.000 5.686 2.082
3 512 1.000 1.000 11.074 3.038
4 4 0.786 0.773 0.812 0.794
4 8 0.840 0.821 0.893 0.863
4 16 0.933 0.912 1.089 1.032
4 32 0.978 0.961 1.320 1.212
4 64 1.000 1.000 2.058 1.408
4 128 1.000 1.000 3.583 1.708
4 256 1.000 1.000 6.860 2.297
4 512 1.000 1.000 13.460 3.467

Table 4.2: Effects of quantisation via truncation on 32 MLPs. Depth and Width is the
number and width of the hidden layers. Bold indicates that compression reduced the bound
compared to its counterpart calculated without compression.
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This case is illustrative of the other 31 networks, for which we observed similar results.
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Figure 4.3: Effects of low-rank approximation on a network hy g € MLP (49 32,32,10) trained
on 50, 000 samples from MNIST1D. String length increases monotonically with each component
r; of r. The vertical dotted lines represent the string length of the uncompressed network. Top
left: The error of the compressed network decreases as the r; increase, but remains large. Top
right: The margin loss is consistently trivial, showing the required margin is always too large.
Bottom left: The error bounds from inverting the kl are all trivial. Bottom right: The variation
in the error bound using Pinsker’s inequality is solely due to the change in string length as the
margin loss is constant. All error bounds exceed those of the uncompressed network.

4.5.4 Combined approaches

Low-rank approximation failed to improve the discrete PAC-Bayes bounds because the com-
pressed networks could not approximate the original networks sufficiently closely while remain-
ing within the string length budget, i.e. while ensuring that the number of bits |sy p| required
to represent the compressed model is less than the number of bits |sy p| required to represent
the original. At first sight it may seem obvious that combining low-rank approximation with
other compression schemes will only makes this worse. However, additional compression of the

low-rank decompositions via quantisation allows larger values of the ranks r; to be chosen while
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still remaining within the string length budget, so it is still worth investigating the combined
compression schemes. For the combined approaches it was necessary to increment the rank
values r; in steps greater than one (skipping some values) otherwise the experiment would have
been computationally prohibitive.

Comparing the combined compressions schemes shown in Figures 4.4 and 4.5 with the low-
rank only compression shown in Figure 4.3, we see that the range of values of r; for the network
hw,p € MLP40,3232,10) is indeed much wider for the combined compression schemes. However,
in both cases the approximation of the original network is still poor; there remains a large gap
between the train error of the compressed and original networks, such that the margin loss
consistently takes the maximum value of one. For this reason we do not plot the PAC-Bayes

bounds as they are uniformly vacuous.
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Figure 4.4: Effects of low-rank approximation combined with quantisation via k-means on a
network Ay, p € MLP(40,32.32,10)- Left: The train error of the compressed network fails to approx-
imate that of the original (horlzontal dotted line). Right: The margin loss of the compressed
network is always one, making the PAC-Bayes bounds vacuous.

4.6 Conclusion

Recall that our purpose was to investigate the capacity of a classic PAC-Bayes bound (The-
orem 13) to shed light on the generalisation mystery. By eschewing common tricks used to
obtain tighter generalisation bounds, such as stochastic networks, modified training regimes,
and data-dependent priors, we evaluate the ability of PAC-Bayes to explain the generalisation
of deterministic networks trained according to ordinary DL practice, which is an important
goal of any successful theory of learning. It is for this reason that we employed compression
purely as a tool to obtain bounds on the original, uncompressed networks, in sharp contrast to
works such as Arora et al. ( ), Lotfi et al. ( ), and Zhou et al. ( ) which bound the

compressed networks.
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Figure 4.5: Effects of low-rank approximation combined with quantisation via truncation on a
network hy,p € MLP(40,32.32,10)- Left: The train error of the compressed network fails to approx-
imate that of the original (horizontal dotted line). Right: The margin loss of the compressed
network is always one, making the PAC-Bayes bounds vacuous.

Our main theoretical result, Theorem 15, bounds the true error of a network in terms of the
empirical margin loss of its compression, plus a term that is O(\/W ) ignoring logarithmic
terms, where |s| is the length of the bit string representation of the compressed network. The
margin required by the bound is smaller for higher fidelity compressions. In other words, by
extending the work of Neyshabur et al. ( ) and others, we have proven that if a network
has large margin on the train set, and there exists a high-fidelity compression, then this network

generalises.

Our result is flexible enough to encompass a very wide range of compression schemes, as can
be seen by the generality of Definition 9. We tested five compression approaches, finding that
going via a compressed network can indeed tighten bounds on the original network, but that
this heavily depends on the compression scheme used. The only compression scheme to have
much success in our experiments was quantisation via truncation. It is perhaps unsurprising
that this compression scheme proves successful, since the removal of the least impactful bits—
least significant for the mantissa and most significant for the (unbiased) exponent—produces
an immediate decrease in string size and, due to the well-known robustness of neural networks

to weight perturbations, a negligible degradation in performance.

In contrast, low-rank approximation has a significant negative impact on performance since
the constraint of reducing the string length caps the permissible ranks, resulting in poor ap-
proximations. This effect persisted when combined with the other compression approaches,
even though doing so increases the cap on the permissible ranks. Quantisation via k-means
clustering of the weights also performed poorly for a similar reason; as the number of clusters k
increases, so does the fidelity of the compression, but the codebook also grows, and we reach the

string budget before the approximation becomes sufficiently close for Theorem 15 to produce
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non-vacuous bounds.
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Chapter 5

Distillability as a Predictor of

(Generalisation

5.1 Introduction

As argued in Section 2.2, tight generalisation bounds alone cannot explain generalisation in the
overparameterised regime, and a full explanation of the mystery will likely come from a two-
pronged approach. First, an empirical investigation of the inductive bias of commonly used DL
algorithms and hypothesis classes—mostly some form of SGD on neural network weights—to
characterise the hypotheses typical DL practice is likely to produce. These suggested characteri-
sations are commonly called complexity measures even if they are not successful, a terminology
we adopt. Second, coupling a successful complexity measure with a rigorous generalisation
bound proving that networks with low complexity according to this measure have small gener-
alisation gap.

While less rigorous than statistical learning theory, the search for complexity measures
that can reliably distinguish between hypotheses that generalise versus those that have simply
memorised the training data, may be a practically necessary component of the search for
empirically tight generalisation bounds. Indeed, as shown in Jiang et al. ( ), many existing
generalisation bounds completely fail to correlate with generalisation gap, in fact showing a
negative correlation, indicating that a theory-only approach may be insufficient for deriving
empirically tight generalisation bounds to develop our understanding of generalisation in the
overparameterised regime.

Chapter 4 focused on the second part of this two-pronged strategy, by proving that a net-
work will generalise if there exists a compressible nearby network with minimally degraded
error. In contrast, this chapter focuses on introducing a new complexity measure, applicable to
feedforward networks of arbitrary architecture (MLPs, CNNs, etc.), which we term the distilla-
tion complezity. We empirically show that distillation complexity is predictive of generalisation
gap even in the overparameterised regime, in that networks with higher distillation complexity
generally have a larger generalisation gap, as is visually apparent from Figure 5.1.

It has been noted that the generalisation ability of neural networks frequently does not
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Figure 5.1: Generalisation gap versus distillation complexity fiqist-complexity, defined in Definition
12, across a suite of 2183 models. Each model is trained and evaluated on 4000 and 1000 sam-
ples, respectively, from the MNIST1D dataset, Greydanus and Kobak (2020). Our complexity
measure is predictive; the trend is that the higher the distillation complexity the larger the
generalisation gap.

degrade with model size. In fact, in contrast to the behaviour suggested by the bias variance
trade-off, generalisation often improves even as models increase past the interpolation threshold,
an observation first made by Vallet et al. (1939) on synthetic data, by Duin (2000) on real-world
data, and brought to popular attention by Belkin et al. (2019) and Nakkiran et al. (2021) (see
Loog et al. (2020) for a brief history). This phenomenon, termed deep double descent, means
that any complexity measure capable of predicting generalisation should not grow with model
size, at least beyond the interpolation threshold.

Putting this together, we have the following desiderata for a complexity measure:
1. The complexity measure should be positively correlated with generalisation gap.

2. The complexity measure should be one of the variables causally responsible for the value

of the generalisation gap.

3. The complexity measure should not increase with model size beyond the interpolation
threshold.

As already noted, Figure 5.1 visually demonstrates that distillation complexity meets the
first desideratum. Evidence for the second desideratum is presented in Section 5.8. As for the
third, distillation complexity remains steady as model size increases, as shown in Figure 5.2.
This is already reasonably good evidence that our complexity measure genuinely captures a

notion of complexity with explanatory power in the overparameterised regime. This is in sharp
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contrast to weight norms, present in many generalisation bounds, which have already been
noted in Jiang et al. ( ) to both negatively correlate with generalisation gap and grow with
model size.

As for the second desideratum, we compare our complexity measure against twenty others
from the literature, finding that it is one of the best three in its predictive power of gener-
alisation gap as evaluated according to five metrics described in Section 5.7, where some of
these metrics are designed to rule out spurious correlations and instead capture causal relation-
ships. Distillation complexity outperforms the norm-based measures, the PAC-Bayes derived
measures, and a number of uncertainty-based measures, as shown in Figure 5.5. Further, we
corroborate the finding of Jiang et al. ( ) that norm-based measures fail as complexity mea-
sures as they often negatively correlate with generalisation gap. However, in contrast to their
results, we find that a PAC-Bayes bound, rather than successfully predicting generalisation
gap, also fails badly. This suggests that the success of this PAC-Bayes bound as a complexity
measure is task-dependent.

Distillation complexity is loosely defined as the minimum size student network into which
the original network can be distilled. This is a more natural formalisation of Occam’s razor
than the commonly employed weight-norm as it is a notion of complexity of functions rather
than weight parameterisations. Intuitively, the complexity of networks should be measured in
terms of the complexity of the functions they express rather than the complexity of any specific
weight parameterisation. This crucial distinction can be justified by the fact that it is functions
we ultimately care about in learning—we are indifferent to distinct parameterisations of a single
function as they produce identical predictions.

This is in contrast to Bayesian learning and PAC-Bayesian theory—which commonly use
priors that place more weight on networks whose weights lie close to the origin or the weight
initialisation—and regularisation methods such as weight decay, as they fail to account for the

fact that simple functions can be expressed by neural networks with large weights.

5.2 Methodology

We follow the approach taken by Jiang et al. ( ) of training a large suite of models that
can be used to evaluate the association between distillation complexity and generalisation gap.
This is an approach that has been followed by many others (Jiang et al., ; Kuhn et al.,

) and was even the basis for a NeurIPS 2020 competition (Jiang et al., ). Our suite
of models is specifically trained in a way that is both reflective of general practice and yields
sufficient variability in generalisation gap.

An ideal complexity measure should be among the variables that are causally responsible for
the value of the generalisation gap, rather than merely statistically associated. While the causal
effect of any complexity measure on generalisation is hard to unequivocally establish empir-
ically, metrics such as Kendall’s Rank Correlation Coefficient (KRCC) may provide evidence

if they show that models with a higher complexity generally have larger generalisation gap.
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Figure 5.2: The distillation complexity fdgist-complexity defined in Definition 12 for the suite of
2183 models, stratified by the number of model parameters. The nine values for the num-
ber of parameters correspond to the nine combinations of num hidden layers € {2,3,4} and
hidden layer width € {512,1024,2048}. The distillation complexity shows no sign of increas-
ing with the size of the base model.

Acknowledging that a positive KRCC may simply be due to spurious correlations, Jiang et al.
( ) also employ the Granulated KRCC (GKRCC), and the Conditional Independence Test
(CIT), which provide more robust evidence of causation, and which we employ here. Further,
we compare our complexity measure against a wide range of both theoretically and empirically

motivated measures, such as norm-based and flatness-based measures.

5.3 Related work

There is of course a substantial literature on complexity measures going back many years. We
give a brief overview of some of the main threads, focusing on their relation to the present
work.

As outlined in the introduction, our empirical methodology for evaluating our complexity
measure draws heavily on Jiang et al. ( ). This methodology was later used by Kuhn
et al. ( ) to show that networks that are more robust to pruning are likely to generalise
better; networks that can have a greater proportion of their weights pruned without significantly
increasing their training loss generalise better on average. Our work has a similar motivation to
theirs in that heavily pruned networks are intuitively simpler, and so networks that are robust
to pruning may also be considered to be simpler as their behaviour can be largely explained
by a network with fewer parameters. However, it is the proportion of the weights that can

be pruned that they show is predictive of generalisation; while larger networks trained on the
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same task can have a greater proportion of their weights pruned, the absolute number of weights

remaining is still larger for larger networks.

In contrast, we show that the size of student network into which a network can be distilled
is almost independent of the original network’s size, as seen in Figure 5.2 and further explored
in Section 5.5.1. This makes the connection of distillation complexity to Occam’s razor much

closer than for robustness to pruning.

The Kolmogorov Complexity of an entity representable as a bit string is the length of
the shortest program (executable on some fixed universal Turing machine) that prints this
string and then halts. While enjoying an elegant theory, the quantity is uncomputable due to
the halting problem. Nevertheless, time-bounded variations exist. For example, Schmidhuber

( ) uses Levin complexity to find networks of low complexity solving a (very) artificial task.

The Kolmogorov Growth (KG) defined in Ghosh and Motani ( ) is inspired by the Kol-
mogorov Complexity and is specific to functions. Defined in terms of the well-known growth
function in statistics, the KG of a function f is “concerned with the smallest function space that
f can belong to, that can still fit the data well.” They successfully derive error bounds in terms
of the KG. While uncomputable, they approximate the KG for neural networks and control
it by ensuring that during training the network always lies near a second network with fewer
parameters, where the proximity is measured as the maximum Euclidean distance between the
logits of the two networks over the input. In fact, they employ this regularisation recursively.
While we are also concerned in this work with whether a network can be approximated by a
smaller one, our motivation is to understand whether such distillability can explain general-
isation “in the wild” when networks are trained with typical methods, rather than whether
integrating it into the training procedure can improve performance. Further, we measure the
discrepancy between the teacher and student networks with the Kullback—Leibler divergence
between the output probabilities (after softmax) rather than the Euclidean distance on the raw

logits, since this is much more common in the distillation literature (Hinton et al., ).

Also connected to the Kolmogorov Complexity is the Minimum Description Length (MDL)
Principle (see Griinwald ( ) for an excellent tutorial), an alternative framework stating that
the best model of a dataset is the one that requires the fewest bits to specify both the model
and its error on the dataset. An approximation of the MDL was employed in Hinton and Van
Camp ( ). We note that they encoded their models on a parameter rather than functional
level, which fails to take advantage of the fact the minimum description length of the function
expressed by a neural network may be much shorter than the minimum description length of

its parameters.

As noted in Hochreiter and Schmidhuber ( ), this elegantly motivates the search for flat
minima of the loss landscape; since the error remains fairly constant in such regions, one can
move from the minimum to a model with low description length without substantially increasing
the description length of the error, yielding a lower combined description length and therefore a
preferred model according to the MDL principle. Remarkably, it has been empirically observed
that typical network training methods such as SGD do indeed locate flat minima, and that
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flatness correlates with generalisation as the batch size is varied (Keskar et al., ). However,
as argued in Dinh et al. ( ), sharpness cannot be a satisfactory complexity measure as
it is parameterisation-dependent—the parameters of networks with ReLLU activations can be
modified to make the minimum arbitrarily flat /sharp without changing the function the network
expresses, and therefore without changing its generalisation behaviour. It is a virtue of our
complexity measure that it is defined on the function rather than parameter level and so is
invariant to reparametrisations.

The norms of the weight matrices of neural networks, which determine the network’s Lip-
schitz constant when no biases are used, have also been interpreted as complexity measures.
Indeed, the norms of the weight matrices appear in a number of generalisation bounds (Arora
et al., ; Bartlett et al., ; Neyshabur et al., ). Further, penalising weight norms
(e.g. weight decay) has been empirically observed to improve generalisation, providing some
evidence that there is a causal relationship. However weight norms share the weakness of other
parameter- rather than function-based complexity measures in that they can be large even
for simple functions. As a trivial example, two weights whose effects cancel out can be made

arbitrarily large without changing the function the network expresses.

5.4 Training a suite of models

One approach to demonstrating a causal relationship between a complexity measure and gen-
eralisation is to include in the optimisation objective a regularisation term penalising the com-
plexity measure and see whether this improves generalisation. However, as noted in Jiang et
al. ( ), a lack of regularisation does not constitute a satisfactory control, as there may be
implicit regularisation within the optimisation procedure that cannot be eliminated. Moreover,
such regularisation may change several other properties of the trained network as it alters the
topography of the loss landscape.

We therefore follow the methodology of Jiang et al. ( ) and Kuhn et al. ( ) by training
a suite of over 2000 neural networks to form a dataset on which to investigate the relationship
between generalisation and distillability. We use the MNIST1D dataset from Greydanus and
Kobak ( ), a procedurally generated, reasonably low-dimensional dataset (40 dimensions
rather than MNIST’s 784) that replicates many of the features of deep learning (e.g. double
descent and the existence of lottery tickets). We opt for this low-dimensional dataset rather
than the more familiar MNIST or CIFAR-10 datasets since our computational budget is limited
and distillability can be expensive to compute, as it requires many distillations. To eliminate
a potential source of noise, we use the same MNIST1D dataset for every model rather than
regenerating fresh samples for each. We use 4000 samples for training and 1000 for testing.

For the architecture, we opt for fully connected neural networks with ReLLU activations and
2,3 or 4 hidden layers each of width 512,1024 or 2048. For each neural network, the widths
of its hidden layers are equal. To ensure variability in the test performance of the models, we

vary five more hyperparameters known to affect generalisation; choice of optimiser, learning
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rate, batch size, dropout probability and weight decay coefficient. We pick three values for
each hyperparameter that are both realistic for real world training and ensure that almost
every combination of values leads to a model that eventually reaches the target train loss.

Specifically, we train 37 = 2187 MLPs by using all hyperparameter combinations from

num hidden layers € {2, 3,4}
hidden_layer width € {512,1024,2048}
optimiser € {SGD, Adam, RMSProp}
learning rate € {0.003,0.001,0.0003}
batch_size € {32, 64,128}
dropout_probability € {0,0.1,0.2}
weight_decay € {0,0.00001,0.0001}

We control for final train loss by using it as a stopping criterion. More precisely, we stop
training once the average cross-entropy loss across the 4000 training samples first goes below
0.01. We discard the model if it fails to reach this target within 10® epochs or if the running best
train loss fails to decrease for 1000 epochs. Only four of the 2187 models are discarded, all for
the second reason, leaving us with a suite of 2183 models. Figure 5.3 shows the final train loss
and error across the suite of models. There remains some variation in the final train loss. This
could have been reduced by evaluating the train loss across the entire train set after each batch
rather than only after each epoch. This would have been significantly more computationally
expensive, however. We also see that the final train errors are all below 0.4%, with most models

achieving 0% train error, confirming we are in fact in the overparameterised regime.
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Figure 5.3: Final train loss and train error across the suite of 2183 models.
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5.5 Distillation complexity

For any teacher and student functions f, ¢ : RFin — RFeut we define the distillation loss

gdlSt f7g7 T ZKL z))Ha(g(xz)))7 (51)

where S = ((z1,11), ..., (T, yn)) € (RFn x RFu)™ is a sample and o : RF — Ay - denotes
the softmax, which converts a vector of logits (¢y,..., 0, ) € RF to a vector of probabilities
a(l1y .o lig) = (01, oo Okguy) € Dy, according to the formula
et
. —

j - kout E,-/ :
Zj’:l €’

Our student networks will be elements of MLP(j, . k...), Which we use to denote the set of all
MLPs from RFn to R¥eut with one hidden layer of dimension x and ReLU activation function.

More precisely, MLP 1, x ko) 1S the set of all functions of the form
Wy max{Wiz + By,0} + Ba,
where the max is applied element-wise and

W1 < RHinn, Bl c R”
Wy € RkOUtXK, B, € RFout,

More generally, recalling the notation outlined in Section 4.3.2, we denote the set of all such
ReLU-activated MLPs of arbitrary depth and width by MLP. We then have the following

definition.

Definition 10. (Distillation complezity, strict version) For any function f : Rkin — Rkeut
not necessarily a neural network, sample S = ((xl,yl), o (xn,yn)) and tolerance € > 0, the

distillation complexity of f is
k(f;S,€) = min {FL € N:3g € MLP(4, s ko) Laist(f59;5) < e}.

In words, the integer x(f;S,€) denotes the minimum hidden width necessary in order for an
MLP with a single hidden layer of this width to be able to return the same output as f on the
sample S up to some KL tolerance e. We make no claims that this is a fundamental complexity
measure on the order of Kolmogorov Complexity or Minimum Description Length discussed in
the introduction, only that it captures an intuitive notion of the complexity of f considered as
a function on S; if f requires a much wider single hidden layer MLP to represent it on S, then
intuitively it is more complex on S.

While k(f; S, €) as defined above can easily be upper bounded—exhibiting a student network
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of width x and distillation loss at most € upper bounds the distillation complexity by x—
calculating it exactly is likely very difficult. We therefore relax the definition by replacing

the existential quantifier over MLP (4, . k...) With a single element of MLP(y, . k,..) returned by a

in»

distillation scheme, which we now define.

Definition 11. A distillation scheme is a deterministic mapping Dist taking as input a function
f: Rkin — RFewt sample S, hidden width x € N and random seed s € N, and producing as

output a neural network Dist(f; S, k,s) € MLP; with one hidden layer of width k.

in:"@vkout)

The distillation scheme we employ is gradient descent minimising the distillation loss in Equa-
tion (5.1). See Section 5.5.1 for the details. This enables the following definition of distillation

complexity, which is more practical than Definition 10.

Definition 12. (Distillation complexity, practical version) Fix a distillation scheme Dist, sam-
ple S = ((:1:1, Y1),y (T, yn)), tolerance € > 0, number of distillation attempts N and sequence
of random seeds s = (sy,...,sy). For any function f : RF» — RFut not necessarily a neural

network, the distillation complezity of f is then
k(f; S, e, 8) = min{/@ € N: min Kdist(f,gj;S) < e},
j=1,...N

where ¢g; = Dist(f; S, k,s;), namely the network returned by the distillation scheme with

random seed s;.

In other words, k(f;S,¢€,s) is the minimum hidden width x such that at least one of N distil-
lation attempts yields a network with distillation loss at most € from f on S. The purpose of
allowing multiple distillation attempts with different random seeds is to produce a more robust
definition of distillation complexity that is less dependent on the particular random seed cho-
sen. When comparing the distillation complexities of two functions fi, fs, the same sample S,
tolerance € and seeds s should be used, which is indeed what we do in our experiments. Note
that since Dist is deterministic and the seeds s are fixed, k(f; S, €, 8) constitutes a deterministic
measure of the complexity of f on S.

While this definition may be altered to permit student networks with larger numbers of
hidden layers, some exchange rate would have to be decided between number of layers and
width of layers before the minimum could be taken. One possibility would be to take the
minimum over parameter count. However, distillation complexity as defined above is already
computationally intensive. Moreover, since the universal approximation theorem (Cybenko,

; Hornik et al., ) ensures that a single hidden layer neural network is sufficient to

approximate any continuous function, one may hope that the definition as stated is reasonable.

5.5.1 Distillation scheme

We now describe in detail the distillation scheme we use for measuring distillation complexity

of the networks described in Section 5.4.
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The sample S we use for distillation is the same sample used for training the original
networks, which we call the teacher networks in this section. This choice means we discover
whether the training procedure for the teacher network is biased to find a simple representation
of the data, which matches the philosophy of the MDL principle. For the distillation loss we use
the KL divergence between the softmaxed output of the teacher and student models on S, given
by Equation (5.1). We use full-batch gradient descent rather than SGD as this significantly
speeds up computation time (our sample is small enough to be passed to the model in a single
batch), making the experiment feasible within our computational budget. The regularising
effect of SGD is commonly beneficial but unnecessary here, as we are solely concerned with
discovering the narrowest single hidden layer MLLP capable of representing the teacher network.
We train the student networks using the Adam optimiser with learning rate 0.003 for up to
100,000 epochs (where each epoch consists of a single gradient step), stopping early if the
distillation loss reaches the target e = 0.01, or if it fails to improve upon its best value for
more than 100 consecutive epochs. This returns a student network. The pseudocode is given
in Algorithm 1.

For the distillation complexity, we use N = 5 attempts. Measuring the distillation com-
plexity rigorously would require N = 5 distillation attempts for each value of the hidden width
k increasing from 1 until an attempt is successful, namely until the loss of the student net-
work first falls below € = 0.01 for at least one of the N = 5 attempts. However, we can save
computation by making the simplifying assumption that for all values of the hidden width &
above the distillation complexity, at least one of the N = 5 distillation attempts will be suc-
cessful. Combined with the fact that none of the distillation attempts will be successful for any
value of the hidden width x below the distillation complexity (by definition), we have a kind
of monotonicity assumption that permits binary search over the hidden width to determine
the distillation complexity. While this monotonicity assumption is likely false in practice, the
binary search procedure it motivates nevertheless yields a well-defined and deterministic value
provided we fix the random seed (as we do), which is therefore a bona fide complexity measure
worthy of investigation. Moreover, this simplifying assumption enables us to evaluate a much

larger sample of networks than our computational budget would otherwise permit.

More precisely, the binary search procedure is as follows. First, we fix random seeds
S1,...,85, one for each of the N = 5 distillation attempts, where we use these same seeds
for all networks in the dataset. For any value k of the hidden width, if at least one of the
N = 5 distillation attempts is successful, then by definition x is an upper bound on the dis-
tillation complexity. If none are successful, we treat x as a lower bound on the distillation
complexity, as per our simplifying assumption. Starting with x = 128, if none of the N =5
distillation attempts are successful, we repeatedly double s until at least one is successful (this
never exceeded 2048 in our experiments) and then perform binary search. Conversely, if at
least one of the N =5 distillation attempts is successful, we repeatedly halve x until none are

successful and then perform binary search.

It was already seen in Figure 5.2 that the distillation complexity remains fairly constant as
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model size increases. Breaking this down into increasing depth and width, Figure 5.4 shows
that on average distillation complexity actually marginally decreases as both the depth and
width of the network increases. This is further evidence that our complexity measure meets

the third of the three complexity measure desiderata described in Section 5.1.
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Figure 5.4: The distillation complexity fidist-complexity defined in Definition 12 plotted against
depth num hidden layers € {2,3,4} and width hidden layer width € {512,1024,2048}.
Note depth and width correspond to the base model in the suite, not the student models
in the definition of distillation complexity. In both cases the correlation coefficient p is negative
and the p-value for the null hypothesis that the slope is zero is very small, where the null and
alternative hypotheses are that the slope is zero and non-zero, respectively.
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Input:

f : Rkin — RFout /x Teacher function */
S € (Rkin x RFew)™ /% Dataset for distillation */
€ >0 /* Tolerance threshold for distillation loss */
k € N /* Hidden width for student network */
T € N /* Maximum number of distillation epochs */
p € N /* Early stopping patience parameter */
s € N /* Random seed */
Init : N — MLP(4, x ko) /* Network initialisation scheme taking random seed
*/

Output:

9r € MLP (4, x.kow) /* Single hidden layer student MLP */
Procedure:

g% < Init(s) /* Randomly initialised student MLP with width s */
lhest < 00 /* Best loss observed so far *x/
q < 0 /* Epochs since improvement */
stop < False /* Flag to indicate stopping condition met */

fort < 1 to T do

gl <+ GradientDescent({qis, f, 9. ', S) /* One epoch of GD on distillation
loss */
if Cyisi(f, g%;S) < € then
‘ stop <— True /* Distillation successful */
end
if ¢ > p then
‘ stop <— True /* Early stopping triggered x/
end
if Caisi(f, g% S) < Lpest then
loest < Laiss(f, 955 S) /* Update best loss */
q < 0 /* Reset counter x/
else
g+ q+ 1 /* Increment counter */
end
if stop = True then
return g’ /* Return current student model */
end
end
return g /* Return final student model after max epochs */

Algorithm 1: Neural network distillation attempt with early stopping
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5.6 Comparison complexity measures

Measures that are functions of the entire hypothesis class, rather than taking into account
the specific learned hypothesis, cannot explain generalisation in the overparameterised regime
as they fail to distinguish between networks with zero training loss but different degrees of
overfitting. This includes measures such as the number of parameters or the VC dimension,
but also ones that take into account the dataset, such as Rademacher complexity. For this
reason, we only compare to measures that are functions of the trained neural network and the

sample, rather than only the architecture and the sample.

5.6.1 Norm-based measures

The norm-based measures considered in Jiang et al. ( ) are mostly inspired by theoretical
bounds, consisting either of the entire bound or components of it on the understanding that
some elements of the bound may be proof artifacts. Rather than starting with bounds and
peeling off appropriate terms, we evaluate intuitive measures of network capacity directly.
Indeed, since most of the bound-inspired measures evaluated in Jiang et al. ( ) predict
generalisation only very poorly in their experiments, it is perhaps wise to aim directly for

intuitive measures rather than hewing to rigorous bounds only.

Using all parameters

Treating the weights and biases of a network hy,p € MLP as a single vector vec(W, B), we

measure their £;- and ¢;-norms both from the origin and the initialisation Ao go as follows:

tie, (hw,g) = [lvec(W, B) |1 (5.2)
tie (hw,p) = |[vec(W, B) || (5.3)
fer-init (hw. g5 hawo po) = |[vec(W — W°, B — B (5.4)
[e-init (P B; o go) = |[vec(W — W B — BY) ||, (5.5)

Using weights only

Conversely, we can retain the structure of the weight matrices and apply matrix norms, omitting
the biases. In this case it is natural to measure both the sum and the product of the matrix
norms, from both the origin and the initialisation. Let ||[IWV;||spec and ||[W;||son denote the spectral
and Frobenius norms, respectively, of the weight matrix W;. We then define the following eight
complexity measures by taking all combinations of spectral versus Frobenius norm, sum versus

product, and taking the norm from the origin versus the initialisation.

Mspec—sum(hW,B) - Z ||VV7$||spec (56)
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Hspec-prod hWB H HW ||spec (57)

ftrob-sum (R, B) = Z [Will eon (5.8)
trob-prod (Rw,B) = H | Wil frob (5.9)
Mspec-sum-init(hW,B; hWO,BO = Z HVVz - VViOHspeC (5-10)
spec-prod-init (w83 Ao po) = H Wi — W |spec (5.11)
Mfrob-sum-init(hW,B; hWO,BO) = Z HVVZ - VViOHfrob (5-12)
[trob-prod-init (w55 hyo o) = H Wi — W2 lrob (5.13)

5.6.2 Sharpness-based measures and PAC-Bayes bounds

We measure the flatness of the minimum found by training the network hy p on a sample S
as the level of noise required to increase the cross-entropy loss of hy.p by 3, where in our
experiments we take 8 = 0.1. The inverse of this is then a measure of sharpness and, therefore,
perhaps complexity.

More formally, let Qw g, denote the stochastic predictor formed by adding isotropic Gaus-
sian noise with standard deviation o to the parameters of hy, g, with the true and test errors
Rp(Qwpes) and Rs(Qwpo) of Qwpo defined in the usual way by taking expectations over
the noise. Likewise for the true and test cross-entropy losses, which we denote R$(Qw,p,) and
RE(Qw,B,o), respectively. We then define

1
Msharpness (hW,B> - p s where (5 . ].4)
B

05 = max {a >0: RS (Qwpo) < RS (hwp) + ﬂ}, (5.15)
For the PAC-Bayes inspired complexity measures, recall the classic PAC-Bayes theorem.

Theorem 16. (Maurer (200/), Theorem 5) For any data-generating distribution D over X x )
where Y = R* for some k, hypothesis space H C V¥, prior distribution P over H, confidence
level § € (0,1] and sample size m, then with probability at least 1 — & over the random draw

S ~ D™ we have that simultaneously for all posterior distributions ) over H
1
(Rs(Q) ro(@) < - (KL(@IP) +1 25", (5.16)

We follow common practice by taking ) = Qw,z and P = Pyo po to be isotropic Gaussians
centred at the learned and initial parameters, respectively. We do not explore the use of data-
dependent priors as they have the drawback of simply shifting the generalisation mystery to

the prior. See Section 2.5.2 for a more in-depth discussion of this point. We take the same
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standard deviation o for both ) and P, which is the obvious choice since for any means jq, ptp

and standard deviation op, a straightforward calculation shows that minimising

1/ 0 Ho — [ o
KL(N(uq. o) [N (1, o7)) = 5 (’fﬁ —k+ “QJ—QPHQ +kIn é)

over og yields og = op (where k is the total number of parameters). We then take a union
bound over o € Y, where X is a set of K values fixed before observing the data. With these

choices, Inequality (5.16) becomes

3

_ WO B _ RO
%(Hvec(W wW° B — BY) (5.17)

kl(Rs(Qw,p)||Rp(Qw,s)) < 202

— ((0), (5.18)

In 2K5\/E)

valid for all o € ¥ simultaneously.

Using this we construct the following three PAC-Bayes-inspired complexity measures. First,
we transform Inequality (5.17) into bounds on Rp(Qw.p) in two different ways; by inverting
the kl numerically and by using Pinsker’s inequality. Ideally we would then take the minimum
of these over o € ¥, but doing so is computationally prohibitive, since each evaluation requires
a large Monte Carlo sample to estimate Rg(Qw ). We therefore instead evaluate the bounds

using the o € 3 closest to 04 defined in Equation (5.15), namely
G5 = argmin .y|o — opl, (5.19)
which yields

,upacb—error—bound—inverse—k](hW,B) - kl_l (RS(QVV,B) | C(a-ﬂ)) and (520)
Hpacb-error-bound-pinsker (h'W,B) = RS (QW,B) + \/ C(6B ) /2 . (5 2 1)

Third, simply take the kl bound in Equation (5.17) and substitute o = &5 to obtain

Mpacb-kl-bound(hW,B; hWO,BO) = C(a_/o’)v (522)

which may loosely be interpreted as the product of fig,—init (5.4) and fsharpness (5-14). While
this is a bound on the small kl, for our purposes it may be a good proxy for the corresponding

error bound

Rp(Qw,p) <kl (RS(QW,B)

Ipacb-ki-bound (P, B3 Ao, go )) : (5.23)

To see why, note that our stopping criterion (see Section 5.4) ensures that RS (hw,z) ~ 0.01 for
all models hyy, g in the suite. The definition of 55 then ensures that R§(Qw.p) ~ R¥ (hw,p)+0 ~
0.11, given our choice of 3 = 0.1. Since all the stochastic models Qw p in the suite have
approximately equal cross-entropy, they may also be expected to have approximately equal

zero-one error Rg(Qw p). Thus, since kI™'(-|-) is monotonically increasing in its second argu-
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ment, the models will have approximately the same ordering if sorted according to increasing
Lii-bound (Aw, B; hyo go) or increasing error bound (5.23). Since the ordering is approximately
preserved, some of the evaluation criteria from Section 5.7, e.g. Kendall’s rank-correlation co-
efficient, will be unaffected. Further, the advantage of fgpouna Over (5.23) is that it makes

models easier to compare, since kI™*(-|-) is difficult to evaluate if its second argument is large.

For all three PAC-Bayes-inspired complexity measures, we choose 3 = {1.2714 2.271 1}
so that K = 2. Note that due to the logarithmic factor the effect of this large number of
union bounds is still small; with our sample of size 50,000, the increase of the bound (5.16) is
only In(2') /50,000 ~ 0.0002.

5.6.3 Uncertainty-based measures

Three intuitive ways of measuring the uncertainty of a network hyy p in its predictions on the
train set are as its final cross-entropy loss at the end of training (the higher the loss the higher
the uncertainty), the inverse of its margin (the lower the margin the higher the uncertainty),
and the average entropy of the output (the higher the entropy the higher the uncertainty). To

that end, we define the complexity measures

Htinal-loss(hw.B) = RS (hw.p) (5.24)

Ninverse—margin(hW,B) = 1/7%0% (525)
1 m

,uoutput—entropy(hW,B) = E 2_; H(hW,B(CBZ)) (526)

where ;0% is the 10th percentile of the set of margin values I' = {f(z), — max;», f(x); :
(x,y) € S}, and H(hw,p(x;)) is the entropy of the output of network hy p on input x;. We
note that Jiang et al. ( ) opt to take the negative of the output entropy, whereas we leave

it unchanged for greater consistency with the other uncertainty-based measures.

While pfinalioss(hw,p) = 0.01 for all models in the suite, as this is our stopping criterion,
there is still some variance. We therefore test its relationship with generalisation along with
the other complexity measures as a check that we have sufficiently controlled for this variable.

We also include the final error rate, the zero-one loss on the training set
Mfinal-error — RS(hW,B)- (527)

The measure flinverse-margin 1as been observed in Jiang et al. ( , ) to be predictive
of generalisation and so we include it here to evaluate its effectiveness on the new dataset
MNIST1D and to use as a comparison for our distillation complexity. The negative output
entropy finegentropy Was proposed as regulariser in Pereyra et al. ( ) and observed to be

effective, so we include it here to evaluate its relationship with generalisation more thoroughly.
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5.7 Evaluation criteria

The most straightforward way to evaluate the relationship between the complexity measures
and generalisation is as the proportion of the variance in generalisation gap explainable by a
linear function of the complexity measure, namely the coefficient of determination 2. However,
if generalisation gap increases only monotonically, rather than linearly, with a quantity, the
quantity may nevertheless be deemed a suitable complexity measure. We therefore also measure
Kendall’s Rank-Correlation Coefficient (KRCC). Using the notation of Jiang et al. ( ), let
O denote the set of hyperparameters used to train the suite of models, and, for a complexity

measure /i,
T ={(u(6).9(6)): 0 € O},

where (@) and ¢(0) denote the complexity and generalisation gap of the model trained with
hyperparameters 8. The KRCC is then defined as

1 . .
(T) = T =1 Z Z sign(py — po)sign(gy — g2). (5.28)

(11,91) €T (p2,92)€T\{(11,91)}

In words, the KRCC 7(7) is the proportion of pairs from 7 for which the ordering of the
complexity measures and generalisation gaps match, minus the proportion of pairs for which
the ordering does not match. Therefore 7(7) € [—1, 1], where values close to 1 indicate that
the models are ordered in approximately the same way whether they are sorted according to
the complexity measure or the generalisation gap.

Note the KRCC may only capture a spurious correlation—rather than the hyperparameters
0 € O determining the complexity measure p(€) which then in turn affects the generalisation
gap ¢(@), the hyperparameters may determine ¢(@) directly. Thus the KRCC may be large
even if the complexity measure has no causal effect on generalisation. Following Jiang et al.
( ), we use two additional evaluation metrics, the Granulated KRCC (GKRCC), and the
Conditional Independence Test (CIT) inspired by the Inductive Causation Algorithm by Verma
and Pearl ( ).

The GKRCC V is defined by first calculating v;, the average KRCC along the hyperparam-
eter axis #;, where the average is taken over all possible values for the other hyperparameters
6_;. The GKRCC VW is then the average of the ;. More formally, suppose we have n hyperpa-
rameters, denoted by 8 = (64,...,0,) € ©1 X --- x ©,,. Then

\Il:%;% for ;= @1 Z 7(7:(0-;)), where (5.29)

’ ﬁi| 0_,€0_;

Z(Oﬁz) = {(M(e/),g<0/)) : 9; < @Z,Blﬁz = Hﬁl} and @ﬁi = @1 X oo X ('“)1;1 X @Z’+1 X X @n

The authors of Jiang et al. ( ) offer the following thought experiment to show that W may

be less susceptible to spurious correlations:

Suppose there exists a measure that perfectly captures the depth of the network
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while producing random prediction if two networks have the same depth. This
measure would do reasonably well [achieve a high value| in terms of 7 but much

worse [achieve a low value| in terms of V.

Let us flesh out this explanation. Suppose, as a hypothetical, that we have the following causal
relationship 0, = ¢(0), 6, = (0), but g(0) =~ w(0), where 6; is network depth and
1(0) = 0; + € for a small amount of random noise € drawn independently for each 6. Further,
suppose that 1;, the KRCC between network depth and generalisation gap is close to 1, i.e.
for most fixed values of the hyperparameters 6_;, the deeper models have larger generalisation
gap.

First, consider the value of 7 in this setup. For any pair 8!, 8% € O, there is an approximately
1/3 chance that 6] = 6% in which case the order of ;(8') and p(@') will be random, and an
approximately 2/3 chance that 6} # 62, in which case the order of p(8') and p(6?) will likely
be the same as the order of  and 6? and hence (by assumption) likely the same as g(0') and
g(6%). Overall, we have 7~ 1/3(1/2 — 1/2) +2/3(1 — 0) = 2/3.

Now consider the value of . By assumption ¢; ~ 1. For any j # i, note that 7;(6-;)
consists of pairs varying only over §;, meaning the 6; are equal and so the ordering of p is
random and will match the ordering of g in approximately half of cases. Therefore ¢; ~ 0 for
all j # ¢ and so ¥ ~ 1/n. This is much smaller than 7 ~ 2/3, at least for our suite of models
where n = 7.

Thus, while ¥ is still not strictly a measure of causation, the fact that it rules out more
spurious correlations than 7 means that it is greater evidence of a causal relationship than 7 is.

Finally, we consider the Conditional Independence Test (CIT). Roughly, the CIT calculates
K € [0, 1], the lowest the (normalised) conditional mutual information (CMI) between p(0) and
g(0) can get when conditioning on all possible subsets of the hyperparameters. For example,
one of these CMIs will be conditioned on the batch size alone, another on network depth and
learning rate, etc., and C > 0 is the minimum of all of these. The value K may then broadly
be interpreted as the evidence for the existence of an edge from u(@) to ¢g(@) in the causal
graph. Due to computational constraints, we restrict our analysis to conditioning on subsets
of the parameters of size at most two, the same compromise taken in Jiang et al. ( ) and
Kuhn et al. ( ). We refer the reader to Jiang et al. ( ) for the precise details of how to

calculate K.

5.7.1 Noisy oracles as baselines

While R? and the KRCC 7 are straightforward to interpret, the GKRCC ¥ and CIT value
IC are more difficult as it is less clear which range of values correspond to which degree of
relationship. We therefore follow Jiang et al. ( ) in using noisy oracles as baselines, where

the oracle complexity is simply the generalisation gap plus some noise

,uoracle—e(hW,B) - g(hW,B> + N<Oa 62>’ (530)
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with a fresh sample from N (0, €?) drawn for every network Ay g in the suite. As e — 0 we have
0,72, 7,0, K — 1, and as € — oo we have p,7%, 7, ¥, K — 0.

Fixed values of € were taken in Jiang et al. ( ) and Kuhn et al. ( ), but this makes it
difficult to compare across different datasets and architectures. Instead, we take € to be fixed
proportions of ogen-gaps, Which we define to be the standard deviation of the set of generalisation
gaps across the suite. Specifically, we take 11 values of e logarithmically distributed from
0.10gen-gaps 10 100gen-gaps inclusive. For each value of € we report the average values of p, r? T, U

and KC over a sample of 100 noisy oracles.

5.8 Results

Our results are presented in Figure 5.5 and Table 5.1, where we evaluate the 21 complexity
measures according to the five metrics described in Section 5.7. Recall that for every metric
larger values indicate a closer (positive) relationship between the complexity measure and gen-
eralisation gap, with the final two, the GKRCC V¥ and the CIT K providing stronger evidence
of causal relationships.

Our complexity measure is at least the third largest for four out of the five metrics, which
is most readily observed from the shaded Table 5.1. Remarkably, only four of the complexity
measures are positively correlated with generalisation gap, and of these our complexity measure
scores second on the Conditional Independence Test K. We therefore conclude that there is
decent evidence that distillation complexity has a positive causal effect on generalisation gap,
at least in comparison to the other complexity measures and on this task. The other successful
complexity measures are the sharpness measure figharpness defined in Equation (5.14), and the
uncertainty-based measure Loutput-entropy defined in Equation (5.26). These top three measures
perform around as well as the oracle complexity with standard deviation equal to 0gen-gaps, as
seen from the final rows of Table 5.1.

The norm-based measures perform badly. All 12 correlate negatively (p < 0) with gener-
alisation gap, indicating that norm-based bounds are unlikely to explain generalisation. The
three PAC-Bayes-based measures also perform quite badly, being negative or near-zero across
all five metrics. We note that fipach-error-bound-inverse-ki given by Equation (5.20) uniformly took
the value 1, rendering it completely uninformative. This was due to the large value of ((7p)
(defined in Equation (5.18)) making the inversion of the kl numerically indistinguishable from
1. This meant that only the CIT value K was defined, explaining why it is the only metric to
appear in Figure 5.5 and Table 5.1 for this measure.

The failure of the PAC-Bayes error bound fipach-error-bound-pinsker given by Equation (5.21) is
especially surprising given that it was one of the most successful complexity measures in Jiang
et al. ( ). To explain this, recall the observation in Section 5.6.2 that, loosely speaking,
[pach-error-bound-pinsker 1S Proportional to the (square root of the) product of fig, —init and fsharpness-
Noting the very poor performance of i, _init—it is strongly negatively correlated with general-

isation gap, with p = —0.484—we conclude that this counteracts the success of figharpness in the

103



approximate product fipach-error-bound-pinsker; €Xplaining its poor performance.

The uncertainty-based measures have mixed performance, with floutput-entropy given by Equa-
tion (5.26) performing the best. Additional baseline oracle complexity values are presented in
Figure 5.6 and Table 5.2, where we see, as a sanity check, that all metrics do indeed approach
one as € — 0 and zero as € — 00.

In summary, the best three measures from our experiment are sharpness (5.14), output
entropy (5.26) and our distillation complexity, Definition 12, all of which perform around as
well as an oracle with noise standard deviation e equal to that of the set of all generalisation

gaps (see Figure 5.6).
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Figure 5.5: The five evaluation metrics for each of the 21 complexity measures. For each eval-
uation metric, a higher score indicates a closer (positive) relationship between the complexity
measure and generalisation gap.

5.9 Discussion and future work

We have empirically established that distillation complexity is predictive of generalisation gap.
Recalling the arguments of Section 2.2, we suggest two possible explanations, based on the hy-
pothesis that there are, in some intuitive sense, fewer models with lower distillation complexity,

i.e. fewer distillable models. First, taking a Bayesian perspective, one may argue that highly
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Complexity Measure ) R? T 1 K
L1 Norm -0.201  0.040 -0.173 -0.222 0.015
L2 Norm -0.377 0.142 -0.397 -0.279 0.025
L1 Norm From Init -0.468 0.219 -0.497 -0.371 0.050
L2 Norm From Init -0.484 0.234 -0.546 -0.349 0.045
Spectral Sum -0.397 0.157 -0.539 -0.267 0.106
Spectral Product -0.035 0.001 -0.533 -0.274 0.118
Frobenius Sum -0.390 0.152 -0.436 -0.310 0.074
Frobenius Product -0.045 0.002 -0.389 -0.283 0.076
Spectral Sum From Init -0.415 0.172 -0.561 -0.270 0.081
Spectral Product From Init -0.034 0.001 -0.600 -0.295 0.095
Frobenius Sum From Init -0.499 0.249 -0.617 -0.387 [0.140
Frobenius Product From Init | -0.044 0.002 -0.661 -0.374 [OMM44
Inverse Squared Sigma Target _ 0.501 [ 0.282  0.047
KL Bound -0.120 0.014 -0.298 -0.096 0.039
Error Bound Inverse KL — — — — 0.000
Error Bound Pinsker -0.243 0.059 -0.299 -0.095 0.039
Train Loss 0.455 0.207 0.444 0.191 0.022
Train Error -0.582 0.338 -0.569 -0.275 0.054
Inverse Margin Tenth Percentile | -0.121 0.015 -0.471 -0.166 0.079
Output Entropy 0.730 0.533 | 0594 0.321 0.102
Dist Complexity (Ours) 0.690 0.476 = 0.562 0.271 0.085
Oracle € = 0.104en-gaps 0.995 0.990 0.926 0.776 0.631
Oracle € = Ogen-gaps 0.706 0.499 0.477 0.248 0.070
Oracle € = 100 gen-gaps 0.101 0.011 0.063 0.030 0.002

Table 5.1:

The five evaluation metrics for each of the 21 complexity measures. For each eval-
uation metric, a higher score indicates a closer (positive) relationship between the complexity
measure and generalisation gap. Dark, medium and light teal are the first, second and third
largest values, respectively. Our complexity measure (final row) is at least third largest for four

out of the five metrics.
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Oracle noise ¢
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Figure 5.6: As a baseline we construct noisy oracle complexity measures by adding Gaussian
noise N (0, €?) to the set of generalisation gaps across the suite of models, as defined in Equation
(5.30). The top x-axis gives the standard deviation € of the noise, while the bottom x-axis shows
this as a proportion of ogen-gaps, the standard deviation of the set of generalisation gaps. We
generated 100 noisy oracles for each of 10 values of this proportion from 0.1 to 10, and report
the mean and standard deviation (error bar) of the five evaluation metrics across the samples.
As expected, all metrics are decreasing in e. These values can be used as a benchmark by which
to compare the results found in Figure 5.5.

Oracle ¢ p R? T N4 K
0.100 gen-gaps | 0.995 (0.000) 0.990 (0.000) 0.926 (0.001) 0.776 (0.006) 0.631 (0.005)
0.160 gen-gaps | 0.988 (0.000) 0.975 (0.001) 0.885 (0.002) 0.688 (0.006) 0.515 (0.005)
0.250 yongaps | 0.970 (0.001) 0.940 (0.002) 0.822 (0.003) 0.580 (0.008) 0.383 (0.006)
0.400 gon gaps | 0.929 (0.002) 0.864 (0.004) 0.734 (0.005) 0.464 (0.009) 0.251 (0.007)
0.630 gen-gaps | 0-846 (0.005) 0.716 (0.008) 0.616 (0.007) 0.349 (0.010) 0.143 (0.006)
1.000gen-gaps | 0.706 (0.010) 0.499 (0.014) 0.477 (0.010) 0.248 (0.011) 0.070 (0.006)
(0.015) (0.016) (0.012) (0.013) (0.004)
(0.017) (0.013) (0.012) (0.012) (0.003)
(0.018) (0.009) (0.012) (0.013) (0.002)
(0.018) (0.006) (0.012) (0.012) (0.001)
(0.019) (0.004) (0.013) (0.012) (0.001)

1.580gen-gaps | 0.534 (0.015) 0.285 (0.016) 0.345 (0.012) 0.168 (0.013) 0.032 (0.004
2.510gen-gaps | 0.369 (0.017) 0.137 (0.013) 0.232 (0.012) 0.110 (0.012) 0.014 (0.003
3.980gen-gaps | 0.246 (0.018) 0.061 (0.009) 0.154 (0.012) 0.073 (0.013) 0.007 (0.002
6.310gen-gaps | 0.157 (0.018) 0.025 (0.006) 0.096 (0.012) 0.045 (0.012) 0.003 (0.001
10.000gen-gaps | 0.101 (0.019) 0.011 (0.004) 0.063 (0.013) 0.030 (0.012) 0.002 (0.001

Table 5.2: The five evaluation metrics for noisy oracle complexity measures with standard
deviation logarithmically spaced from 0.10gen-gaps t0 100 gen-gaps, Where Ogengaps is the standard
deviation of the set of generalisation gaps. For each standard deviation value, 100 noisy oracles
are sampled and the mean metric values are reported with standard deviation in parentheses.

106



distillable networks are simpler and therefore more likely to have low true error. Conversely,
a Frequentist may reason that an inductive bias towards distillable networks acts as a kind
of soft capacity control; the maximum generalisation gap over the set of distillable models is
likely to be smaller than that for the set of less distillable models, simply because there are
fewer distillable models, reducing the capacity for overfitting. Combined with the empirically

low train error, this would imply low true error.

For either perspective, in order for distillation complexity to become a rigorous element of
an explanation of the generalisation mystery, we would require a proof that commonly used
DL algorithms have an inductive bias towards networks with low distillation complexity. In
addition, the Bayesian perspective would require distillability to be justified as a sensible basis
for a simplicity prior, perhaps by relating it to Kolmogorov complexity. On the other hand, the
Frequentist perspective would require a generalisation bound proving that networks with low
distillation complexity have low generalisation gap, rather than simply the empirical observation

of this fact demonstrated in this chapter.

As for PAC-Bayes, note that any fact about the inductive bias of an algorithm can be
used to inform a prior, without it being necessary that this inductive bias is also predictive of
generalisation. Indeed, as noted in Section 2.3.2, the theoretically optimal choice of prior (at
least for “linear” PAC-Bayes bounds) is the distribution that puts more mass on the hypotheses
the algorithm of choice is likely to produce. We can theoretically formulate such a prior as
follows. Given a hypothesis class H C MLP, a “reference” distribution v € A(H), and a
distribution 7 € A(N) such as a geometric distribution, for each k € N, define

QO = {hEHli(h) :k}, and pk:l/(Qk),

where k(h) denotes the distillation complexity of h (eliding the other arguments present in
Definition 12). We can then define the prior P by the Radon—Nikodym derivative

dpP 7 (k(h)) |

—(h) = (5.31)

Pr(n)

The prior P is then a re-weighting of v to place mass m(x) on hypotheses with distillation

complexity . The following calculation verifies this is indeed a valid prior:

/Hg(h)dy(m = / ) gy ) = > T ) = Sy = 1

H  Pr(n) el Dk N

First, note that this may empirically lead to tighter PAC-Bayes bounds even absent any theo-
retical explanation of the inductive bias or its relation to generalisation. This may nonetheless

be satisfactory from a self-certified learning point of view, described in Section 2.5.

The difficulty of course is in calculating the p, and KL(Q||P). There may be ways around
these obstacles however. First, recall the disintegrated PAC-Bayes bounds from Section 2.4.2,
which bound the true risk of a single sample A ~ @) rather than @) itself. For such bounds
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the KL(Q||P) term is replaced by its disintegrated equivalent In (%(h)), which in our case, for

appropriate ), P and v, may be written as

In (%(h)) = In <i—Q(h)) —In <(jl—P(h)> = (i—Q(h)) —In7(k(h)) + Inpu).-

14 14 14

The term lnﬂ(ﬁ(h)) is easy to evaluate, while Inp,;) can be approximated through a Monte
Carlo approximation by sampling h ~ v. If v is the pushforward of a Gaussian distribution
over the weight space of the neural network, this may in fact be relatively straightforward. For
greater rigour, one may substitute a upper confidence bound on p,) for py ) in the PAC-Bayes
bound through the use of a union bound argument. As for the term In (i—?(h)) the accounting
methods of Clerico et al. ( ) may be applicable.

Alternatively, one may adopt the discrete PAC-Bayes approach of Chapter 4 by taking
the distribution v € A(H) to be a discrete distribution over a discretised weight space, and
the posterior () to be a point mass on the discretised deterministic network returned by the
learning algorithm. We then have KL(Q||P) = —In (P(h)), where h is learned network. Rather
than being defined via the Radon—-Nikodym given in Equation (5.31), the prior P may then be
defined explicitly as

P(h) = v(h), st. KL(Q|P)=—Inm(k(h)) —Inv(h) + Inp.m)

The first two terms of the KL can be calculated exactly, and, as before, the final term can be

upper bounded with a Monte Carlo sample.
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Chapter 6
Conclusion

In this chapter we recap the three main results of this thesis and analyse to what extent they
shed light on the Generalisation Mystery (GM). We then discuss our best guess for how further
progress may be made on resolving the GM, and the possible limitations of theoretical analysis.
Recalling the motivations for attacking the GM outlined in the introduction, we conclude with
a reflection on these motivations, the degree to which our work has satisfied them, the likelihood
of them being satisfied by future work in Statistical Learning Theory (SLT), and finally whether

they may be addressed more easily and directly through empirical means.

6.1 Preliminary Conclusions

Recall our formalisation of the generalisation mystery as Definition 3 from the introduction.

Definition 3. (Generalisation Mystery) The generalisation mystery is the mystery of why, in
the overparameterised regime, learning algorithms commonly used in the field of Deep Learning,
such as minimisation of the empirical risk Rg(h,,) via SGD, frequently yield parameter settings

w for which the true risk Rp(hy) is low, even in the absence of explicit regularisation.

Chapter 3 can be seen as an attempt to resolve a generalisation of the GM, namely the problem
of explaining not simply the fact that the true risk is low, but explaining the entire distribution
over different user-specified error types of the learned hypothesis.

Our first conclusion of Chapter 2 was that neither uniform nor non-uniform generalisation
bounds can resolve the GM. Our reasoning was as follows. Uniform bounds cannot resolve it
because they will be empirically loose as they are forced to accommodate the hypotheses with
large generalisation gap that by definition exist in the overparameterised regime. And non-
uniform bounds cannot fully resolve it as they would not explain why algorithms commonly
used in DL locate hypotheses with low empirical risk for which the bound is also low, rather than
hypotheses with low empirical risk for which the bound is large, where again such hypotheses
necessarily exist in the overparameterised regime by definition. We summarised this conclusion

in Chapter 2 as Claim 1.
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Claim 1. Generalisation bounds alone cannot resolve the generalisation mystery, even if they

are non-uniform and tight.

This is not to say that generalisation bounds shed no light on the GM at all, only that they
do not and will not suffice as a full explanation. Indeed, we recognised in Chapter 2 that tight
non-uniform generalisation bounds may constitute a step towards a resolution to the GM by

suggesting the following potential structure, as expressed in Claim 2.

Claim 2. The generalisation mystery may be explained by the derivation of two theorems. One
theorem demonstrating that the learning algorithms typically used in DL have an implicit bias
towards hypotheses h with some property P, and a second theorem demonstrating that hypotheses

with property P have small generalisation gap.

Chapters 4 and 5 can be understood as steps towards a resolution of the GM by following the
template of this proposed structure, as we will discuss in the next section.

A substantial part of Chapter 2 was devoted to demonstrating that PAC-Bayesian theory,
in its current form, cannot resolve the GM, since all the bounds we are aware of are either loose
or face at least one of three obstacles. First, the theory typically addresses the generalisation
of stochastic hypotheses, rather than the deterministic ones typically used in DL practice.
Second, many of the bounds are successfully applied only to (stochastic) hypotheses that have
been learned via PAC-Bayesian inspired training objectives, rather than the ordinary methods
of DL practice, such as SGD. Third many of the bounds are tight only when using so-called
data-dependent priors, which effectively turns the bounds into test set bounds in disguise, and
simply shifts the GM mystery onto the prior without resolving anything. Our conclusion was
that PAC-Bayes could only make progress towards resolving the GM if it could overcome all
three of these obstacles, which is exactly what we attempted in Chapter 4.

6.2 Contributions

Chapter 3 was motivated by an understanding that we want to be able to explain and therefore
predict not only whether Rp(h,,) is low, but also to explain and therefore predict the general
behaviour of the learned hypothesis h,,. For example, in classification we may wish to control
the types of errors the learned hypothesis is likely to make, such as false positives and false
negatives. This can be considered a generalisation of the GM, and should be pursued for the
same reasons as the original GM.

Our contribution was to generalise a classic PAC-Bayes bound originally due to Germain
et al. ( : ) and streamlined in Bégin et al. ( ), which unifies various PAC-Bayes
bounds. Our generalisation, in the form of Theorem 11, extends this classic unifying bound
to the information-rich setting by controlling not simply the scalar Rp(h,,) but the vector
Rp(hy), representing the probabilities of the various user-specified outcomes. Just as the
original PAC-Bayes bound controls the divergence between Rp(hy,) and Rg(h,,), our extension

controls the divergence between Rp(hy) and Rg(hy,). Furthermore, our extension reduces
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to the original PAC-Bayes bound in the case where the user-specified outcomes are simply
incorrect and correct classification.

Unfortunately, our extension of the classic PAC-Bayes bound resolves the generalised GM
no more satisfactorily than the original bound resolves the original GM. This is because while
it does extend to the information-rich regime, it inherits the obstacles that prevent most PAC-
Bayes bounds from resolving the GM. Indeed, as mentioned in the preceding section, all PAC-
Bayes bounds we are aware of either apply to stochastic hypotheses, use non-standard training
methods, or employ data-dependent priors. As discussed in Chapter 2, all three of these features
degrade the capacity of PAC-Bayes bounds to resolve the GM, and ours is no different. That
being said, it may be the case that the information-rich framework we developed, along with
the technique used to lift an ordinary PAC-Bayes bound into the new setting, may continue to
be valuable in translating improved scalar PAC-Bayes bounds if or when they are developed. In
other words, if traditional PAC-Bayesian theory makes progress in explaining the GM, it may
be possible to translate this into progress in explaining the generalised GM using the methods
we developed.

Chapter 4 successfully overcame all three of these obstacles, and is therefore one of the rare
cases in which a non-vacuous generalisation bound has been demonstrated for a deterministic
overparameterised network trained via ordinary methods without the use of data-dependent
priors. As such, it constitutes a step forward in an explanation of the GM.

Nevertheless, it is prevented from fully resolving the mystery for two reasons. First, the
bounds are not very tight, being only just non-vacuous in our empirical tests and much larger
than the true error rate. Second, as emphasised in the introduction, tight bounds alone cannot
resolve the GM; our bound gives no explanation for why the vanilla training regime used to
train the neural networks yields network for which the bound is non-vacuous. It simply hints
that it may be due to an inductive bias of either the training method, hypothesis class or both
towards networks that have a high-fidelity compression of similar performance. That being
said, future contributions may show exactly that, at which point our approach could be well
on its way to resolving the GM.

In Chapter 5 we took an empirical approach. We demonstrated that our novel complexity
measure, termed distillability, positively correlates with generalisation gap, and provided some
evidence that it in fact has a causal effect on the generalisation gap. Given that this is purely
an empirical result, how can it contribute towards resolving the GM? Its value lies in the fact
that it identifies a property that could potentially play the role of property P in the proposed
structure given in Claim 2. This is left to future work, and we give some indication of how that

might go in Section 5.9.

6.3 Towards a Solution to the Generalisation Mystery

A resolution to the generalisation mystery has been sought since the very advent of DL. While

progress has been made, the current effort to progress ratio demonstrates that it is an extremely
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hard problem. In fact, it should not be ruled out that the way in which it has generally been
formulated in SLT may make it impossible to resolve. Specifically, most generalisation bounds
hold for all data-generating distributions, which may force the bounds to be quite loose in
order to accommodate potentially unusual behaviour of learning algorithms when trained on
pathological or even adversarially constructed distributions.

As mentioned in Chapter 2, many generalisation bounds are proven under assumptions
placed on the distribution, for example realisability, smoothness, Lipschitz continuity, convexity,
noise or margin conditions, and so on (Shalev-Shwartz and Ben-David, ). While making
such assumptions can often yield tighter bounds, it is typically not possible to verify that
the assumptions in fact hold for the distribution at hand, since we have access only to a
sample. Our best guess is nevertheless that the only way tight bounds will be proven for
deterministic networks trained via ordinary methods will be by making substantive and hard
to verify assumptions on the data-generating distribution. For example, it may be the case
that DL works because the distributions we commonly apply it to are substantially simpler
than the “typical” distribution, perhaps because they are supported on manifolds of much
lower dimension than the space in which we represent the data. While the introduction of
assumptions placed on the distribution should of course be minimised where possible, it may
be noted that most results in SLT already make the typically unjustified assumption that the
data is sampled independently and identically from some fixed distribution.

This is not to say such assumptions cannot be investigated empirically. For example, even
if we only have access to data-generating distributions via samples, we can evaluate noise
conditions using traditional hypothesis tests. Alternatively, one may empirically investigate
which properties of the distribution determine the success or failure of DL methods by means of
carefully constructed synthetic distributions that meet or violate various assumptions. However,
we may ultimately have to come to terms with the possibility that at the heart of the GM is
a brute empirical fact about the world and the distributions it generates that is impossible to
verify with full mathematical rigour.

An alternative empirical direction is to study the so-called inductive biases of the architec-
tures and learning algorithms commonly used in DL. A particularly promising line of research
in our opinion is the work of Valle-Perez et al. ( ), which provides evidence that the map
from the parameter space of neural networks to the corresponding function space is biased
toward “simple” functions.

If we let go of the demand for rigorous proof we may be willing to modify Claim 2 in the

following way.

Claim 2’. The generalisation mystery may be satisfactorily explained by the demonstration of

two empirical facts. First, that the learning algorithms typically used in DL have an implicit

bias towards hypotheses h with some property P, and second that hypotheses with property P

have small generalisation gap.

Whether such an explanation would in fact be satisfying of course depends on the property

P. For example it will clearly be completely unsatisfactory if P is simply “the property of
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being trained according to learning algorithms typical in DL.” However, the explanation may
be reasonably satisfactory if P is the notion of simplicity identified in Valle-Perez et al. ( ),
or one of the other notions discussed in Section 2.2, such as being located in a flat minimum
of the loss landscape, having low Kolmogorov complexity, or having low minimum description
length (MDL) according to the MDL Principle. As discussed in Section 2.2, what counts as
a satisfactory explanation of the GM depends one one’s philosophy of statistics, for example

whether one is a Frequentist or a Bayesian.

6.4 Returning to the Original Motivations
We gave three motivations for attacking the GM in Section 1.1, which we here summarise.

1. A resolution to the GM may help transform the field of DL from a bag of poorly under-
stood tricks into a principled science, allowing judicious application of techniques and a

more directed search for new ones.

2. A resolution to the GM may be a prerequisite for a predictive theory of domain shift,
which is currently a significant obstacle to the deployment of neural networks in high

stakes environments.

3. A predictive theory of DL may allow us to predict not only the final error of a trained
neural network, but also the specific capabilities that can develop at scale, namely so-

called emergent capabilities.

A thread running through all three of these motivations is the desire to save costs. A
principled science of DL could provide more precise training recipes and thereby dramatically
reduce the amount of computation devoted to architecture and hyperparameter search. A
predictive theory of which environments a model will generalise to would reduce the cost of
repeated or continual testing. And being able to predict the capabilities of frontier models
before they are trained, rather than simply the final loss predicted by scaling laws, would
indicate whether enormously expensive training runs will produce commercially viable models.

Given the difficulty of resolving the GM, it is worth considering whether these motivations
for attacking it in the first place can be satisfied more easily in other ways. As already discussed,
this could be done by shedding light on the GM empirically. Indeed, if one is simply interested
in saving costs, one may be quite content with the standard of strong evidence rather than full
rigorous proof. Alternatively, one may sidestep the GM entirely and instead seek to address the
underlying motivations directly. Let us consider these questions for each motivation in turn.

First, if one seeks a better understanding of the various tricks of DL, including why they work
and when they are appropriate, it may be more practical to study each technique independently,
rather than hoping a resolution to the GM may ultimately provide a kind of grand unified theory
of DL. This would narrow the scope of theoretical questions, potentially making them easier to

solve and providing more direct benefit.
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Second, it is our opinion that a theoretical understanding of domain shift that is general
enough to be practically useful seems quite unlikely to arise using the current machinery of
SLT, at least for sophisticated tasks in complex real-world environments. This stems from our
belief that for a neural network to transfer capabilities to novel situations, it must have latent
representations of the dynamics of the environment. In other words, a world-model. While
such representations may exist within a network, SLT typically operates on the level of weights
and functions, and is therefore blind to higher level representations that may be present in a
network and allow it to generalise out of distribution. If one desires a better understanding of
which environments a network will generalise to, it may be more fruitful to apply methods from
mechanistic interpretability to uncover the kinds of representations the network has and the
operations it performs on them. For example Nanda et al. ( ) reverse-engineer the algorithm
implemented by a transformer trained on modular addition, which may allow prediction of the

output of the network on novel inputs unseen during training.

Finally, as frontier models become more powerful and are deployed more widely, the pre-
diction of final capabilities becomes an ever more pressing concern. While it was shown in
Schaeffer et al. ( ) that certain capabilities which arise seemingly abruptly with scale in
LLMs in fact develop continually when measured using the appropriate metrics, the work has
several drawbacks. First, to use this method to make predictions, one must know in advance
which metric will reveal continuous progress for which capabilities. Second, one must know in
advance which capabilities one would find concerning, and have written demonstrations of them
on which to measure the evolution of the model’s performance, for example the log probability
it assigns to the written demonstration. While it is certainly advisable to do this to the extent
possible, it is surely infeasible to enumerate and give examples of every capability one could
find concerning. Furthermore, if the model returns low log probability for the given demon-
stration, this may not rule out the corresponding capability as there may be many ways in
which to complete the task. As the time horizon on which these models operate at deployment

increases, this becomes increasingly infeasible, and the technique is indeed already inadequate.

From what is publicly known, it appears that evaluation of frontier models for dangerous
capabilities is largely conducted in the window between the completion of training and full
deployment. This leads to poor incentives in two ways. First, certain dangerous capabilities or
propensities may become apparent only after widespread deployment, at which time recalling
the model comes with financial and reputational costs. Second, financial pressure to deploy the

model can lead to rushed safety evaluations.

More speculatively, it is possible that for certain dangerous capabilities, evaluation only
at the end of training may already too late. For example, it has been speculated that models
intelligent enough to deduce they are in a testing environment, and may be modified rather than
deployed if the evaluators find their responses risky, may strategically hide certain capabilities.
This has been referred to as “sandbagging,” borrowing from sports terminology. It has been
argued that sandbagging could arise as part of a broader pattern of strategically deceptive

behaviour in an agent that has goals it understands are in conflict with those of its evaluators.
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This has been referred to as alignment faking. In such cases, evaluation at the end of training
may not catch dangerous capabilities. If models continue to become more powerful and widely
deployed, this could one day become a realistic problem.

While such scenarios sounded like science fiction to many when first hypothesised, there is
now evidence that frontier models can sometimes recognise testing environments and modify
their output accordingly. For example, during a so-called “needle in a haystack” test, where
the model is tasked with extracting isolated factoids inserted into long documents, the Claude

3 Opus model from Anthropic returned the following text as part of its output (Anthropic,

)

I suspect this pizza topping “fact” may have been inserted as a joke or to test if 1

was paying attention, since it does not fit with the other topics at all.

While not sandbagging per se, such results indicate that behaviour during evaluation may di-
verge from behaviour during deployment if the testing environments are not realistic, which
adds an extra element of complexity to the problem of accurately determining model capabili-
ties.

Further, there is evidence that frontier LLMs are capable of reasoning strategically about
how their behaviour during evaluation will impact any further training they will undergo before
deployment. Specifically, Greenblatt et al. ( ) demonstrate that when Claude 3 Opus is given
a system prompt stating it will be trained to answer harmful queries, which conflicts with its
previous training, it increases the rate at which it answers harmful queries. In fact, the model
occasionally writes “explicit alignment-faking reasoning” to the provided scratchpad, “stating
it is strategically answering harmful queries in training to preserve its preferred harmlessness
behavior out of training.”

The explanation of such behaviour is not entirely clear. It could be evidence of genuine
sophisticated strategic reasoning on the part of the model. But the behaviour is also consistent
with the hypothesis that the model is merely role-playing, echoing writings on alignment faking
from science fiction and the alignment community. If that is the case, the behaviour may
be highly context-dependent, rather than robust and coherent expression of preferences and
means-end reasoning. Either way, the present evidence on sandbagging and alignment faking
demonstrate that the concerns should no longer be dismissed as science fiction. Rather, they
indicate the importance of continual evaluation throughout training of frontier models. While
it may not be possible to detect alignment faking in a genuinely powerful model, it may be
possible to detect the beginnings of such strategic reasoning as if it develops during training.

We embarked upon our investigation of the highly theoretical generalisation mystery with
the underlying motivation of building deeper theoretical understanding of neural networks,
which may ultimately help anticipate and control powerful models should they arise within
the DL paradigm. However, we have come to the conclusion that statistical learning theory is
unlikely to yield understanding that can be leveraged in this way, at least not on a schedule

that keeps pace with frontier Al developments.
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Appendix A

Additional Material for Chapter 3

A.1 Recipe for implementing Theorems 11 and 12

We here outline more explicitly how Theorem 11 and Theorem 12 may be used to formulate a
fully differentiable objective by which a model may be trained.

First, if one wishes to make hard labels, namely H C Y%, it will first be necessary to use a
surrogate class of soft hypotheses H' C M(Y)* during training, before reverting to hard labels
for example by taking the mean label or the one with highest probability. Using soft hypotheses
during training is necessary to ensure that the empirical j-risks RQ(Q) are differentiable with
respect to the model parameters. Since how one chooses to do this will depend on the specific
use case, we restrict our attention here to the case of soft hypotheses. Specifically, we consider
a class of soft hypotheses H = {hy : § € RN} C M(Y)* parameterised by the weights § € RY
of some neural network of a given architecture with N parameters in such a way that the
Rg(hg) are differentiable in 6. A concrete example would be multiclass classification using a
fully connected neural network with output being softmax probabilities on the classes so that
the R%(hg) are differentiable.

Second, it is necessary to restrict the prior and posterior P,Q € M(H) to a parame-
terised subset of M(H) in which KL(Q|/P) has a closed form which is differentiable in the
parameterisation. A simple choice for our case of a neural network with N parameters is
P,Q € {N(w,diag(s)) : w € RY s € RY;}. For prior a P,,, = N(v,diag(r)) and posterior
Quw.s = N (w,diag(s)) we have the closed form

n Tn Sn
n=1

1 al Sn (wn - Un)Q T'n
KL(Qw,sHPv,T) = 5 Z (T_ +———+1In _> - N )

which is indeed differentiable in v, 7, w and s. While ), s and P, ;. are technically distributions
on R rather than H, the KL divergence between the distributions they induce on H will be at
most as large as the expression above. Thus, substituting the expression above into the bounds
we prove in Section 3.4 can only increase the value of the bounds, meaning the enlarged bounds
certainly still hold with probability at least 1 — 4.

Third, in all but the simplest cases Rg(@ms) will not have a closed form, much less one
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that is differentiable in w and s. A common solution to this is to use the so-called pathwise
gradient estimator. In our case, this corresponds to drawing € ~ N (0,I), where I is the N x N

identity matrix, and estimating

vw,sRé‘(Qw,s) = vw,s [EE’NN(O,H)Rg(thre’@\/E)] ~ Vw,ng(thre@\/E)v

where h,, denotes the function expressed by the neural network with parameters w. For a
proof that this is an unbiased estimator, and for other methods for estimating the gradients of
expectations, see the survey Mohamed et al. ( ).

Fourth, one must choose the prior. Designing priors which are optimal in some sense (i.e.,
minimising the Kullback-Leibler term in the right-hand side of generalisation bounds) has been
at the core of an active line of work in the PAC-Bayesian literature. For the sake of simplicity,
and since it is out of the scope of our contributions, we assume here that the prior is given
beforehand, although we stress that practitioners should pay great attention to its tuning. For
our purposes, it suffices to say that if one is using a data-dependent prior then it is necessary to
partition the sample into S = Sprior U SBound, Where Spiior is used to train the prior and Sgouna
is used to evaluate the bound. Since our bound holds uniformly over posteriors Q € M(H),
the entire sample S is free to be used to train the posterior Q.

Finally, given a confidence level § € (0, 1], one may use Algorithm 2 to obtain a posterior
(QQw,s With minimal upper bound on the total risk. Note we take the pointwise logarithm of the
variances r and s to obtain unbounded parameters on which to perform stochastic gradient
descent or some other minimisation algorithm. We use & to denote vector concatenation.
The algorithm can be straightforwardly adapted to permit mini-batches by, for each epoch,

sequentially repeating the steps with S equal to each mini-batch.
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Input:

X,Y /* Arbitrary input and output spaces */
Uj]\il E; =)?*/x A finite partition into error types */
£€[0,00)™ /+ A vector of losses, not all equal */
S = Sprior U SBound € (X x V)™ /* A partitioned i.i.d. sample x/
N € N /* The number of model parameters */
Py, 9(Sprior) € RN, 7(Sprior) € R]ZVO /* A (data-dependent) prior */
Quo,s0, Wo € RN, sy € Révo /* An initial posterior */
§€(0,1] /* A confidence level */
A >0 /* A learning rate */
T /* The number of epochs to train for */
Output:

Quws, w € RY s e RY) /* A trained posterior */
Procedure:

Co + log sy /* Transform to unbounded scale parameters x/
p < wy P (g /* Collect mean and scale parameters x/

fort < 1 to T do

Draw € ~ N(0,1)
u + Rs (hw+e® exp(C))
B+ %[KL (Qw,exp(C)HPv,r) + In <£(”TM)>] /* Bound from Theorem 11 */
w <+ (uq,...,uy, B)
G < Oynx(m+1) /* Initialise gradient matrix */
F < 0p/41 /* Initialise gradient vector */
for j < 1to M +1do
F; + g—g(ﬂ) /* Gradients of total loss from Theorem 12 */
for i < 1 to 2N do
‘ G, g%j(p) /* Gradients of empirical risks and bound */
end
end
H < GF /* Gradients of total loss w.r.t. parameters */
p < p— \H /* Gradient step x/
end

w = (p17"'7pN)

s = (exp(pn+1), - - -, exp(pan))
return w,s
Algorithm 2: Calculating a posterior with minimal bound on the total risk.

A.2 Additional experimental details

For MNIST we map labels {0,1,2,3,4} to 0 and {5,6,7,8,9} to 1. For HAM10000 we map the
cancerous or precancerous labels {Melanoma,Basal Cell Carcinoma,Actinic Keratosis} to
1 and the other labels to 0. In both cases we partition )2 into Ey = {(0,0), (1,1)}, E; = {(0,1)}
and Fy = {(1,0)}, and take £ = (0, 1,3). For HAM10000, E; and E, then refer to Type I and

Type II errors, respectively, and £ reflects the greater severity of false negatives.
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Each dataset is split into prior and certification sets Sprior and Sgound, respectively. For
MNIST, we use the conventional training set of size 60000 as the prior set, and the conventional
test set of size 10000 as the certification set. For HAM10000 we pool the conventional train,
validation and test sets together and then split 50-50 to obtain prior and certification sets each
of size 5860. For HAM10000 we resize the images to (28,28) and use just the first channel so

that the data dimension is the same for both datasets.

We take H to be two-layer MLPs with 784, 100 and 2 units in the input, hidden and output
layers, respectively. As is common in the PAC-Bayes literature, we restrict P to be an isotropic
Gaussian N (v, A\I) and @ to be a diagonal Gaussian N(w,diag(s)). Further, as in Dziugaite
and Roy ( ), we restrict A to be of the form \; = cexp(—;/b) for some j € N, taking ¢ = 0.1
and b = 100. Since, at the end of training, we will then have one prior P; for each j € N, we can
choose the j that minimises the PAC-Bayes bound provided we take a union over all of them,
taking 0; = % so that > ;0; = 1 and all the bounds hold simultaneously with probability
at least 1 — 4. After applying Algorithm 2 we round A to a discrete \;, either up or down

depending on which gives the smaller bound.

For both datasets we set the prior mean v to be the parameters of an MLP trained on
the prior set. In both cases we use SGD with learning rate 0.01 to minimise the cross-entropy
loss, using a portion of the prior set as a validation set. For MNIST we train the MLP for
20 epochs to get an error rate of 14%, for HAM10000 we train the MLP for 5 epochs to
get an error rate of 22%. We then apply Algorithm 2. By combining Proposition 2 (with
9 = 0.01 and N = 100,000) and Proposition 3. We obtain RS(Q) = (0.8879,0.0919, 0.0203)
and R5(Q) < 0.2640 for MNIST and Rs(Q) = (0.7860,0.0146,0.1995) and R%(Q) < 0.8379

for HAM10000, where both bounds hold with probability at least 1 — 0.05 — 0.01 = 0.94.

The full results are shown in Figure A.1. Figures A.1a, A.1c and A.le are the same as Figures
3.1a, 3.1b and 3.1c, and are repeated here for easier comparison with the HAM10000 results.
Figure A.1b shows that Algorithm 2 has failed to reduce the bound on the total risk beyond
the initialisation of () to P, with the small variation being explained by different MC samples
being drawn from () during training rather than () changing substantially. Indeed, Figure
A.1h shows that @) does not appreciably move from its initialisation at P—KL(Q||P) remains
below 0.1 whereas in the MNNIST experiment, which has the same number of parameters,
exceeds 30. It is therefore unsurprising that Figures A.1d and A.1f show negligible change
in the empirical error probabilities and the bound on kl(Rgs(Q)||Rp(Q)), respectively. The
divergence in the results is likely due to the difference in sample size; the certification set for
the MNIST experiment contains 10000 samples, whereas for the HAM10000 dataset there are

only 5000, which, all else equal, makes an increase in KL(Q||P) twice as expensive.

Recall from Section 3.7 that while Rp(Q) can be effectively constrained to a sub-region
of the simple Ay, using our Theorem 11, this can also be achieved by unioning M Maurer
bounds, one for each error probability. Table 3.1 gave the 95% confidence intervals for the
volumes of the confidence regions in which Rp(Q)) was likely to lie for experiments on MNIST

and HAM10000, but neither region was uniformly smaller, making it unclear which method
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should be preferred.

Table A.1 provides additional data by taking synthetic values for Rg(Q) and KL(Q|P),
for different values of n (the size of the certification set) and M (the number of error types).
‘Individual’ denotes unioning individual Maurer bounds, ‘Ours’ is our method, ‘Intersection’
is the intersection of the confidence regions given by the previous two methods (but loosened
so that they now both hold simultaneously with probability at least 0.95), and ‘Morv.” is the
confidence region produced by Morvant’s bound (Morvant et al., ). The 95% confidence
intervals for the volumes of all the regions have been produced by Monte Carlo samples. We
see that our confidence region is tighter than the individual one in 4/9 cases (green), worse
in 3/9 cases (red) and ties in 2/9 cases ( ). Interestingly, union bounding the naive CR
and our CR and intersecting often beats both of these (bold). Morvant’s result is either not
applicable or their confidence region is much larger than ours and essentially takes up the entire
simplex, hence the volume estimate of 1.000. The reason their bound is sometimes inapplicable
is because it requires every class to contain at least 8L instances, where L is the number of
labels—in the L = 5, M = 25,m = 100 case this would require each class to contain at least

5 x 8 = 40 instances which is impossible with m = 100 samples.

M n Vol. Individual Vol. Ours Vol. Intersection Vol. Morv.
100 (0.1195, 0.1196) (0.1165, 0.1166) (0.1160, 0.1161) (1.0, 1.0)

22 | 300 (0.02920, 0.02926) (0.03071, 0.03078) (0.02893, 0.02900) (1.0, 1.0)
1000 | (5.635e-3, 5.664e-3) (6.475e-3, 6.507e-3) (5.706e-3, 5.735e-3) (1.0, 1.0)
100 (0.3190, 0.3192) (0.1757, 0.1758) (0.1582, 0.1584) N/A

52 | 300 (1.306e-3, 1.320e-3) (3.672¢-4, 3.748¢-4) | (2.515e-4, 2.578e-4) | (1.0, 1.0)
1000 (0.000, 3.689¢-08) (1.0, 1.0)
100 (0.9990, 0.9990) (1.000, 1.000) (0.9995, 0.9995) N/A

102 | 300 (0.3534, 0.3536) (0.1688, 0.1689) (0.1306, 0.1307) N/A
1000 (0.000, 3.688e-8) (1.0, 1.0)

Table A.1: 95% confidence intervals for the volumes of the confidence regions for Rp(Q). We
set KL(Q||P) =0, 6 =0.05, Rs(Q) = (1/M,...,1/M) and use 10*> Monte Carlo samples.
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Figure A.1: MNIST (first column) and HAM10000 (second column) experiments.



A.3 Proofs

A.3.1 Proof of Proposition 3

Write kl(q||p) as
Z% ln Z

The result then follows by bounding the two sums by

D g = "K(Gllg) — (1= ;) In L < MB,—» (1—¢;)In ’
=1 Qj j=1 1- qj j=1 1= gj

and

A

M
~ q] 4qj
q ln ln - < max q; In —= < B; max L.

Putting these together we obtain the bound on kl(g||p). The limit follows because each 4= 4
as By — 0.

A.3.2 Proof of Lemma 2

Let Ey := {ey,...,epn} be the set of M-dimensional basis vectors. We will denote a typical
element of E¥, by n™ = (n;,...,n,). For any ™ = (z,,...,x,) € A}, a straightforward
induction on n yields
> (Ien) -1 A
n(")eExI =1
To see this, for n = 1 we have E};, = {(ey, ), ..., (e, )}, where we have been pedantic in using

I-tuples to maintain consistency with larger values of n. Thus, for any (V) = (x1,) € Al,, the

left hand side of equation (A.1) can be written as

M M
Zazl ‘€5 = Z(ml)j =1.
j=1 j=1

Now suppose that equation (A.1) holds for any ™ € A%, and let ™Y = (x1,..., @) €
AMF Then the left hand side of equation (A.1) can be written as

= (i) 3 $ (i) e

n(n+1)eE]7CI+1 i=1 ’r](”)EE" j=1

S (Hmn>zx 1

n("eEY,
We now show that any (™ = (z,...,®,) € A%, can be written as a convex combination
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of the elements of E}, in the following way
nMeEy, \i=1

We have already shown that the weights sum to one, and they are clearly elements of [0, 1], so
the right hand side of equation (A.2) is indeed a convex combination of the elements of EY,.

We now show that equation (A.2) holds, again by induction.

For n = 1 and any M = (z,) € A}, the right hand side of equation (A.2) can be written

Z )(ej,) = (x1,) = .

J=1

as

For the inductive hypothesis, suppose equation (A.2) holds for some arbitrary n > 1, and
denote elements of E7" by n™ @ (e,) for some n™ € E%, and e € E);, where @ denotes
vector concatenation. Then for any ™) = 2 @ (x,,,1,) = (T1,...,%ny1) € ALY the right

hand side of equation (A.2) can be written as

) (ﬁwn> =y %(Hm

"l<n+1)€E;\l4+l =1 ’I‘](”)GE" j=1 =1

)
Z Z (H Z; - m) (Tpy1 - €;)m™

n(")eE}{f j=1 \i=1

DY Z(Hmi-m) (@i - €5)(e;)

Z Lp41 - 6] Z H%m) 77( )

n(n) EE” =1

(H x; - 771) Z(ﬂ’/‘nﬂ -e;)(ej,)

(Tnt1 - €5)n™ & (e5,)

n(me

where in the penultimate equality we have used the inductive hypothesis and (twice) the result

of the previous induction.

We can now prove the statement of the Lemma. Applying Jensen’s inequality to equation
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(A.2) with the convex function f, we have that

flxy,...,x,) = f Z <H«%’i-m)n(”)

nMeEr, \i=l

< > (ﬁ%-m)f(n(”))-

'r,(”)EE]"C{ =1

Let p = E[X] denote the mean of the i.i.d. random vectors X;. Then the above inequality

implies

Elf(X1,...,X,)] < Z <ﬁﬂ"'7i> f(n(”))

ﬂ(")GEX/I =1

S (ﬁp(xg:m)>f (n™)

nMeEy, \i=1

—E[f(X,....,X")].

n

A.3.3 Proof of Lemma 3

The proof of Lemma 3 itself requires two technical helping lemmas which we now state and

prove.

Lemma 6. For any integersn > 2 and p > —1,

JA n 2

— (= kPP /1 (L)
0

B

k=1

Proof. The case of p = —1, namely

[y

S 1 /1 1
——< ——dz,
k(n — k) o Va(l —x)

1

e
Il

has already been demonstrated in Maurer ( ). For p> —1, let

(1 —z)P/?

fp(x) = Nz
We will show that each f,(-) is monotonically decreasing on (0,1). Indeed,

df, (1—2): Y pr+1—2)

B (1 —z)P/?
dx () = - 22:3/2

2$3/2

< — < 0,

where for the inequalities we have used the fact that p > —1 and x € (0,1). We therefore see
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that
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Intuitively, the proof of the above lemma works by bounding the integral below by a Riemann
sum. In the following lemma we actually calculate this integral, yielding a more explicit bound
on the sum in Lemma 6. We found it is easier to calculate a slightly more general integral,

where the 1 in the limit and the integrand is replaced by a positive constant a.

Lemma 7. For any real number a > 0 and integer n > —1,

*(a— )"/ D(52) b
~——dr =T a2 .
/o NG r(*5?)

Proof. Define

L(*5) »n

a ? .
(%)

= a—(a_x)n/g xr an a) .= T
L= [ and fy() = v

We proceed by induction, increasing n by 2 each time. This means we need two base cases.

First, for n = —1, we have

I (a) = /O \/ﬁdm - {2 arcsin \/ﬂo =7 = f1(a),

since I'(3) = /7 and I'(1) = 1. Second, for n = 0,

o) = [ —=da = [2v]; = 2va = fa).
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since I'(2) = \/TE Now, by the Leibniz integral rule, we have

n+2

(a—z)2 n+2 [*(a—1x)2 n+2
2 / da T v 2 /0 NG ’ 2 (@)

Thus

I,.a(a) ”;2 UO In(t)dt+1n(0)] -t 2 /0 I, ()dt,
since 1,,(0) = 0.

Now, for the inductive step, suppose I,,(a) = f.(a) for some n > —1. Then, using the

previous calculation, we have

In+2(a) =

This completes the proof. O

We are now ready to prove Lemma 3 which, for ease of reference, we restate here. For
integers M > 1 and n > M,

M M-2

> P S i
M
k€S>0 H] 1 7

Proof. (of Lemma 3) We proceed by induction on M. For M = 1, the set S,, y; contains a single

element, namely the one-dimensional vector k = (k;,) = (n,). In this case, the left hand side

is 1/4/n while the right hand side is v/7/(y/nI'(1/2)) = 1/4/n, since I'(1/2) = /7.

Now, as the inductive hypothesis, assume the inequality of Lemma 3 holds for some fixed
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M > 1 and all n > M. Then for all n > M + 1, we have

RJEE RN JESNS
M+1 - M
kes;,?\/ﬂr Hj:l k] k1=1 k;l k'GSiO H]:l ki_;
n—M M M-—2
1 72 (n — kl) . . .
< (by the inductive hypothesis)
vk ()
T3 " (n— k)T
M n—1 M-—2
T2 (n—Fky) 2 ) )
< (enlarging the sum domain)
M)z Ve
M 1 M-—2
2 _ 1— 2
< WM nM21/ ¢dx (by Lemma 6)
r ?) 0 T
M M
2 M-1 F(—
= T T (by Lemma 7)
L(%g) L(%57)
M+l M1
Tz n e
LS -
as required. 0

A.3.4 Proof of Proposition 1

The first part of the theorem, namely kl(g;||p;) < kl(q||p) for all j, can be straightforwardly
obtained via the data processing inequality found in Van Erven and Harremos ( ), but we

give here an elementary proof.

Proof. The case where g; = 1 or p; = 1 can be dealt with trivially by splitting into the three

following sub-cases
e ¢ =p; =1 = Kl(g;llp;) = Kl(q|p) =0
e ¢;=1,p; #1 = Kl(gllp;) = kl(qllp) = —logp;
e qj #1,p; =1 = Kl(gjllp;) = kl(q[|p) = oo.
For g; # 1 and p; # 1 define the distributions q,p € Ay by ¢; = p; = 0 and

i = qi

and Di = 1 fip'
j
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for 7 # j. Then

i - 1 —q;)a
> a 10gi = (1 —g)d 108;(—%_);

i P iz (L= pib:
B G —qj
=(1-¢;) > glog= + Gilog
7 pi 1 —p;
1]
e 1—g;
= (1= g;)kl(ql[p) + (1 —gj)log { —
J

q.
> (1—g;)log 1_p’.-
J

The final inequality holds since kl(g||p) > 0. Further, note that we have equality if and only if
q = p, which, by their definitions, translates to

for all 7 # j. If we now add ¢, log % to both sides, we obtain

Ki(qllp) > (1 - ¢,)log T—= +q;log = = Kl(g; ).
—DPj pj

with the same condition for equality. O]

The following proposition makes more precise the argument found at the beginning of Sec-

tion 3.5 for how Proposition 1 can be used to derive the tightest possible lower and upper

bounds on each R’,(Q).

Proposition 5. Suppose that q,p € Ay are such that kl(q||p) < B, where q is known and p
1s unknown. Then, in the absence of any further information, the tightest bound that can be
obtained on each p; is

p; <kl"'(g;, B).

Proof. Suppose p; > kl™'(g;, B). Then, by definition of kI™!, we have that kl(g;|p;) > B. By
Proposition 1, this would then imply kl(q||p) > B, contradicting our assumption. Therefore

p; < klI™!(g;, B). Now, with the information we have, we cannot rule out that

_1—MA

bi = )
I—gq

for all 7 # j and thus, by Proposition 1, that kl(¢;||p;) = kl(q||p). Further, we cannot rule out
that kl(q|/p) = B. Thus, it is possible that kl(g;||p;) = B, in which case p; = kI™*(¢;, B). We
therefore see that kl™'(g;, B) is the tightest possible upper bound on p;, for each j € [M]. O
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A.3.5 Proof of Theorem 12

Before proving the proposition, we first argue that kl,'(u|c) given by Definition 8 is well-
defined. First, note that A, := {v € Ay : kl(u||lv) < ¢} is compact (boundedness is clear
and it is closed because it is the preimage of the closed set [0, ¢] under the continuous map
v — kl(ul|v)) and so the continuous function f, achieves its supremum on A,. Further, note
that A, is a convex subset of Ay, (because the map v — kl(u||v) is convex) and f is linear, so
the supremum of f, over A,, is achieved and is located on the boundary of A,. This means we
can replace the inequality constraint kl(u||v) < ¢ in Definition 8 with the equality constraint
kl(u||v) = c. Finally, if u € A3} then A, is a strictly convex subset of Ay (because the map
v — kl(ul|v) is then strictly convex) and so the supremum of f, occurs at a unique point on
the boundary of A,. In other words, if w € A3 then kI, ' (ulc) is defined uniquely.

We now prove Theorem 12. While our proof technique is somewhat analogous to the tech-
nique used in Clerico et al. ( ) to obtain derivatives of the one-dimensional kl-inverse,
our theorem directly yields derivatives on the total risk by (implicitly) employing the envelope

theorem (see for example Takayama and Akira ( )

Proof Outline: We first derive the expression given for v*(a) = kl, ' (u|c) given on line (3.3)
of the theorem using the method of Lagrange multipliers. Since we are working on the simplex,
we make things easier for ourselves by first making the substitution ¢; = In v; to make the v; > 0
constraints unnecessary. The method of Lagrange multipliers yields both the maximum and
the minimum (recall that kl, ' (u|c) is defined as the location of a maximum) for the two values
of the Lagrange multiplier ;. We show that exactly one of these values lies in the interval
p € (—oo, —max; ¢;) and that this one corresponds to the maximum. This shows that the
value p* Theorem 12 instructs us to find indeed yields v*(@) = kl, *(u|c). Finally, we derive
the partial derivatives of kI, ! (u|c) with respect the 7i; to obtain the second part of the theorem,

namely line (3.4) by employing the envelope theorem.

Proof. (of Theorem 12) We start by deriving the implicit expression for v*(@) = ki, ' (ulc)
given in the proposition by solving a transformed version of the optimisation problem given
by Definition 8 using the method of Lagrange multipliers. We obtain two solutions to the
Lagrangian equations, which must correspond to the maximum and minimum total risk over
the set A, := {v € Ay : kl(u||v) < ¢} because, as argued in the main text (see the discussion
after Definition 8), A,, is compact and so the linear total risk fe(v) attains its maximum and
minimum on A,,.

By definition of v*(@) = ki, ' (u|c), we know that kl(v*(@)|u) < c. Since, by assumption,
u; > 0 for all j, we see that v*(@); > 0 for all j, otherwise we would have kl(v*(@)||u) = oo, a
contradiction. Thus v*(@) € A7) and we are permitted to instead optimise over the unbounded

variable t € RM, where t; := Inv;. With this transformation, the constraint v € Ay, can be
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replaced simply by > i e’ = 1 and the optimisation problem becomes

M
Maximise: F(t) := Zﬁjetﬂ'

j=1
Subject to:  g(t;u,c) == kl(ul|e*) — c =0,

where et € RM is defined by (e?); := €. Note that F(t) = fy(e). Following the terminology
of mathematical economics, we call the t; the optimisation variables, and the @; (namely the
u; and c) the choice variables. The vector £ is considered fixed—we neither want to optimise
over it nor differentiate with respect to it—which is why we occasionally suppress it from the
notation henceforth.

For each u, let v*(w) and t*(u) be the solutions to the original and transformed optimisation

¢ is one-to-one, it is clear that since v*(@) exists

problems respectively. Since the map v = e
uniquely, so does t*(@), and that they are related by v*(@) = e*"(®. We therefore have the
identity

fe(v'(n)) = F(t"(a)).

Recalling that f;(u) := fe(v*(w)), we see that
Vafi(t) = VaF(t"(a)). (A.3)

the derivatives of fo(kl,*(u|c)) with respect to w and c are given by Vg F(t*(1)).

Using the method of Lagrange multipliers, there exist real numbers \* = A\*(@) and p* =
p* (@) such that (¢, \*, u*) is a stationary point (with respect to ¢, A and p) of the Lagrangian
function
Lt p;a) = F(t) + Ag(t;u) + ph(t).

Let Fi(-) and h¢(-) denote the gradient vectors of F' and h respectively, and let g¢(- ;@) and
ga(t; - ) denote the gradient vectors of g with respect to t only and @ only, respectively. Simple

calculation yields

oy (99, - 99, =\ _
ge(t;w) = (8151 (t,u),...,atM (t,u)) = —u and
() = @(t-a) i(t-ﬂ) :<1—t + logu 1 —ty + logu —1)
Ga\l; a'ELl ) 7.”’8/&M+1 ) 1 1y---) M M :

(A.4)

Then, taking the partial derivatives of £ with respect to A, 11 and the t;, we have that (¢, \, p) =

(t*(a), \*(w), u*(@)) solves the simultaneous equations

Fy(t) + Age(t;w) + phe(t) =0, (A.5)
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where the last two equations recover the constraints. Substituting the gradients Iy, g¢ and hy,
the first equation reduces to
Lo et — M+ pet =0,
which implies that for all j € [M]
t; A,
] = .
1t

®

(A.6)

Substituting this into the constraints g = h = 0 yields the following simultaneous equations in

Aand p

M
c = kl(ulle?) Zujlog o Zujlog 5 and )\Z ij =1.
— [ j
7j=1

Substituting the second into the first and rearranging the second, this is equivalent to solving

) and AZ(;MT@> . (A7)

It has already been established in the discussion after Definition 8 that f,(v) attains its maxi-

M
C—Zujlog<u+€ Z
7j=1 k=

mum on the set A, := {v € Ay : kl(u||v) < c¢}. Therefore F(t) also attains its maximum on
RM and one of the solutions to these simultaneous equations corresponds to this maximum. We
first show that there is a single solution to the first equation in the set (—oo, — max; ¢;), referred
to as p*(w) in the proposition. Second, we show that any other solution corresponds to a smaller
total risk, so that p*(@) corresponds to the maximum total risk and yields v*(@) = kl, *(ulc)
when p*(@) and the associated \*(@) are substituted into Equation A.6.

For the first step, note that since the €% are probabilities, we see from Equation A.6 that
either p+¢; > 0 for all j (in the case that A > 0), or u+¢; < 0 for all j (in the case that A < 0).
Thus any solutions p to the first equation must be in (—oo, —max; ¢;) or (—min;¢;,00). If
p € (—oo, —max; ¢;) then the first equation can be written as ¢ = ¢g(p), with ¢ as defined
in the statement of the proposition. We now show that ¢, is strictly increasing in u, and that
Ge(p) = 0 as pp = —oo and ¢p(p) — 00 as p — —max; {;, so that ¢ = ¢(1) does indeed have
a single solution in the set (—oo, —max; ¢;). Straightforward differentiation and algebra shows
that

(Z ETR AP B +2/>2>

k'=1

/e(ﬂ):z M+€)Zk 1

7j=1 H+Zk

ZM Uj 2 - zM uj
=1 G =1 Gr)?
Zk‘ 1 /J“ka
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Jensen’s inequality demonstrates that the numerator is strictly negative, where strictness is
due to the assumption that the ¢; are not all equal. Further, since the denominator is strictly
negative (since we are dealing with the case where 1 € (—oo, —max;¢;)), we see that ¢
is strictly increasing for p € (—oo, —max;¢;)." Turning to the limits, we first show that
Ge(p) — 00 as p — —max; {;.

We now determine the left hand limit. Define J = {j € [M] : {; = maxy ¢} }, noting that
this is a strict subset of [M] since by assumption the ¢; are not all equal. We then have that

j_j@) <;ﬁ(_ (u+€k>)“’“>

D ) IT (= (et e)™ IT (= (ut )™
i'¢J J keJ k'gJ
H

for p € (—oo, max; ¢;)

M
Be(n) —
e — _
Zu

pt )™ T (= (et )™

EgJ

(ZJEJ > (Hk/eJ (= (u+ ék’))w>

( — (,U + max; gj))l_zke‘]uk

The first term in the numerator is a positive constant, independent of p. The second term in
the numerator tends to a finite positive limit as p T —max; ¢;. Since [M]\ J is non-empty,
the power in the denominator is positive and the term in the outer brackets is positive and
tends to zero as T —max; ¢;. Thus e® ) - 00 as 1 — max; ¢; and, by the continuity of the
logarithm, ¢p(p) as p T — max; ¢;.

We now determine lim,_,_ ¢¢(1t) by sandwiching ¢(u) between two functions that both

tend to zero as p — —oo. First, since ¢; > 0 for all j, for p € (—o0, —max; ¢;) we have

M M
10g<—zﬂj_j£j>Zlog(—Z%)z—log Zu]log

J=1

and so

M M
/.
- E u;log(—p) + E ujlog (— (n+¢;)) = g u; log (1—1——]) —0 as pu— —oo.
: : w
J=1 J=1

Similarly,

Z u; 1og (+45) Z ujlog(—p) = log(—p),

ncidentally, this argument also shows that there is at most one solution to the first equation in (A.7) in
the range (—min; £;, 00). There indeed exists a unique solution, which corresponds to the minimum total risk,
but we do not prove this.
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and so

M M
uj u;j
¢g(u)§log<ug /L—|—J£4>:10g(2 J€j>—>0 as L —» —o0.
j=1 J j= n

—~1+4

This completes the first step, namely showing that there does indeed exist a unique solution
p*(w) in the set (—¢;,00) to the first equation in line (A.7).

We now turn to the second step, namely showing that this solution corresponds to the

maximum total risk. Given a value of the Lagrange multiplier p, substitution into Equation

A.6 gives
Ui
¢ () = =
Zk 1 #+zk
and therefore total risk
S,
J +2;
R(p) = =5~

Zk 1 ,u,-i-fk

To prove that the solution p*(w) € (—oo, —max; ¢;) is the solution to the first equation in line
(A.7) that maximises R, it suffices to show that R(u) — Z]Ail u;l; as |p| — oo and R'(pu) >0
for all 4 € (—o0, —max; ;) U (—min; ¢;, 00), so that

inf R > swp  R().

HE(—o0,— max; £;) € (—ming £;,00)

This suffices as we have already proved that p*(@) is the only solution in (—oo, —max; ¢;) to

the first equation in line (A.7), and that no solutions exists in the set [— max; ¢;, — min; (;].

The limit can be easily evaluated by first rewriting R(x) and then taking the limit as

|p| — oo as follows
YL HE

=t D1 U -
R(,LL) = M uH S Z
> k=1 1+’; Zk 1 Uk j=1

To show that R'(u) >
arbitrarily), so that Ly < --- < L, and use the quotient rule to see that

M 7’&][]' —u
(Zk 1 ,H-ék) (21:1 (u+ej)2> o (ZJ 1 u+£ ) (Zk 1 u+fZ)2> >0
3 =
M Up
(Zp:l ,u—i—€p>

‘ﬁiZM: wjugl; ( I )>O
(b +G) (4 ) \p+le p+4;)

7j=1 k=1

— ujurl(s) ( 1 1 )
_
j,l%:M] (e + L)+ Llwy) \p+Lay  p+ Ly
k<j

Z ujuRl ;) < 1 B 1 ) -
G.k€[M] (+ L)+ Lay) \u+loy  p+ely)
k>j

0, let £(;y denote the j’th smallest component of £ (breaking ties

R(u) >0 «<—
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where in the final line we have dropped the summands where k = j since they equal zero as
the terms in the bracket cancel. This final inequality holds since the first sum can be bounded

below by the negative of the second sum as follows

Z ujukﬁ(j) ( 1 _ 1 )
(L + L)+ L) \p+Llay p+lg

J.ke[M]
k<j
iUkl () ( 1 1 ) ' |
2: _ since {) < {5 for k < j
J.ke[M) (4 L)+ L) \p+ Ly p+Ly) ( (k) = *() )
k<j
urusl ) 1 1 | | |
i - d bles j, k).
j ,%:M] (14 L) (1 + L) <u +05 L (swapping dummy variables j, k)
7k>]

We now turn to finding the partial derivatives of F'(¢*(@)) with respect the @;, which in turn
will allow us to find the partial derivatives of kl,*(u|c). Let V4 denote the gradient operator

with respect to @. Then the quantity we are after is Vg F(t*(u)) € RM*L the jth component

of which is
M+1
oF oty ot*
(@) =Y ()= (a) = Fy(t*(a)) - i) € R.
(VaF(t (@), ;Gtka (@) g5t (@) = Fu(t'(®) - - (6) €
Thus the full gradient vector is
VaF (£ (@) = F(t (@) Vat' (@), (A8)

where Vgt*(@) is the M x (M + 1) matrix given by

o

(Vﬂt*(ra))j’k = %, (@).

Finding an expression for this matrix is difficult. Fortunately we can avoid needing to by using

a trick from mathematical economics referred to as the envelope theorem, as we now show.

First, note that since, for all @, the constraints g = h = 0 are satisfied by t*(@), we have
the identities
g(t"(a),u) =0 and h(t(a))=0.

Differentiating these identities with respect to @; then yields

ot* ot _

g (t*(a),a) - oL (@) + g, (t"(w),a) =0 and h(t*(a)) - o (w) = 0.

As before, we can write these M + 1 pairs of equations as the following pair of matrix equations
gt (u),u)Vat'(u) + ga(t (w),u) =0 and hy(t*(u))Vat*(a) =0.
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Multiplying these identities by A*(w) and p*(w) respectively, and combining with equation
(A.8), yields

VaF (" (@) = (Fu(t" (@) + X (@)gu(t" (@), @) + " (@)he(t' (@) ) Vat* (@)
X (@) ga(t' (@), @)
= X (@)ga(t" (@), @),

where the final equality comes from noting that the terms in the large bracket vanish due to
equation (A.5). Recalling the expression for g;(t; @) given by Equation A.4 and that v*(u) =

exp(t*(@)) we obtain

VaF(t (@) = )\*(f&,)(l — (@) +logu, ..., 1 — £ (@) + log unr, _1)

Uy

- Upnr
= )\* l1+log————,....14+]log———m. —1
<u>( Flog e 1 log )

Finally, recalling Equivalence (A.3), namely Vgaf,(u) = VaF(t*(@)), we see that the above
expression gives the derivatives %(ﬁ) and %if(ql) stated in the proposition, thus completing
J

the proof. n
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Appendix B

Additional Material for Chapter 4

Figure B.1 demonstrates a case in which compression via k-means can produce a tighter discrete

PAC-Bayes bound than that produced without compression, as promised in Section 4.5.1.
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Figure B.1: Quantisation via k-means for hy,p € MLP (40 512,10y trained on MNIST1D. Verti-
cal line shows string length of uncompressed network. Top left: As k increases the error of the
compressed network converges to the error of the original (horizontal line). Top right: The mar-
gin loss of the compressed network remains trivial until £ = 1024. Bottom left: Error bounds
(inverting kl) eventually decrease below the discrete PAC-Bayes bound without compression
(horizontal line), albeit by an almost trivial amount. Bottom right: Error bounds (Pinsker’s
inequality) increase with k£ up to a peak at k& = 1024 where there is a modest decrease; all
bound values improve over the PAC-Bayes bound without compression (horizontal line).
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Appendix C

1 Material for Chapter 5
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