
Neural Network Generalisation in the

Overparameterised Regime

Reuben J. Adams

Department of Computer Science

University College London

A thesis presented for the degree of

Doctor of Philosophy

November 19, 2025

Declaration of originality and

contribution

I, Reuben J. Adams, confirm that the work presented in this thesis is my own. Where in-

formation has been derived from other sources, I confirm that this has been indicated in the

thesis.

The work in Chapter 3 was completed with the guidance and assistance of my supervisors,

Benjamin Guedj and John Shawe-Taylor. John Shawe-Taylor laid some of the conceptual

framework and outlined the initial proof strategy, while Benjamin Guedj offered supervisory

guidance throughout, including feedback on ideas, assistance with the introduction, editorial

input across multiple drafts, and support during the publication process.

The remainder of the thesis is entirely my own work, conducted under the formal supervision

of my supervisors.

3

Abstract

The generalisation mystery is the gap in our understanding of why commonly used Deep Learn-

ing algorithms produce neural networks that generalise to unseen data, even using large archi-

tectures with capacity far greater than that required to fit their training data exactly. Solving

this puzzle would theoretically ground the astonishing empirical success of neural networks,

potentially enabling them to be used with greater understanding and with quantitative per-

formance guarantees. We make three contributions towards answering this question. First, we

extend a classic PAC-Bayesian generalisation bound to provide more information-rich test time

guarantees. Second, we demonstrate that PAC-Bayesian bounds on deterministic networks can

be tightened by relating their performance to compressible neighbouring networks. Finally,

we take a more empirical approach and show that the generalisation ability of a network is

connected to its compressibility via distillation.

4

Impact

While there are no immediate practical or commercial applications of the research presented in

this thesis, it nevertheless contributes to the academic community’s theoretical understanding

of deep learning. In Chapter 3 we prove a generalisation of a well-known theoretical result and

thereby shed light on the extent to which theory can explain, predict and control the balance of

different types of error a learning algorithm is likely to make. This constitutes a step forward

in the pursuit of self-certified learning, in particular with information-rich certificates, which

would enable Deep Learning researchers and practitioners to fully exploit their data. The

work in Chapters 4 and 5 attacks a core mystery in deep learning, the generalisation mystery,

elucidating the role of confidence (margin) and compressibility of neural networks in explaining

their generalisation. We believe this brings the community closer to a full explanation of

the generalisation mystery, which would have a profound impact on deep learning theory and

practice.

This work was supported by the UK Engineering and Physical Sciences Research Council under

grant number EP/S021566/1.

5

Declaration of research paper

Chapter 3 of this thesis, Controlling Multiple Errors Simultaneously with a PAC-Bayes Bound,

has been published as a peer-reviewed paper of the same name at the NeurIPS 2024 conference,

as joint work with my supervisors Benjamin Guedj and John Shawe-Taylor Adams et al. (2024).

Copyright has been retained by the authors. The published paper is available at NeurIPS or

arXiv.

Signed: Reuben Adams

Date: 21st May 2025

Signed: Benjamin Guedj

Date: 2nd June 2025

Signed: John Shawe-Taylor

Date: 2nd June 2025

6

https://proceedings.neurips.cc/paper_files/paper/2024/hash/09887fac6cb071922e870090ce32aeff-Abstract-Conference.html
https://arxiv.org/abs/2202.05560

Acknowledgements

Thank you to my family for being eternally proud of me, which has been a huge source of

comfort. Thank you to the taxpayer, who funded this work and my life for the past four years.

Thank you to Daria Levin for her incredible support over the past three years. Thank you

to Mitchell Deen for his consistently sound advice; the alternate version of me who took all

rather than merely most of it has fewer grey hairs. Thank you to Fredrik Hellström for the

many enjoyable and insightful technical discussions which gave me the confidence to pursue

the final two chapters of this thesis. Thank you to Oscar Key for answers to truly endless

coding questions in the pre-Claude era, which took my software engineering skills to the next

level. Thank you to Jude Wells for his incredible hospitality, which allowed me to keep one

foot in London after moving to Oxford, and for nerd-sniping me with my own research on

the occasion its intrigue required some rekindling. Thank you to Robert Kirk for many in-

depth discussions on AI Safety, which really sharpened my thinking. Thank you to Felix Biggs

for many illuminating technical conversations that helped shape my high-level research taste.

Thank you to the many instantiations of Claude, whose endearing personality and indefatigable

enthusiasm made for a stellar work partner. Thank you to the many friends who have offered

support, advice and diversion, especially Garazi Muguruza for her grounding warmth, Evie

Jamieson and Maximilian Maier for three great years at Hendos including many cathartic

conversations on the ups and downs of the PhD experience, Andy Allan and Lothar Krapp

for their continued support and friendship over many years and for eagerly agreeing to listen

to practice talks, Jean Kaddour for his infectious enthusiasm and generous hospitality, Ryan

Brown for his encouragement in the final days of writing, Antonin Schrab for his humour and

reminders of the existence of pubs, and Chris Lloyd, Gemma Paterson, Luzia Bruckamp and

Ishbel Mackenzie for their advice and friendship. Thank you to my supervisor Benjamin Guedj

for his continued support throughout many hurdles, and the research freedom he offered. Thank

you to my secondary supervisor John Shawe-Taylor for sharing the core insight that grew into

the first chapter of this thesis. Thank you to Sharon Betts for her support of the Steering

AI podcast and the many events we held together, and for her supererogatory investment in

my well-being and career development. Thank you to Chris Watkins, Marc Deisenroth and

Lewis Griffin for humouring me by coming on the podcast. And thank you to those at the AI

Centre who showed patience or even interest when I talked about the risks of losing control of

advanced AI. To have played a part in fostering the now commonplace interest in AI Safety at

the AI Centre is perhaps my proudest achievement from my time at UCL. Finally, thank you

7

to my examiners Jeremias Knoblauch and Tim van Erven for their detailed reading, helpful

suggestions, and astute comments, which improved this thesis.

8

Contents

Notation 12

1 Introduction 14

1.1 Motivation . 18

2 Background: SLT and the Generalisation Mystery 20

2.1 Classical SLT . 21

2.1.1 Union bounds . 23

2.1.2 Union bounds with a prior over the hypothesis class 24

2.1.3 Uncountable hypothesis classes . 26

2.1.4 Vapnik-Chervonenkis dimension . 27

2.1.5 Rademacher complexity . 28

2.2 What might an explanation of the generalisation mystery look like? 30

2.3 PAC-Bayesian generalisation bounds . 32

2.3.1 Choosing the posterior . 35

2.3.2 Choosing the prior . 37

2.4 PAC-Bayes and the generalisation mystery . 39

2.4.1 Derandomisation of PAC-Bayes bounds 39

2.4.2 PAC-Bayes bounds on a sample from the posterior 40

2.4.3 PAC-Bayes bounds for majority votes . 41

2.4.4 PAC-Bayes bounds for the mean of the posterior 42

2.5 PAC-Bayes and self-certified learning . 42

2.5.1 Test set bounds . 43

2.5.2 Can PAC-Bayes achieve self-certified learning? 44

3 Controlling Multiple Errors Simultaneously with a PAC-Bayes Bound 47

3.1 Introduction . 47

3.2 Related work . 48

3.3 Notation . 50

3.4 Main result . 51

3.5 Construction of a differentiable training objective 53

3.6 Proof of the main bound . 54

3.7 Numerical experiments . 59

9

3.8 Conclusion . 60

4 PAC-Bayes and Compression 62

4.1 Introduction . 62

4.2 Related work . 63

4.3 Theory . 64

4.3.1 Discrete PAC-Bayes . 65

4.3.2 Bounding the discrepancy in output between two MLPs 66

4.3.3 Relating the margin loss of close classifiers 68

4.3.4 Bounding the error of an MLP in terms of the margin loss of its compression 69

4.3.5 A PAC-Bayes compression bound . 70

4.4 Compression schemes . 71

4.4.1 Quantisation via k-means . 72

4.4.2 Quantisation via truncation . 73

4.4.3 Low-rank approximation . 74

4.4.4 Combined approaches . 75

4.5 Experiments . 75

4.5.1 Quantisation via k-means . 76

4.5.2 Quantisation via truncation . 76

4.5.3 Low-rank approximation . 78

4.5.4 Combined approaches . 81

4.6 Conclusion . 82

5 Distillability as a Predictor of Generalisation 85

5.1 Introduction . 85

5.2 Methodology . 87

5.3 Related work . 88

5.4 Training a suite of models . 90

5.5 Distillation complexity . 92

5.5.1 Distillation scheme . 93

5.6 Comparison complexity measures . 97

5.6.1 Norm-based measures . 97

5.6.2 Sharpness-based measures and PAC-Bayes bounds 98

5.6.3 Uncertainty-based measures . 100

5.7 Evaluation criteria . 101

5.7.1 Noisy oracles as baselines . 102

5.8 Results . 103

5.9 Discussion and future work . 104

6 Conclusion 109

6.1 Preliminary Conclusions . 109

6.2 Contributions . 110

10

6.3 Towards a Solution to the Generalisation Mystery 111

6.4 Returning to the Original Motivations . 113

A Additional Material for Chapter 3 116

A.1 Recipe for implementing Theorems 11 and 12 116

A.2 Additional experimental details . 118

A.3 Proofs . 122

A.3.1 Proof of Proposition 3 . 122

A.3.2 Proof of Lemma 2 . 122

A.3.3 Proof of Lemma 3 . 124

A.3.4 Proof of Proposition 1 . 127

A.3.5 Proof of Theorem 12 . 129

B Additional Material for Chapter 4 136

C Additional Material for Chapter 5 137

C.1 Additional complexity measure plots . 137

11

Notation

All notation is introduced at the appropriate time in the body of the thesis. The following

table is for ease of reference for the most commonly used notation.

Symbol Description

X An input space

Y An output space

h : X → Y A hypothesis, predictor, or, for finite Y , a classifier

H ⊆ YX A hypothesis class

A∗ =
⋃∞

n=0A
n The set of tuples of elements of A

S ∈ (X × Y)∗ A sample

△(A) The set of probability measures on the set A

D ∈ △(X × Y) A data-generating distribution

S ∼ Dn An i.i.d. sample of size n drawn from D

P,Q ∈ △(H) Stochastic “prior” and “posterior” hypotheses

A : (X × Y)∗ → H A learning algorithm

A : (X × Y)∗ →△(H) A stochastic learning algorithm

ℓ : H× (X × Y)→ R A loss function

ℓ : Y2 → R A loss function (alternative formulation)

ℓ : Ŷ × Y → R A loss function (alternative formulation)

ℓ01(ŷ, y) = 1[ŷ ̸= y] The zero-one loss

ℓγ(h(x), y) The margin loss 1
[
h(x)y ≤ γ +maxj ̸=y h(x)j

]
RD(h) = E

(x,y)∼D
[ℓ(h(x), y)] The (true) risk of h on D

RS(h) =
1
|S|

∑
(x,y)∈S

ℓ(h(x), y) The empirical risk of h on S

RD(Q) = E
h∼Q

[RD(h)] The (true) risk of Q on D

RS(Q) = E
h∼Q

[RS(h)] The empirical risk of Q on S

12

N = {1, 2, . . . } The natural numbers (excluding zero)

N0 = {0, 1, . . . , } The natural numbers including zero

[n] The integers {1, 2, . . . , n}

ReLU(x) = max(x, 0) The Rectified Linear Unit activation function

MLP(k0,k1,...,kd−1,kd) The set of d-layer ReLU activated multilayer perceptrons

(MLPs) with input dimension k0, output dimension kd, and

hidden dimensions k1, . . . , kd−1

MLP The set of all ReLU activated MLPs

ν ≪ µ The measure ν is absolutely continuous with respect to µ

dν
dµ

The Radon–Nikodym derivative, defined for ν ≪ µ

KL(ν∥µ) =
∫

dν
dµ
dν The Kullback–Leibler divergence of ν from µ

B(p) The Bernoulli distribution with probability of success p

kl(q∥p) = KL
(
B(q)

∥∥B(p)) The “small kl”

kl−1(q|B) The “inverse” small kl sup
{
p ∈ [0, 1] : kl(q∥p) ≤ B

}
△n The simplex

{
u ∈ [0, 1]n :

∑n
i=1 ui = 1

}
kl(q∥p) =

∑n
i=1 qi ln

qi
pi

The vector “small kl” for q,p ∈ △n

∥W∥frob =
√∑

i

∑
j W

2
i,j The Frobenius norm of the matrix W

∥W∥spec = σmax(W) The Spectral norm of the matrix W , where σmax(W) is the

largest singular value of the matrix W

|s| The length of a binary string s ∈ {0, 1}∗

13

Chapter 1

Introduction

We study the problem of explaining the empirically observed generalisation ability of overpa-

rameterised neural networks. A model is often considered overparameterised if its number of

parameters is much larger than the number of samples used to train it. A more accurate view is

that a model is overparameterised if it has the capacity to perfectly fit the training data in ways

which do not generalise. The fact that ordinary training methods such as Stochastic Gradient

Descent (SGD) nevertheless produce models that generalise well even in the overparameterised

regime then immediately presents a puzzle, articulated in Zhang et al. (2016) and Belkin et

al. (2019) among others, often called the generalisation mystery—what is it about the inter-

play between the network architectures, data-generating distributions and learning algorithms

commonly used in Deep Learning (DL) that enables the algorithms to pick out interpolating

solutions that generalise, rather than one of the many that do not? In more common parlance,

why do neural networks large enough to overfit frequently avoid doing so?

In order to give a more precise formulation of the generalisation mystery, we first give the

following general definition of a learning problem, which encompasses many applications of DL,

including regression and classification. We then define what it means for a learning problem to

be overparameterised, and finally give a more precise statement of the generalisation mystery.

Definition 1. (Learning problem). A learning problem is defined as a tuple (X ,Y , D, S,H, ℓ),
where X is an input space, Y is an output space, D ∈ △(X × Y) is a data-generating distri-

bution, S ∼ Dn is an i.i.d. sample, H ⊂ YX is a hypothesis class (also called a model) and

ℓ : H × (X × Y) → R is a loss function. The data-generating distribution D is considered to

be unknown.

The goal of a learning problem is to find a hypothesis h ∈ H with low true risk

RD(h) := E(x,y)∼D

[
ℓ(h, (x, y))

]
. (1.1)

Since the distribution D and hence the true risk RD(h) is unknown, it is common to choose a

hypothesis h that minimises the empirical risk

RS(h) :=
1

|S|
∑

(x,y)∈S

ℓ(h, (x, y)). (1.2)

14

Choosing h in this way is called Empirical Risk Minimisation (ERM).

To see how neural networks fit into this framework, suppose we have a fixed network archi-

tecture with input dimension din, output dimension dout, and parameters w ∈ Rd considered as

a single vector. Such a network can be used when X ⊆ Rdin and either Y ⊆ Rdout or Y = [dout].

In the case where Y = Rdout , for example regression, one can simply take the hypothesis class

to be H = {hw : w ∈ Rd}, where hw : X → Y is the function expressed by the neural net-

work with parameters w. In the case where Y = [dout], for example classification, one may

instead let ϕw : X → Y denote the function expressed by the neural network, and then define

hw(x) = argmaxj∈[dout] ϕw(x)j, namely the coordinate j of the largest value of the vector output

ϕw(x) ∈ Rdout of the neural network. This extra step is required to ensure that the codomain

of hw is Y = [dout]. In either case, we say that the hypothesis class has been induced by the

network architecture.

The question now arises as to the choice of architecture. In particular, how flexible it should

be in terms of the functions it can express. Conventional wisdom holds that there is a sweet

spot. If the architecture is too small, the expressivity of the network will be so limited that

there will not exist parameter settings for which RD(hw) is low. This is termed underfitting,

and the network is said to be underparameterised. Conversely, if the architecture is too large,

the network will be so expressive that there will exist parameter settings for which RS(hw) is

low yet RD(hw) is high, and algorithms such as ERM are then liable to choose such parameter

settings. The traditional view then holds that in either case the true error RD(hw) will be

higher than it would be with an architecture whose size lies somewhere in the middle.

The case where the network architecture is too large is frequently called overfitting. This is

appropriate in the case of noisy data1, where the network is liable to fit the noise as well as the

signal. But the existence of parameter settings for which RS(hw) is low yet RD(hw) is high is

clearly problematic for algorithms such as ERM even in the absence of noise. For this reason,

we call this case overparameterisation rather than overfitting, as in the following definition.

Definition 2. (Overparameterised regime). Let (X ,Y , D, S,H, ℓ) be a learning problem, where

the hypothesis class H = {hw : w ∈ Rd} is induced by a neural network architecture with

parameters w ∈ Rd. We say that the learning problem (or simply the neural network) is

overparameterised, or is in the overparameterised regime, if there exists a parameter setting

w ∈ Rd such that RS(hw) is low while RD(hw) is high.

Informally, we say that a network is overparameterised if it is flexible enough to express

functions that perform well on the sample while performing badly on the distribution. In

other words, it can express functions that do not generalise. Intuitively, one should not expect

training an overparameterised neural network by minimising RS(hw) via SGD, without any

explicit regularisation, to yield good results. After all, why should this process not locate a

parameter settin for which RS(hw) is low while RD(hw) is high, which we know to exist? But

it is an empirical fact that this does in fact frequently succeed, in the sense that it frequently

1A data-generating distribution D ∈ △(X ×Y) for a classification task is termed noisy if there does not exist
a function f : X → Y for which P(x,y)∼D(f(x) = y) = 1.

15

yields parameter settings for which both RS(hw) and RD(hw) are low. In other words, it yields

functions hw that generalise. The unexplained empirical success of DL in the overparameterised

regime is termed the generalisation mystery, which we formalise in the following definition.

Definition 3. (Generalisation Mystery) The generalisation mystery is the mystery of why, in

the overparameterised regime, learning algorithms commonly used in the field of Deep Learning,

such as minimisation of the empirical risk RS(hw) via SGD, frequently yield parameter settings

w for which the true risk RD(hw) is low, even in the absence of explicit regularisation.

It may be objected that our formalisation of the generalisation mystery and the overparam-

eterised regime fail to specify thresholds for what counts as low empirical risk and high true

risk. This is not possible since the thresholds depend on properties of the learning problem,

such as the range of the loss function or the irreducible risk of the data-generating distribution

(i.e. the Bayes error in the classification setting), and other contingent or subjective factors.

However, in DL practice the difference is often quite stark. For example, in classification with

deep neural networks, one can commonly find parameter settings with essentially zero train er-

ror and 50% test error, as shown by Zhang et al. (2016) on the CIFAR10 dataset (Krizhevsky,

Hinton, et al., 2009).

Further, one may object that the term overparameterisation is not ideal, since what char-

acterises the overparameterised regime in Definition 2 is not the number of parameters d of

the neural network per se, but rather the neural network’s capacity to express different func-

tions. Indeed, one can trivially construct neural networks with arbitrarily many parameters

but low expressivity. For example, if the first hidden layer has dimension one, then the net-

work will be severely restricted in its expressivity however many subsequent layers there are

of whatever size. Conversely, one can construct highly expressive networks with only a single

parameter by appropriate choice of activation function. For example, it can be shown that

hw(x) = 1[sin(wx) > 0], which can be considered a very simple neural network with activation

functions sin and sign, is highly expressive while having only a single parameter. Nevertheless,

commonly used architectures almost invariably increase in expressivity with increasing numbers

of parameters, making the terminology largely unproblematic in practice.

What would it mean to solve the generalisation mystery? One approach, taken by Statistical

Learning Theory (SLT), is to prove generalisation bounds (Bousquet et al., 2003; Vapnik, 1999).

These typically bound (with high probability) the generalisation gap, namely the difference

RD(h)−RS(h) between the true and empirical risks. Early SLT focused on uniform bounds on

the generalisation gap, where the value of the bound does not depend on h, and the bound holds

with high probability for all h ∈ H simultaneously. This forces the bound to be loose enough

to accommodate the worst-case generalisation gap, which, in the overparameterised regime, is

by definition large. Uniform bounds are therefore incapable of explaining the generalisation

mystery, as the bound will be too loose to explain the small generalisation gap of the learned

network. In the classification setting, such bounds are typically vacuous, meaning they are

larger than 1 and so fail to constrain the generalisation gap at all.

PAC-Bayesian theory, pioneered in the seminal works McAllester (1998) and Shawe-Taylor

16

and Williamson (1997), is a more modern branch of SLT used to derive non-uniform general-

isation bounds, which has enabled it to have much greater success in producing non-vacuous

generalisation bounds in the overparameterised regime (Dziugaite and Roy, 2017; Pérez-Ortiz

et al., 2021; Zhou et al., 2018). However, non-uniform bounds alone also cannot resolve the gen-

eralisation mystery, since they simply shift the question of why commonly used DL algorithms

pick out parameter settings for which the true risk is low, to the question of why they pick

out parameter settings for which the bound is small. That empirical fact is left unexplained.

While this is not an issue for PAC-Bayes-inspired learning algorithms, which employ the bound

as a training objective (e.g. Dziugaite and Roy (2017)), it is primarily the generalisation of

commonplace learning algorithms that we wish to explain. Other obstacles to PAC-Bayesian

theory resolving the generalisation mystery are discussed in Chapter 2.

An independent approach to explaining the generalisation mystery is to search for measures

of neural networks that are empirically predictive of generalisation across a large dataset of

networks (Jiang et al., 2019; Neyshabur et al., 2017a; Unterthiner et al., 2020). This may

be motivated by an appeal to Occam’s razor; of all the interpolating solutions, perhaps the

simple ones are more likely to generalise. Such measures are often termed complexity measures.

Ideally, one is able to find a complexity measure that is both predictive of generalisation and

corresponds to some intuitive notion of complexity. Further, it should be the case that an

increase in the complexity measure is causally responsible for an increase in generalisation gap,

rather than merely correlated.

These lines of research are complementary. On the one hand, empirical discoveries of pre-

dictive and causal complexity measures motivate the search for rigorous generalisation bounds

leveraging such complexity measures. On the other hand, tight non-uniform generalisation

bounds suggest complexity measures that can be studied empirically. A full explanation of the

generalisation mystery will likely require a synthesis of the two approaches.

We now outline our three contributions to the investigation of this question.

1. One hope for generalisation bounds is that they may ultimately be tight enough to enable

self-certified learning. This is where test set bounds are replaced by generalisation bounds,

eliminating the need to withhold data from the training algorithm in order to validate

its output. In the ideal case the certificate is information-rich. For example, rather than

bounding simply the error rate of a classifier, it should provide rich information on which

misclassification errors the classifier is more or less likely to make. We take one step

in this direction in Chapter 3 by proving a very flexible generalisation of a well-known

PAC-Bayes bound. Our generalisation constrains the entire distribution of the output

of a predictor (such as a neural network) over a set of user-specified error types, and

therefore is not limited to multiclass classification in particular. Further, we show that

controlling the entire distribution over error types implies bounds on every possible linear

combination of the error types, which all hold simultaneously with the same probability

as the original bound.

2. PAC-Bayesian theory predominantly addresses stochastic models which, for neural net-

17

works, generally equates to a distribution over the weights, where a fresh sample from

this distribution is drawn for each prediction. This is counter to common DL practice

and therefore constitutes a significant obstacle in the ability of the PAC-Bayesian theory

to explain the generalisation mystery. In Chapter 4 we investigate whether the empir-

ically observed compressibility of neural networks trained by ordinary methods can be

exploited to do away with the stochasticity usually required by PAC-Bayesian theory,

while still obtaining non-vacuous generalisation bounds. In other words, we investigate

the ability of PAC-Bayesian theory to produce tight generalisation bounds for determin-

istic networks trained by ordinary methods, which should be the ultimate goal of SLT.

We prove a result which bounds the true error of a deterministic neural network in terms

of the empirical margin loss of its compression, plus a term that measures the size of the

compressed network. The required margin is smaller for higher fidelity compressions. In

other words, we show that if a network has large margin on the train set, and there exists

a high-fidelity compression, then this network generalises.

3. Many neural network complexity measures proposed in the literature, including some

derived from rigorous generalisation bounds, have been empirically shown to negatively

correlate with generalisation gap (Jiang et al., 2019). While this still makes them pre-

dictive of generalisation gap (for which only positive mutual information between the

complexity measure and the generalisation gap is required), a complexity measure worth

the name should positively correlate with generalisation gap. In Chapter 5 we propose

a novel neural network complexity measure we call the distillation complexity and show

that it is indeed positively correlated with generalisation gap across a suite of models.

Further, we see that our distillation complexity does not grow with model size, in contrast

to many other complexity measures. We also provide some evidence that it plays a causal

role in determining the value of the generalisation gap.

1.1 Motivation

Why seek an explanation of the generalisation mystery? Should the academic community not

be satisfied with having discovered algorithms which do in fact produce models which generalise

very successfully? No, and for a number of reasons, three of which we now give.

First, basic research can produce significant down-stream benefits. Attacking the core mys-

teries of a field occasionally yields deep insight, which can revolutionise the discipline in ways

that are hard to predict in advance. In the case of DL, the field resembles a bag of poorly under-

stood tricks, with post-hoc explanations of empirically successful methods sometimes turning

out to be wrong (e.g. Santurkar et al. (2018) in the case of batch normalisation). An explanation

of the generalisation mystery, which would necessarily address the interplay between architec-

ture, learning algorithm, and data-generating distribution, may yield a principled science of DL.

This could allow a much more judicious application of the tricks discovered so far, and a more

directed search for new ones. The current situation is one in which it is possible to believe that

18

the field progresses mostly in a trial-and-error fashion, and produces post-hoc explanations for

successful methods that produce little understanding of what is actually going on. This makes

training large models financially risky, especially at the enormous scale of frontier models. For

example, the lack of rigorous theory means that hyperparameter settings for large models must

be extrapolated from sweeps across smaller models, with no guarantee that these extrapolated

values will be optimal. While scaling laws (Hoffmann et al., 2022; Kaplan et al., 2020) relating

training loss to model size, training time and sample size have been empirically observed to

hold over many orders of magnitude, and surely inform decisions on high-budget training runs,

without theoretical grounding these laws provide limited assurance that a given training run

will turn out to be a good investment.

Second, a rigorous understanding of the generalisation mystery may be a prerequisite for a

predictive theory of domain shift. The lack of such a theory is currently a significant obstacle to

the deployment of neural networks in high stakes environments, where domain shift is frequently

unavoidable (Koh et al., 2021; Quiñonero-Candela et al., 2022). A deeper understanding of

when a neural network is likely to generalise to a new environment could produce significant

savings in cases where testing in each new environment is costly and time-consuming. And it

could allow safer deployment to unstable environments when continual testing is not practical.

Third, and more speculatively, a deep understanding of generalisation may enable not just

the final loss values of foundation models such as Large Language Models (LLMs) or image

generators to be predicted in advance of training, but also their specific capabilities. Despite

the controversy over the meaning and existence of so-called emergent capabilities, it is not

disputed that currently the capabilities of these models cannot be predicted in advance of

training, even knowing their final loss (Ganguli et al., 2022). Instead, we discover what tasks

they can and cannot accomplish at the end of training through extensive evaluation (Srivastava

et al., 2022; Wei et al., 2022a,b). This is an ongoing process, with some capabilities only

discovered long after deployment. As models become more capable, it does not bode well that

we can unintentionally train models with dangerous capabilities that are only discovered after

training or even deployment.

19

Chapter 2

Background: SLT and the

Generalisation Mystery

The goal of Statistical Learning Theory (SLT) is to bound the discrepancy between the empir-

ical and true risks of a hypothesis—the so-called generalisation gap—even when the hypothesis

in question is dependent on the sample used to evaluate the empirical risk. While bounding the

discrepancy for a fixed hypothesis is straightforward, the difficulty introduced by the freedom to

choose the hypothesis based on the sample is significant. In this chapter we outline two broad

approaches found in SLT. First, classical SLT provides a number of uniform generalisation

bounds, uniform in the sense that they bound the generalisation gap of all hypotheses simul-

taneously by a constant. The constants of the various bounds involve measures of complexity

of the hypothesis class, thus providing different formalisations of the intuition that while the

hypothesis class may be large—even uncountably infinite—one may still expect the worst-case

generalisation gap to be small if the class is relatively simple in terms of the functions it can

express. The fact that the bound holds for all hypotheses simultaneously means it in particular

holds for any sample-dependent choice of hypothesis, such as that returned by some learning

algorithm.

While the theory is elegant, we will see that uniform bounds cannot explain generalisation

in the overparameterised regime. Further, although the classical theory can be extended to non-

uniform bounds in a number of ways, it is only with the advent of PAC-Bayesian theory that

we witness non-uniform bounds that plausibly have the potential to explain the generalisation

mystery. PAC-Bayesian theory considers stochastic hypotheses, namely distributions over the

hypothesis class that predict according to a (deterministic) hypothesis randomly drawn from

the distribution, with a fresh hypothesis drawn for each prediction. While this constitutes

a step away from usual Deep Learning practice, the dramatically improved tightness of the

resulting bounds compared to classical SLT indicates that it may nevertheless be a step towards

understanding the generalisation mystery. Indeed, in Chapter 4 we explore how we can reconcile

the stochastic hypotheses of PAC-Bayesian theory with the deterministic hypotheses of ordinary

DL practice.

20

2.1 Classical SLT

Let H ⊆ YX be a hypothesis class and ℓ : H × (X × Y) → [0, C] be a bounded loss function.

Given a data-generating distribution D ∈ △(X ×Y), the goal of a learning algorithm is to find

a hypothesis h ∈ H with low true risk RD(h), defined as the expected loss of h on a single draw

from D, namely

RD(h) = E(x,y)∼D

[
ℓ(h, (x, y))

]
.

However, the distribution D is typically unknown. Instead, we commonly assume we are

provided with an i.i.d. sample S ∼ Dn, and can only evaluate h according to the empirical risk

RS(h), defined as the mean loss of h across the sample S, namely

RS(h) =
1

|S|
∑

(x,y)∈S

ℓ(h, (x, y)).

A familiar choice of loss function is the zero-one loss ℓ01(h, (x, y)) = 1[h(x) ̸= y] used

in classification tasks with Y = [N]. It is then common to denote the loss as a function

ℓ01 : Y2 → {0, 1}, where the domain is Y2 rather than H × (X × Y). In such cases, we define

the true and empirical risks to be

RD(h) = E(x,y)∼D

[
ℓ(h(x), y)

]
and RS(h) =

1

|S|
∑

(x,y)∈S

ℓ(h(x), y), (2.1)

respectively, which we can then call the true and empirical errors.

Since the zero-one loss is not differentiable, a common procedure is to first learn a function

H : X → △N with low cross-entropy loss ℓCE(H, (x, y)) = − ln(H(x)y), and then classify

according to the hypothesis h(x) = argmaxj∈[N]H(x)j. In this case, it is common to denote the

loss as a function ℓCE : Ŷ ×Y → R, where Ŷ = △N . Note we need to be sure that the function

defined by h(x) = argmaxj∈[N]H(x)j is indeed an element of H. We can then define the true

and empirical risks of H by substituting H for h in Equations (2.1). Going forward, it will

always be clear from the context whether the domain of the loss function is H× (X × Y), Y2

or Ŷ × Y , and therefore which definitions of the true and empirical risks are being employed.

Given a learning algorithm A : (X ×Y)∗ → H, i.e. a function taking a sample S of arbitrary

length and returning a learned hypothesis A(S) ∈ H, the goal of learning theory is to upper

bound the unknown true risk RD(A(S)). This is typically done by bounding the generalisation

gap RD(h) − RS(h) for all h ∈ H simultaneously, where the bound can be a function of all

known quantities, e.g. the sample S, the hypothesis h, the entire hypothesis class H, the bound
C on the loss function, and so on. Such bounds are termed generalisation bounds, and when

the bound is independent of h, we say that it is uniform.

As a first step toward a generalisation bound, suppose we are interested in bounding the

generalisation gap RD(h) − RS(h) of a single hypothesis h ∈ H. This can be achieved by a

21

straightforward application of one of many concentration inequalities. As a simple example1,

using Chebyshev’s inequality we have

PS∼Dn

(
RD(h)−RS(h) > ϵ

)
≤ PS∼Dn

(
|RS(h)−RD(h)| > ϵ

)
(2.2)

= PS∼Dn

(
|RS(h)− ES′∼D[RS′(h)]| > ϵ

)
(2.3)

≤ VS∼Dn(RS(h))

ϵ2
(2.4)

=
V(x,y)∼D(R{(x,y)}(h))

nϵ2
(2.5)

≤ C2

nϵ2
, (2.6)

and so

PS∼Dn

(
RD(h)−RS(h) ≤ ϵ

)
≥ 1− C2

nϵ2
.

This says that the true risk RD(h) is at most ϵ larger than the empirical risk RS(h) with

probability at least 1 − C2/nϵ2. A frequent substitution at this point is δ = C2/nϵ2, so that

the bound becomes

PS∼Dn

(
RD(h)−RS(h) ≤

C√
nδ

)
≥ 1− δ. (2.7)

This form is useful when one wishes to find the minimum sample size n such that the bound

fails with probability at most δ, where δ is deemed an acceptable threshold.

Suppose now that we have a learning algorithm A : (X ×Y)∗ → H. While it is tempting to

make the substitution h = A(S) into Inequality (2.7), this would not yield a valid bound. To

see why, notice that line (2.5) uses the fact that the ℓ(h, (xi, yi)) are i.i.d., which is not the case

for ℓ(A(S), (xi, yi)). To get an intuitive feel for what is happening here, suppose we have 1000

biased coins, each with a possibly different bias. If we pick any particular coin and toss it 100

times, then the proportion of heads will be approximately the bias of the coin. However, if we

toss all 1000 coins 100 times each, and then consider the one that came up heads least often, this

coin’s proportion of heads will likely be a significant underestimate of its bias. Analogously,

while RS(h) may be a good estimator of RD(h) for every particular h ∈ H, the hypothesis

returned by the Empirical Risk Minimiser (ERM) algorithm AERM(S) = argminh∈HRS(h) is

likely to have empirical risk RS(h) significantly lower than RD(h).

One approach to solving this problem is to bound suph∈H(RD(h)−RS(h)), which will then

bound RD(A(S))− RS(A(S)) as a particular case. Such a bound is termed a uniform bound,

as the same bound applies uniformly to every h ∈ H. This is the approach taken by most of

classical SLT. While there are many such bounds—far too many to cover in this brief overview—

we present the following three classes of bound with illustrative examples; union bounds over

a countable H, bounds based on the Vapnik-Chervonenkis dimension of H, and those based on

the Rademacher Complexity of H on S.

1Much better concentration inequalities, such as Hoeffding’s inequality are available, but our purpose here
is simply illustration.

22

2.1.1 Union bounds

Suppose we have a finite hypothesis class H = {h1, . . . , hK}. Then from Inequality (2.7) we see

that

∀k ∈ [K] PS∼Dn

(
RD(hk)−RS(hk) ≤

C√
nδ

)
≥ 1− δ.

Our goal is to get the quantifier ∀k ∈ [K] inside the probability so that the bound holds for

all h ∈ H simultaneously, and in particular the hypothesis A(S) returned by our learning

algorithm.

The key technique, used over and again in SLT, relies on the elementary fact that P(E1 ∪
E2) ≤ P(E1) + P(E2) for any events E1, E2, not necessarily independent, and any probabil-

ity distribution P. Sometimes termed Boole’s inequality, this extends to arbitrary finite or

countably infinite collections of events

P

(⋃
i∈I

Ei

)
≤
∑
i∈I

P(Ei), (2.8)

where I ⊂ N. Moreover, the union bound can be used to deal with the quantifiers “∀” and “∃”
by expressing them as unions. Indeed, suppose that for each i ∈ I we have a random variable

Zi, a set Bi ⊆ R and an event Ei = {Zi ∈ Bi}. Then

P(∀i ∈ I Zi ∈ Bi) = 1− P(∃i ∈ I Zi /∈ Bi)

= 1− P

(⋃
i∈I

EC
i

)
≥ 1−

∑
i∈I

P(EC
i)

= 1−
∑
i∈I

(1− P(Zi ∈ Bi)).

Applying this to our case gives

PS∼Dn

(
∀k ∈ [K] RD(hk)−RS(hk) ≤

C√
nδ

)
≥ 1−

K∑
k=1

(
1− PS∼Dn

(
RD(hk)−RS(hk) ≤

C√
nδ

))

≥ 1−
K∑
k=1

δ

= 1−Kδ.

Now, since δ was arbitrary, we can replace it with δ/K to obtain

PS∼Dn

(
∀k ∈ [K] RD(hk)−RS(hk) ≤ C

√
K

nδ

)
≥ 1− δ, (2.9)

23

and thus, in particular,

PS∼Dn

(
RD(A(S))−RS(A(S)) ≤ C

√
K

nδ

)
≥ 1− δ, (2.10)

for any learning algorithm A. Therefore, in this illustrative example, the cost of permitting the

hypothesis h ∈ {h1, . . . hK} to be sample-dependent is an increase in the bound by a factor of√
K.

Going back to our coin tossing example, the intuition is that while we may be confident

that for any particular coin the proportion of heads from 100 tosses is within ϵ of the bias, we

must increase ϵ if we want to be confident that this is the case for all 1000 coins simultaneously,

which is one way to guarantee this is the case in particular for the coin that comes up heads

the fewest times.

The fact that we must increase the bound by a factor of
√
K in order to apply a union

bound over K hypotheses is not optimal, and comes from the poor dependence on δ in the

original bound (2.7) derived using Chebyshev’s concentration inequality. There are a variety

of concentration inequalities however, and applying Hoeffding’s yields the following bound for

a particular h ∈ H with much better dependence on δ than (2.7)

PS∼Dn

(
RD(h)−RS(h) ≤ C

√
1

2n
ln

2

δ

)
≥ 1− δ. (2.11)

The logarithmic dependence on δ in this bound makes it much cheaper to take union bounds;

decreasing δ by a factor of K increases the argument of the square root by only 1
2n

lnK.

Indeed, following the same process as before, we obtain the following uniform bound for our

finite hypothesis class H = {h1, . . . , hK}

PS∼Dn

(
∀k ∈ [K] RD(hk)−RS(hk) ≤ C

√
1

2n
ln

2K

δ

)
≥ 1− δ. (2.12)

2.1.2 Union bounds with a prior over the hypothesis class

The derivation of the union bounds (2.9) and (2.12) relies on the fact that the failure probabil-

ities δ/K of the individual bounds sum to δ, the desired failure probability of the union bound.

Viewed in this way, it becomes clear that we can combine countably many bounds provided

their probabilities of failure still sum to δ. To that end, suppose we have a countable hypothesis

class H = {hk : k ∈ I}, where I ⊆ N, and let π ∈ △(H) be a distribution over H such that

π(h) > 0 for all h ∈ H. Then we can combine countably many bounds of the form (2.11), one

for each h ∈ H, by setting δh = π(h)δ, to obtain

PS∼Dn

(
∀h ∈ H RD(h)−RS(h) ≤ C

√
1

2n
ln

2

π(h)δ

)
≥ 1− δ. (2.13)

24

The derivation is a straightforward application of the union bound:

PS∼Dn

(
∀h ∈ H RD(h)−RS(h) ≤ C

√
1

2n
ln

2

π(h)δ

)

≥ 1−
∑
h∈H

{
1− PS∼Dn

(
RD(h)−RS(h) ≤ C

√
1

2n
ln

2

π(h)δ

)}
≥ 1−

∑
h∈H

π(h)δ

= 1− δ.

Note that the bound in (2.13) is no longer uniform; its value depends on the hypothesis h

via the probability π(h). Observing that the bound is smallest for values of h for which π(h)

is large, we see that a natural choice for π is to put greater mass on hypotheses h we believe

our learning algorithm is more likely to return. In fact, by doing so we can interpret π as our

prior beliefs of the hypotheses our algorithm will return.

Moreover, the fact that the bound is no longer uniform over H opens up a second strategy

for picking h aside from ERM; pick the hypothesis h which has the smallest true risk bound,

namely

Amin-bound(S) = argminh∈H

(
RS(h) + C

√
1

2n
ln

2

π(h)δ

)
. (2.14)

If π is chosen to reflect our prior beliefs on which h have low true risk, Amin-bound can then be

interpreted as a balance between our prior beliefs π(h) and evidenceRS(h). Bound minimisation

as a learning algorithm is a frequently employed concept in both classical SLT and PAC-

Bayesian theory, as we will see.

Note that the dependence on n of the generalisation bounds we have seen so far is as 1/
√
n.

This is typical in the so-called “non-realisable” setting, where there does not exist h ∈ H such

that RD(h) = 0. In the realisable setting the dependence on n is as 1/n, which is much better.

Indeed, through a very simple argument, the following bound was proven in McAllester (1998).

Theorem 1. (McAllester (1998), Preliminary Theorem 1) Let H ⊆ YX be a countable hypoth-

esis class, ℓ : Y2 → {0, 1} the zero-one loss function ℓ(ŷ, y) = 1[ŷ ̸= y], and D ∈ △(X × Y)
a data-generating distribution such that there exists h ∈ H with RD(h) = 0. Then for any

π ∈ △(H) and δ ∈ (0, 1],

PS∼Dn

(
∃h ∈ H : RS(h) = 0 and RD(h) >

1

n

(
ln

1

π(h)δ

))
< δ. (2.15)

If we take as our learning algorithm AERM(S) ∈ {h ∈ H : RS(h) = 0}, we have

PS∼Dn

(
RD(AERM(S)) ≤

1

n

(
ln

1

π(A(S))δ

))
≥ 1− δ. (2.16)

Suppose that instead of representing our prior beliefs, we simply wish to choose π so as

25

to minimise the bound (2.13) in expectation over the random draw S ∼ Dn. This strategy

was first suggested in Langford and Blum (2003) (see Section 2.1). They note that if, for any

algorithm A, we define the distribution ρ ∈ △(H) by ρ(h) = PS∼Dn(A(S) = h), then the

expectation of the bound given in (2.16) can be written as

1

n
ES∼Dn

[
ln

1

δ
+ ln

1

π(A(S))

]
=

1

n
ln

1

δ
+

1

n

∑
h∈H

ρ(h) ln
1

π(h)
.

It is then immediate from Gibbs’ inequality that this is minimised by π = ρ. While this is

a perfectly legitimate choice—ρ is independent of S—it is not practical as ρ depends on the

unknown data-generating distribution D. Nevertheless, it demonstrates that a good choice of

prior π is one that “anticipates” which hypotheses are likely to be returned by the algorithm

A on the distribution D, a property we will see mirrored in PAC-Bayes bounds in Section 2.3.

It is important to note that while taking union bounds with a non-uniform prior π ∈ △(H)
may yield empirically tighter generalisation bounds for our chosen algorithm A, this is at the
expense of reduced explanatory power for the success of A. Instead of being able to say that

A(S) has small generalisation gap because the sample size n is large enough that all h ∈ H have

small generalisation gap, we may end up in a situation where the bound on the generalisation

gap of A(S) is tight only because of our choice of prior π, where a different choice of π may have

produced much worse bounds. In such a case, we are lucky that our prior π placed large mass

on the hypothesis that A happened to return, and this luckiness is a gap in our explanation for

why A performs well. Even if our algorithm is Amin-bound defined in Equation (2.14), which is

explicitly biased towards h for which π(h) is large, there is an element of luckiness in whether

there exists h ∈ H that achieves both low RS(h) and high π(h) simultaneously. We discuss this

element of luck more in Section 2.2.

2.1.3 Uncountable hypothesis classes

The previous section introduced union bounds as a method to combine countably many gener-

alisation bounds, one for each hypothesis in a countable class. However, most commonly used

hypothesis classes, such as the set of Multi-Layer Perceptrons (MLPs) of a given architecture,

are uncountable. Of course in practice these hypothesis classes must be representable on a

finite computer and are therefore themselves necessarily finite. However, this implicit finite hy-

pothesis class is typically too large to produce non-vacuous generalisation bounds. Moreover,

treating the hypothesis class simply as a finite set obscures relevant structure that SLT can

take advantage of. This section introduces two generalisation bounds that do exactly that; they

bound the generalisation gap by formalising the capacity of H to fit data in arbitrary ways.

One informal takeaway of the previous section is that the more freedom we have in our

choice of hypothesis h (i.e. the larger H), the more suspicious we should be that its empirical

risk RS(h) is a good measure of its true risk RD(h). Intuitively, however, our degree of choice

should not be measured in terms of the cardinality ofH, but rather in terms of the capacity ofH
to make arbitrary predictions. For example, if we know that there exists x = (x1, . . . , xn) ∈ X n

26

such that for any possible labelling y = (y1, . . . , yn) ∈ Yn we will always be able to find a

hypothesis h ∈ H that produces labels y on x (or at least achieves very low loss on x), then

this means H has the capacity to fit the noise as well as the signal. Therefore we should

certainly be suspicious that the empirical risk of AERM(S) ∈ H is a good proxy for the true

risk when S is around this size. In common DL parlance, we say that the class H has the

capacity to overfit. Conversely, if we know that above a certain sample size n the class H is

severely restricted in how it can label any sample of size n, then the class is restricted in how

much of the noise it can fit in addition to the signal, meaning a low empirical risk of AERM(S)

above this sample size is strong evidence that the true risk is also low. Crucially, this is the

case even if |H| is very large, perhaps uncountably infinite. This intuition was formalised as

the Vapnik-Chervonenkis dimension (Vapnik and Chervonenkis, 2015), to which we now turn.

2.1.4 Vapnik-Chervonenkis dimension

Consider the case of binary classification with zero-one loss, namely label space Y = {0, 1},
hypothesis class H ⊆ {0, 1}X , loss function ℓ01(h(x), y) = 1[h(x) ̸= y], and true and empirical

risks RD(h) and RS(h) defined as in Equations (2.1). We have the following definitions.

Definition 4. Let H ⊆ {0, 1}X . The set x ∈ X n is shattered by H if

{
(h(x1), . . . , h(xn)) : h ∈ H

}
= {0, 1}n,

namely if H has the capacity to produce every possible binary labelling y ∈ {0, 1}n of x.

Definition 5. (Vapnik-Chervonenkis definition) Let H ⊆ {0, 1}X . The VC-dimension dVC(H)
is defined as the largest n such that there exists x ∈ X n shattered by H, or ∞ if no largest n

exists.

It was shown in Vapnik (2013) that this notion of complexity of H can be leveraged to bound

the maximum generalisation gap over the hypothesis class provided dVC(H) is finite. We give

the following form of the bound which more straightforward to parse.

Theorem 2. (Abu-Mostafa et al. (2012), Theorem 2.5) For any H ⊆ {0, 1}X such that

dVC(H) < ∞, any data-generating distribution D ∈ △(X × {0, 1}), confidence level δ ∈ (0, 1]

and sample size n, with probability at least 1 − δ over the sample S ∼ Dn, for all h ∈ H
simultaneously,

RD(h)−RS(h) ≤

√
8

n

(
dVC(H)

(
ln

(
2n

dVC(H)

)
+ 1

)
+ ln

4

δ

)
, (2.17)

where RD(h) and RS(h) denote the true and empirical error of the hypothesis h, respectively.

Ignoring logarithmic factors, this bound isO(
√
dVC(H)/n), meaning we need n≫ dVC(H) in

order to achieve tight bounds. Is the sample size n in fact much larger than the VC-dimension

dVC in ordinary DL practice? While determining the exact VC-dimension of a hypothesis

27

class induced by a neural network architecture is difficult, various asymptotic lower bounds for

fully connected neural networks have been established that scale at least with the number of

parameters (weights and biases) of the network (Bartlett et al., 1998; Bartlett, 1993; Bartlett

et al., 2019; Maass, 1994). For example, the following lower bound was proved in Bartlett et al.

(2019).

Theorem 3. (Bartlett et al. (2019), Theorem 3) There exists a universal constant C such that

for any number of weights nw and number of layers nl such that nw > Cnl > C2, there exists

a ReLU network with at most nl layers and at most nw parameters with VC-dimension at least

nwnl ln(nw/nl)/C.

In particular, this result shows that for a hypothesis class H corresponding to a fully con-

nected neural network with nw parameters, we have that dVC(H) is Ω(nw). Loosely, combining

this with the above observation means we require n ≫ nw in order for Theorem 2 to produce

tight bounds. Unfortunately this is not usually the case in DL, where the number of parame-

ters typically far exceeds the sample size. While this is only a heuristic argument, the order of

the bounds, combined with the fact that the performance of neural networks does not always

degrade as the number of parameters becomes very large (for example, see Loog et al., 2020;

Nakkiran et al., 2021), indicates that Theorem 2 is unlikely to produce tight bounds for typical

neural networks.

2.1.5 Rademacher complexity

The VC dimension was motivated by the intuition that if, for a sample size n, there exists

x ∈ X n that can be arbitrarily labelled by H, then there is a risk that our sample S ∈
(X ×Y)n corresponds to this x, in which case observing low RS(AERM(S)) is not good evidence

that RD(AERM(S)) is also low. This worst-case analysis was required in order to obtain a

generalisation bound independent of the sample S. But since S is known, can we not inspect

whether it in fact matches x? Surely, if the capacity of H to produce arbitrary labellings of

our sample is in fact highly restricted, then we are quite unlikely to fit the noise on S, even if

there exist other samples for which we could fit arbitrary noise. What this indicates is the need

for a sample-dependent bound involving a sample-wise complexity measure of H. Indeed, this
is exactly what the Rademacher complexity measures, in a way that produces a corresponding

generalisation bound.

Definition 6. (Rademacher complexity) Let H ⊆ YX be a hypothesis class, S ∈ (X × Y)n

a sample, ℓ : H × (X × Y) → [0, C] a bounded loss function, and σ = (σ1, . . . , σn) a tuple

of Rademacher random variables, such that P(σi = 1) = P(σi = −1) = 1/2 for all i. The

Rademacher complexity of H on S given ℓ is

R(H, ℓ, S) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σiℓ(h, (xi, yi))

]
.

28

In the case of binary classification with zero-one loss, for each value of σ we can write

S = S+ ∪ S−, where S+ = {(xi, yi) ∈ S : σi = 1} and S− = {(xi, yi) ∈ S : σi = −1}. The

supremum then optimises over h ∈ H the number of incorrect classifications on S+ minus the

number of incorrect classifications on S−, divided by the sample size n. Averaging this over all

values of σ then yields the Rademacher complexity. In the case where H is flexible enough to

label the xi in arbitrary ways, the supremum will be equal to 1
n

∑n
i=1 1[σi = 1], which, when

averaged over all values of σ, equals 1/2.

The first generalisation bounds based on the Rademacher complexity were due to Bartlett

and Mendelson (2001, 2002) and Koltchinskii and Panchenko (2000). We give the following

example.

Theorem 4. (Shalev-Shwartz and Ben-David (2014), Theorem 26.5) For any H ⊆ YX , data-

generating distribution D ∈ △(X ×Y), loss function ℓ : H× (X ×Y)→ [0, C], confidence level

δ ∈ (0, 1] and sample size n, with probability at least 1 − δ over the sample S ∼ Dn, for all

h ∈ H simultaneously,

RD(h)−RS(h) ≤ 2R(H, ℓ, S) + 4C

√
2 ln(4/δ)

n
, (2.18)

where RD(h) and RS(h) denote the true and empirical error of the hypothesis h, respectively.

Note that the bound (2.18) depends on S and so is a random variable, in contrast to the

constant sample-independent generalisation bound (2.17). Further, since the inequality holds

for all h ∈ H simultaneously, it holds in particular for h = AERM(S) or any other choice of

algorithm.

We can now ask whether this sample-dependent bound can explain the observed generali-

sation of neural networks. Unfortunately, the answer is again no. This is demonstrated most

clearly in Zhang et al. (2016). There they show that network architectures and training pro-

cedures commonly used to successfully learn CIFAR10 and ImageNet classification tasks still

yield networks with near 100% train accuracy (i.e. RS(h) ≈ 0), even when the labels of the

sample S are randomised. While it would be computationally infeasible to repeat this exper-

iment for every possible labelling of the sample and thereby measure R(H, ℓ, S) exactly, the

fact that they achieved RS(h) ≈ 0 for a random labelling is evidence that the hypothesis class

H implied when employing neural networks is flexible enough to label S arbitrarily. As noted

after Definition 6, this would imply that R(H, ℓ, S) ≈ 1/2, which would make the bound in

Theorem 4 vacuous.

Previously, a folk theory for the effectiveness of regularisation techniques such as weight

decay or dropout was that they reduced the effective capacity of the network to overfit. This

reduced effective capacity then means that the empirical risk is a better proxy for the true risk

across the hypotheses likely to be generated by the training procedure. However, the experi-

ments in Zhang et al. (2016) included such regularisation, demonstrating that typical regulari-

sation does not in fact limit the capacity of the network to overfit. Indeed, further experiments

in the paper show that low train error is achieved even when the input images themselves are

29

replaced with Gaussian noise, showing that the capacity is very large indeed. Moreover, the

fact that networks trained on true data generalise well even without any regularisation shows

that whatever capacity constraint regularisation does provide is unnecessary.

Together, this suggests that the capacity of H, even measured in a sample-dependent way, is

far too large to explain generalisation in the overparameterised regime. Clearly, if our hypothesis

class H and sample S are such that we can find two hypotheses h1, h2 ∈ H that both fit S

very well, namely such that RS(h1) ≈ 0 and RS(h2) ≈ 0, yet which have starkly different

true errors, say RD(h1) ≈ 0 and RD(h2) ≈ 0.5, then any generalisation bound that is not

a function of h will fail to distinguish between them. The bound will then be loose for h1

as it is forced to also be valid for h2. Since the existence of such h1, h2 is exactly what is

demonstrated in Zhang et al. (2016)—training on random labels produces networks with trivial

test error—we can conclude that neither Theorem 2 nor Theorem 4 can explain generalisation

in the overparameterised regime, and that to do so we must seek hypothesis-dependent bounds.

PAC-Bayes generalisation bounds move in this direction, but before we introduce PAC-Bayesian

theory, let us take a step back to consider at a high level what it would mean to explain the

generalisation mystery.

2.2 What might an explanation of the generalisation mys-

tery look like?

The bounds given by Theorems 2 and 4 are uniform; they work by showing that for sufficiently

large sample sizes all hypotheses will have empirical risk RS(h) that is representative of their

true risk RD(h), and so in particular this will be the case for the learned hypothesisA(S). As we
have seen, uniform bounds will produce trivial results in the overparameterised regime, since in

this scenario the capacity of H is large enough and the sample size n is small enough that there

exist hypotheses h for which RS(h) is not at all representative of RD(h). The generalisation

mystery cannot, therefore, be explained by uniform generalisation bounds.

We are therefore forced to search for non-uniform bounds that are a function of the hy-

pothesis h. While this is necessary in the overparameterised regime, it produces bounds with

diminished explanatory power. To see why, suppose our learning algorithm produces a hypoth-

esis h for which RS(h) is low and the generalisation bound is low, so that we can conclude

RD(h) is low. But by definition of the overparameterised regime, there exists a hypothesis h′

for which RS(h
′) is also low yet the generalisation bound is high, since the bound must acco-

modate the large generalisation gap of h′. Thus the question of why our algorithm selected

from the set of hypotheses with low empirical risk a hypothesis which also has low generali-

sation bound, would remain unanswered. Just as the Rademacher complexity based bound in

Theorem 4 produces low bounds only if we are “lucky” that the sample S we obtain yields low

Rademacher complexity R(H, S), non-uniform bounds can be low only if we are “lucky” in the

way in which our hypothesis class H, sample S and learning algorithm A interact to produce

A(S). The cost of non-uniform bounds is therefore a shift in the generalisation mystery to this

30

empirically observed luckiness, sometimes termed the inductive bias of the hypothesis class, the

learning algorithm, or their interaction. We highlight this conclusion as the following claim.

Claim 1. Generalisation bounds alone cannot resolve the generalisation mystery, even if they

are non-uniform and tight.

How then can the generalisation mystery be resolved? The preceding discussion suggests a

two-pronged strategy. First, while generalisation bounds alone cannot resolve the generalisation

mystery, empirically tight bounds formalise notions of luckiness or inductive bias that we can

seek to explain. In other words, we may seek a theoretical answer to the remaining question

above, namely why commonly used learning algorithms may be biased towards hypotheses for

which the bound is low. Second, formal characterisations of observed implicit biases motivate

the search for generalisation bounds expressed in terms of such characterisations. A full expla-

nation of the generalisation mystery may then follow the structure suggested in the following

claim.

Claim 2. The generalisation mystery may be explained by the derivation of two theorems. One

theorem demonstrating that the learning algorithms typically used in DL have an implicit bias

towards hypotheses h with some property P , and a second theorem demonstrating that hypotheses

with property P have small generalisation gap.

More generally, property P may be replaced by a continuous metric, often called a com-

plexity measure of the hypothesis h, not to be confused with complexity measures of the entire

hypothesis class H. The theorems would then state that our learning algorithms are biased

towards hypotheses with low complexity, and that low complexity hypotheses have small gen-

eralisation gap.

Possibilities for properties or metrics P that have been suggested for neural networks in-

clude having low parameter norm (e.g. Bartlett et al. (2017) give a proof that networks with

small spectral norms have low generalisation gap), being located in a flat minimum of the

loss landscape (e.g. Hochreiter and Schmidhuber (1997) argue that flatter minima correspond

to simpler hypotheses with lower generalisation gap, and Keskar et al. (2016) investigate this

empirically by varying the batch size), having low Kolmogorov complexity (e.g. Schmidhuber

(1997) attempts to find neural networks with low Kolmogorov complexity, arguing that they

should generalise better), or having low minimum description length (MDL) according to the

MDL Principle (first posited in Rissanen (1978), discussed in the context of DL in Grünwald

and Roos (2019), and used as a regulariser to improve generalisation in Hinton and Van Camp

(1993)).

A complementary approach may be to make assumptions on the data-generating distri-

bution, for example realisability, smoothness, Lipschitz continuity, convexity, noise or margin

conditions, the existence of a low dimensional manifold, and so on (Shalev-Shwartz and Ben-

David, 2014). While such assumptions can yield tighter bounds, they are often infeasible to

verify in practice given we only have access to a sample. Therefore while this approach could

31

potentially resolve the generalisation mystery, it may be at the cost of making unverifiable

assumptions.

It is worth noting here an interesting subtlety distinguishing philosophical approaches to

statistics. A Bayesian may have as a starting point that, for real-world distributions D, “sim-

pler” hypotheses h are more likely to have low true risk RD(h), formalised as an Occam prior

over H. She therefore does not in fact require a generalisation bound to explain the general-

isation mystery; it is sufficient to have a proof that the learning algorithm is more likely to

produce hypotheses that both fit the data S and have low complexity, and therefore approx-

imate the Bayesian posterior.2 Conversely, a Frequentist, not willing to take a position on

the prior probabilities of hypotheses, does not argue that simpler hypotheses h are more likely

to have true risk RD(h). Instead, she seeks to show that they are more likely to have small

generalisation gap RD(h) − RS(h). She can also leverage the fact that there are fewer simple

hypotheses than complex ones to demonstrate a kind of soft capacity control—a learning algo-

rithm that is more likely to return a simple hypothesis is more likely to output a hypothesis in

a smaller class (the class of simple hypotheses) and therefore more likely to return a hypothesis

with small generalisation gap. Combining the fact that the empirical risk RS(h) is low and the

generalisation gap RD(h)− RS(h) is also low, she can conclude that RD(h) is low. As we will

now see, soft capacity control is one way of interpreting what PAC-Bayesian theory formalises,

which, despite the name, is a Frequentist approach.

2.3 PAC-Bayesian generalisation bounds

In Section 2.1.2 we saw how non-uniform generalisation bounds could be derived for a countable

hypothesis class H = {hi, i ∈ I} (I ⊆ N) by using a union bound and a distribution π over I;
the generalisation bound for each individual hi is loosened to hold with the higher probability

1 − π(i)δ, so that all of the bounds then hold simultaneously with probability 1 − δ. Eliding

some of the details for clarity, we found that from

∀i ∈ I PS∼Dn

(
RD(hi)−RS(hi) ≤ ϵi(n, δ)

)
≥ 1− δ,

we could derive

PS∼Dn

(
∀i ∈ I RD(hi)−RS(hi) ≤ ϵi(n, π(i)δ)

)
≥ 1− δ.

In a near identical manner, if we have one uniform generalisation bound for each of countably

many hypothesis classes {Hi, i ∈ I} (I ⊆ N) and a distribution π over I, we can combine these

into a non-uniform generalisation bound valid for all h ∈ H = ∪i∈IHi, where the value of the

bound for a hypothesis h ∈ H depends on the hypothesis class Hi to which h belongs. Again

2The Occam prior can be partially justified by noticing that for any unbounded notion of complexity, not
just Kolmogorov complexity, there will be more complex hypotheses than simple ones, and so more complex
hypotheses must necessarily receive lower prior mass, at least asymptotically. This argument can be found in
the enjoyable read Yudkowsky (2015). This leaves open of course what the right notion of complexity is.

32

eliding details for clarity, from

∀i ∈ I PS∼Dn

(
∀h ∈ Hi RD(h)−RS(h) ≤ ϵi(n, δ)

)
≥ 1− δ,

we can derive

PS∼Dn

(
∀i ∈ I ∀h ∈ Hi RD(h)−RS(h) ≤ ϵi(n, π(i)δ)

)
≥ 1− δ.

For example, given a fixed neural network architecture, for each i ∈ N we could take Hi to be

the hypothesis class corresponding to all ways of setting the parameters w such that ∥w∥2 ≤ i,

and take π(i) = 2−i. We refer to Shalev-Shwartz and Ben-David (2014) for a deeper discussion

of this technique and its relation to non-uniform learnability.

If one chooses as a learning algorithm the function which returns the hypothesis minimising

this non-uniform bound, one has an example of Structural Risk Minimisation (SRM), an alter-

native to Empirical Risk Minimisation (ERM), which balances fit to data with a preference for

particular classes Hi, expressed by the distribution π. The concept of SRM is due to Vapnik

and Chervonenkis (1974).

The PAC-Bayesian theory does something similar to combining countably many bounds

weighted by a prior π, but in a much more elegant way. The strategy can be thought of as

constructing a “continuous union bound” as described in Erven (2014), avoiding chopping up

the hypothesis class into discrete portions. Doing this however requires generalising to stochastic

hypotheses, defined as follows.

Definition 7. (Stochastic hypothesis). For a hypothesis class H ⊆ YX , a stochastic hypothesis

is a distribution Q ∈ △(H) which makes predictions according to a sampled h ∼ Q, with a fresh

h sampled for every prediction. For a sample S ∈ (X × Y)∗ and data-generating distribution

D ∈ △(X × Y), its true and empirical risks are defined to be

RD(Q) = Eh∼Q[RD(h)] and RS(Q) = Eh∼Q[RS(h)],

respectively.

Instead of holding with high probability for all deterministic hypotheses h ∈ H simultane-

ously, and therefore in particular for the learned hypothesis Adet(S) ∈ H, PAC-Bayes bounds
hold with high probability for all stochastic hypotheses Q ∈ △(H) simultaneously, and there-

fore in particular for the learned stochastic hypothesis Astoch(S) ∈ △(H), where the algorithm

Astoch : (X × Y)∗ → △(H) returns stochastic hypotheses. PAC-Bayes bounds then control

the generalisation gap of a stochastic hypothesis Q, namely RD(Q)−RS(Q). The “soft capac-

ity control” is typically formalised as the complexity measure KL(Q∥P), the Kullback–Leibler

divergence of the stochastic hypothesis Q from a fixed (sample-independent) stochastic hypoth-

esis P . While the PAC-Bayesian theory goes back to the pioneering works McAllester (1998)

and Shawe-Taylor and Williamson (1997), we illustrate it with the following theorem, originally

due to Catoni (2003). The exact form stated here can be found in Alquier et al. (2024).

33

Theorem 5. Let H ⊆ YX be a hypothesis class and ℓ : Y2 → [0, C] a loss function. For any

fixed stochastic hypothesis P ∈ △(H), data-generating distribution D ∈ △(X × Y), confidence
level δ ∈ (0, 1] and λ > 0, with probability at least 1− δ over the sample S ∼ Dn we have that

for all stochastic hypotheses Q ∈ △(H) simultaneously

RD(Q) ≤ RS(Q) +
λC2

8n
+

KL(Q∥P) + ln 1
δ

λ
. (2.19)

Since the bound holds with high probability for all Q ∈ △(H) simultaneously, it holds in

particular for a sample-dependent Q = Astoch(S). On the other hand, the bound states that

P ∈ △(H) must be fixed. For this reason (and because of the historical origins of PAC-Bayesian

theory as a Frequentist analysis of Bayesian learning), the sample-independent P is termed the

“prior” and the possibly sample-dependent Q is termed the “posterior”. We use quotes as the

“prior” P need not have any relation to the practitioner’s prior beliefs about which hypotheses

are more likely, and the “posterior” Q need not be derived from P and S via Bayes’ rule.

Nevertheless, since the terminology is commonplace, we henceforth drop the quotes.

A second PAC-Bayes bound, which we frequently employ in this thesis, was originally

proved in Langford and Seeger (2001) and Seeger (2002). We give here the somewhat tighter

version proved in Maurer (2004). Instead of upper bounding RD(Q) − RS(Q) directly, the

result constrains the deviation between the true and empirical risks via the so-called “small kl”

kl(RS(Q)∥RD(Q)), defined by

kl(q∥p) = q ln
q

p
+ (1− q) ln 1− q

1− p
, for q, p ∈ [0, 1], (2.20)

namely the ordinary KL divergence between two Bernoulli distributions with bias RS(Q) and

RD(Q).
3 We note that Maurer’s version required that n ≥ 8, while this restriction was later

shown to be unnecessary in Germain et al. (2015).

Theorem 6. (Maurer (2004), Theorem 5) Let H ⊆ YX be a hypothesis class and ℓ : Y2 → [0, 1]

a loss function. For any fixed stochastic hypothesis P ∈ △(H), data-generating distribution

D ∈ △(X × Y) and confidence level δ ∈ (0, 1], with probability at least 1 − δ over the sample

S ∼ Dn we have that for all stochastic hypotheses Q ∈ △(H) simultaneously

kl
(
RS(Q)

∥∥RD(Q)
)
≤

KL(Q∥P) + ln 2
√
n

δ

n
. (2.21)

One practical benefit of this bound over Theorem 5 is that it does not include a scalar λ

that must be chosen before seeing the sample. In order to obtain a bound on RD(Q) one can

invert the small kl with respect to its second argument by defining

kl−1(q|B) = sup
{
p ∈ [0, 1] : kl(q∥p) ≤ B

}
. (2.22)

3With the usual convention that 0 ln 0
p = 0 for all p ∈ [0, 1] and q ln q

0 =∞ for q > 0.

34

Inequality (2.21) then becomes

RD(Q) ≤ kl−1

(
RS(Q)

∣∣∣∣∣KL(Q∥P) + ln 2
√
n

δ

n

)
. (2.23)

One interesting feature of this bound is that if RS(Q) is not trivial, namely if RS(Q) < 1, and

the right hand side of (2.21) is finite, then the bound (2.23) on RD(Q) is guaranteed to be non-

vacuous, i.e. strictly less than one. This is in sharp contrast to the bound in Theorem 5, which

can be arbitrarily large. In practice however, the right hand side of (2.21) is frequently so large

that calculating the inverse kl becomes numerically difficult. In such cases, one can alternatively

employ Pinsker’s inequality, which in this context gives kl(q∥p) ≤ B =⇒ p ≤ q+
√
B/2, which

gives a bound on RD(Q) that is O(1/
√
n). It should be noted however that this bound is always

looser than (2.23), and can be significantly looser when RS(Q) ≈ 0.

Both Theorem 5 and Theorem 6 exhibit a tradeoff between low empirical risk RS(Q) and

low complexity, where the complexity of Q is formalised as KL(Q∥P). This can be seen as a

kind of soft capacity control, where if our algorithm Astoch returns a stochastic hypothesis Q

close in KL divergence to the fixed P then, since this is a constrained set, we can conclude

that the generalisation gap is likely not that large. Now, while this soft capacity control will

be present for any fixed prior P , poor choices of P will reduce the chance that there exists a

posterior Q for which both RS(Q) and KL(Q∥P) are low. Thus there is an element of luck in

the PAC-Bayes framework in terms of the choice of prior, and this luck constitutes a gap in

the ability of the framework to explain the generalisation mystery. This is the same tradeoff

as was observed in the countable case presented in Section 2.1.2. Some theoretically motivated

choices of prior do however reduce this element of luck, as we will see in Section 2.3.2.

2.3.1 Choosing the posterior

What is a good choice for Q(S) in Theorem 5? A first thought may be to choose Q(S) to

minimise the empirical risk, namely

Q(S) := argminQ∈△(H)RS(Q).

In most cases however this will yield a very poor generalisation bound. To see why, note

that Q(S) reduces to a point mass on h(S) = argminh∈HRS(h), resulting in KL(Q(S)∥P) =

− lnPh∼P (h = h(S)), which will be infinite except under special conditions, since P must be

chosen independently of S.

A more sensible choice is to take Q(S) to be the minimiser of the bound—a perfectly

legitimate choice since all the quantities in the bound are fixed in the theorem statement before

the quantifier ∀Q ∈ △(H). Remarkably, using Donsker and Varadhan’s variational formula

(Donsker and Varadhan, 1976), it can be shown that this optimal posterior is the so-called

35

Gibbs posterior QG(S), defined by the Radon–Nikodym derivative

dQG(S)

dP
(h) =

e−λRS(h)

Eh′∼P [e−λRS(h′)]
. (2.24)

For continuous or discrete P with probability density or mass function fP : H → R, respec-
tively, defining the Gibbs posterior QG(S) via the Radon–Nikodym derivative (2.24) above is

equivalent to defining QG(S) to have probability density or mass function fQG(S) : H → R,
respectively, given by fQG(S)(h) ∝ e−λRS(h)fP (h). This formulation clarifies the intuition that

QG(S) exponentially re-weights the density P places on h according to the empirical loss RS(h).

As λ→ 0 the Gibbs posterior QG(S) becomes simply the prior P , which makes sense since the

KL(Q∥P) term in (2.19) then dominates. Conversely, as λ→∞ the posterior tends to a point

mass on hERM, since in this scenario minimising (2.19) reduces to minimising RS(Q). Thus,

using the Gibbs posterior, the constant λ in Theorem 5 acts as an inverse temperature.

Unfortunately, the Gibbs posterior is highly impractical in the context of DL, as the nor-

malisation constant in the denominator of (2.24) typically cannot be calculated, meaning one

is unable to sample from QG(S) in order to make predictions. One may approximate samples

using MCMC, or approximate the Gibbs posterior directly using Variational Bayes (see Alquier

et al. (2016) for a theoretical analysis of the second method).

An alternative to the Gibbs posterior is to directly minimise the bound (2.19) over the set

of Gaussian posteriors. More precisely, if our hypothesis class is H = {hw : w ∈ Rd}, where
hw : X → Y is the function corresponding to a neural network with weights w, we may take

Q ∈ △(H) to be the pushforward of a Gaussian distribution on the weight space Rd. If the prior

P is also taken to be a (sample-independent) Gaussian distribution on the weight space, the

term KL(Q∥P) has a differentiable closed form.4 The entire bound (2.19) can then be optimised

via gradient descent with the aid of the pathwise gradient trick to approximate derivatives for

RS(Q). This was the strategy employed by Dziugaite and Roy (2017) (optimising the bound in

Theorem 6 above) along with some other tricks to achieve the first non-vacuous generalisation

bound for a deep neural network trained on the MNIST dataset. We outline their process

in much greater detail in Chapter 3 where we use it to optimise our PAC-Bayes bound. This

method can be flexibly applied to various PAC-Bayes bounds, whereas the Gibbs posterior is the

minimiser only for “linear” PAC-Bayes bounds of the form RD(Q) ≤ aRS(Q)+ bKL(Q∥P)+ c,

such as Theorem 5 but not Theorem 6.

A third choice is to take Q to be the pushforward of a Gaussian distribution centred around

the weights w(S) returned by an ordinary DL algorithm. Whether this is a better choice than

(approximately) minimising the bound depends on our reason for using the PAC-Bayes bound.

If our goal is to find a stochastic hypothesis Q which we can use for prediction and be confident

in, the first choice may be more appropriate as it returns the Q with lowest bound on the true

risk RD(Q). On the other hand, if our goal is to explain the empirical success of typical DL

4Strictly speaking, if Q and P are the pushforward of Gaussian distributions Qw and Pw on the weight
space, then KL(Q∥P) can be replaced by the differentiable proxy KL(Qw∥Pw), which, by the data-processing
inequality (see e.g. Van Erven and Harremos (2014)), is an upper bound on KL(Q∥P).

36

algorithms in the overparameterised regime, the second choice is much more appealing as the

only modification to the training procedure is the addition of some (possibly small) Gaussian

noise to the network weights (with fresh noise sampled for each prediction). We may then

ultimately hope that the effect of this modification can be rigorously analysed, so that the

performance of the original deterministic network can be bounded.

2.3.2 Choosing the prior

We give a brief overview of three choices for the prior found in the literature; the theoretically

optimal prior, the distribution-dependent “localised” prior, and data-dependent priors.

First, consider the theoretically optimal prior for Theorem 5. Suppose we have made our

choice of data-dependent posterior Q(S). We may then ask what choice of prior P would

minimise Theorem 5 in expectation over the random draw S ∼ Dn, which is equivalent to

minimising ES∼Dn [KL(Q(S)∥P)]. This is analogous to the strategy suggested in Langford and

Blum (2003) for countable hypothesis classes discussed in Section 2.1.2, and indeed the solution

is also analogous; the optimal choice is

P ∗ = ES∼Dn [Q(S)], namely P ∗(B) = ES∼Dn [Q(S)(B)] for measurable B ∈ H.

This follows from the so-called golden formula (Polyanskiy and Wu, 2014), also known as

Tropsøe’s identidy (Topsøe, 1967). A derivation can be found in Lever et al. (2013), and the

result was already noted in Catoni (2007). Again, as in the countable case, this prior is a

legitimate choice (it is sample independent) but it not practically useful as it depends on the

unknown data-generating distribution D. Nevertheless, it shows that a good choice of prior

is one that “anticipates” where Q(S) is likely to put mass. Further, note that this so-called

“oracle prior” P ∗ is only optimal for PAC-Bayes bounds where minimising them in expectation

amounts to minimising the KL divergence in expectation, which is the case for Theorem 5 but

not Theorem 6.

Remarkably, some choices of distribution-dependent prior can nevertheless yield practically

useful empirical bounds if the KL divergence can be upper bounded by known quantities. For

example, given a distribution π ∈ H, and β > 0, Catoni (2003) suggests the localised prior

P = π−βRD
defined by the Radon–Nikodym derivative

dπ−βRD

dπ
(h) =

e−βRD(h)

Eh′∼π[e−βRD(h′)]
,

the intuition being that we should put more weight on hypotheses h with low true risk RD(h).

Defining the Bernstein function g : R→ R

g(x) =

 ex−1−x
x2 , x ̸= 0,

0, x = 0,

37

the following theorem is proven in Catoni (2003). Note that the localisation to π−βRD(h) is done

internally so does not appear explicitly in the theorem.

Theorem 7. (Catoni (2003), Lemma 6.2) Let H ⊆ YX be a hypothesis class and ℓ : Y2 → [0, 1]

a loss function. For any fixed distribution π ∈ △(H) (note this does not play the role of the

PAC-Bayes prior), data-generating distribution D ∈ △(X ×Y), sample size n, confidence level

δ ∈ (0, 1], λ > 0 and ξ ∈ [0, 1) such that (1−ξ)−(1+ξ)g(λ
n
)λ
n
> 0, with probability at least 1−δ

over the sample S ∼ Dn we have that for all stochastic hypotheses Q ∈ △(H) simultaneously

RD(Q) ≤
KL(Q∥π−ξλRS

) + (1− ξ)λRS(Q) + (1 + ξ) ln 2
δ

(1− ξ)λ− (1 + ξ)g(λ
n
)λ

2

n

,

where the distribution π−ξλRS
is defined by the Radon–Nikodym derivative

dπ−ξλRS

dπ
(h) =

e−ξλRS(h)

Eh′∼π[e−ξλRS(h′)]
.

Other nice theorems demonstrating the feasibility of distribution-dependent priors and appli-

cations to Support Vector Machines (SVMs) can be found in Lever et al. (2013).

Finally, we discuss data-dependent priors. While the prior is not permitted to depend on

the sample S appearing in the PAC-Bayes bound, it is free to depend on a second sample. This

suggests splitting the sample S, using the first half to choose a prior and the second half for the

bound, a strategy first proposed in Seeger (2002) and followed by many others (Ambroladze

et al., 2006; Clerico et al., 2022a; Parrado-Hernández et al., 2012; Perez-Ortiz et al., 2021;

Pérez-Ortiz et al., 2021). For clarity, we restate Theorem 6 in this context.

Theorem 8. Let H ⊆ YX be a hypothesis class and ℓ : Y2 → [0, 1] a loss function. For any

data-dependent prior and posterior maps P : (X × Y)m → △(H) and Q : (X × Y)n → △(H),
data-generating distribution D ∈ △(X × Y), and confidence level δ ∈ (0, 1], with probability at

least 1− δ over the sample S = (S1, S2) ∼ Dm ⊗Dn−m we have that

kl
(
RS(Q(S))

∥∥RD(Q(S))
)
≤

KL
(
Q(S)

∥∥P (S1)
)
+ ln 2

√
n−m
δ

n−m
. (2.25)

Importantly, note that while the prior may only depend on S1, the posterior can depend on

the entire sample S = (S1, S2), since Theorem 6 holds with high probability for all posteriors

simultaneously. Further, since S2 plays the role of S in Theorem 6, the bound is evaluated

with sample size |S2| = n−m. Therefore, when choosing the size |S1| = m of the sample P is

permitted to depend on, we face a clear tradeoff; a larger S1 will allow a more informed prior

that will hopefully better predict Q(S) and lead to a reduced KL divergence term, but it will

also decrease the denominator of the bound. The optimal amount of data to use for the prior

depends on details of the learning setup, as can be seen from the experiments in Perez-Ortiz

et al. (2021) (see Table 3) and Pérez-Ortiz et al. (2021) (see Table 5).

In the context of neural networks, the map P : (X × Y)m → △(H) can be taken to be

the pushforward of a Gaussian distribution centred around the weights w(S1) returned by

38

an ordinary DL algorithm, a strategy that has been mentioned already in Section 2.3.1 for

choosing the posterior. Indeed, this strategy for choosing the prior combined with the bound

minimisation strategy for choosing the posterior (mentioned in Section 2.3.1) was used in Pérez-

Ortiz et al. (2021) to achieve remarkably tight bounds for deep CNNs (up to 15 layers) on the

CIFAR10 dataset.

2.4 PAC-Bayes and the generalisation mystery

As already briefly mentioned in Section 2.3.2, the PAC-Bayes bound Theorem 6 was employed

with Gaussian prior and posterior in Dziugaite and Roy (2017) to obtain the first non-vacuous

generalisation bound for overparameterised neural networks. For example, working with a

binarised version of the MNIST dataset, they obtain an error bound of RD(Q) ≤ 0.201, where Q

is an isotropic Gaussian over the weights of an MLP with three hidden layers each of dimension

600, trained to minimise a proxy of the bound given in Theorem 6. The prior is also taken

to be an isotropic Gaussian over the weights, centred at the initialisation used for training Q.

This architecture is in the overparameterised regime—it has around 1 193 000 parameters, much

greater than the sample size of 60 000, and they show that the same architecture with only one

hidden dimension can achieve RS(h) = 0.007.

This result was a significant step in demonstrating the value of PAC-Bayes theory, but it

does not constitute an explanation of the generalisation mystery for three reasons:

1. It applies only to stochastic networks, rather than the deterministic networks typically

used in DL.

2. The stochastic networks are trained in a non-standard way—by minimising the PAC-

Bayes bound.

3. There is an element of luck in whether the prior P is chosen such that there exists a

posterior Q with both low empirical risk RS(Q) and for which the bound is tight.

As for the first obstacle, several solutions have been proposed and analysed in the literature to

derandomise stochastic hypotheses into deterministic hypotheses in such a way that preserves

or minimally loosens the PAC-Bayes bound. It should be noted that while demonstrating non-

vacuous bounds for such deterministic hypotheses in the overparameterised regime is certainly a

step forward, the problem remains that these are not the deterministic hypotheses returned by

typical DL algorithms (with the exception of Clerico et al. (2022b)), meaning the explanatory

power of such bounds remains limited.

2.4.1 Derandomisation of PAC-Bayes bounds

Given a stochastic hypothesis Q ∈ △(H), we may derive the following deterministic predictors:

1. h ∼ Q, a single sample from Q,

39

2. fQ(x) := Eh∼Q[h(x)], the Q-weighted majority vote,

3. fw∗ , where w∗ = Ew∼Q[w], the “mean” hypothesis applicable when H = {hw : w ∈ W}.

Note fQ may not be an element of H, so we refer to it as a predictor rather than a hypothesis.

Further it must be the case that fQ(x) ∈ Y , which is true if Y is convex, for example. If

this is not the case, one may project back on to Y ; in the case of binary classification with

Y = {−1, 1}, one may take

2’. fQ(x) := sign
(
Eh∼Q[h(x)]

)
,

as in Lacasse et al. (2006) and Langford and Shawe-Taylor (2002), and in the more general case

of multiclass classification, one may take

2”. fQ(x) := argmaxy∈YPh∼Q

(
h(x) = y

)
,

as in Biggs et al. (2022). The mean hypothesis hw∗ is applicable when H is parameterised by

w, for example if H = {hw : w ∈ Rd}, where hw : X → Y is the function corresponding to a

neural network with weights w. We will now give examples of such derandomisation schemes

in the PAC-Bayes literature.

2.4.2 PAC-Bayes bounds on a sample from the posterior

PAC-Bayes bounds generally take the form

PS∼Dn

(
∀Q ∈ △(H) RD(Q) ≤ ϵ

(
KL(Q∥P), RS(Q), n, δ

))
≥ 1− δ, (2.26)

namely a bound on RD(Q) that holds with high probability over the sample S ∼ Dn for all Q

simultaneously, where the bound ϵ is typically a function of KL(Q∥P), the empirical risk RS(Q),

the sample size n, and the confidence level δ. But many also have a so-called disintegrated form

∀Q : (X ×Y)∗ →△(H) Ph∼Q(S), S∼Dn

(
RD(h) ≤ ϵ

(
ln

(
dQ(S)

dP
(h)

)
, RS(h), n, δ

))
≥ 1− δ,

(2.27)

which says that for any data-dependent posterior Q, with high probability over the sample

S ∼ Dn and then h ∼ Q(S) we get the same bound on RD(h) as in (2.26) with the substitution

KL
(
Q(S)

∥∥P) = Eh∼Q(S)

[
ln

(
dQ(S)

dP
(h)

)]
7→ ln

(
dQ(S)

dP
(h)

)
.

These so-called disintegrated PAC-Bayes bounds were first proposed in Catoni (2007) (Theorem

1.2.7) and Blanchard and Fleuret (2007).

While sampling from Q may at first sight appear to be a bad idea—it increases the “riski-

ness” of the bound by removing the smoothing over h ∼ Q—derandomisation brings us closer

to common DL practice, and, with a careful interpretation, the sampled h ∼ Q can in fact be

40

made to correspond exactly to the deterministic hypothesis h returned by some ordinary DL

algorithms such as Gradient Descent (GD). The trick, developed in Clerico et al. (2022b), is

to note that with GD the neural network is initialised to hw0 , where w0 ∼ π is sampled from

some weight initialisation distribution π. Fixing a sample S and other training details such as

the learning rate and number of epochs, π then induces a distribution over the final trained

network hw. Taking this induced distribution as the PAC-Bayes posterior Q, sampling w0 ∼ π

and training hw through GD corresponds exactly to sampling from Q, allowing disintegrated

PAC-Bayes bounds to apply. The difficulty of course is in estimating dQ
dP

(hw) for this implic-

itly defined posterior. In Clerico et al. (2022b) they consider the ideal situation of continuous

training dynamics which allows some clever gradient flow accounting but unfortunately brings

us away from common DL practice.

A general disintegration framework is derived in Viallard et al. (2024) by generalising from

the KL divergence to the Rényi divergence. Their bounds are highly practical and can be

used as training objectives. Another relevant work is Banerjee et al. (2020) which derives

derandomised PAC-Bayes bounds for MLPs with ReLU activations.

2.4.3 PAC-Bayes bounds for majority votes

The Q-weighted majority vote predictor fQ has received attention in the PAC-Bayes literature,

perhaps because it is well-known that majority votes can improve performance if the errors of

the individual predictors are uncorrelated. In the context of binary classification, a very simple

“folk theorem” in Langford and Shawe-Taylor (2002) (Lemma 4.1) gives that RD(fQ) ≤ 2RD(Q)

for any stochastic hypothesis Q, showing that doubling any bound on RD(Q) (such as Theorem

6) produces a bound on RD(fQ). They then show that the factor 2 can be reduced to 1 + ϵ for

large margin classifiers.

It is noted in Lacasse et al. (2006) that this is unsatisfying since in practice fQ usually

has lower error than Q, so it would ideally enjoy a smaller rather than a larger bound. By

incorporating a bound on the variance of the zero-one error of Q over (x, y) ∼ D, namely a

bound on V(x,y)∼DEh∼Q1[h(x) ̸= y], they derive a PAC-Bayes error bound for the majority vote

classifier fQ that can indeed be much smaller than the error of Q.

It is noted in Letarte et al. (2019) that if the loss ℓ : Y2 → R is linear, then RD(fQ) = RD(Q),

so that PAC-Bayes bounds on Q apply directly to fQ without modification. While commonly

used loss functions are not linear, they note that the zero-one loss ℓ01(ŷ, y) = 1[sign(ŷ) ̸= y]

in particular can be upper bounded by ℓlin(ŷ, y) := 1 − ŷy in the case where y ∈ {−1, 1} and
the predictor returns ŷ ∈ [−1, 1]. Applying PAC-Bayes bounds with ℓlin they obtain bounds on

RD(Q) and hence RD(fQ). Short of being linear, ℓ may still be convex in which case Jensen’s

inequality gives RD(fQ) ≤ RD(Q), again enabling PAC-Bayes bounds on RD(Q) to be carried

over to RD(fQ), as discussed in Section 2.2 of Alquier et al. (2024) along with other properties

of the loss function that allow transfer of bounds to the majority vote predictor.

41

2.4.4 PAC-Bayes bounds for the mean of the posterior

Since in practice the posterior is frequently chosen to be a Gaussian centred around the weights

learned by some ordinary DL algorithm, derandomisation to the “mean” hypothesis hw∗ is

the ideal choice since it reduces to bounding the output of the ordinary DL algorithm, the

performance of which we ultimately want to explain. This is very difficult however due to the

highly complex dependence of hw(x) on w. Indeed, the two terms

RD(Q) = Ew∼Q

[
RD(hw)

]
, RD

(
hw∗) = RD(hEw∼Q[w]

)
may be very different. A remarkable result is proved in Banerjee et al. (2020) for MLPs with

ReLU activations, showing that the expected error RD(Q) of a stochastic network with Gaussian

Q centred at w∗ can be upper bounded in terms of the expected margin loss5 Rγ
D(hw∗) of the

mean network hw∗ , the ordinary KL(Q∥P) term, a curvature term involving the diagonal of

the Hessian of the loss landscape at w∗, and some other terms. They empirically show that the

curvature terms are very small.

A second work to successfully apply this form of derandomisation is Biggs et al. (2022),

which, in the context of multiclass classification with a finite hypothesis classH = {h1, . . . , hK},
considers the task of learning a good majority vote classifier fQθ

(x) := argmaxy∈YPh∼Qθ

(
h(x) =

y
)
for some Qθ ∈ △(H), a categorical distribution over H with parameter θ ∈ △K . Interest-

ingly, they do not bound RD(fQθ
) by first bounding RD(Qθ) and then derandomising to the

majority vote as in Section 2.4.1 item (2”). Instead, they lift to the hypothesis class of majority

vote classifiers H′ := {Qθ : θ ∈ △K} and apply a PAC-Bayes bound to stochastic majority

vote classifiers represented by Dirichlet distributions Qα = Dir(α) ∈ △(△K) with parameter

α ∈ (0,∞)K . Sampling θ ∼ Qα then gives a majority vote classifier Qθ. By choosing α = λθ

for some λ > 0 so that Eθ′∼Qλθ
[θ′] = θ, they derandomise to the mean classifier Qθ as in

Section 2.4.1 item (3), achieving remarkably tight bounds. Bypassing any need for doubling of

the bound often encountered in PAC-Bayes bounds for majority votes, they incur only a very

small penalty for derandomisation.

2.5 PAC-Bayes and self-certified learning

A second goal of the PAC-Bayesian theory is to generate self-bounding algorithms (Freund,

1998), namely algorithms that return both a learned hypothesis and a risk bound on that learned

hypothesis, also called self-certified learning. This is distinct from explaining generalisation

since, as argued in Section 2.2, tight bounds are not sufficient to explain generalisation. The

alternative to self-certified learning is test set bounds, examples of which we give shortly. These

require withholding some of the data from the training procedure, typically leading to a worse

learned hypothesis. In contrast, the promise of self-certified learning is to be able to use all of

5The margin loss is defined in classification settings with Y = [m] and f(x) ∈ Rm by ℓγ(f(x), y) := f(x)y −
maxj ̸=y f(x)j .

42

the data for training while still obtaining a risk bound on the learned hypothesis, a so-called

risk certificate. This is most important in the low-data regime, where withholding data from

the training procedure is especially costly. As we will see however, test set bounds are very

tight and prove a difficult baseline to beat.

2.5.1 Test set bounds

Test set bounds withhold a so-called test set Stest ⊆ S from the training procedure in order to

evaluate the learned hypothesis in an unbiased way by using the Chebyshev (2.7) or Hoeffding

(2.11) concentration inequalities discussed earlier, replacing S with Stest and h with the learned

A(S). More precisely, given a sample S ∈ (X × Y)n, we take Strain = ((x1, y1), . . . , (xm, ym)) ∈
(X ×Y)m and Stest = ((xm+1, ym+1, . . . , (xn, yn)) ∈ (X ×Y)n−m, use Strain to learn a hypothesis

A(Strain) ∈ H and Stest to evaluate it using a test set bound. This then gives

PStest∼Dn−m

(
RD

(
A(Strain)

)
≤ RStest

(
A(Strain)

)
+

C√
(n−m)δ

)
≥ 1− δ, (2.28)

or

PStest∼Dn−m

(
RD

(
A(Strain)

)
≤ RStest

(
A(Strain)

)
+ C

√
1

2(n−m)
ln

2

δ

)
≥ 1− δ, (2.29)

for the Chebyshev and Hoeffding test set bounds, respectively, where recall C was the bound

on the loss function.

In the special case of the zero-one loss, |Stest|RStest

(
A(Strain)

)
is a binomial random variable

with |Stest| trials and bias RD

(
A(Strain)

)
, meaning various confidence intervals for the bias of a

binomial distribution can be applied. The ideal choice, due to its exact coverage, is the binomial

tail test set bound based on the Clopper–Pearson confidence interval (Clopper and Pearson,

1934), given as Theorem 3.3 in Langford and Schapire (2005).

Theorem 9. (Langford and Schapire (2005), Theorem 3.3)

PStest∼Dn−m

(
RD

(
A(Strain)

)
≤ Bin

(
n−m,RStest

(
A(Strain)

)
, δ
))
≥ 1− δ, (2.30)

where

Bin(m, k, δ) := max
{
p ∈ [0, 1] : Bin(m, k, p) ≥ δ

}
, Bin(m, k, p) :=

k∑
j=0

(
m

j

)
pj(1− p)m−j.

(2.31)

In words, the binomial test set bound is the largest p ∈ [0, 1] such that, with probability at

least δ, a binomial random variable with |Stest| trials and bias p has number of successes at

most the number of errors of the learned hypothesis A(Strain) on the test set Stest. Calculating

the function Bin(m, k, δ) is straightforward using bisection on the interval [0, 1].

43

While the binomial tail test set bound is the ideal choice due to its exact coverage (which

comes from the exact coverage of the Clopper–Pearson confidence interval), it can be difficult

to calculate if |Stest| = n − m is large and RStest(A(Strain)) ̸≈ 0, since the binomial coeffi-

cients become large. As discussed in Langford and Schapire (2005), in the special case where

RStest(A(Strain)) = 0, the approximation (1− p)n−m ≤ e−(n−m)p gives the following closed form

PStest∼Dn−m

(
RStrain

(A
(
Strain)

)
= 0 =⇒ RD

(
A(Strain)

)
≤

ln 1
δ

n−m

)
≥ 1− δ, (2.32)

which is numerically much more manageable.

2.5.2 Can PAC-Bayes achieve self-certified learning?

The important feature to note about the test set bound given by (2.32) is that it is O(1/|Stest|),
meaning only a small amount of data needs to be withheld from the training procedure in order

to obtain a tight bound (provided we get zero training error). This sets a very high bar for

self-certified learning in the overparameterised regime where datasets are typically large, since

it is unlikely that withholding the very small proportion of the sample required for the test set

bound will have much of a deleterious effect on the training procedure. Another point in favour

of test set bounds is that since the posterior Q in PAC-Bayes is typically trained by minimising

a PAC-Bayes bound (rather than optimising for performance), even if the PAC-Bayes bound is

tight the stochastic classifier Q may be poor.

Indeed, the generalisation bounds achieved in Perez-Ortiz et al. (2021), although remarkably

tight, are usually worse than simple test set bounds on the mean of the prior, as can be seen

in Table 2.1, which we have adapted from Perez-Ortiz et al. (2021) to include test set bounds

calculated on the mean of the prior, which, in their experiments is a deterministic network

trained through ordinary DL methods. We observe that in most cases these test set bounds are

lower than the corresponding PAC-Bayes bounds. Further, the mean of the prior often performs

better than the posterior (as measured on a test set), meaning the PAC-Bayes procedure not

only produced a worse bound but a worse classifier! We are not the first to note this; the

observation is also made in Lotfi et al. (2022).

It may also be noted that they report very small values for KL(Q∥P), with the average

value across the 12 experiments in Table 2.1 being 0.4903. Since the MLPs they train have

∼105 parameters, this implies only a very small shift in the mean weights of the posterior and

prior during the PAC-Bayes training, suggesting that the PAC-Bayes bounds are in effect test

set bounds in disguise.

These results were calculated with the PAC-Bayes generalisation bound in Theorem 6. Given

that there are many PAC-Bayes bounds, it may be the case that others offer more promise for

self-certified learning. To that end, Foong et al. (2021) investigate a very general unifying

PAC-Bayes theorem proven in Germain et al. (2009), for which many PAC-Bayes bounds are

special cases. We give the later form of the bound found in Bégin et al. (2016) (substituting

their constant m′ > 0 with the common choice m′ = n), which is slightly looser but written

44

Prior mean (deterministic) Posterior (stochastic)

Dataset Val. Test error Test set bound Test error PAC-Bayes bound

Spambase (ncert = 1840)
× 0.077 0.088 0.082 0.140

✓ 0.056 0.066 0.065 0.127

Bioresponse (ncert = 1500)
× 0.261 0.281 0.267 0.318

✓ 0.248 0.267 0.257 0.291

Har (ncert = 4119)
× 0.024 0.028 0.021 0.035

✓ 0.020 0.024 0.024 0.037

Electricity (ncert = 18124)
× 0.221 0.226 0.214 0.223

✓ 0.205 0.210 0.212 0.221

Mammography (ncert = 4473)
× 0.015 0.019 0.015 0.022

✓ 0.017 0.021 0.017 0.023

MNIST (ncert = 30000)
× 0.025 0.027 0.026 0.034

✓ 0.028 0.030 0.027 0.030

Table 2.1: Copy of Table 2 from Perez-Ortiz et al. (2021) with added test set bounds (calculated
according to (2.30)) on the mean of the prior distribution, which is a classifier learned by
ordinary SGD on the training set. The Val. column indicates whether a small subset of the
data was used to determine when to stop training the prior. While the PAC-Bayes bounds are
tight (the final two columns are very close) we see that better risk certificates are obtained in
most cases by taking the test set bound on the mean of the prior (compare Test set bound with
PAC-Bayes bound), meaning PAC-Bayes does not enable self-certified learning in most cases.
Further, the extra data used to learn the posterior results in a worse classifier (compare two
Test error columns), meaning this extra data should be considered wasted even if one is not
concerned with risk certificates.

45

solely in terms of known quantities.

Theorem 10. (Bégin et al. (2016), Theorem 4) Let H ⊆ YX be a hypothesis class with Y =

{−1, 1}, ℓ : Y2 → {0, 1} be the zero-one loss function ℓ(ŷ, y) = 1[ŷ ̸= y] and d : [0, 1]2 → R
be jointly convex. For any fixed stochastic hypothesis P ∈ △(H), data-generating distribution

D ∈ △(X × Y) and confidence level δ ∈ (0, 1], with probability at least 1 − δ over the sample

S ∼ Dn we have that for all stochastic hypotheses Q ∈ △(H) simultaneously

d
(
RS(Q), RD(Q)

)
≤

KL(Q∥P) + ln Id(n)
δ

n
, (2.33)

where

Id(n) := sup
r∈[0,1]

EZ∼Bin(n,r)

[
end(Z/n, r)

]
.

Choosing d(q, p) = kl(q∥p) defined in Equation (2.20) recovers a looser version of Theorem 6

in the case of binary classification, found in Langford and Seeger (2001) and Seeger (2002).

Taking taking d(q, p) = 2(q − p)2 produces a bound due to McAllester (2003). And setting

dβ(q, p) = − ln(1 + p(e−β − 1)) − βq for any β > 0 gives Theorem 1.2.1 from Catoni (2007).

A few more specialisations to existing theorems are discussed in Bégin et al. (2016). Note

that for any choice of d we can define its inverse with respect to its second argument as

d−1(q, B) := sup{p ∈ [0, 1] : d(q, p) ≤ B} (with sup ∅ := 1) just as we did for the small kl in

Equation (2.22).

The goal of Foong et al. (2021) was to see whether there exists a choice of convex function

d for which Theorem 10 beats the test set bound baseline in the small data regime (they take

n ≈ 30-60), where self-certified learning could be especially beneficial. First, they show that

if one illegally chooses d in an S-dependent way, the best result is achieved by dβ for some

value of β > 0, which, incidentally, yields the Chernoff test set bound (Langford and Schapire,

2005) in the case where Q = P , which is looser than the binomial tail test set bound (2.30).

Since choosing d in a sample independent way can only do worse, this result restricts how tight

bounds produced by Theorem 10 can be.

While they observe in Foong et al. (2021) that Theorem 10 cannot beat the binomial tail

test set bound in the case Q = P , this leaves open the question of whether better choices of

Q, perhaps learned by minimising the PAC-Bayes bound, can nevertheless beat the binomial

test set bound (in expectation over S) for some choice of d. To investigate this question, they

meta-learn both an optimal d and a stochastic algorithm A : (X × Y)∗ → △(H) across data-
generating distributions D ∈ △(X ×Y) sampled from some meta-data-generating distribution

T ∈ △(△(X × Y)). Unfortunately, even in this highly favourable (and usually unrealistic)

scenario, they find that PAC-Bayes bounds derived from Theorem 10 are unable to beat bi-

nomial tail test set bounds in expectation over S ∼ D,D ∼ T . Of course, it may still be

the case that it is possible to beat binomial tail test set bounds for choices of T other than

theirs, or for PAC-Bayes bounds that are not special cases of Theorem 10. Their results are at

least suggestive however that self-certified learning will not be achieved by any specialisation

of Theorem 10.

46

Chapter 3

Controlling Multiple Errors

Simultaneously with a PAC-Bayes

Bound

3.1 Introduction

Much of the PAC-Bayes literature focuses on the case of binary classification, or of multiclass

classification where one only distinguishes whether each classification is correct or incorrect.

This is in stark contrast to the complexity of contemporary real-world learning problems, such

as medical diagnosis where the severity of Type I and Type II errors may be crucial and

context-dependent. This chapter aims to bridge this gap by deriving a generalisation bound

that provides information-rich measures of performance at test time by controlling the proba-

bilities of errors of any finite number of user-specified types. More precisely, we bound the KL

divergence between the empirical and true distributions over the different error types. From

this single bound one can derive bounds on arbitrary linear combinations of these error proba-

bilities, which will all hold simultaneously with the same probability as the original bound. In

addition, these bounds are guaranteed to be non-vacuous (this follows since the KL divergence

blows up on the boundary of the simplex).

As a concrete example, if the severity of Type I and Type II errors of a medical test are

context-dependent, one would want to be able to bound arbitrary linear combinations of these

error probabilities. Existing bounds could only bound finitely many pre-specified weightings by

employing a union bound, which would also degrade the bound. In contrast, by constraining

the KL divergence between the true and empirical error probabilities, our bound constrains all

of the uncountably many weightings of the error probabilities simultaneously.

The most common setting of PAC-Bayesian theory is that of binary classification with

the zero-one loss, as in Theorem 10 from Section 2.5.2, namely a binary label space Y =

{−1, 1} with the zero-one loss ℓ(ŷ, y) = 1[ŷ ̸= y]. Recall that this bound, originally due to

Germain et al. (2009, 2015) and streamlined in Bégin et al. (2016), unifies various PAC-Bayes

bounds. The bound is binary in the sense that Y contains two elements, but a more subtle

47

way to look at this is that only two cases are distinguished—correct classification and incorrect

classification. It can in fact be applied to multiclass classification provided one maintains the

second binary characteristic by only distinguishing correct and incorrect classifications. It is

this heavy restriction that our result lifts, by considering the new framework of error types.

By a framework of error types, we mean a user-specified finite partition of the space Y ×Y
into error types E1, . . . , EM , where Y is an arbitrary (not necessarily finite) label space. Our

bound then simultaneously constrains the probability with which errors of each type occur.

In multiclass classification for example, one can choose the error types to be the set of all

different possible misclassifications, in which case our bound will control the entire confusion

matrix, bounding how far the true confusion matrix (i.e. expected over the data-generating

distribution) can diverge from the empirical one (i.e. on the training set). From this one can

derive bounds on the probabilities with which each misclassification may be made, and arbitrary

linear combinations of these error probabilities, and all of these will hold simultaneously with

the same probability as the original bound. Our bound therefore paints a far richer picture of

the performance of the final learned model than can be provided by any existing PAC-Bayes

bound.

More formally, we let E1, . . . , EM be a user-specified disjoint partition of Y2 into a finite

number of M error types, where we say that a hypothesis h ∈ H makes an error of type j on

data point (x, y) if (h(x), y) ∈ Ej. By convention, every pair (ŷ, y) ∈ Y2 is interpreted as a

predicted value ŷ followed by a true value y, in that order. It should be stressed that not all

of the Ej need correspond to mislabellings—indeed, some of the Ej may distinguish different

correct labellings.

3.2 Related work

Our framework of a finite number of user-specified error types includes multiclass classification

as a particular case, and it is in this field that one finds the work most closely related to ours.

Little is known about multiclass classification from the theoretical perspective of generalisation

bounds in the DL regime. To the best of our knowledge, only a handful of relevant strategies

or generalisation bounds can be compared to work presented in this chapter.

Closely related is Morvant et al. (2012), which establishes a PAC-Bayes bound on the

spectral norm of the difference between the true and empirical confusion matrices. Our bound

differs from theirs in two respects. First, they consider the confusion matrix, whereas ours

applies to the more general setting of a finite number of error types, which can be the set of all

misclassifications or some partition thereof, and is even applicable beyond classification to tasks

with continuous label spaces. Second, they deal with the spectral norm, whereas we employ

the KL divergence. Since the KL divergence follows a simple formula, we can much more easily

infer bounds on the individual error probabilities, which is challenging for the spectral norm.

The follow-up work Koço and Capponi (2013) shows how a proxy of the spectral norm bound

can be used as a training objective that may deal with imbalanced classes. In the present work,

48

we show how our bound can be used as a differentiable training objective directly (without

the need of a proxy) and that it can more sensitively deal with imbalanced classes, or errors

of different severity, by assigning each error type a user-specified loss value. Benabbou and

Lang (2017) present a streamlined version of some of the results from Morvant et al. (2012)

in the case where some examples are voluntarily not classified, for example in the case of high

uncertainty. This is the work most closely related to ours, except our proof is far more involved

leading to a tighter bound.

Laviolette et al. (2017) extend the celebrated C-bound in PAC-Bayes to ensembles, obtaining

a bound on the risk of the majority vote classifier in the case of multiclass classification. In

this context, our bound is able to distinguish different misclassifications and control them,

whereas they bound the scalar risk which lumps all misclassifications together. The C-bound
has alternately been generalised by Lacasse et al. (2006) (see also Germain et al. (2015)) to

simultaneously control three metrics, namely the so-called expected disagreement, expected joint

success and expected joint error of the posterior. While they restricted themselves to the ternary

case, some of their proof techniques share similarities with ours. In cases where one has exactly

three error types, for example the {−1, 0, 1}-valued excess loss, the work of Wu and Seldin

(2022) is applicable; they construct so-called ‘split-kl’ inequalities (both classical and PAC-

Bayesian) which deftly handle this specific scenario.

Pires et al. (2013) present a comprehensive analysis of convex surrogate losses in cost-

sensitive multiclass classification, providing conditions for consistency, bounding the excess loss

of a predictor, and extending the analysis to the “Simplex Coding” scheme. We consider the

generalisation gap rather than the excess loss. Lei et al. (2019) study data-dependent bounds

for multiclass classification. Their analysis is restricted to SVMs however, whereas ours applies

to arbitrary hypothesis spaces. Feofanov et al. (2019) derive bounds for the error rate of

a majority vote classifier in the scenario of multiclass classification with partial labels. They

bound the individual elements of the confusion matrix, whereas our bound constrains the entire

distribution.

Outline. We fix notation in Section 3.3. Theorem 11 in Section 3.4 is our main result—a

PAC-Bayes bound on the KL divergence between the true and empirical error distributions.

For multiclass classification with a fully refined partition this becomes a bound on the KL

divergence between the true and empirical confusion matrices. Proposition 1 then bounds the

individual error probabilities. Our second main result, Theorem 12 in Section 3.5, allows us

to use bounds on linear combinations of error probabilities as training objectives. We prove

Theorem 11 in Section 3.6 via Proposition 4, which bounds the distribution of errors via a

general convex function d, and may be of independent interest. Section 3.7 outlines positive

empirical results1 from using our bound as a training objective for neural networks, and Section

3.8 gives perspectives for future work.

1Code available here: https://github.com/reubenadams/PAC-Bayes-Control

49

https://github.com/reubenadams/PAC-Bayes-Control

3.3 Notation

We are interested in simple hypotheses h : X → Y and soft hypotheses H : X → △(Y).
For example, a neural network outputting scores (logits) in R|Y| is converted to a simple or

soft hypothesis, respectively, by passing the scores through the argmax or softmax function,

respectively. For any A ⊆ Y , H(x)(A) can be interpreted as the probability according to H

that the label of x is in A. We will see in Section 3.5 that soft hypotheses permit more flexible

training procedures and a more fine-grained analysis. Note that while soft hypotheses output

distributions, they do so deterministically, always returning the same distribution for the same

input x, and so are distinct from the stochastic classifiers introduced shortly.

For a simple hypothesis h : X → Y and j ∈ [M], define the j-risk of h to be Rj
D(h) :=

P(x,y)∼D((h(x), y) ∈ Ej), namely the probability that hmakes an error of type Ej for a randomly

sampled (x, y) ∼ D. For a soft hypothesis H : X → △(Y) define the j-risk of H to be

Rj
D(H) := P(x,y)∼D,ŷ∼H(x)((ŷ, y) ∈ Ej), namely the probability that one would make an error of

type Ej on a randomly sampled (x, y) ∼ D if one predicted by sampling ŷ from the distribution

H(x) ∈ △(Y). From now until Section 3.5 it will not matter whether we are dealing with

simple or soft hypotheses. So, unless stated explicitly, we refer to both simply as hypotheses,

denote both by lowercase h, and refer to the hypothesis class H, whether it is a subset of YX or

△(Y)X . For ease of setting up notation, let D̂(S) ∈ △(X ×Y) denote the empirical distribution

D̂(S) := 1
n

∑
(x,y)∈S δ(x,y), namely the distribution consisting of delta masses of mass 1/n on

each of the data points in S.

Our goal is to control the true risk vector RD(h) := (R1
D(h), . . . , R

M
D (h)), since controlling

this vector controls all linear combinations of j-risks. Since this is unobservable, we will control

it by bounding how far it diverges from its empirical counterpart RS(h) := RD̂(S)(h), which

we term the empirical risk vector. Note that ES∼DnRS(h) = RD(h), and that, for a simple

hypothesis h ∈ YX , RS(h) is the vector of proportions of the sample on which h makes an error

of type Ej, which can be seen as follows

(
RS(h)

)
j
= Rj

D̂(S)
(h) = P(x,y)∼D̂(S)

(
(h(x), y) ∈ Ej

)
=

1

n

∑
(x,y)∈S

1
[
(h(x), y) ∈ Ej

]
.

Since the Ej partition Y2, RD(h) and RS(h) are elements of the M -dimensional simplex

△M := {u ∈ [0, 1]M : u1 + · · · + uM = 1}. Thus we can choose our divergence measure

to be kl(RS(Q)∥RD(Q)), where for q,p ∈ △M we define

kl(q∥p) :=
M∑
j=1

qj ln
qj
pj
,

following the usual convention that 0 ln 0
x
= 0 for x ≥ 0 and x ln x

0
=∞ for x > 0. WhenM = 2

we abbreviate kl((q, 1 − q)∥(p, 1 − p)) to kl(q∥p), which is then the conventional definition of

kl(·∥·) found in the PAC-Bayes literature, defined in Equation (2.20) from Section 2.3. We define

50

the true and empirical risk vectors of Q as RD(Q) := Eh∼QRD(h) and RS(Q) := Eh∼QRS(h),

respectively, and seek a bound on kl(RS(Q)∥RD(Q)). Note we still have ES[RS(Q)] = RD(Q),

this time using Fubini. Moreover, for a sample S of size n, we have that RS(Q) = K/n where

K ∼ Mult(n,M,RD(Q)). Recall that for n,M ∈ N and r ∈ △M , the multinomial distribution

Mult(n,M, r) has probability mass function

Mult(k;n,M, r) :=

(
n

k1 k2 · · · kM

) M∏
j=1

r
kj
j , where

(
n

k1 k2 · · · kM

)
:=

n!∏M
j=1 kj!

for k ∈ Sn,M :=
{
(k1, . . . , kM) ∈ NM

0 : k1 + · · ·+ kM = n
}
, and zero otherwise. As a final piece

of notation, we let △>0
M := △M ∩ (0, 1)M and S>0

n,M := Sn,M ∩NM denote the vector elements of

△M and Sn,M , respectively, that have no zero components.

3.4 Main result

We now state our main result, which bounds the KL divergence between the true and empirical

risk vectors RD(Q) and RS(Q), interpreted as probability distributions. As is conventional in

the PAC-Bayes literature, we refer to sample independent and dependent distributions P,Q ∈
△(H), i.e. stochastic hypotheses, as priors P and posteriors Q respectively, even if they are

not related by Bayes’ theorem.

Theorem 11. Let X and Y be arbitrary sets and E1, . . . , EM be a disjoint partition of Y2

into M error types. Let D ∈ △(X × Y) be a data-generating distribution and H be a simple

(H ⊆ YX) or soft (H ⊆ △(Y)X) hypothesis class. For any prior P ∈ △(H), δ ∈ (0, 1] and

sample size n ≥ M , with probability at least 1 − δ over the random draw S ∼ Dn, we have

that simultaneously for all posteriors Q ∈ △(H), the divergence kl
(
RS(Q)

∥∥RD(Q)
)
is upper

bounded by
1

n

[
KL(Q∥P) + ln

ξ(n,M)

δ

]
, where

ξ(n,M) :=
√
πe1/(12n)

(n
2

)M−1
2

M−1∑
z=0

(
M

z

)(
2

n

)z/2

Γ

(
M − z

2

)−1

∈ O
(
(nM)M

)
.

The fact that the logarithmic term is of order O(M ln(nM/δ)) means the bound is linear in

M up to logarithmic terms. While this may seem excessive, one should note that the quantity

that our theorem bounds also depends on M . Further, the bound has been successfully used

by Biggs and Guedj (2023) to improve on state of the art PAC-Bayes bounds.

To see how our bound compares to existing PAC-Bayes bounds for binary classification,

take Y = {−1, 1}, M = 2, and

E1 = {(1,−1), (−1, 1)}, and E2 = {(1, 1), (−1,−1)},

corresponding to incorrect and correct classification, respectively. The argument of the loga-

rithm then reduces to 1
δ
e1/(12n)

(
2 +

√
πn
2

)
≤ 1.25

√
n when n is large. The corresponding term

51

in Maurer (2004) (given as Theorem 6 in Section 2.3) is 2
√
n, which is only larger because

Maurer relaxes the term for aesthetics. Therefore our bound gracefully reduces to Maurer’s in

the case of binary classification with zero-one loss.

Suppose after a use of Theorem 11 we have a bound of the form kl(RS(Q)∥RD(Q)) ≤ B.

We can then derive bounds on the individual j-risks Rj
D(Q) or, more generally, on linear

combinations thereof. While one could obtain such bounds perhaps more directly with existing

PAC-Bayes bounds, the significance of our bound is that all such derived bounds hold with

high probability simultaneously. Existing PAC-Bayes bounds would require the use of a union

bound in order to bound multiple combinations simultaneously, whereas ours bounds all of the

uncountably many combinations simultaneously, as a package. As for the individual j-risks

Rj
D(Q), the following proposition then yields the bounds

Lj ≤ Rj
D(Q) ≤ Uj,

where

Lj := inf
{
p ∈ [0, 1] : kl

(
Rj

S(Q)
∥∥p) ≤ B

}
,

Uj := sup
{
p ∈ [0, 1] : kl

(
Rj

S(Q)
∥∥p) ≤ B

}
.

Moreover, since in the worst case we have kl(RS(Q)∥RD(Q)) = B, the proposition shows that

the lower and upper bounds Lj and Uj are the tightest possible, since if R
j
D(Q) ̸∈ [Lj, Uj] then

kl(Rj
S(Q)∥R

j
D(Q)) > B implying kl(RS(Q)∥RD(Q)) > B. For a more precise version of this

argument and a proof of Proposition 1, see Appendix A.3.4.

Proposition 1. Let q,p ∈ △M . Then kl(qj∥pj) ≤ kl(q∥p) for all j ∈ [M], with equality when

pi =
1−pj
1−qj

qi. for all i ̸= j.

Going beyond bounds on the individual j-risks, suppose we can quantify how costly an error

of each type is by means of a loss vector ℓ ∈ [0,∞)M , where ℓj is the loss we attribute to an

error of type Ej. We may then be interested in bounding the total risk

RT
D(Q) := ℓ ·RD(Q) =

M∑
j=1

ℓjR
j
D(Q).

Then, given a bound kl(RS(Q)∥RD(Q)) ≤ B from Theorem 11, we can deduce

RT
D(Q) ≤ sup

{
ℓ · r : r ∈ △M , kl

(
RS(Q)∥r

)
≤ B

}
= ℓ · kl−1

ℓ

(
RS(Q)|B

)
,

where we define kl−1
ℓ (u|c) ∈ △M as follows. To see that it is indeed well-defined (at least when

u ∈ △>0
M), see the discussion at the beginning of Appendix A.3.5.

Definition 8. For u ∈ △M , c ∈ [0,∞) and ℓ ∈ [0,∞)M , define kl−1
ℓ (u|c) to be an element

52

v ∈ △M solving the constrained optimisation problem

Maximise: fℓ(v) := ℓ · v, (3.1)

Subject to: kl(u∥v) ≤ c. (3.2)

This motivates the following training procedure: search for a posteriorQ for which the bound

ℓ·kl−1
ℓ (RS(Q)|B) on the total risk RT

D(Q) is minimised. While this requires a particular choice of

loss vector ℓ, we emphasise that at the end of training, Theorem 11 bounds kl(RS(Q)∥RD(Q)),

and so can be used to bound any linear combination of the j-risks, not just the one given

the loss vector ℓ chosen for training. It is this flexibility which is the main advantage of our

bound; changes in the severity of different error types over time do not require union bounds

or retraining.

In the next section we provide a theorem for calculating kl−1
ℓ (u|c) and its derivatives so that

the training procedure can be executed.

3.5 Construction of a differentiable training objective

We now state and prove Theorem 12, which provides a speedy method for approximating

kl−1
ℓ (u|c) and its derivatives to arbitrary precision, provided c > 0 and ∀j uj > 0. The only

approximation step required is that of approximating the unique root of a continuous and

strictly increasing scalar function. Thus, provided the uj themselves are differentiable, Theorem

11 combined with Theorem 12 shows that the upper bound on the total risk can be used as

a tractable and fully differentiable training objective. See Appendix A.1 for more details,

including a pseudocode algorithm and an implementation. Since the proof of Theorem 12 is

rather long and technical, we defer it to Appendix A.3.5. The requirement that the ℓj are not

all equal serves only to rule out trivial cases where RT
D(Q) is independent of RD(Q).

Theorem 12. Fix ℓ ∈ [0,∞)M such that not all ℓj are equal, and define fℓ : △M → [0,∞) by

fℓ(v) :=
∑M

j=1 ℓjvj. For all ũ = (u, c) ∈ △>0
M × (0,∞), define v∗(ũ) := kl−1

ℓ (u|c) ∈ △M and let

µ∗(ũ) ∈ (−∞,−maxj ℓj) be the unique solution to c = ϕℓ(µ), where ϕℓ : (−∞,−maxj ℓj)→ R
is given by ϕℓ(µ) := ln(−

∑M
j=1

uj

µ+ℓj
) +

∑M
j=1 uj ln(−(µ+ ℓj)), which is continuous and strictly

increasing. Then v∗(ũ) = kl−1
ℓ (u|c) is given by

v∗(ũ)j =
λ∗(ũ)uj
µ∗(ũ) + ℓj

for j ∈ [M], where λ∗(ũ) =

(
M∑
j=1

uj
µ∗(ũ) + ℓj

)−1

. (3.3)

Further, defining f ∗
ℓ : △>0

M × (0,∞)→ [0,∞) by f ∗
ℓ (ũ) := fℓ(v

∗(ũ)), we have that

∂f ∗
ℓ

∂uj
(ũ) = λ∗(ũ)

(
1 + ln

uj
v∗(ũ)j

)
and

∂f ∗
ℓ

∂c
(ũ) = −λ∗(ũ). (3.4)

A final wrinkle in evaluating our bound is that while the empirical risk vector RS(Q) =

Eh∼QRS(h) does not depend on the data-generating distribution D, the expectation over Q

53

may still be intractable. This would be the default case when Q is a Gaussian over the weights

of a multilayer perceptron, for example. In such cases, we can estimate RS(Q) via a Monte

Carlo sample RS(Q̂) := 1
N

∑N
n=1RS(hn) (where the hn are drawn i.i.d. from Q) and use the

following two results. Proposition 2 shows that the kl(Rj
S(Q̂)∥R

j
D(Q)) can be simultaneously

bounded, whence Proposition 3 can be used to obtain a bound on kl(RS(Q̂)∥RD(Q)).

Proposition 2. Let X ∼ Multinomial(N,M,p). Then for any δ ∈ (0, 1), with probability at

least 1− δ we have that for all j ∈ [M] simultaneously

kl

(
1

N
Xj

∥∥∥∥pj) ≤ ln 2M
δ

N
.

Proof. Each bound holds separately with probability at least 1 − δ/M by Theorem 2.5 in

Langford and Caruana (2001). They then hold simultaneously by application of a union bound.

Proposition 3. Suppose q,p, q̂ ∈ △M are such that kl(q∥p) ≤ B1 and kl(q̂j∥qj) ≤ B2 for all

j ∈ [M]. For each j, define q
j
= inf{r ∈ [0, 1] : kl(q̂j∥r) ≤ B2}. Then

kl(q̂∥p) ≤MB2 −
M∑
j=1

(1− q̂j) ln
1− q̂j
1− q

j

+B1max
j

q̂j
q
j

→ B1 as B2 → 0.

Proof. Deferred to A.3.1.

The fact that the bound on kl(q̂∥p) → B1 as B2 → 0 ensures that as we increase the size

of our Monte Carlo sample for estimating RS(Q) the bound on kl(RS(Q̂)∥RD(Q)) approaches

that of kl(RS(Q)∥RD(Q)), meaning in the limit we pay an arbitrarily small price in the bound

for the approximation.

3.6 Proof of the main bound

We split the proof of Theorem 11 into three parts. First, we prove Proposition 4, a bound on

d(RS(Q),RD(Q)) for an arbitrary convex function d, which may be of independent interest.

Second, we prove Corollary 1 by specialising Proposition 4 to the case d(·, ·) = kl(·∥·). Finally,
we show that the bound in Theorem 11 is a loosened version of the bound in Corollary 1.

Proposition 4. Let d : △2
M → R be jointly convex. In the setting of Theorem 11, for any

β > 0

d
(
RS(Q),RD(Q)

)
≤ 1

β

[
KL(Q∥P) + ln

Id(n, β)
δ

]
, where (3.5)

Id(n, β) := sup
r∈△M

 ∑
k∈Sn,M

Mult(k;n,M, r) exp
(
βd
(
k
n
, r
)) .

54

This is a generalisation of the unifying PAC-Bayes bound given in Bégin et al. (2016) where

we replace the scalar risk quantities RS(Q) and RD(Q) with their vector counterparts RS(Q)

and RD(Q). To see this, note that we can recover it by setting Y = {−1, 1}, M = 2, E1 =

{(−y, y) : y ∈ Y} and E2 = {(y, y) : y ∈ Y}. Then, for any convex function d : [0, 1]2 → R,
apply Proposition 4 with the convex function d′ : △2

M → R defined by d′((u1, u2), (v1, v2)) :=

d(u1, v1) so that Proposition 4 bounds d′
(
RS(Q),RD(Q)

)
= d

(
R1

S(Q), R
1
D(Q)

)
which equals

d(RS(Q), RD(Q)) in the notation of Bégin et al. (2016). Further,

∑
k∈Sn,2

Mult(k;n, 2, r) exp
(
βd′
(
k
n
, r
))

=
n∑

k=0

Bin(k;n, r1) exp
(
βd
(
k
n
, r1
))
,

so that the supremum over r1 ∈ [0, 1] of the right hand side equals the supremum over r ∈ △2

of the left hand side, which, when substituted into (3.5), yields the bound given in Bégin et al.

(2016).

To prove Proposition 4 we require the following two lemmas. The first is the well-known

change of measure in equality (Csiszár, 1975; Donsker and Varadhan, 1975). The second is a

generalisation from Binomial to Multinomial distributions of a result found in Maurer (2004),

the proof of which we defer to Appendix A.3.2.

Lemma 1. For any set H, any P,Q ∈ △(H) and any measurable function ϕ : H → R,

E
h∼Q

ϕ(h) ≤ KL(Q∥P) + ln E
h∼P

exp(ϕ(h)).

Lemma 2. Let X1, . . . ,Xn be i.i.d △M -valued random vectors with mean µ and suppose that

f : △n
M → R is convex. If X ′

1, . . . ,X
′
n are i.i.d. Mult(1,M,µ) random vectors, then

E[f(X1, . . . ,Xn)] ≤ E[f(X ′
1, . . . ,X

′
n)].

The consequence of Lemma 2 is that the worst case (in terms of bounding d(RS(Q),RD(Q)))

occurs when R{(x,y)}(h) is a one-hot vector for all (x, y) ∈ S and h ∈ H, namely when H ⊆
△(Y)X only contains hypotheses that, when labelling S, put all their mass on elements ŷ ∈ Y
that incur the same error type2. In particular, this is the case for hypotheses that put all their

mass on a single element of Y , equivalent to the simpler case H ⊆ YX as discussed in Section

3.3. Thus, Lemma 2 shows that the bound given in Proposition 4 cannot be made tighter only

by restricting to such hypotheses.

Proof. (of Proposition 4) The case H ⊆ YX follows directly from the more general case by

taking

H′ :=
{
h′ ∈ △(Y)X : ∃h ∈ H such that ∀x ∈ X h′(x) = δh(x)

}
where δh(x) ∈ △(Y) denotes a point mass on h(x). For the general case H ⊆ △(Y)X , using
Jensen’s inequality with the convex function d(·, ·) and Lemma 1 with ϕ(h) = βd(RS(h),RD(h)),

2More precisely, when ∀h ∈ H ∀(x, y) ∈ S ∃j ∈ [M] such that h(x)[{ŷ ∈ Y : (ŷ, y) ∈ Ej)}] = 1.

55

we see that for all Q ∈ △(H)

βd
(
RS(Q),RD(Q)

)
= βd

(
E

h∼Q
RS(h), E

h∼Q
RD(h)

)
≤ E

h∼Q
βd
(
RS(h),RD(h)

)
≤ KL(Q∥P) + ln

(
E

h∼P
exp

(
βd
(
RS(h),RD(h)

)))
= KL(Q∥P) + ln(ZP (S)),

where ZP (S) := Eh∼P exp
(
βd(RS(h),RD(h))

)
. Note that ZP (S) is a non-negative random

variable, so that by Markov’s inequality

P
S∼Dn

(
ZP (S) ≤

ES′∼DnZP (S
′)

δ

)
≥ 1− δ.

Thus, since ln(·) is strictly increasing, with probability at least 1 − δ over S ∼ Dn, we have

that simultaneously for all Q ∈ △(H)

βd
(
RS(Q),RD(Q)

)
≤ KL(Q∥P) + ln

E
S′∼Dn

ZP (S
′)

δ
. (3.6)

To bound ES′∼DnZP (S
′), let Xi := R{(xi,yi)′}(h) ∈ △M for i ∈ [n], where (xi, yi)

′ is the

i’th element of the dummy sample S ′. Noting that each Xi has mean RD(h), define the

random vectors X ′
i ∼ Mult(1,M,RD(h)) and Y :=

∑n
i=1X

′
i ∼ Mult(n,M,RD(h)). Finally

let f : △n
M → R be defined by

f(x1, . . . , xn) := exp

(
βd

(
1

n

n∑
i=1

xi,RD(h)

))
,

which is convex since the average is linear, d is convex and the exponential is non-decreasing

and convex. Then, by swapping expectations (which is permitted by Fubini’s theorem since the

argument is non-negative) and applying Lemma 2, we have that ES′∼DnZP (S
′) can be written

as

ES′∼DnZP (S
′) = E

S′∼Dn
E

h∼P
exp

(
βd
(
RS′(h),RD(h)

))
= E

h∼P
E

S′∼Dn
exp

(
βd
(
RS′(h),RD(h)

))
= E

h∼P
E

X1,...,Xn

exp

(
βd

(
1

n

n∑
i=1

Xi,RD(h)

))

≤ E
h∼P

E
X′

1,...,X
′
n

exp

(
βd

(
1

n

n∑
i=1

X ′
i,RD(h)

))

= E
h∼P

E
Y
exp

(
βd

(
1

n
Y ,RD(h)

))
56

= E
h∼P

∑
k∈Sn,M

Mult
(
k;n,M,RD(h)

)
exp

(
βd
(
k
n
,RD(h)

))

≤ sup
r∈△M

 ∑
k∈Sn,M

Mult
(
k;n,M, r

)
exp

(
βd
(
k
n
, r
)) ,

which is the definition of Id(n, β). Inequality (3.5) then follows by substituting this bound on

ES′∼DnZP (S
′) into (3.6) and dividing by β.

We now specialise Proposition 4 to the case d(·, ·) = kl(·∥·) to obtain Corollary 1.

Corollary 1. In the setting of Theorem 11,

kl
(
RS(Q)

∥∥RD(Q)
)
≤ 1

n

[
KL(Q∥P) + ln

η(n,M)

δ

]
, where (3.7)

η(n,M) :=
n!

nn

∑
k∈Sn,M

M∏
j=1

k
kj
j

kj!
.

Proof. Applying Proposition 4 with d(·, ·) = kl(·∥·) and β = n gives that with probability at

least 1− δ over S ∼ Dn, simultaneously for all posteriors Q ∈ △(H),

kl
(
RS(Q)

∥∥RD(Q)
)
≤ 1

n

[
KL(Q∥P) + ln

Ikl(n, n)
δ

]
,

where

Ikl(n, n) := sup
r∈△M

 ∑
k∈Sn,M

Mult(k;n,M, r) exp
(
nkl
(
k
n

∥∥r))
 . (3.8)

Thus it suffices to show that Ikl(n, n) ≤ η(n,M).

To prove this, for each fixed r = (r1, . . . , rM) ∈ △M let Jr = {j ∈ [M] : rj = 0}. Then

Mult(k;n,M, r) = 0 for any k ∈ Sn,M such that kj ̸= 0 for some j ∈ Jr. For the other

k ∈ Sn,M , namely those such that kj = 0 for all j ∈ Jr, the probability term can be written as

Mult(k;n,M, r) =
n!∏M

j=1 kj!

M∏
j=1

r
kj
j =

n!∏
j ̸∈Jr kj!

∏
j ̸∈Jr

r
kj
j ,

and (recalling the convention that 0 ln 0
0
= 0) the term exp(nkl(k

n
∥r)) can be written as

exp

(
n

M∑
j=1

kj
n
ln

kj
n

rj

)
= exp

(∑
j ̸∈Jr

kj ln
kj
nrj

)
=
∏
j ̸∈Jr

(
kj
nrj

)kj

=
1

nn

∏
j ̸∈Jr

(
kj
rj

)kj

,

where the last equality is obtained by recalling that the kj sum to n. Substituting these two

expressions into the definition of Ikl(n, n) and only summing over those k ∈ Sn,M with non-zero

57

probability, we obtain∑
k∈Sn,M

Mult(k;n,M, r) exp
(
nkl
(
k
n

∥∥r)) =
∑

k∈Sn,M :

∀j∈Jr kj=0

Mult(k;n,M, r) exp
(
nkl
(
k
n

∥∥r))

=
∑

k∈Sn,M :

∀j∈Jr kj=0

n!∏
j ̸∈Jr kj!

∏
j ̸∈Jr

r
kj
j

1

nn

∏
j ̸∈Jr

(
kj
rj

)kj

=
n!

nn

∑
k∈Sn,M :

∀j∈Jr kj=0

∏
j ̸∈Jr

k
kj
j

kj!

=
n!

nn

∑
k∈Sn,M :

∀j∈Jr kj=0

M∏
j=1

k
kj
j

kj!
(because 00

0!
= 1)

≤ n!

nn

∑
k∈Sn,M

M∏
j=1

k
kj
j

kj!
,

which is η(n,M). Since this is independent of r, it also holds after taking the supremum over

r ∈ △M of the left hand side, showing that Ikl(n, n) ≤ η(n,M).

The final step in obtaining Theorem 11 is to loosen the bound given in Corollary 1 (which

is intractable when m is large) to the tractable form given in Theorem 11. For this we require

the following technical lemma, the proof of which we defer to Appendix A.3.3.

Lemma 3. For integers M ≥ 1 and n ≥M ,

∑
k∈S>0

n,M

1∏M
j=1

√
kj
≤ π

M
2 n

M−2
2

Γ(M
2
)
.

Proof. (Of Theorem 11) It suffices to show that for all n ≥M ≥ 1 we have η(n,M) ≤ ξ(n,M).

We achieve this by applying Stirling’s approximation
√
2πn

(
n
e

)n
< n! <

√
2πn

(
n
e

)n
e

1
12n (valid

for n ≥ 1) to the factorials in η(n,M) and then using Lemma 3.

Since Stirling’s approximation requires that all the kj are at least one, we partition the

sum in η(n,M) according to the number of coordinates of k at which kj = 0. Let z index the

number of such coordinates. Defining f :
⋃∞

M=2 Sn,M → R by f(k) =
∏|k|

j=1 k
kj
j /kj! and noting

that f is symmetric under permutations of its arguments, we then have

η(n,M) =
n!

nn

∑
k∈Sn,M

f(k) =
n!

nn

M−1∑
z=0

(
M

z

) ∑
k∈S>0

n,M−z

f(k). (3.9)

58

Stirling’s approximation can now be applied to each k ∈ S>0
n,M

f(k) ≤
M∏
j=1

k
kj
j√

2πkj

(
kj
e

)kj =
M∏
j=1

ekj√
2πkj

=
en

(2π)M/2

M∏
j=1

1√
kj
.

An application of Lemma 3 now gives

∑
k∈S>0

n,M−z

f(k) ≤
∑

k∈S>0
n,M−z

en

(2π)
M−z

2

M−z∏
j=1

1√
kj
≤ en

(2π)
M−z

2

π
M−z

2 n
M−z−2

2

Γ
(
M−z
2

) =
enn

M−z−2
2

2
M−z

2 Γ
(
M−z
2

) .
Substituting this into equation (3.9) and bounding n! using Stirling’s approximation, we have

η(n,M) ≤
√
2πne1/(12n)

en

M−1∑
z=0

(
M

z

)
enn

M−z−2
2

2
M−z

2 Γ
(
M−z
2

) = ξ(n,M),

which completes the proof of the bound. As for the order of the bound, it is sufficient to bound

ln ξ(n,M) using the crude approximations
(
M
z

)
≤MM , (2/n)z/2 ≤ 1 and Γ((M − z)/2) ≥ 1.

3.7 Numerical experiments

We use binarised versions of MNIST and HAM10000 (Tschandl et al., 2018). In both cases we

partition Y2 into E0 = {(0, 0), (1, 1)}, E1 = {(0, 1)} and E2 = {(1, 0)}, and take ℓ = (0, 1, 3).

Each dataset is split into prior and certification sets. We take H to be the set of two-layer

ReLU-activated MLPs. As is common in the PAC-Bayes literature, we restrict P and Q to

be isotropic and diagonal Gaussian distributions over the parameter space, respectively. The

mean of P is set to the parameters of an MLP trained on the prior set, and this is also taken

as the initialisation of the means of Q. The mean and variance of Q and the variance of P

are tuned via Theorem 12 to minimise the bound on the total risk RT
D(Q). See Appendix

A.1 for pseudocode, Appendix A.2 for full experimental details and https://github.com/

reubenadams/PAC-Bayes-Control for code. The results for MNIST can be seen in Figure 3.1.

We estimate RS(Q) with a Monte Carlo approximation and obtain a PAC-Bayes bound on

RT
D(Q) by combining Proposition 2 (with δ = 0.01 and N = 100, 000) and Proposition 3. We

obtain RT
D(Q) ≤ 0.2640 for MNIST and RT

D(Q) ≤ 0.8379 for HAM10000, where both bounds

hold with probability at least 1−0.05−0.01 = 0.94. While these bounds are far from vacuous—

the maximum possible value of RT
D(Q) is 3 for our choice of ℓ—one might wonder whether one

can do better by bounding each error probability individually using Maurer’s inequality, Maurer

(2004), and then unioning these bounds. As with our Theorem 11, this would also constrain

the entire distribution of error types since for any ℓ, one could then calculate the maximum

value of RT
D(Q) that satisfies all of these constraints. Both methods constrain the region of the

simplex in which RD(Q) can lie (with high probability), and a reasonable metric by which to

59

https://github.com/reubenadams/PAC-Bayes-Control
https://github.com/reubenadams/PAC-Bayes-Control

compare them is the volumes of these regions. This can be estimated via a Monte Carlo sample

by uniformly sampling points r from △M and counting how many are legal values of RD(Q)

according to each method. The 95% confidence intervals for the volumes of the two regions are

given in Table 3.1. A more comprehensive table for synthetic values of RS(Q) can be found in

Appendix A.2.

Inspecting Figure 3.1a, we see that our training method successfully reduces the bound

on the total risk RT
D(Q), with Figure 3.1b showing this is achieved by a reduction in the

probabilities of error types E1 and E2. The fact that both of these error probabilities were

able to decrease—implying an increase in the accuracy of the final stochastic classifier Q—is

evidence that the additional data used to optimise the bound results in additional learning, in

contrast to test set bounds.

While the bound on the total loss decreases, Figure 3.1c shows that the bound on the

divergence kl(RS(Q)∥RD(Q)) increases. This is to be expected—since Q is initialised to P , and

P is independent of the data used to evaluate the bound, RS(Q) is initially an unbiased estimate

of RD(Q), so RS(Q) and RD(Q) can be expected to lie near each other in the simplex. As

training progresses however, Q becomes dependent on the data used to evaluate the bound, and

so in the worst case, which we cannot rule out, RS(Q) andRD(Q) drift apart. Nevertheless, the

fact that the increase in the bound on kl
(
RS(Q)∥RD(Q)

)
is modest, means that one maintains

reasonably tight bounds on the total risk for all choices of risk vector ℓ simultaneously, not just

the one chosen for training.

It is worth emphasising that while one is forced to make a choice of risk vector ℓ to optimise

the bound via Theorem 12, the value of our method lies in the fact that it preserves bounds

on all linear combinations of the error probabilities simultaneously. In contrast, if one were

instead to straightforwardly apply Maurer’s bound to the scalar total risk RT
D(Q) for a fixed

choice of risk vector, and train the parameters of Q to minimise this bound, then bounding the

total risk for a second risk vector would require a second bound and therefore a second sample.

Our method dispenses with this requirement entirely.

Dataset Volume Our Region Volume Maurer Region

MNIST 0.0025 (0.002498, 0.002504) 0.0028 (0.002793, 0.002800)

HAM10000 0.0012 (0.001207, 0.001211) 0.0011 (0.001142, 0.001146)

Table 3.1: Point estimates and 95% confidence intervals for the volumes of the confidence regions
for RD(Q) given by Theorem 11 and a union over M individual Maurer bounds, respectively.
Our method is superior for MNIST and inferior for HAM10000.

3.8 Conclusion

We introduce the framework of error types, considering the vectorsRS(Q) andRD(Q) of empir-

ical and true probabilities of errors of different types. We prove a PAC-Bayes bound (Theorem

60

(a) (b) (c)

Figure 3.1: Experimental results for binarised MNIST. (a) The PAC-Bayes bound on the total
risk decreases when tuning the posterior via Theorem 12. (b) This is achieved by a shift in
the empirical error probabilities. (c) The bound on kl(RS(Q)∥RD(Q)) is not substantially
increased, meaning we still retain good control of RD(Q) after optimising Q for this particular
choice of ℓ.

11) on kl(RS(Q)∥RD(Q)) which controls the entire distribution of error probabilities, and hence

can be used to derive bounds on arbitrary linear combinations of the error probabilities, all

of which hold simultaneously with high probability; this cannot be achieved with any existing

PAC-Bayes bound.

We construct a differentiable training objective based on our bound by introducing the

vectorised kl inverse, providing a recipe for quickly computing its value and derivatives (Theo-

rem 12). Our framework is flexible enough to encompass multiclass classification or discretised

regression, but also structured output prediction, multi-task learning and learning-to-learn.

Another potential application of our work is to the excess risk, since under a misclassification

loss there are three different error types, corresponding to excess losses of {−1, 0, 1}. Biggs and
Guedj (2023) adapted Theorems 11 and 12 to this setting, leading to an empirically tighter

PAC-Bayes bound for certain classification tasks.

We require i.i.d. data, which in practice is frequently not the case or is hard to verify.

Further, the number of error types M must be finite. In continuous scenarios, it would be

preferable to be able to control the entire distribution of loss values without having to discretise

into finitely many error types. We leave this direction to future work.

61

Chapter 4

PAC-Bayes and Compression

4.1 Introduction

Many papers have derived non-vacuous bounds for neural networks in the overparameterised

regime. Relatively few of these works however explain the generalisation of neural networks

trained through ordinary methods. Instead, they explain the generalisation of neural networks

constructed with modified training methods inspired by their bounds—e.g. minimising a PAC-

Bayes bound—or networks altered via pruning or some other form of compression. Further, the

focus is usually on stochastic neural networks, in contrast to the deterministic neural networks

most commonly used in practice.

For example, Dziugaite and Roy (2017) achieve non-vacuous bounds for a stochastic neural

network trained to minimise the classical PAC-Bayes bound from McAllester (1999), which

explains little about the generalisation of deterministic networks trained via ordinary meth-

ods. And Zhou et al. (2018) bound the performance of stochastic neural networks that have

been heavily pruned, losing up to 98.5% of their parameters, which explains little about the

deterministic unpruned networks. An exception is Nagarajan and Kolter (2019), which bounds

uncompressed deterministic networks, but their bounds are orders of magnitude larger than

one, making them uninformative in practice.

As argued in the introduction to this thesis, a mature statistical learning theory should

not have to rely on such modifications. Rather, it should explain the empirically observed

generalisation of deterministic and uncompressed neural networks trained without consideration

to statistical learning theory. An alternative approach, which we take in this Chapter, is to

search for a compression scheme that allows bounds on the compressed network to be rigorously

carried over to the original deterministic network with minimal degradation.

Following Lotfi et al. (2022), we dispense with stochastic neural networks by employing

PAC-Bayes theory with a posterior equal to a point mass on the deterministic network, and

using a simplicity prior that puts exponentially more weight on networks that can be expressed

in a smaller number of bits (for some fixed encoding scheme). This then yields a bound on the

deterministic network in terms of the number of bits required to describe it. While such bounds

are typically very loose when the bit description is simply the raw parameters of the network,

62

the hope is that one can find a “nearby” network that also performs well while being expressible

in fewer (or lower precision) parameters, and therefore fewer bits. This network would then

enjoy a tighter bound and, if its performance can be related to the original network, this bound

may be extended to the original network with minimal degradation.

The now old observation that neural networks trained via gradient descent tend to find flat

minima (see e.g. Keskar et al. (2016)) makes the existence of a nearby compressible network

plausible, as the flatter the minimum the larger the region in which the parameters can be

varied without substantially increasing the loss. This suggests the compression scheme of

weight quantisation, wherein the weights are either truncated or replaced with their closest

centroid after an application of the k-means algorithm.

Building on Neyshabur et al. (2017b), in Lemma 4 we bound the discrepancy in output of

the original and compressed networks in terms of the spectral norms of the differences in the

weight matrices of the two networks. This bound naturally suggests low-rank approximations

via truncation of the Singular Value Decompositions (SVDs) of the weight matrices as a com-

pression scheme, since this yields the low-rank approximations closest in spectral norm (see the

Eckart–Young theorem Eckart and Young (1936)). Further, in Lemma 5, we show that a small

discrepancy in output of the two networks implies a small discrepancy in accuracy provided the

margin of the compressed network is large. This is what allows us to transfer bounds from the

compressed network to the original network in Theorem 14, our main result.

Informally, our result bounds the true error of the original network in terms of the empirical

margin loss of its compression, plus a term that is O(
√
|s|/n) ignoring logarithmic terms, where

|s| is the length of the bit string representation of the compressed network, and the margin is

smaller for higher fidelity compressions. That is, we show that if a network has large margin

on the train set, and there exists a high-fidelity compression, then this network generalises.

Our theoretical results highlight the following tradeoff; as the degree of compression is

increased, the tightness of the generalisation bound on the compressed network also increases

(due to its short representation), but the performance of the compressed network is likely

impacted and the degradation incurred by the bound when it is transferred to the original

network also increases. It is the empirical balance between these factors that we investigate for

different compression schemes in Sections 4.4 and 4.5.

4.2 Related work

Our approach in this work is inspired by Neyshabur et al. (2017b), which provides a bound

on the error rate of an uncompressed deterministic network. They achieve this by proving a

bound on the change in output of an MLP in terms of a perturbation to its weights, and then

randomising over this perturbation in order to apply the PAC-Bayes theory. Our bound in

Lemma 5 is an adaptation of their perturbation bound which dispenses with their technical

restriction on the perturbation, instead relating any two MLPs of the same architecture. Our

result also permits the MLPs to have bias terms. Further, they loosen their bound in several

63

ways for aesthetics and do not test their bound empirically, whereas we trade aesthetics for

tightness and conduct empirical experiments, in some cases finding non-vacuous bounds that

would not be achieved without our method.

The work of Neyshabur et al. (2017b) was continued in Arora et al. (2018), where it was

shown that the output of a trained neural network is more stable to noise injected into earlier

rather than later layers. This allowed them to achieve tighter bounds on a stochastic compressed

form of the network by applying more severe compression to earlier layers. Our compression

approach also allows the severity of compression to vary across layers, but in contrast to their

work, our result continues to bound the original deterministic network.

The first non-vacuous bounds for realistic architectures classifying ImageNet were estab-

lished in Zhou et al. (2018), later improved by Lotfi et al. (2022). Both works employ a discrete

prior over the hypothesis space, placing mass inversely proportional to the description length

of the hypothesis encoded by their compression scheme. The bounds in Zhou et al. (2018)

apply to networks compressed by weight pruning and quantisation. In the MNIST case they

prune around 98.5% of the weights and quantise the non-zero weights with a 4-bit codebook.

While the bounds are impressive, it is doubtful that the performance of the original and com-

pressed networks can be related given their aggressive compression scheme, and so the results

do not explain the empirically observed generalisation of the original networks. The tighter

bounds found in Lotfi et al. (2022) suffer this drawback to a greater degree, as in addition they

significantly modify the training procedure to ensure the final network is highly compressible.

The goal of the present Chapter is to evaluate whether the observed compressibility of

networks trained via ordinary methods can be leveraged to tighten bounds on the original

network, without the addition of stochasticity or data-dependent priors.

4.3 Theory

In this section we prove our main result, Theorem 15, a bound on the true error of an MLP

classifier in terms of the empirical margin loss and string length of its compression, where

the margin appearing in the bound depends on the discrepancy between the network and its

compression.

We prove Theorem 15 in four steps. First, Lemma 4 bounds the maximum difference in

output between the original and compressed networks. Second, Lemma 5 shows that if the

maximum difference in output of two classification functions (not necessarily MLPs) is small,

then the true margin loss of one can be bounded in terms of the true margin loss (with a

different margin) of the other. Third, combining these two Lemmas yields Theorem 14, which

states that the true error of the original network is bounded by the true margin loss of the

compressed network, where the margin is a function of the two networks. Finally, Theorem 15

loosens the true error bound in Theorem 14 to be in terms of empirical quantities by applying

a classic PAC-Bayes bound stated here as Theorem 13.

64

4.3.1 Discrete PAC-Bayes

We start with the classic PAC-Bayes theorem found in Maurer (2004), a form of which was

originally proved in Langford and Seeger (2001). Originally stated for the zero-one loss, it

applies to any bounded loss function, so we state it here in terms of the margin loss. For

classification with labels Y = [k] and predictions ŷ ∈ Ŷ = Rk, the margin loss of a classifier

h : X → Rk for any γ ∈ R is defined as

ℓγ : H× (X × Y)→ {0, 1}, where ℓγ(h, (x, y)) = 1

[
h(x)y ≤ γ +max

j ̸=y
h(x)j

]
, (4.1)

namely a loss of 1 if and only if the classifier fails to predict correctly with a margin greater than

γ. Note that ℓ0 corresponds to the ordinary zero-one loss. For any data-generating distribution

D ∈ △(X × Y), sample S ∈ (X × Y)n and margin γ ∈ R, the true and empirical margin loss

of h are then

Rγ
D(h) = E(x,y)∼D

[
ℓγ(h, (x, y))

]
= P(x,y)∼D

[
h(x)y ≤ γ +max

j ̸=y
h(x)j

]
and

Rγ
S(h) =

1

n

n∑
i=1

ℓγ(h, (xi, yi)) =
1

n

n∑
i=1

1

[
h(xi)yi ≤ γ +max

j ̸=yi
h(xi)j

]
,

respectively. Note that Rγ
D(h) and Rγ

S(h) are increasing in γ and are elements of [0, 1]. Ex-

tending this to stochastic classifiers Q ∈ △(H), which classify according to a sampled h ∼ Q,

with a fresh sample for each classification, we have the true and empirical margin losses

Rγ
D(Q) = Eh∼Q

[
Rγ

D(h)
]

and Rγ
S(Q) = Eh∼Q

[
Rγ

S(h)
]
,

respectively. In this setting Maurer’s bound can be written as follows.

Theorem 13. (Maurer (2004), Theorem 5) For any data-generating distribution D ∈ △(X×Y)
with label set Y = [k], hypothesis class H ⊆ ŶX with prediction space Ŷ = Rk, prior distribution

P ∈ △(H), confidence level δ ∈ (0, 1], margin γ ≥ 0 and sample size n, with probability at least

1− δ over the random draw S ∼ Dn, we have that simultaneously for all posterior distributions

Q ∈ △(H)

kl
(
Rγ

S(Q)
∥∥Rγ

D(Q)
)
≤

KL(Q∥P) + ln 2
√
n

δ

n
.

This establishes a bound on Rγ
D(Q) by inverting the kl with kl−1(q|B) = sup{p ∈ [0, 1] :

kl(q∥p) ≤ B}. Alternatively, Pinsker’s inequality gives kl(q∥p) ≤ B =⇒ p ≤ q +
√
B/2. This

second method allows for much easier comparison between methods if they happen to produce

empirically loose bounds.

While data-dependent priors can be made admissible by splitting the dataset—a common

technique in the literature (e.g. Dziugaite and Roy (2018), Parrado-Hernández et al. (2012), and

Perez-Ortiz et al. (2021))—we eschew their use here as their utility in explaining generalisation

is limited. As already discussed in depth in Section 2.5, the tight PAC-Bayes bounds achieved

65

through data-dependent priors for the most part simply shifts the generalisation mystery to

the unexplained success of the data-dependent prior itself. While this may not be a problem

for self-certified learning, our purpose here is to shed light on the generalisation mystery.

Since we are seeking bounds on deterministic rather than stochastic classifiers, we follow

Zhou et al. (2018) (and later Lotfi et al. (2022)) in taking the posterior Q to be a point

mass on the hypothesis h(S) produced by the learning algorithm on the sample S, so that

Rγ
D(Q) = Rγ

D(h(S)). In order for KL(Q∥P) to be finite, this then demands that we take P to

be a discrete distribution over a countable subset of P that includes h(S). Since P may not

depend on S, this in turn means that h(S) must lie in a prespecified countable subset of H,
independently of S, at which point we have KL(Q∥P) = − lnP (h). While this can be trivially

achieved by noting that any hypothesis returned by a computer will be given to finite precision,

and therefore comes from a finite set known in advance, this finite set may be so large that a

uniform prior P would yield such a large KL(Q∥P) that the PAC-Bayesian theory produces

trivial results. The goal of compression therefore is to limit the size of this finite set, so that P

does not need to be spread so thinly. We discuss our compression schemes in Section 4.4.

4.3.2 Bounding the discrepancy in output between two MLPs

Here we bound the discrepancy in output between two Multi-Layer Perceptrons (MLPs) with

ReLU activation functions. More specifically, we consider two MLPs of identical architecture

(dimensions of the layers) differing in their weights only—their biases must be equal. Our bound

in Lemma 4 then bounds the discrepancy in their output in terms of the spectral norms of the

differences of their weight matrices, and the spectral norms of the weight matrices themselves.

We define a d layer MLP hW,B : Rk0 → Rkd with weights W = (W1, . . . ,Wd) ∈ Rk1×k0 ×
· · · × Rkd×kd−1 , biases B = (B1, . . . , Bd) ∈ Rk1 × · · · × Rkd and ReLU activation function

ϕ(x) = max(x, 0) recursively as follows

h1W,B(x) := W1x+B1

hi+1
W,B(x) := Wi+1ϕ(h

i
W,B(x)) +Bi+1 for i ≥ 1.

The MLP hW,B is then simply hdW,B. Let MLP denote the set of all MLPs with ReLU activa-

tions and MLP(k0,...,kd) ⊆ MLP those with input dimension k0, output dimension kd and hidden

dimensions k1, . . . , kd−1.

Lemma 4 builds on Lemma 2 from Neyshabur et al. (2017b) but differs in two respects.

First, we permit the MLPs to have bias terms (which is more realistic) provided they are

identical. This is not a severe limitation, as bias terms are frequently left unchanged during

compression as they make up a negligible proportion of the parameters. Second, since we are

aiming for empirical tightness rather than a form of the bound that makes the order of terms

most legible, we make as few relaxations as possible.

Our goal is to bound the change in the output of an MLP hW,B after the weights W are

perturbed (by compression) to W ′, leaving the biases B fixed. More precisely, we seek a bound

66

on

sup
x∈Rk0

∥∥hW,B(x)− hW ′,B(x)
∥∥
2
.

As it stands, this cannot succeed, as in general arbitrarily small changes in the weights can yield

arbitrarily large changes in the output when the input x ∈ Rk0 is unbounded. We therefore

stipulate that the input is bounded in ℓ2-norm by some constant C.

Lemma 4. Let hW,B and hW ′,B be two d-layer MLPs from Rk0 to Rkd with ReLU activations

and identical hidden layer dimensions. Fix C ≥ 0 and let XC = {x ∈ Rk0 : ∥x∥2 ≤ C}. Then

sup
x∈XC

∥∥hW,B(x)− hW ′,B(x)
∥∥
2
≤ β(W,W ′, B, C),

where β(W,W ′, B, C) = βd(W,W
′, B, C) is defined recursively by

α0(W
′, B, C) = C and β0(W,W

′, B, C) = 0

and, for i ≥ 1,

αi(W
′, B, C) = ∥W ′

i∥2αi−1(W
′, B, C) + ∥Bi∥2

βi(W,W
′, B, C) = ∥Wi∥2βi−1(W,W

′, B, C) + ∥Wi −W ′
i∥2αi−1(W

′, B, C).

Proof. We first show that supx∈XC
∥hiW ′,B(x)∥2 ≤ αi(W

′, B, C) for i = 1, . . . , d by induction.

For the base case, we have

sup
x∈XC

∥h1W ′,B(x)∥2 = sup
x∈XC

∥W ′
1x+B1∥2

≤ sup
x∈XC

(
∥W ′

1∥2∥x∥2 + ∥B1∥2
)

≤ ∥W ′
1∥2C + ∥B1∥2 = α1(W

′, B, C).

And for the induction,

sup
x∈XC

∥hi+1
W ′,B(x)∥2 = sup

x∈XC

∥W ′
i+1ϕ(h

i
W ′,B(x)) +Bi+1∥2

≤ sup
x∈XC

(
∥W ′

i+1∥2∥ϕ(hiW ′,B(x))∥2 + ∥Bi+1∥2
)

≤ ∥W ′
i+1∥2 sup

x∈XC

∥hiW ′,B(x)∥2 + ∥Bi+1∥2 (using |ϕ(u)| ≤ |u|)

≤ ∥W ′
i+1∥2αi(W

′, B, C) + ∥Bi+1∥2 (by the inductive hypothesis)

= αi+1(W
′, B, C).

For the main result, let

∆i(W,W
′, B, C) = sup

x∈XC

∥hiW,B(x)− hiW ′,B(x)∥2

67

for i = 1, . . . , d. We will prove using induction that ∆i(W,W
′, B, C) ≤ βi(W,W

′, B, C) for

i = 1, . . . , d. For the base case, we have

∆1(W,W
′, B, C) = sup

x∈XC

∥h1W,B(x)− h1W ′,B(x)∥2

= sup
x∈XC

∥W1x+B1 − (W ′
1x+B1)∥2

= sup
x∈XC

∥(W1 −W ′
1)x∥2

≤ ∥W1 −W ′
1∥2 sup

x∈XC

∥x∥2

= C∥W1 −W ′
1∥2

= β1(W,W
′, B, C).

And for the induction,

∆i+1(W,W
′, B, C) = sup

x∈XC

∥hi+1
W,B(x)− h

i+1
W ′,B(x)∥2

= sup
x∈XC

∥∥∥Wi+1ϕ(h
i
W,B(x)) +Bi+1 −

[
W ′

i+1ϕ(h
i
W ′,B(x)) +Bi+1

]∥∥∥
2

= sup
x∈XC

∥∥∥Wi+1[ϕ(h
i
W,B(x))− ϕ(hiW ′,B(x))] + (Wi+1 −W ′

i+1)ϕ(h
i
W ′,B(x))

∥∥∥
2

≤ ∥Wi+1∥2 sup
x∈XC

∥ϕ(hiW,B(x))− ϕ(hiW ′,B(x))∥2

+ ∥Wi+1 −W ′
i+1∥2 sup

x∈XC

∥ϕ(hiW ′,B(x))∥2

≤ ∥Wi+1∥2 sup
x∈XC

∥hiW,B(x)− hiW ′,B(x)∥2

+ ∥Wi+1 −W ′
i+1∥2 sup

x∈XC

∥hiW ′,B(x)∥2 (using |ϕ(u)− ϕ(v)| ≤ |u− v|)

≤ ∥Wi+1∥2∆i(W,W
′, B, C)

+ ∥Wi+1 −W ′
i+1∥2 sup

x∈XC

∥hiW ′,B(x)∥2 (by definition of ∆i)

≤ ∥Wi+1∥2βi(W,W ′, B, C)

+ ∥Wi+1 −W ′
i+1∥2αi(W

′, B, C) (by the inductive hypothesis)

= βi+1(W,W
′, B, C).

4.3.3 Relating the margin loss of close classifiers

We have the following lemma, which converts a bound on the discrepancy between the output

of two classifiers h, g to a bound on the true margin loss of h in terms of the true margin loss

of g, but for a larger margin. It quantifies the intuition that if h and g have close output across

the domain, then any input x correctly classified by g with large enough margin will also be

correctly classified by h, though possibly with a smaller margin.

68

Lemma 5. If supx∈X ∥h(x)− g(x)∥2 ≤ ε, then for all γ ∈ R we have Rγ
D(h) ≤ Rγ+

√
2ε

D (g).

Proof. Recall that the margin loss ℓγ defined by Equation (4.1) is {0, 1}-valued. We will show

that

ℓγ
(
h, (x, y)

)
= 1 =⇒ ℓγ+

√
2ε

(
g, (x, y)

)
= 1,

for arbitrary (x, y) ∈ X × [k], after which the result follows by taking expectations over D.

Fix (x, y) and define

jh = argmaxj ̸=yh(x)j and jg = argmaxj ̸=yg(x)j.

Let u = ey − ejh , where ej ∈ Rk is the basis vector with 1 in coordinate j. Suppose that

ℓγ(h, (x, y)) = 1, i.e.

h(x)y ≤ γ + h(x)jh . (4.2)

The Cauchy–Schwarz inequality gives u ·
(
g(x)− h(x)

)
≤ ∥u∥2∥g(x)− h(x)∥2 ≤

√
2ε, and the

definition of jh and jg gives g(x)jh − g(x)jg ≤ 0, whereupon

g(x)y − g(x)jg =
(
g(x)y − h(x)y

)
+
(
h(x)y − h(x)jh

)
+
(
h(x)jh − g(x)jh

)
+
(
g(x)jh − g(x)jg

)
= u ·

(
g(x)− h(x)

)
+
(
h(x)y − h(x)jh

)
+
(
g(x)jh − g(x)jg

)
≤
√
2ε+ γ + 0.

Rearranging and using the definition of jg gives

g(x)y ≤ γ +
√
2ε+max

j ̸=y
g(x)j

and so ℓγ+
√
2ε

(
g, (x, y)

)
= 1. Finally, by taking probabilities over (x, y) ∼ D we have

Rγ
D(h) = P(x,y)∼D

[
ℓγ
(
h, (x, y)

)
= 1
]
≤ P(x,y)∼D

[
ℓγ+

√
2ε

(
g, (x, y)

)
= 1
]
= Rγ+

√
2ε

D (g).

4.3.4 Bounding the error of an MLP in terms of the margin loss of

its compression

Combining Lemmas 5 and 4 yields the following theorem.

Theorem 14. Let hW,B and hW ′,B be two d-layer MLPs from Rk0 to Rkd with ReLU activations

and identical hidden layer dimensions. Fix C ≥ 0 and let XC = {x ∈ Rk0 : ∥x∥2 ≤ C}. Then

for any distribution D over XC × Rkd, we have

R0
D(hW,B) ≤ R

√
2β(W,W ′,B,C)

D (hW ′,B),

where β(W,W ′, B, C) is defined as in Lemma 4.

69

Proof. Immediate upon substituting Lemma 4 into Lemma 5, with domain X = XC , classifiers

h = hW,B, g = hW ′,B, margin γ = 0 and ε = β(W,W ′, B, C).

4.3.5 A PAC-Bayes compression bound

We now define a (weights-only) compression scheme. We focus on weights-only compression

schemes as the biases make up only a small proportion of the parameters. All of the compression

schemes we discuss in Section 4.4 fit Definition 9.

Definition 9. A compression scheme is any pair of functions Encode : MLP(kin,...,kout) → {0, 1}b

and Decode : {0, 1}b → MLP(kin,...,kout). Encode and Decode need not be inverses—lossy com-

pression is permitted. The compression scheme is termed a weights-only compression scheme

if the reconstruction hW ′,B′ = Decode(Encode(hW,B)) is always such that B′ = B. We call the

bit string Encode(hW,B) the compressed representation of hW,B.

While our main result below appears at first sight to be a straightforward combination of

Theorem 13 and Theorem 14, note that Theorem 13 requires a fixed margin while in Theorem

14 the margin depends on the MLP hW,B and its compression hW ′,B, which, in the context of

Theorem 15 are data-dependent. We get around this data-dependence of the required margin by

augmenting the hypothesis space MLP with an arbitrary margin. The margin will be represented

by a single 32 bit float which we will include in the bit string representations. To that end,

let r : {0, 1}32 → R be the function mapping the string representations of 32 bit floats to

the corresponding real numbers, so that Γ = {r(s1) : s1 ∈ {0, 1}n} ⊆ R is the set of reals

representable by a single 32 bit float.

Theorem 15. (Main result) Fix a weights-only compression scheme Encode : MLP(kin,...,kout) →
{0, 1}b and Decode : {0, 1}b → MLP(kin,...,kout). Fix C ≥ 0 and let XC = {x ∈ Rkin : ∥x∥2 ≤ C}.
For any distribution D over XC × [kout], confidence level δ ∈ (0, 1] and sample size n, with

probability at least 1 − δ over the random draw S ∼ Dn, we have that simultaneously for all

neural networks hW,B ∈ MLP(kin,...,kout), both

R0
D(hW,B) ≤ kl−1

(
Rγ∗

S (hW ′,B)
∣∣ζ) and R0

D(hW,B) ≤ Rγ∗

S (hW ′,B) +
√
ζ/2,

where

hW ′,B = Decode
(
Encode(hW,B)

)
,

γ∗ = min
{
γ ∈ Γ : γ ≥

√
2β(W,W ′, B, C)

}
,

ζ =
1

n

(
(b+ 32) ln 2 + ln

2
√
n

δ

)
,

with β(W,W ′, B, C) defined as in Lemma 4.

70

Proof. We apply Theorem 13 with fixed margin γ = 1, X = XC , hypothesis class

H =
{
gs1,s2 : s1 ∈ {0, 1}b, s2 ∈ {0, 1}32

}
, gs1,s2(x) :=

1

r(s2)
Decode(s1)(x),

and prior

P (gs1,s2) = 2−(b+32)|{g ∈ H : g = gs1,s2}|,

namely the push-forward measure of a uniform distribution on {0, 1}b×{0, 1}32 (we make this

choice as the gs1,s2 ∈ H may not all be unique). In particular, this gives that with probability

at least 1− δ, simultaneously for all point mass posteriors Q on gs1,s2 ∈ H, we have

kl
(
R1

S(gs1,s2)
∥∥R1

D(gs1,s2)
)
≤ 1

n

(
KL(Q∥P) + ln

2
√
n

δ

)
≤ 1

n

(
(b+ 32) ln 2 + ln

2
√
n

δ

)
= ζ,

(4.3)

where the first inequality comes from Theorem 13, the second by noting that KL(Q∥P) =

− lnP (gs1,s2) ≤ (b+ 32) ln 2, and the final equality from the definition of ζ.

Now for any hW,B ∈ MLP(kin,...,kout), we have by Theorem 14 that

R0
D(hW,B) ≤ R

√
2β(W,W ′,B,C)

D (hW ′,B) ≤ Rγ∗

D (hW ′,B), (4.4)

where the second inequality is from the fact that Rγ
D(·) is monotonically increasing in γ. Noting

that
1
γ∗hW ′,B = gs1,s2 ∈ H (4.5)

for s1 = Encode(hW,B) and s2 = r−1(γ∗), and recalling that hW,B was arbitrary, we can substi-

tute (4.5) into Inequality (4.3) to see that with probability at least 1 − δ, simultaneously for

all hW,B ∈ MLP(kin,...kout),

kl
(
Rγ∗

S (hW ′,B)
∥∥∥Rγ∗

D (hW ′,B)
)
= kl

(
R1

S

(
1
γ∗hW ′,B

)∥∥∥R1
D

(
1
γ∗hW ′,B

))
≤ ζ,

and so

Rγ∗

D (hW ′,B) ≤ kl−1
(
Rγ∗

S (hW ′,B)
∣∣ζ) and Rγ∗

D (hW ′,B) ≤ Rγ∗

S (hW ′,B) +
√
ζ/2, (4.6)

where the two inequalities follow by inverting the kl and applying Pinsker’s inequality, respec-

tively. The result then follows by chaining Inequalities (4.6) with Inequality (4.4).

4.4 Compression schemes

We consider six compression schemes, each compressing only the weights and leaving the biases

alone:

1. weight quantisation by an application of k-means,

2. weight quantisation by truncation of the weights,

71

3. low-rank approximation,

4. low-rank approximation combined with quantisation of the decomposed matrices via k-

means,

5. low-rank approximation combined with quantisation of the decomposed matrices via trun-

cation,

6. no compression.

Where the final null compression scheme serves as a baseline. We also attempted compression by

training a hypernetwork to reproduce the weights of the original network, including tricks such

as predicting the bits in the binary representations of the weights rather than their scalar values.

This approach failed however as the size of hypernetwork required to reproduce the weights of

the original network within a reasonable tolerance was always larger than the original network.

For each of these six compression schemes, we take a network hW,B ∈ MLP(k0,...,kd) and return

a compressed network hW ′,B ∈ MLP(k0,...,kd) of the same architecture, representable by a string

sW ′,B of length |sW ′,B|. Since |sW ′,B| will depend only on the architecture of hW,B (rather than

its specific weights and biases) and the compression scheme, in each case we can take the prior

P to be uniform over all strings of length |sW ′,B|, which yields (as discussed in Section 4.3.1)

KL(Q∥P) = − lnP (hW ′,B) = − ln 2−|sW ′,B | = |sW ′,B| ln 2. (4.7)

For the baseline approach of no compression, we represent hW,B by its raw bits, forming a

string of length

|sW,B| = 32
(
|vec(W)|+ |vec(B)|

)
= 32

d∑
i=1

kiki−1 + ki.

A uniform prior P over all strings of this length then gives KL(Q∥P) = |sW,B| ln 2. The lengths
of the strings for the six different compression schemes are summarised in Table 4.1.

4.4.1 Quantisation via k-means

To compress an MLP hW,B via quantisation with k-means, we run the k-means algorithm with

k = 2c on vec(W), replacing each weight with its nearest centroid to form the compressed MLP

hW c,B. We can then form a codebook of the centroids using 2c bit strings of length 32. Thus

hW c,B can be represented by a bit string sW c,B of length |sW c,B| = c|vec(W)| + 32 · 2c, made

up from a bit string of length c|vec(W)| encoding the compressed weights W c in terms of their

associated centroids, and a bit string of length 32 · 2c encoding the 2c centroids themselves to

32-bit precision. Note this is only an improvement if c|vec(W)| + 32 · 2c ≤ 32|vec(W)|, so we

restrict ourselves to such values of c. In fact, due to the computational cost of running the

k-means algorithm with a large number of centroids k = 2c, we also restrict to c ≤ 10. We then

72

Quantisation String Length of Compressed Model

Method Full Rank Low Rank

None 32

d∑
i=1

kiki−1 + ki 32

d∑
i=1

(kiri + ri + riki−1 + ki)

k-means c

d∑
i=1

kiki−1 + 32

d∑
i=1

ki + 32 · 2c c

d∑
i=1

(kiri + riki−1) + 32

d∑
i=1

(ri + ki) + 32 · 2c

Truncation (1 + be + bm)

d∑
i=1

kiki−1 + 32

d∑
i=1

ki (1 + be + bm)

d∑
i=1

(kiri + riki−1) + 32

d∑
i=1

(ri + ki)

Table 4.1: String lengths (in bits) for different neural network compression schemes. Parame-
ters: ki (layer dimensions), ri (low-rank approximation ranks), c (bits per weight in k-means
quantisation with 2c centroids), and be, bm (bits for exponent and mantissa in truncation quan-
tisation). In each case, the prior is taken to be uniform over strings of the given length, so that
the corresponding KL(Q∥P) is obtained by adding 32 (to account for the 32 extra bits required
for the margin γ∗ defined in Theorem 15) and then multiplying by ln 2 as in Equation 4.7.

have

|sW c,B| = c|vec(W)|+ 32|vec(B)|+ 32 · 2c

= c
d∑

i=1

kiki−1 + 32
d∑

i=1

ki + 32 · 2c.

Since |sW c,B| depends only on the architecture and the number of centroids 2c of the k-means

algorithm, both of which we will specify in advance, we can use a prior Pc taken to be uniform

over all bit strings of this length, which yields KL(Q∥Pc) = |sW c,B| ln 2 as in Equation 4.7.

4.4.2 Quantisation via truncation

Recall that the weights of the neural network are typically stored as 32-bit floating point

numbers which, as per the IEEE Standard for Floating-Point Arithmetic (IEEE 754) have 1

sign bit, 8 exponent bits and 23 mantissa bits. To quantise an MLP hW,B by truncation, for

any bm ∈ {0, 1, . . . , 23} we zero out the 23 − bm least significant bits of the mantissa for each

weight, so that each weight takes only 1 + 8 + bm bits to represent rather than the usual 32.

This minimally changes the value of each weight, taking advantage of the possible flatness of

the minimum located by SGD.

Optionally, for be ∈ {0, . . . , 8} we also clip the exponent of each weight so that it takes be

bits to represent and the whole weight takes 1 + be + bm bits. As before, we leave the biases

alone. Clipping the exponent is a bit more involved, partly because exponents are biased by

adding 127 in IEEE 754. Intuitively, we clip the (unbiased) exponents to be closer to zero,

which is unlikely to have a significant effect on the output of the network for two reasons:

1. Very large positive (unbiased) exponents correspond to extremely large weights, which

73

are rarely observed in ML.

2. Very large negative (unbiased) exponents correspond to extremely small weights, and

changing these to be merely very small will have a minimal effect.

Precisely, we clip the exponents as follows; we unbias the exponents by subtracting 127, clip

them to the range [−(2be−1− 1), 2be−1− 1], rebias by adding 127, and then reinstate exponents

originally containing all zeros bits so that zeros and subnormal numbers are preserved. In the

particular case be = 0 we set all unbiased exponents to zero as this preserves the best range

of values for the weights. After this process the new exponent takes on one of 2be values (easy

check) and so can be represented by be bits. As an example of the second point above, in the

case be = 6 this process maps the unbiased exponent −61 to −31, meaning extremely small

weights of order 2−61 are compressed to still very small weights of order 2−31.

Under this compression scheme we have

|sW be,bm ,B| = (1 + be + bm)|vec(W)|+ 32|vec(B)|

= (1 + be + bm)
d∑

i=1

kiki−1 + 32
d∑

i=1

ki.

As before, a uniform prior Pbe,bm over strings of this length gives KL(Q∥Pbe,bm) = |sW be,bm ,B| ln 2.

4.4.3 Low-rank approximation

As for compression via low-rank approximation, for a given tuple of ranks r = (r1, . . . , rd) ∈ Nd

we form the compression W r as follows. For each i we take the singular value decomposition

Wi = UiSiV
⊤
i and form the low-rank approximation W r

i = U ′
iS

′
iV

′⊤
i by taking the first ri

columns of Ui and Si, and the first ri rows of Vi. While Wi ∈ Rki×ki−1 is made up from kiki−1

parameters, the decomposition of W r
i contains kiri + ri + riki−1 values. Since this is a genuine

compression only if ri ≤ kiki−1/(ki + 1 + ki−1), we restrict ourselves to choices of r for which

this is the case for all i. As with quantisation, we specify the architecture and r in advance, so

that we can represent hW ′,B by a bit string sWr ,B of length

|sWr ,B| = 32
d∑

i=1

(kiri + ri + riki−1 + ki),

since layer i consists of kiri values in U
′
i , ri values in S

′
i, riki−1 values in V ′

i and ki bias values,

each requiring 32 bits. As |sWr ,B| depends only on the architecture and r, both of which we

will specify in advance, we can use a uniform prior Pr over all bit strings of this length to get

KL(Q∥Pr) = |sWr ,B| ln 2.

74

4.4.4 Combined approaches

Finally, we combine low-rank approximation with the two quantisation methods by first taking

the low-rank approximation and then quantising the values of the U ′
i ’s and V

′
i ’s for each layer,

leaving the S ′
i’s and the biases unchanged as they make up a negligible proportion of the

parameters. For low-rank approximation combined with quantisation via k-means with 2c

centroids, this produces a bit string of length

|sWr,c,B| = c
d∑

i=1

(kiri + riki−1) + 32
d∑

i=1

(ri + ki) + 32 · 2c,

and, again with a uniform prior Pr,c, we have KL(Q∥Pr,c) = |sWr,c,B| ln 2.
For low-rank approximation combined with quantisation via truncation to be exponent bits

and bm mantissa bits, we have

|sWr,be,bm ,B| = (1 + be + bm)
d∑

i=1

(kiri + riki−1) + 32
d∑

i=1

(ri + ki),

and, with a uniform prior Pr,be,bm , KL(Q∥Pr,be,bm) = |sWr,be,bm ,B| ln 2.

4.5 Experiments

To empirically evaluate whether our compression approaches can tighten PAC-Bayes bounds,

we train multiple MLPs on the MNIST1D dataset proposed in Greydanus and Kobak (2020).

MNIST1D is a procedurally generated, reasonably low-dimensional dataset (40 dimensions

rather than MNIST’s 784) that replicates many of the features of deep learning (e.g. double

descent, the existence of lottery tickets etc.). We opt for this low-dimensional dataset rather

than the more familiar MNIST or CIFAR-10 datasets as it is more likely that for smaller

networks the compression required to obtain non-vacuous PAC-Bayes bounds using a discrete

prior is not so much that the outputs of the compression diverge significantly from the original

network. This is the requirement for Theorem 15 to produce good results.

We generate train and test samples of size 50, 000 and 10, 000 respectively, using the same

dataset for training all of the MLPs. Since part of the procedural generation is addition of

Gaussian noise, the support of the data-generating distribution is unbounded. Thus we clip

the data to [−4, 4] in each dimension so that Theorem 14 can be applied with C = Cdomain =

8
√
40 ≈ 50.6. Since the support of the data-generating distribution may in fact be contained

in a much smaller ℓ2-ball, we also experimented with setting C = Cdata = max{∥x∥2 : x ∈ S},
where S is the training sample. While this is only a hypothetical result rather than a rigorous

bound, it gives an indication of whether future work could improve our results by rigorously

bounding C over the support of the data-generating distribution. Interestingly, we found that

it produced only negligible changes in our results, showing that reducing C is not the bottleneck

for tighter bounds using this approach.

75

The MLPs we train have 1, 2, 3 or 4 hidden dimensions of equal width, where the width is

in {4, 8, 16, . . . , 512}. Each is trained with a batch size of 128 using the Adam optimiser with

a learning rate of 0.001. All models are trained to convergence, namely until the train loss on

the entire dataset stops decreasing.

We conduct three experiments in the choice of quantisation level k and ranks r;

1. quantisation only, taking a union bound over k ∈ {21, . . . , 2c}, where c is the maximum

value resulting in a genuine compression;

2. low-rank approximation only, taking a union bound over {r ∈ N : ∀i ri ≤ kiki−1/(ki +

ki−1)};

3. low-rank approximation and quantisation, taking a union bound over both {r ∈ N :

∀i ri ≤ kiki−1/(ki + ki−1)} and then, for each r, the values of k resulting in a genuine

compression.

Although trained and compressed 32 networks in total (4 values for the number of layers,

times 8 values for the hidden layer width), we illustrate the effects of the compression schemes

by focusing on the network hW,B ∈ MLP(40,32,32,10) with two hidden layers each of width 32

trained on the MNIST1D dataset.

4.5.1 Quantisation via k-means

Recall that for quantisation via k-means with k = 2c centroids, the codebook itself requires

32 · 2c bits to represent. Since many of the networks we evaluate are small compared to those

commonly trained on real-world tasks, values of c larger than around 10 do not in fact result in

a compression representation as the size of the codebook itself is too large. Unfortunately, as

can be seen from Figure 4.1, it is only at around this level of c that the margin loss Rγ∗

S (hW ′,B)

from Theorem 15 becomes non-trivial, which is in turn necessary for the error bounds to become

non-trivial. In Appendix B we show that this compression scheme does produce non-vacuous

bounds tighter than for the uncompressed model for one of the 32 models we train, but only

just.

We conclude therefore that this compression scheme is only likely to result in reduced error

bounds for larger models, since then one can choose the number of centroids to be large enough

such that the compressed network hW ′,B is close to the original network hW,B. However, while

reduced, such bounds are likely to still be vacuous (or near-vacuous) using the current discrete

PAC-Bayes approach.

4.5.2 Quantisation via truncation

This is the most successful compression scheme for the network hW,B ∈ MLP(40,32,32,10) we focus

on. Indeed, it is the only compression scheme that that successfully reduces the error bounds, as

seen in Figure 4.2. The success is partly due to the fact that it is the only compression scheme

76

Figure 4.1: Effects of quantisation via k-means on a network hW,B ∈ MLP(40,32,32,10) trained
on 50, 000 samples from MNIST1D, where k ∈ {2, 4, . . . , 1024}. Values of k exceeding 1024 are
not used as they produce “compressed” representations larger than the original uncompressed
representation. String length increases monotonically in k; the dotted vertical line representing
the string length of the uncompressed network. Top left: As k increases the error of the
compressed network converges to the error of the original (horizontal dotted line). Top right:
The margin loss of the compressed network remains trivial until k = 1024. Bottom left:
The large margin loss of the compressed network yields essentially trivial error bounds (when
inverting the kl) on the original network which always exceed the discrete PAC-Bayes bound
without compression (horizontal dotted line). Bottom right: The error bounds (when using
Pinsker’s inequality) increase with k up until k = 10 where there is a small decrease, but k
cannot increase further; they all exceed the discrete PAC-Bayes bound without compression
(horizontal dotted line).

77

that can achieve compression factors close to one, i.e. only slight compression; quantisation via

k-means requires a growing codebook which prevents close approximation of the uncompressed

network since the size of the codebook eventually makes the compressed representation larger

than the original. And low-rank approximation cannot accommodate values of r near full rank

as this also would increase rather than decrease string length because one ends up storing

more rather than fewer parameters. Conversely, with quantisation via truncation one may

choose values of be and bm all the way up to their maxima without increasing the string length,

permitting very close approximations.

Figure 4.2 demonstrates the benefit of this compression scheme in reduction of the error

bounds when inverting the kl or using Pinsker’s inequality. It also shows a clear trade-off in the

amount of compression. Aggressive compression yields poor bounds as the compressed network

has high margin loss (both because the compressed network performs poorly—R0
S(hW ′,B) is

large—and the required margin γ∗ from Theorem 15 is large), which outweighs the advantage

of the low KL (recall the KL is proportional to string length). Conversely, mild compression

yields poor bounds as the compressed network has high KL, which outweighs the advantage of

the small margin loss. An optimal compression factor lies in the middle.

For our example network hW,B ∈ MLP(40,32,32,10), both error bounds are minimised when

be = 5, bm = 16, at which point the error bound with inverse kl is 0.8723—reduced from

0.9174 in the uncompressed case—and the error bound with Pinsker’s inequality is 0.9592—

reduced from 1.0625 in the uncompressed case. We note that in the case of Pinsker’s inequality,

compression made the difference between a vacuous and a non-vacuous bound.

The success of this compression scheme was not limited to the network hW,B ∈ MLP(40,32,32,10),

so we show the full results for all 32 models in Table 4.2. We see that the bounds produced by

inverting the small kl are improved for almost all of the 32 models. The bounds produced by

Pinsker’s inequality are improved for every model and in a number of cases compression makes

the difference between a vacuous and a non-vacuous bound.

4.5.3 Low-rank approximation

Recall that the low-rank approximation of the weight matrix Wi ∈ Rki×ki−1 to rank ri only

results in a reduction in the number of parameters if ri ≤ kiki−1/(ki + 1 + ki−1). Since this

is usually much less than min{ki, ki−1}—for example if Wi ∈ R32×32 then we have ri ≤ 15—

this compression scheme is restricted in how well the compressed network can approximate the

uncompressed network unless the weight matrices of the uncompressed network are already

approximately low-rank.

This is made clear in Figure 4.3, where we see that compression via low-rank approxima-

tion leads to significant deterioration in the error of our network hW,B ∈ MLP(40,32,32,10) for all

permissible values of r, namely for all values that lead to a reduction in string length. Indeed,

the lowest error R0
S(hW ′,B) achieved on the train set is 0.6199, far above the error of the un-

compressed network which is 0.2887. Further, the margin loss Rγ∗

S (hW ′,B) is trivial (equal to

one) for all values of r, reflecting the fact that margin γ∗ required by Theorem 15 is too large.

78

Figure 4.2: Effects of quantisation via truncation on a network hW,B ∈ MLP(40,32,32,10)
trained on 50, 000 samples from MNIST1D. String length increases monotonically with both
the number of exponent and mantissa bits, be and bm respectively. The vertical dotted lines
represent the string length of the uncompressed network. Top left: As both be and bm increase
the error of the compressed network converges to that of the original (horizontal dotted line).
Top right: The margin loss of the compressed network approximates the error of the uncom-
pressed network once be ≥ 5 and bm ≥ 15, at which point the compressed representation is
around 75% the size of the uncompressed representation. Bottom left and bottom right: The
error bounds (when inverting the kl or using Pinsker’s inequality) dip below that of the un-
compressed network (horizontal dotted line) for be ≥ 5.

79

Size Error bound inverse kl Error bound Pinsker

Depth Width No Comp. Comp. No Comp. Comp.

1 4 0.788 0.767 0.812 0.786

1 8 0.790 0.761 0.820 0.781

1 16 0.785 0.736 0.817 0.753

1 32 0.866 0.807 0.946 0.849

1 64 0.933 0.878 1.112 0.973

1 128 0.984 0.952 1.387 1.185

1 256 0.999 0.994 1.846 1.385

1 512 1.000 1.000 2.494 1.542

2 4 0.792 0.775 0.819 0.796

2 8 0.803 0.776 0.838 0.802

2 16 0.826 0.784 0.876 0.814

2 32 0.923 0.878 1.077 0.970

2 64 0.990 0.971 1.469 1.280

2 128 1.000 1.000 2.361 1.466

2 256 1.000 1.000 4.212 1.812

2 512 1.000 1.000 8.028 2.491

3 4 0.776 0.765 0.799 0.784

3 8 0.817 0.798 0.858 0.831

3 16 0.909 0.882 1.028 0.968

3 32 0.956 0.927 1.193 1.087

3 64 0.999 0.995 1.767 1.352

3 128 1.000 1.000 3.082 1.599

3 256 1.000 1.000 5.686 2.082

3 512 1.000 1.000 11.074 3.038

4 4 0.786 0.773 0.812 0.794

4 8 0.840 0.821 0.893 0.863

4 16 0.933 0.912 1.089 1.032

4 32 0.978 0.961 1.320 1.212

4 64 1.000 1.000 2.058 1.408

4 128 1.000 1.000 3.583 1.708

4 256 1.000 1.000 6.860 2.297

4 512 1.000 1.000 13.460 3.467

Table 4.2: Effects of quantisation via truncation on 32 MLPs. Depth and Width is the
number and width of the hidden layers. Bold indicates that compression reduced the bound
compared to its counterpart calculated without compression.

80

This case is illustrative of the other 31 networks, for which we observed similar results.

Figure 4.3: Effects of low-rank approximation on a network hW,B ∈ MLP(40,32,32,10) trained
on 50, 000 samples from MNIST1D. String length increases monotonically with each component
ri of r. The vertical dotted lines represent the string length of the uncompressed network. Top
left: The error of the compressed network decreases as the ri increase, but remains large. Top
right: The margin loss is consistently trivial, showing the required margin is always too large.
Bottom left: The error bounds from inverting the kl are all trivial. Bottom right: The variation
in the error bound using Pinsker’s inequality is solely due to the change in string length as the
margin loss is constant. All error bounds exceed those of the uncompressed network.

4.5.4 Combined approaches

Low-rank approximation failed to improve the discrete PAC-Bayes bounds because the com-

pressed networks could not approximate the original networks sufficiently closely while remain-

ing within the string length budget, i.e. while ensuring that the number of bits |sW ′,B| required
to represent the compressed model is less than the number of bits |sW,B| required to represent

the original. At first sight it may seem obvious that combining low-rank approximation with

other compression schemes will only makes this worse. However, additional compression of the

low-rank decompositions via quantisation allows larger values of the ranks ri to be chosen while

81

still remaining within the string length budget, so it is still worth investigating the combined

compression schemes. For the combined approaches it was necessary to increment the rank

values ri in steps greater than one (skipping some values) otherwise the experiment would have

been computationally prohibitive.

Comparing the combined compressions schemes shown in Figures 4.4 and 4.5 with the low-

rank only compression shown in Figure 4.3, we see that the range of values of r1 for the network

hW,B ∈ MLP(40,32,32,10) is indeed much wider for the combined compression schemes. However,

in both cases the approximation of the original network is still poor; there remains a large gap

between the train error of the compressed and original networks, such that the margin loss

consistently takes the maximum value of one. For this reason we do not plot the PAC-Bayes

bounds as they are uniformly vacuous.

Figure 4.4: Effects of low-rank approximation combined with quantisation via k-means on a
network hW,B ∈ MLP(40,32,32,10). Left: The train error of the compressed network fails to approx-
imate that of the original (horizontal dotted line). Right: The margin loss of the compressed
network is always one, making the PAC-Bayes bounds vacuous.

4.6 Conclusion

Recall that our purpose was to investigate the capacity of a classic PAC-Bayes bound (The-

orem 13) to shed light on the generalisation mystery. By eschewing common tricks used to

obtain tighter generalisation bounds, such as stochastic networks, modified training regimes,

and data-dependent priors, we evaluate the ability of PAC-Bayes to explain the generalisation

of deterministic networks trained according to ordinary DL practice, which is an important

goal of any successful theory of learning. It is for this reason that we employed compression

purely as a tool to obtain bounds on the original, uncompressed networks, in sharp contrast to

works such as Arora et al. (2018), Lotfi et al. (2022), and Zhou et al. (2018) which bound the

compressed networks.

82

Figure 4.5: Effects of low-rank approximation combined with quantisation via truncation on a
network hW,B ∈ MLP(40,32,32,10). Left: The train error of the compressed network fails to approx-
imate that of the original (horizontal dotted line). Right: The margin loss of the compressed
network is always one, making the PAC-Bayes bounds vacuous.

Our main theoretical result, Theorem 15, bounds the true error of a network in terms of the

empirical margin loss of its compression, plus a term that is O(
√
|s|/n) ignoring logarithmic

terms, where |s| is the length of the bit string representation of the compressed network. The

margin required by the bound is smaller for higher fidelity compressions. In other words, by

extending the work of Neyshabur et al. (2017b) and others, we have proven that if a network

has large margin on the train set, and there exists a high-fidelity compression, then this network

generalises.

Our result is flexible enough to encompass a very wide range of compression schemes, as can

be seen by the generality of Definition 9. We tested five compression approaches, finding that

going via a compressed network can indeed tighten bounds on the original network, but that

this heavily depends on the compression scheme used. The only compression scheme to have

much success in our experiments was quantisation via truncation. It is perhaps unsurprising

that this compression scheme proves successful, since the removal of the least impactful bits—

least significant for the mantissa and most significant for the (unbiased) exponent—produces

an immediate decrease in string size and, due to the well-known robustness of neural networks

to weight perturbations, a negligible degradation in performance.

In contrast, low-rank approximation has a significant negative impact on performance since

the constraint of reducing the string length caps the permissible ranks, resulting in poor ap-

proximations. This effect persisted when combined with the other compression approaches,

even though doing so increases the cap on the permissible ranks. Quantisation via k-means

clustering of the weights also performed poorly for a similar reason; as the number of clusters k

increases, so does the fidelity of the compression, but the codebook also grows, and we reach the

string budget before the approximation becomes sufficiently close for Theorem 15 to produce

83

non-vacuous bounds.

84

Chapter 5

Distillability as a Predictor of

Generalisation

5.1 Introduction

As argued in Section 2.2, tight generalisation bounds alone cannot explain generalisation in the

overparameterised regime, and a full explanation of the mystery will likely come from a two-

pronged approach. First, an empirical investigation of the inductive bias of commonly used DL

algorithms and hypothesis classes—mostly some form of SGD on neural network weights—to

characterise the hypotheses typical DL practice is likely to produce. These suggested characteri-

sations are commonly called complexity measures even if they are not successful, a terminology

we adopt. Second, coupling a successful complexity measure with a rigorous generalisation

bound proving that networks with low complexity according to this measure have small gener-

alisation gap.

While less rigorous than statistical learning theory, the search for complexity measures

that can reliably distinguish between hypotheses that generalise versus those that have simply

memorised the training data, may be a practically necessary component of the search for

empirically tight generalisation bounds. Indeed, as shown in Jiang et al. (2019), many existing

generalisation bounds completely fail to correlate with generalisation gap, in fact showing a

negative correlation, indicating that a theory-only approach may be insufficient for deriving

empirically tight generalisation bounds to develop our understanding of generalisation in the

overparameterised regime.

Chapter 4 focused on the second part of this two-pronged strategy, by proving that a net-

work will generalise if there exists a compressible nearby network with minimally degraded

error. In contrast, this chapter focuses on introducing a new complexity measure, applicable to

feedforward networks of arbitrary architecture (MLPs, CNNs, etc.), which we term the distilla-

tion complexity. We empirically show that distillation complexity is predictive of generalisation

gap even in the overparameterised regime, in that networks with higher distillation complexity

generally have a larger generalisation gap, as is visually apparent from Figure 5.1.

It has been noted that the generalisation ability of neural networks frequently does not

85

Figure 5.1: Generalisation gap versus distillation complexity µdist-complexity, defined in Definition
12, across a suite of 2183 models. Each model is trained and evaluated on 4000 and 1000 sam-
ples, respectively, from the MNIST1D dataset, Greydanus and Kobak (2020). Our complexity
measure is predictive; the trend is that the higher the distillation complexity the larger the
generalisation gap.

degrade with model size. In fact, in contrast to the behaviour suggested by the bias variance

trade-off, generalisation often improves even as models increase past the interpolation threshold,

an observation first made by Vallet et al. (1989) on synthetic data, by Duin (2000) on real-world

data, and brought to popular attention by Belkin et al. (2019) and Nakkiran et al. (2021) (see

Loog et al. (2020) for a brief history). This phenomenon, termed deep double descent, means

that any complexity measure capable of predicting generalisation should not grow with model

size, at least beyond the interpolation threshold.

Putting this together, we have the following desiderata for a complexity measure:

1. The complexity measure should be positively correlated with generalisation gap.

2. The complexity measure should be one of the variables causally responsible for the value

of the generalisation gap.

3. The complexity measure should not increase with model size beyond the interpolation

threshold.

As already noted, Figure 5.1 visually demonstrates that distillation complexity meets the

first desideratum. Evidence for the second desideratum is presented in Section 5.8. As for the

third, distillation complexity remains steady as model size increases, as shown in Figure 5.2.

This is already reasonably good evidence that our complexity measure genuinely captures a

notion of complexity with explanatory power in the overparameterised regime. This is in sharp

86

contrast to weight norms, present in many generalisation bounds, which have already been

noted in Jiang et al. (2019) to both negatively correlate with generalisation gap and grow with

model size.

As for the second desideratum, we compare our complexity measure against twenty others

from the literature, finding that it is one of the best three in its predictive power of gener-

alisation gap as evaluated according to five metrics described in Section 5.7, where some of

these metrics are designed to rule out spurious correlations and instead capture causal relation-

ships. Distillation complexity outperforms the norm-based measures, the PAC-Bayes derived

measures, and a number of uncertainty-based measures, as shown in Figure 5.5. Further, we

corroborate the finding of Jiang et al. (2019) that norm-based measures fail as complexity mea-

sures as they often negatively correlate with generalisation gap. However, in contrast to their

results, we find that a PAC-Bayes bound, rather than successfully predicting generalisation

gap, also fails badly. This suggests that the success of this PAC-Bayes bound as a complexity

measure is task-dependent.

Distillation complexity is loosely defined as the minimum size student network into which

the original network can be distilled. This is a more natural formalisation of Occam’s razor

than the commonly employed weight-norm as it is a notion of complexity of functions rather

than weight parameterisations. Intuitively, the complexity of networks should be measured in

terms of the complexity of the functions they express rather than the complexity of any specific

weight parameterisation. This crucial distinction can be justified by the fact that it is functions

we ultimately care about in learning—we are indifferent to distinct parameterisations of a single

function as they produce identical predictions.

This is in contrast to Bayesian learning and PAC-Bayesian theory—which commonly use

priors that place more weight on networks whose weights lie close to the origin or the weight

initialisation—and regularisation methods such as weight decay, as they fail to account for the

fact that simple functions can be expressed by neural networks with large weights.

5.2 Methodology

We follow the approach taken by Jiang et al. (2018) of training a large suite of models that

can be used to evaluate the association between distillation complexity and generalisation gap.

This is an approach that has been followed by many others (Jiang et al., 2019; Kuhn et al.,

2021) and was even the basis for a NeurIPS 2020 competition (Jiang et al., 2020). Our suite

of models is specifically trained in a way that is both reflective of general practice and yields

sufficient variability in generalisation gap.

An ideal complexity measure should be among the variables that are causally responsible for

the value of the generalisation gap, rather than merely statistically associated. While the causal

effect of any complexity measure on generalisation is hard to unequivocally establish empir-

ically, metrics such as Kendall’s Rank Correlation Coefficient (KRCC) may provide evidence

if they show that models with a higher complexity generally have larger generalisation gap.

87

Figure 5.2: The distillation complexity µdist-complexity defined in Definition 12 for the suite of
2183 models, stratified by the number of model parameters. The nine values for the num-
ber of parameters correspond to the nine combinations of num hidden layers ∈ {2, 3, 4} and
hidden layer width ∈ {512, 1024, 2048}. The distillation complexity shows no sign of increas-
ing with the size of the base model.

Acknowledging that a positive KRCC may simply be due to spurious correlations, Jiang et al.

(2019) also employ the Granulated KRCC (GKRCC), and the Conditional Independence Test

(CIT), which provide more robust evidence of causation, and which we employ here. Further,

we compare our complexity measure against a wide range of both theoretically and empirically

motivated measures, such as norm-based and flatness-based measures.

5.3 Related work

There is of course a substantial literature on complexity measures going back many years. We

give a brief overview of some of the main threads, focusing on their relation to the present

work.

As outlined in the introduction, our empirical methodology for evaluating our complexity

measure draws heavily on Jiang et al. (2019). This methodology was later used by Kuhn

et al. (2021) to show that networks that are more robust to pruning are likely to generalise

better; networks that can have a greater proportion of their weights pruned without significantly

increasing their training loss generalise better on average. Our work has a similar motivation to

theirs in that heavily pruned networks are intuitively simpler, and so networks that are robust

to pruning may also be considered to be simpler as their behaviour can be largely explained

by a network with fewer parameters. However, it is the proportion of the weights that can

be pruned that they show is predictive of generalisation; while larger networks trained on the

88

same task can have a greater proportion of their weights pruned, the absolute number of weights

remaining is still larger for larger networks.

In contrast, we show that the size of student network into which a network can be distilled

is almost independent of the original network’s size, as seen in Figure 5.2 and further explored

in Section 5.5.1. This makes the connection of distillation complexity to Occam’s razor much

closer than for robustness to pruning.

The Kolmogorov Complexity of an entity representable as a bit string is the length of

the shortest program (executable on some fixed universal Turing machine) that prints this

string and then halts. While enjoying an elegant theory, the quantity is uncomputable due to

the halting problem. Nevertheless, time-bounded variations exist. For example, Schmidhuber

(1997) uses Levin complexity to find networks of low complexity solving a (very) artificial task.

The Kolmogorov Growth (KG) defined in Ghosh and Motani (2021) is inspired by the Kol-

mogorov Complexity and is specific to functions. Defined in terms of the well-known growth

function in statistics, the KG of a function f is “concerned with the smallest function space that

f can belong to, that can still fit the data well.” They successfully derive error bounds in terms

of the KG. While uncomputable, they approximate the KG for neural networks and control

it by ensuring that during training the network always lies near a second network with fewer

parameters, where the proximity is measured as the maximum Euclidean distance between the

logits of the two networks over the input. In fact, they employ this regularisation recursively.

While we are also concerned in this work with whether a network can be approximated by a

smaller one, our motivation is to understand whether such distillability can explain general-

isation “in the wild” when networks are trained with typical methods, rather than whether

integrating it into the training procedure can improve performance. Further, we measure the

discrepancy between the teacher and student networks with the Kullback–Leibler divergence

between the output probabilities (after softmax) rather than the Euclidean distance on the raw

logits, since this is much more common in the distillation literature (Hinton et al., 2015).

Also connected to the Kolmogorov Complexity is the Minimum Description Length (MDL)

Principle (see Grünwald (2005) for an excellent tutorial), an alternative framework stating that

the best model of a dataset is the one that requires the fewest bits to specify both the model

and its error on the dataset. An approximation of the MDL was employed in Hinton and Van

Camp (1993). We note that they encoded their models on a parameter rather than functional

level, which fails to take advantage of the fact the minimum description length of the function

expressed by a neural network may be much shorter than the minimum description length of

its parameters.

As noted in Hochreiter and Schmidhuber (1994), this elegantly motivates the search for flat

minima of the loss landscape; since the error remains fairly constant in such regions, one can

move from the minimum to a model with low description length without substantially increasing

the description length of the error, yielding a lower combined description length and therefore a

preferred model according to the MDL principle. Remarkably, it has been empirically observed

that typical network training methods such as SGD do indeed locate flat minima, and that

89

flatness correlates with generalisation as the batch size is varied (Keskar et al., 2016). However,

as argued in Dinh et al. (2017), sharpness cannot be a satisfactory complexity measure as

it is parameterisation-dependent—the parameters of networks with ReLU activations can be

modified to make the minimum arbitrarily flat/sharp without changing the function the network

expresses, and therefore without changing its generalisation behaviour. It is a virtue of our

complexity measure that it is defined on the function rather than parameter level and so is

invariant to reparametrisations.

The norms of the weight matrices of neural networks, which determine the network’s Lip-

schitz constant when no biases are used, have also been interpreted as complexity measures.

Indeed, the norms of the weight matrices appear in a number of generalisation bounds (Arora

et al., 2018; Bartlett et al., 2017; Neyshabur et al., 2017b). Further, penalising weight norms

(e.g. weight decay) has been empirically observed to improve generalisation, providing some

evidence that there is a causal relationship. However weight norms share the weakness of other

parameter- rather than function-based complexity measures in that they can be large even

for simple functions. As a trivial example, two weights whose effects cancel out can be made

arbitrarily large without changing the function the network expresses.

5.4 Training a suite of models

One approach to demonstrating a causal relationship between a complexity measure and gen-

eralisation is to include in the optimisation objective a regularisation term penalising the com-

plexity measure and see whether this improves generalisation. However, as noted in Jiang et

al. (2019), a lack of regularisation does not constitute a satisfactory control, as there may be

implicit regularisation within the optimisation procedure that cannot be eliminated. Moreover,

such regularisation may change several other properties of the trained network as it alters the

topography of the loss landscape.

We therefore follow the methodology of Jiang et al. (2019) and Kuhn et al. (2021) by training

a suite of over 2000 neural networks to form a dataset on which to investigate the relationship

between generalisation and distillability. We use the MNIST1D dataset from Greydanus and

Kobak (2020), a procedurally generated, reasonably low-dimensional dataset (40 dimensions

rather than MNIST’s 784) that replicates many of the features of deep learning (e.g. double

descent and the existence of lottery tickets). We opt for this low-dimensional dataset rather

than the more familiar MNIST or CIFAR-10 datasets since our computational budget is limited

and distillability can be expensive to compute, as it requires many distillations. To eliminate

a potential source of noise, we use the same MNIST1D dataset for every model rather than

regenerating fresh samples for each. We use 4000 samples for training and 1000 for testing.

For the architecture, we opt for fully connected neural networks with ReLU activations and

2, 3 or 4 hidden layers each of width 512, 1024 or 2048. For each neural network, the widths

of its hidden layers are equal. To ensure variability in the test performance of the models, we

vary five more hyperparameters known to affect generalisation; choice of optimiser, learning

90

rate, batch size, dropout probability and weight decay coefficient. We pick three values for

each hyperparameter that are both realistic for real world training and ensure that almost

every combination of values leads to a model that eventually reaches the target train loss.

Specifically, we train 37 = 2187 MLPs by using all hyperparameter combinations from

num hidden layers ∈ {2, 3, 4}

hidden layer width ∈ {512, 1024, 2048}

optimiser ∈ {SGD, Adam, RMSProp}

learning rate ∈ {0.003, 0.001, 0.0003}

batch size ∈ {32, 64, 128}

dropout probability ∈ {0, 0.1, 0.2}

weight decay ∈ {0, 0.00001, 0.0001}

We control for final train loss by using it as a stopping criterion. More precisely, we stop

training once the average cross-entropy loss across the 4000 training samples first goes below

0.01. We discard the model if it fails to reach this target within 106 epochs or if the running best

train loss fails to decrease for 1000 epochs. Only four of the 2187 models are discarded, all for

the second reason, leaving us with a suite of 2183 models. Figure 5.3 shows the final train loss

and error across the suite of models. There remains some variation in the final train loss. This

could have been reduced by evaluating the train loss across the entire train set after each batch

rather than only after each epoch. This would have been significantly more computationally

expensive, however. We also see that the final train errors are all below 0.4%, with most models

achieving 0% train error, confirming we are in fact in the overparameterised regime.

Figure 5.3: Final train loss and train error across the suite of 2183 models.

91

5.5 Distillation complexity

For any teacher and student functions f, g : Rkin → Rkout we define the distillation loss

ℓdist(f, g;S) :=
1

n

n∑
i=1

KL
(
σ(f(xi))

∥∥σ(g(xi))), (5.1)

where S =
(
(x1, y1), . . . , (xn, yn)

)
∈ (Rkin × Rkout)n is a sample and σ : Rkout → △kout denotes

the softmax, which converts a vector of logits (ℓ1, . . . , ℓkout) ∈ Rkout to a vector of probabilities

σ(ℓ1, . . . , ℓkout) = (σ1, . . . , σkout) ∈ △kout according to the formula

σj =
eℓj∑kout

j′=1 e
ℓj′
.

Our student networks will be elements of MLP(kin,κ,kout), which we use to denote the set of all

MLPs from Rkin to Rkout with one hidden layer of dimension κ and ReLU activation function.

More precisely, MLP(kin,κ,kout) is the set of all functions of the form

W2max{W1x+B1, 0}+B2,

where the max is applied element-wise and

W1 ∈ Rκ×kin , B1 ∈ Rκ

W2 ∈ Rkout×κ, B2 ∈ Rkout .

More generally, recalling the notation outlined in Section 4.3.2, we denote the set of all such

ReLU-activated MLPs of arbitrary depth and width by MLP. We then have the following

definition.

Definition 10. (Distillation complexity, strict version) For any function f : Rkin → Rkout ,

not necessarily a neural network, sample S =
(
(x1, y1), . . . , (xn, yn)

)
and tolerance ϵ > 0, the

distillation complexity of f is

κ(f ;S, ϵ) = min
{
κ ∈ N : ∃g ∈ MLP(kin,κ,kout), ℓdist(f, g;S) ≤ ϵ

}
.

In words, the integer κ(f ;S, ϵ) denotes the minimum hidden width necessary in order for an

MLP with a single hidden layer of this width to be able to return the same output as f on the

sample S up to some KL tolerance ϵ. We make no claims that this is a fundamental complexity

measure on the order of Kolmogorov Complexity or Minimum Description Length discussed in

the introduction, only that it captures an intuitive notion of the complexity of f considered as

a function on S; if f requires a much wider single hidden layer MLP to represent it on S, then

intuitively it is more complex on S.

While κ(f ;S, ϵ) as defined above can easily be upper bounded—exhibiting a student network

92

of width κ and distillation loss at most ϵ upper bounds the distillation complexity by κ—

calculating it exactly is likely very difficult. We therefore relax the definition by replacing

the existential quantifier over MLP(kin,κ,kout) with a single element of MLP(kin,κ,kout) returned by a

distillation scheme, which we now define.

Definition 11. A distillation scheme is a deterministic mapping Dist taking as input a function

f : Rkin → Rkout , sample S, hidden width κ ∈ N and random seed s ∈ N, and producing as

output a neural network Dist(f ;S, κ, s) ∈ MLP(kin,κ,kout) with one hidden layer of width κ.

The distillation scheme we employ is gradient descent minimising the distillation loss in Equa-

tion (5.1). See Section 5.5.1 for the details. This enables the following definition of distillation

complexity, which is more practical than Definition 10.

Definition 12. (Distillation complexity, practical version) Fix a distillation scheme Dist, sam-

ple S =
(
(x1, y1), . . . , (xn, yn)

)
, tolerance ϵ > 0, number of distillation attempts N and sequence

of random seeds s = (s1, . . . , sN). For any function f : Rkin → Rkout , not necessarily a neural

network, the distillation complexity of f is then

κ(f ;S, ϵ, s) = min
{
κ ∈ N : min

j=1,...,N
ℓdist

(
f, gj;S

)
≤ ϵ
}
,

where gj = Dist(f ;S, κ, sj), namely the network returned by the distillation scheme with

random seed sj.

In other words, κ(f ;S, ϵ, s) is the minimum hidden width κ such that at least one of N distil-

lation attempts yields a network with distillation loss at most ϵ from f on S. The purpose of

allowing multiple distillation attempts with different random seeds is to produce a more robust

definition of distillation complexity that is less dependent on the particular random seed cho-

sen. When comparing the distillation complexities of two functions f1, f2, the same sample S,

tolerance ϵ and seeds s should be used, which is indeed what we do in our experiments. Note

that since Dist is deterministic and the seeds s are fixed, κ(f ;S, ϵ, s) constitutes a deterministic

measure of the complexity of f on S.

While this definition may be altered to permit student networks with larger numbers of

hidden layers, some exchange rate would have to be decided between number of layers and

width of layers before the minimum could be taken. One possibility would be to take the

minimum over parameter count. However, distillation complexity as defined above is already

computationally intensive. Moreover, since the universal approximation theorem (Cybenko,

1989; Hornik et al., 1989) ensures that a single hidden layer neural network is sufficient to

approximate any continuous function, one may hope that the definition as stated is reasonable.

5.5.1 Distillation scheme

We now describe in detail the distillation scheme we use for measuring distillation complexity

of the networks described in Section 5.4.

93

The sample S we use for distillation is the same sample used for training the original

networks, which we call the teacher networks in this section. This choice means we discover

whether the training procedure for the teacher network is biased to find a simple representation

of the data, which matches the philosophy of the MDL principle. For the distillation loss we use

the KL divergence between the softmaxed output of the teacher and student models on S, given

by Equation (5.1). We use full-batch gradient descent rather than SGD as this significantly

speeds up computation time (our sample is small enough to be passed to the model in a single

batch), making the experiment feasible within our computational budget. The regularising

effect of SGD is commonly beneficial but unnecessary here, as we are solely concerned with

discovering the narrowest single hidden layer MLP capable of representing the teacher network.

We train the student networks using the Adam optimiser with learning rate 0.003 for up to

100, 000 epochs (where each epoch consists of a single gradient step), stopping early if the

distillation loss reaches the target ϵ = 0.01, or if it fails to improve upon its best value for

more than 100 consecutive epochs. This returns a student network. The pseudocode is given

in Algorithm 1.

For the distillation complexity, we use N = 5 attempts. Measuring the distillation com-

plexity rigorously would require N = 5 distillation attempts for each value of the hidden width

κ increasing from 1 until an attempt is successful, namely until the loss of the student net-

work first falls below ϵ = 0.01 for at least one of the N = 5 attempts. However, we can save

computation by making the simplifying assumption that for all values of the hidden width κ

above the distillation complexity, at least one of the N = 5 distillation attempts will be suc-

cessful. Combined with the fact that none of the distillation attempts will be successful for any

value of the hidden width κ below the distillation complexity (by definition), we have a kind

of monotonicity assumption that permits binary search over the hidden width to determine

the distillation complexity. While this monotonicity assumption is likely false in practice, the

binary search procedure it motivates nevertheless yields a well-defined and deterministic value

provided we fix the random seed (as we do), which is therefore a bona fide complexity measure

worthy of investigation. Moreover, this simplifying assumption enables us to evaluate a much

larger sample of networks than our computational budget would otherwise permit.

More precisely, the binary search procedure is as follows. First, we fix random seeds

s1, . . . , s5, one for each of the N = 5 distillation attempts, where we use these same seeds

for all networks in the dataset. For any value κ of the hidden width, if at least one of the

N = 5 distillation attempts is successful, then by definition κ is an upper bound on the dis-

tillation complexity. If none are successful, we treat κ as a lower bound on the distillation

complexity, as per our simplifying assumption. Starting with κ = 128, if none of the N = 5

distillation attempts are successful, we repeatedly double κ until at least one is successful (this

never exceeded 2048 in our experiments) and then perform binary search. Conversely, if at

least one of the N = 5 distillation attempts is successful, we repeatedly halve κ until none are

successful and then perform binary search.

It was already seen in Figure 5.2 that the distillation complexity remains fairly constant as

94

model size increases. Breaking this down into increasing depth and width, Figure 5.4 shows

that on average distillation complexity actually marginally decreases as both the depth and

width of the network increases. This is further evidence that our complexity measure meets

the third of the three complexity measure desiderata described in Section 5.1.

Figure 5.4: The distillation complexity µdist-complexity defined in Definition 12 plotted against
depth num hidden layers ∈ {2, 3, 4} and width hidden layer width ∈ {512, 1024, 2048}.
Note depth and width correspond to the base model in the suite, not the student models
in the definition of distillation complexity. In both cases the correlation coefficient ρ is negative
and the p-value for the null hypothesis that the slope is zero is very small, where the null and
alternative hypotheses are that the slope is zero and non-zero, respectively.

95

Input:

f : Rkin → Rkout /* Teacher function */

S ∈ (Rkin × Rkout)m /* Dataset for distillation */

ϵ > 0 /* Tolerance threshold for distillation loss */

κ ∈ N /* Hidden width for student network */

T ∈ N /* Maximum number of distillation epochs */

p ∈ N /* Early stopping patience parameter */

s ∈ N /* Random seed */

Init : N→ MLP(kin,κ,kout) /* Network initialisation scheme taking random seed

*/

Output:

gκ ∈ MLP(kin,κ,kout) /* Single hidden layer student MLP */

Procedure:

g0κ ← Init(s) /* Randomly initialised student MLP with width κ */

ℓbest ←∞ /* Best loss observed so far */

q ← 0 /* Epochs since improvement */

stop← False /* Flag to indicate stopping condition met */

for t← 1 to T do

gtκ ← GradientDescent(ℓdist, f, g
t−1
κ , S) /* One epoch of GD on distillation

loss */

if ℓdist(f, g
t
κ;S) ≤ ϵ then

stop← True /* Distillation successful */

end

if q ≥ p then

stop← True /* Early stopping triggered */

end

if ℓdist(f, g
t
κ;S) < ℓbest then

ℓbest ← ℓdist(f, g
t
κ;S) /* Update best loss */

q ← 0 /* Reset counter */

else

q ← q + 1 /* Increment counter */

end

if stop = True then

return gtκ /* Return current student model */

end

end

return gTκ /* Return final student model after max epochs */

Algorithm 1: Neural network distillation attempt with early stopping

96

5.6 Comparison complexity measures

Measures that are functions of the entire hypothesis class, rather than taking into account

the specific learned hypothesis, cannot explain generalisation in the overparameterised regime

as they fail to distinguish between networks with zero training loss but different degrees of

overfitting. This includes measures such as the number of parameters or the VC dimension,

but also ones that take into account the dataset, such as Rademacher complexity. For this

reason, we only compare to measures that are functions of the trained neural network and the

sample, rather than only the architecture and the sample.

5.6.1 Norm-based measures

The norm-based measures considered in Jiang et al. (2019) are mostly inspired by theoretical

bounds, consisting either of the entire bound or components of it on the understanding that

some elements of the bound may be proof artifacts. Rather than starting with bounds and

peeling off appropriate terms, we evaluate intuitive measures of network capacity directly.

Indeed, since most of the bound-inspired measures evaluated in Jiang et al. (2019) predict

generalisation only very poorly in their experiments, it is perhaps wise to aim directly for

intuitive measures rather than hewing to rigorous bounds only.

Using all parameters

Treating the weights and biases of a network hW,B ∈ MLP as a single vector vec(W,B), we

measure their ℓ1- and ℓ2-norms both from the origin and the initialisation hW 0,B0 as follows:

µℓ1(hW,B) = ∥vec(W,B)∥1 (5.2)

µℓ2(hW,B) = ∥vec(W,B)∥2 (5.3)

µℓ1-init(hW,B;hW 0,B0) = ∥vec(W −W 0, B −B0)∥1 (5.4)

µℓ2-init(hW,B;hW 0,B0) = ∥vec(W −W 0, B −B0)∥2. (5.5)

Using weights only

Conversely, we can retain the structure of the weight matrices and apply matrix norms, omitting

the biases. In this case it is natural to measure both the sum and the product of the matrix

norms, from both the origin and the initialisation. Let ∥Wi∥spec and ∥Wi∥frob denote the spectral
and Frobenius norms, respectively, of the weight matrix Wi. We then define the following eight

complexity measures by taking all combinations of spectral versus Frobenius norm, sum versus

product, and taking the norm from the origin versus the initialisation.

µspec-sum(hW,B) =
∑
i

∥Wi∥spec (5.6)

97

µspec-prod(hW,B) =
∏
i

∥Wi∥spec (5.7)

µfrob-sum(hW,B) =
∑
i

∥Wi∥frob (5.8)

µfrob-prod(hW,B) =
∏
i

∥Wi∥frob (5.9)

µspec-sum-init(hW,B;hW 0,B0) =
∑
i

∥Wi −W 0
i ∥spec (5.10)

µspec-prod-init(hW,B;hW 0,B0) =
∏
i

∥Wi −W 0
i ∥spec (5.11)

µfrob-sum-init(hW,B;hW 0,B0) =
∑
i

∥Wi −W 0
i ∥frob (5.12)

µfrob-prod-init(hW,B;hW 0,B0) =
∏
i

∥Wi −W 0
i ∥frob (5.13)

5.6.2 Sharpness-based measures and PAC-Bayes bounds

We measure the flatness of the minimum found by training the network hW,B on a sample S

as the level of noise required to increase the cross-entropy loss of hW,B by β, where in our

experiments we take β = 0.1. The inverse of this is then a measure of sharpness and, therefore,

perhaps complexity.

More formally, let QW,B,σ denote the stochastic predictor formed by adding isotropic Gaus-

sian noise with standard deviation σ to the parameters of hW,B, with the true and test errors

RD(QW,B,σ) and RS(QW,B,σ) of QW,B,σ defined in the usual way by taking expectations over

the noise. Likewise for the true and test cross-entropy losses, which we denote Rce
D(QW,B,σ) and

Rce
S (QW,B,σ), respectively. We then define

µsharpness(hW,B) =
1

σ2
β

, where (5.14)

σβ = max
{
σ > 0 : Rce

S (QW,B,σ) ≤ Rce
S (hW,B) + β

}
, (5.15)

For the PAC-Bayes inspired complexity measures, recall the classic PAC-Bayes theorem.

Theorem 16. (Maurer (2004), Theorem 5) For any data-generating distribution D over X ×Y
where Y = Rk for some k, hypothesis space H ⊆ YX , prior distribution P over H, confidence
level δ ∈ (0, 1] and sample size m, then with probability at least 1 − δ over the random draw

S ∼ Dm, we have that simultaneously for all posterior distributions Q over H

kl
(
RS(Q)

∥∥RD(Q)
)
≤ 1

m

(
KL(Q∥P) + ln

2
√
m

δ

)
. (5.16)

We follow common practice by taking Q = QW,B and P = PW 0,B0 to be isotropic Gaussians

centred at the learned and initial parameters, respectively. We do not explore the use of data-

dependent priors as they have the drawback of simply shifting the generalisation mystery to

the prior. See Section 2.5.2 for a more in-depth discussion of this point. We take the same

98

standard deviation σ for both Q and P , which is the obvious choice since for any means µQ, µP

and standard deviation σP , a straightforward calculation shows that minimising

KL
(
N(µQ, σ

2
Q)∥N(µP , σ

2
P)
)
=

1

2

(
k
σQ
σP
− k + ∥µQ − µP∥2

σ2
+ k ln

σP
σQ

)
over σQ yields σQ = σP (where k is the total number of parameters). We then take a union

bound over σ ∈ Σ, where Σ is a set of K values fixed before observing the data. With these

choices, Inequality (5.16) becomes

kl
(
RS(QW,B)

∥∥RD(QW,B)
)
≤ 1

m

(
∥vec(W −W 0, B −B0)∥22

2σ2
+ ln

2K
√
m

δ

)
(5.17)

=: ζ(σ), (5.18)

valid for all σ ∈ Σ simultaneously.

Using this we construct the following three PAC-Bayes-inspired complexity measures. First,

we transform Inequality (5.17) into bounds on RD(QW,B) in two different ways; by inverting

the kl numerically and by using Pinsker’s inequality. Ideally we would then take the minimum

of these over σ ∈ Σ, but doing so is computationally prohibitive, since each evaluation requires

a large Monte Carlo sample to estimate RS(QW,B). We therefore instead evaluate the bounds

using the σ ∈ Σ closest to σβ defined in Equation (5.15), namely

σ̃β := argminσ∈Σ|σ − σβ|, (5.19)

which yields

µpacb-error-bound-inverse-kl(hW,B) = kl−1 (RS(QW,B)|ζ(σ̃β)) and (5.20)

µpacb-error-bound-pinsker(hW,B) = RS(QW,B) +
√
ζ(σ̃β)/2. (5.21)

Third, simply take the kl bound in Equation (5.17) and substitute σ = σ̃β to obtain

µpacb-kl-bound(hW,B;hW 0,B0) = ζ(σ̃β), (5.22)

which may loosely be interpreted as the product of µℓ2−init (5.4) and µsharpness (5.14). While

this is a bound on the small kl, for our purposes it may be a good proxy for the corresponding

error bound

RD(QW,B) ≤ kl−1
(
RS(QW,B)

∣∣∣µpacb-kl-bound(hW,B;hW 0,B0)
)
. (5.23)

To see why, note that our stopping criterion (see Section 5.4) ensures that Rce
S (hW,B) ≈ 0.01 for

all models hW,B in the suite. The definition of σ̃β then ensures thatRce
S (QW,B) ≈ Rce

S (hW,B)+β ≈
0.11, given our choice of β = 0.1. Since all the stochastic models QW,B in the suite have

approximately equal cross-entropy, they may also be expected to have approximately equal

zero-one error RS(QW,B). Thus, since kl−1(·|·) is monotonically increasing in its second argu-

99

ment, the models will have approximately the same ordering if sorted according to increasing

µkl-bound(hW,B;hW 0,B0) or increasing error bound (5.23). Since the ordering is approximately

preserved, some of the evaluation criteria from Section 5.7, e.g. Kendall’s rank-correlation co-

efficient, will be unaffected. Further, the advantage of µkl-bound over (5.23) is that it makes

models easier to compare, since kl−1(·|·) is difficult to evaluate if its second argument is large.

For all three PAC-Bayes-inspired complexity measures, we choose Σ = {1·2−14, 2·2−14, . . . , 1}
so that K = 214. Note that due to the logarithmic factor the effect of this large number of

union bounds is still small; with our sample of size 50, 000, the increase of the bound (5.16) is

only ln(214)/50, 000 ≈ 0.0002.

5.6.3 Uncertainty-based measures

Three intuitive ways of measuring the uncertainty of a network hW,B in its predictions on the

train set are as its final cross-entropy loss at the end of training (the higher the loss the higher

the uncertainty), the inverse of its margin (the lower the margin the higher the uncertainty),

and the average entropy of the output (the higher the entropy the higher the uncertainty). To

that end, we define the complexity measures

µfinal-loss(hW,B) = Rce
S (hW,B) (5.24)

µinverse-margin(hW,B) = 1/γ210% (5.25)

µoutput-entropy(hW,B) =
1

m

m∑
i=1

H(hW,B(xi)) (5.26)

where γ10% is the 10th percentile of the set of margin values Γ = {f(x)y − maxj ̸=y f(x)j :

(x, y) ∈ S}, and H(hW,B(xi)) is the entropy of the output of network hW,B on input xi. We

note that Jiang et al. (2019) opt to take the negative of the output entropy, whereas we leave

it unchanged for greater consistency with the other uncertainty-based measures.

While µfinal-loss(hW,B) ≈ 0.01 for all models in the suite, as this is our stopping criterion,

there is still some variance. We therefore test its relationship with generalisation along with

the other complexity measures as a check that we have sufficiently controlled for this variable.

We also include the final error rate, the zero-one loss on the training set

µfinal-error = RS(hW,B). (5.27)

The measure µinverse-margin has been observed in Jiang et al. (2018, 2019) to be predictive

of generalisation and so we include it here to evaluate its effectiveness on the new dataset

MNIST1D and to use as a comparison for our distillation complexity. The negative output

entropy µneg-entropy was proposed as regulariser in Pereyra et al. (2017) and observed to be

effective, so we include it here to evaluate its relationship with generalisation more thoroughly.

100

5.7 Evaluation criteria

The most straightforward way to evaluate the relationship between the complexity measures

and generalisation is as the proportion of the variance in generalisation gap explainable by a

linear function of the complexity measure, namely the coefficient of determination r2. However,

if generalisation gap increases only monotonically, rather than linearly, with a quantity, the

quantity may nevertheless be deemed a suitable complexity measure. We therefore also measure

Kendall’s Rank-Correlation Coefficient (KRCC). Using the notation of Jiang et al. (2019), let

Θ denote the set of hyperparameters used to train the suite of models, and, for a complexity

measure µ,

T =
{
(µ(θ), g(θ)) : θ ∈ Θ

}
,

where µ(θ) and g(θ) denote the complexity and generalisation gap of the model trained with

hyperparameters θ. The KRCC is then defined as

τ(T) = 1

|T |(|T | − 1)

∑
(µ1,g1)∈T

∑
(µ2,g2)∈T \{(µ1,g1)}

sign(µ1 − µ2)sign(g1 − g2). (5.28)

In words, the KRCC τ(T) is the proportion of pairs from T for which the ordering of the

complexity measures and generalisation gaps match, minus the proportion of pairs for which

the ordering does not match. Therefore τ(T) ∈ [−1, 1], where values close to 1 indicate that

the models are ordered in approximately the same way whether they are sorted according to

the complexity measure or the generalisation gap.

Note the KRCC may only capture a spurious correlation—rather than the hyperparameters

θ ∈ Θ determining the complexity measure µ(θ) which then in turn affects the generalisation

gap g(θ), the hyperparameters may determine g(θ) directly. Thus the KRCC may be large

even if the complexity measure has no causal effect on generalisation. Following Jiang et al.

(2019), we use two additional evaluation metrics, the Granulated KRCC (GKRCC), and the

Conditional Independence Test (CIT) inspired by the Inductive Causation Algorithm by Verma

and Pearl (2022).

The GKRCC Ψ is defined by first calculating ψi, the average KRCC along the hyperparam-

eter axis θi, where the average is taken over all possible values for the other hyperparameters

θ¬i. The GKRCC Ψ is then the average of the ψi. More formally, suppose we have n hyperpa-

rameters, denoted by θ = (θ1, . . . , θn) ∈ Θ1 × · · · ×Θn. Then

Ψ =
1

n

n∑
i=1

ψi for ψi =
1

|Θ¬i|
∑

θ¬i∈Θ¬i

τ(Ti(θ¬i)), where (5.29)

Ti(θ¬i) =
{
(µ(θ′), g(θ′)) : θ′i ∈ Θi,θ

′
¬i = θ¬i

}
and Θ¬i = Θ1 × · · · ×Θi−1 ×Θi+1 × · · · ×Θn.

The authors of Jiang et al. (2019) offer the following thought experiment to show that Ψ may

be less susceptible to spurious correlations:

Suppose there exists a measure that perfectly captures the depth of the network

101

while producing random prediction if two networks have the same depth. This

measure would do reasonably well [achieve a high value] in terms of τ but much

worse [achieve a low value] in terms of Ψ.

Let us flesh out this explanation. Suppose, as a hypothetical, that we have the following causal

relationship θi =⇒ g(θ), θi =⇒ µ(θ), but g(θ) ≠⇒ µ(θ), where θi is network depth and

µ(θ) = θi + ϵ for a small amount of random noise ϵ drawn independently for each θ. Further,

suppose that ψi, the KRCC between network depth and generalisation gap is close to 1, i.e.

for most fixed values of the hyperparameters θ¬i, the deeper models have larger generalisation

gap.

First, consider the value of τ in this setup. For any pair θ1,θ2 ∈ Θ, there is an approximately

1/3 chance that θ1i = θ2i , in which case the order of µ(θ1) and µ(θ1) will be random, and an

approximately 2/3 chance that θ1i ̸= θ2i , in which case the order of µ(θ1) and µ(θ2) will likely

be the same as the order of θ1i and θ2i and hence (by assumption) likely the same as g(θ1) and

g(θ2). Overall, we have τ ≈ 1/3(1/2− 1/2) + 2/3(1− 0) = 2/3.

Now consider the value of Ψ. By assumption ψi ≈ 1. For any j ̸= i, note that Tj(θ¬j)

consists of pairs varying only over θj, meaning the θi are equal and so the ordering of µ is

random and will match the ordering of g in approximately half of cases. Therefore ψj ≈ 0 for

all j ̸= i and so Ψ ≈ 1/n. This is much smaller than τ ≈ 2/3, at least for our suite of models

where n = 7.

Thus, while Ψ is still not strictly a measure of causation, the fact that it rules out more

spurious correlations than τ means that it is greater evidence of a causal relationship than τ is.

Finally, we consider the Conditional Independence Test (CIT). Roughly, the CIT calculates

K ∈ [0, 1], the lowest the (normalised) conditional mutual information (CMI) between µ(θ) and

g(θ) can get when conditioning on all possible subsets of the hyperparameters. For example,

one of these CMIs will be conditioned on the batch size alone, another on network depth and

learning rate, etc., and K ≥ 0 is the minimum of all of these. The value K may then broadly

be interpreted as the evidence for the existence of an edge from µ(θ) to g(θ) in the causal

graph. Due to computational constraints, we restrict our analysis to conditioning on subsets

of the parameters of size at most two, the same compromise taken in Jiang et al. (2019) and

Kuhn et al. (2021). We refer the reader to Jiang et al. (2019) for the precise details of how to

calculate K.

5.7.1 Noisy oracles as baselines

While R2 and the KRCC τ are straightforward to interpret, the GKRCC Ψ and CIT value

K are more difficult as it is less clear which range of values correspond to which degree of

relationship. We therefore follow Jiang et al. (2019) in using noisy oracles as baselines, where

the oracle complexity is simply the generalisation gap plus some noise

µoracle−ϵ(hW,B) = g(hW,B) +N(0, ϵ2), (5.30)

102

with a fresh sample from N(0, ϵ2) drawn for every network hW,B in the suite. As ϵ→ 0 we have

ρ, r2, τ,Ψ,K → 1, and as ϵ→∞ we have ρ, r2, τ,Ψ,K → 0.

Fixed values of ϵ were taken in Jiang et al. (2019) and Kuhn et al. (2021), but this makes it

difficult to compare across different datasets and architectures. Instead, we take ϵ to be fixed

proportions of σgen-gaps, which we define to be the standard deviation of the set of generalisation

gaps across the suite. Specifically, we take 11 values of ϵ logarithmically distributed from

0.1σgen-gaps to 10σgen-gaps inclusive. For each value of ϵ we report the average values of ρ, r2, τ,Ψ

and K over a sample of 100 noisy oracles.

5.8 Results

Our results are presented in Figure 5.5 and Table 5.1, where we evaluate the 21 complexity

measures according to the five metrics described in Section 5.7. Recall that for every metric

larger values indicate a closer (positive) relationship between the complexity measure and gen-

eralisation gap, with the final two, the GKRCC Ψ and the CIT K providing stronger evidence

of causal relationships.

Our complexity measure is at least the third largest for four out of the five metrics, which

is most readily observed from the shaded Table 5.1. Remarkably, only four of the complexity

measures are positively correlated with generalisation gap, and of these our complexity measure

scores second on the Conditional Independence Test K. We therefore conclude that there is

decent evidence that distillation complexity has a positive causal effect on generalisation gap,

at least in comparison to the other complexity measures and on this task. The other successful

complexity measures are the sharpness measure µsharpness defined in Equation (5.14), and the

uncertainty-based measure µoutput-entropy defined in Equation (5.26). These top three measures

perform around as well as the oracle complexity with standard deviation equal to σgen-gaps, as

seen from the final rows of Table 5.1.

The norm-based measures perform badly. All 12 correlate negatively (ρ < 0) with gener-

alisation gap, indicating that norm-based bounds are unlikely to explain generalisation. The

three PAC-Bayes-based measures also perform quite badly, being negative or near-zero across

all five metrics. We note that µpacb-error-bound-inverse-kl given by Equation (5.20) uniformly took

the value 1, rendering it completely uninformative. This was due to the large value of ζ(σ̃β)

(defined in Equation (5.18)) making the inversion of the kl numerically indistinguishable from

1. This meant that only the CIT value K was defined, explaining why it is the only metric to

appear in Figure 5.5 and Table 5.1 for this measure.

The failure of the PAC-Bayes error bound µpacb-error-bound-pinsker given by Equation (5.21) is

especially surprising given that it was one of the most successful complexity measures in Jiang

et al. (2019). To explain this, recall the observation in Section 5.6.2 that, loosely speaking,

µpacb-error-bound-pinsker is proportional to the (square root of the) product of µℓ2−init and µsharpness.

Noting the very poor performance of µℓ2−init—it is strongly negatively correlated with general-

isation gap, with ρ = −0.484—we conclude that this counteracts the success of µsharpness in the

103

approximate product µpacb-error-bound-pinsker, explaining its poor performance.

The uncertainty-based measures have mixed performance, with µoutput-entropy given by Equa-

tion (5.26) performing the best. Additional baseline oracle complexity values are presented in

Figure 5.6 and Table 5.2, where we see, as a sanity check, that all metrics do indeed approach

one as ϵ→ 0 and zero as ϵ→∞.

In summary, the best three measures from our experiment are sharpness (5.14), output

entropy (5.26) and our distillation complexity, Definition 12, all of which perform around as

well as an oracle with noise standard deviation ϵ equal to that of the set of all generalisation

gaps (see Figure 5.6).

Figure 5.5: The five evaluation metrics for each of the 21 complexity measures. For each eval-
uation metric, a higher score indicates a closer (positive) relationship between the complexity
measure and generalisation gap.

5.9 Discussion and future work

We have empirically established that distillation complexity is predictive of generalisation gap.

Recalling the arguments of Section 2.2, we suggest two possible explanations, based on the hy-

pothesis that there are, in some intuitive sense, fewer models with lower distillation complexity,

i.e. fewer distillable models. First, taking a Bayesian perspective, one may argue that highly

104

Complexity Measure ρ R2 τ Ψ K
L1 Norm -0.201 0.040 -0.173 -0.222 0.015

L2 Norm -0.377 0.142 -0.397 -0.279 0.025

L1 Norm From Init -0.468 0.219 -0.497 -0.371 0.050

L2 Norm From Init -0.484 0.234 -0.546 -0.349 0.045

Spectral Sum -0.397 0.157 -0.539 -0.267 0.106

Spectral Product -0.035 0.001 -0.533 -0.274 0.118

Frobenius Sum -0.390 0.152 -0.436 -0.310 0.074

Frobenius Product -0.045 0.002 -0.389 -0.283 0.076

Spectral Sum From Init -0.415 0.172 -0.561 -0.270 0.081

Spectral Product From Init -0.034 0.001 -0.600 -0.295 0.095

Frobenius Sum From Init -0.499 0.249 -0.617 -0.387 0.140

Frobenius Product From Init -0.044 0.002 -0.661 -0.374 0.144

Inverse Squared Sigma Target 0.730 0.533 0.501 0.282 0.047

KL Bound -0.120 0.014 -0.298 -0.096 0.039

Error Bound Inverse KL — — — — 0.000

Error Bound Pinsker -0.243 0.059 -0.299 -0.095 0.039

Train Loss 0.455 0.207 0.444 0.191 0.022

Train Error -0.582 0.338 -0.569 -0.275 0.054

Inverse Margin Tenth Percentile -0.121 0.015 -0.471 -0.166 0.079

Output Entropy 0.730 0.533 0.594 0.321 0.102

Dist Complexity (Ours) 0.690 0.476 0.562 0.271 0.085

Oracle ϵ = 0.1σgen-gaps 0.995 0.990 0.926 0.776 0.631

Oracle ϵ = σgen-gaps 0.706 0.499 0.477 0.248 0.070

Oracle ϵ = 10σgen-gaps 0.101 0.011 0.063 0.030 0.002

Table 5.1: The five evaluation metrics for each of the 21 complexity measures. For each eval-
uation metric, a higher score indicates a closer (positive) relationship between the complexity
measure and generalisation gap. Dark, medium and light teal are the first, second and third
largest values, respectively. Our complexity measure (final row) is at least third largest for four
out of the five metrics.

105

Figure 5.6: As a baseline we construct noisy oracle complexity measures by adding Gaussian
noise N(0, ϵ2) to the set of generalisation gaps across the suite of models, as defined in Equation
(5.30). The top x-axis gives the standard deviation ϵ of the noise, while the bottom x-axis shows
this as a proportion of σgen-gaps, the standard deviation of the set of generalisation gaps. We
generated 100 noisy oracles for each of 10 values of this proportion from 0.1 to 10, and report
the mean and standard deviation (error bar) of the five evaluation metrics across the samples.
As expected, all metrics are decreasing in ϵ. These values can be used as a benchmark by which
to compare the results found in Figure 5.5.

Oracle ϵ ρ R2 τ Ψ K
0.10σgen-gaps 0.995 (0.000) 0.990 (0.000) 0.926 (0.001) 0.776 (0.006) 0.631 (0.005)

0.16σgen-gaps 0.988 (0.000) 0.975 (0.001) 0.885 (0.002) 0.688 (0.006) 0.515 (0.005)

0.25σgen-gaps 0.970 (0.001) 0.940 (0.002) 0.822 (0.003) 0.580 (0.008) 0.383 (0.006)

0.40σgen-gaps 0.929 (0.002) 0.864 (0.004) 0.734 (0.005) 0.464 (0.009) 0.251 (0.007)

0.63σgen-gaps 0.846 (0.005) 0.716 (0.008) 0.616 (0.007) 0.349 (0.010) 0.143 (0.006)

1.00σgen-gaps 0.706 (0.010) 0.499 (0.014) 0.477 (0.010) 0.248 (0.011) 0.070 (0.006)

1.58σgen-gaps 0.534 (0.015) 0.285 (0.016) 0.345 (0.012) 0.168 (0.013) 0.032 (0.004)

2.51σgen-gaps 0.369 (0.017) 0.137 (0.013) 0.232 (0.012) 0.110 (0.012) 0.014 (0.003)

3.98σgen-gaps 0.246 (0.018) 0.061 (0.009) 0.154 (0.012) 0.073 (0.013) 0.007 (0.002)

6.31σgen-gaps 0.157 (0.018) 0.025 (0.006) 0.096 (0.012) 0.045 (0.012) 0.003 (0.001)

10.00σgen-gaps 0.101 (0.019) 0.011 (0.004) 0.063 (0.013) 0.030 (0.012) 0.002 (0.001)

Table 5.2: The five evaluation metrics for noisy oracle complexity measures with standard
deviation logarithmically spaced from 0.1σgen-gaps to 10σgen-gaps, where σgen-gaps is the standard
deviation of the set of generalisation gaps. For each standard deviation value, 100 noisy oracles
are sampled and the mean metric values are reported with standard deviation in parentheses.

106

distillable networks are simpler and therefore more likely to have low true error. Conversely,

a Frequentist may reason that an inductive bias towards distillable networks acts as a kind

of soft capacity control; the maximum generalisation gap over the set of distillable models is

likely to be smaller than that for the set of less distillable models, simply because there are

fewer distillable models, reducing the capacity for overfitting. Combined with the empirically

low train error, this would imply low true error.

For either perspective, in order for distillation complexity to become a rigorous element of

an explanation of the generalisation mystery, we would require a proof that commonly used

DL algorithms have an inductive bias towards networks with low distillation complexity. In

addition, the Bayesian perspective would require distillability to be justified as a sensible basis

for a simplicity prior, perhaps by relating it to Kolmogorov complexity. On the other hand, the

Frequentist perspective would require a generalisation bound proving that networks with low

distillation complexity have low generalisation gap, rather than simply the empirical observation

of this fact demonstrated in this chapter.

As for PAC-Bayes, note that any fact about the inductive bias of an algorithm can be

used to inform a prior, without it being necessary that this inductive bias is also predictive of

generalisation. Indeed, as noted in Section 2.3.2, the theoretically optimal choice of prior (at

least for “linear” PAC-Bayes bounds) is the distribution that puts more mass on the hypotheses

the algorithm of choice is likely to produce. We can theoretically formulate such a prior as

follows. Given a hypothesis class H ⊆ MLP, a “reference” distribution ν ∈ △(H), and a

distribution π ∈ △(N) such as a geometric distribution, for each k ∈ N, define

Ωk =
{
h ∈ H : κ(h) = k

}
, and pk = ν(Ωk),

where κ(h) denotes the distillation complexity of h (eliding the other arguments present in

Definition 12). We can then define the prior P by the Radon–Nikodym derivative

dP

dν
(h) =

π
(
κ(h)

)
pκ(h)

. (5.31)

The prior P is then a re-weighting of ν to place mass π(κ) on hypotheses with distillation

complexity κ. The following calculation verifies this is indeed a valid prior:∫
H

dP

dν
(h)dν(h) =

∫
H

π
(
κ(h)

)
pκ(h)

dν(h) =
∑
k∈N

π(k)

pk
ν(Ωk) =

∑
k∈N

π(k) = 1.

First, note that this may empirically lead to tighter PAC-Bayes bounds even absent any theo-

retical explanation of the inductive bias or its relation to generalisation. This may nonetheless

be satisfactory from a self-certified learning point of view, described in Section 2.5.

The difficulty of course is in calculating the pk and KL(Q∥P). There may be ways around

these obstacles however. First, recall the disintegrated PAC-Bayes bounds from Section 2.4.2,

which bound the true risk of a single sample h ∼ Q rather than Q itself. For such bounds

107

the KL(Q∥P) term is replaced by its disintegrated equivalent ln
(
dQ
dP

(h)
)
, which in our case, for

appropriate Q,P and ν, may be written as

ln

(
dQ

dP
(h)

)
= ln

(
dQ

dν
(h)

)
− ln

(
dP

dν
(h)

)
= ln

(
dQ

dν
(h)

)
− lnπ

(
κ(h)

)
+ ln pκ(h).

The term lnπ
(
κ(h)

)
is easy to evaluate, while ln pκ(h) can be approximated through a Monte

Carlo approximation by sampling h ∼ ν. If ν is the pushforward of a Gaussian distribution

over the weight space of the neural network, this may in fact be relatively straightforward. For

greater rigour, one may substitute a upper confidence bound on pκ(h) for pκ(h) in the PAC-Bayes

bound through the use of a union bound argument. As for the term ln
(
dQ
dν
(h)
)
the accounting

methods of Clerico et al. (2022b) may be applicable.

Alternatively, one may adopt the discrete PAC-Bayes approach of Chapter 4 by taking

the distribution ν ∈ △(H) to be a discrete distribution over a discretised weight space, and

the posterior Q to be a point mass on the discretised deterministic network returned by the

learning algorithm. We then have KL(Q||P) = − ln
(
P (h)

)
, where h is learned network. Rather

than being defined via the Radon–Nikodym given in Equation (5.31), the prior P may then be

defined explicitly as

P (h) =
π
(
κ(h)

)
pκ(h)

ν(h), s.t. KL(Q∥P) = − lnπ
(
κ(h)

)
− ln ν(h) + ln pκ(h)

The first two terms of the KL can be calculated exactly, and, as before, the final term can be

upper bounded with a Monte Carlo sample.

108

Chapter 6

Conclusion

In this chapter we recap the three main results of this thesis and analyse to what extent they

shed light on the Generalisation Mystery (GM). We then discuss our best guess for how further

progress may be made on resolving the GM, and the possible limitations of theoretical analysis.

Recalling the motivations for attacking the GM outlined in the introduction, we conclude with

a reflection on these motivations, the degree to which our work has satisfied them, the likelihood

of them being satisfied by future work in Statistical Learning Theory (SLT), and finally whether

they may be addressed more easily and directly through empirical means.

6.1 Preliminary Conclusions

Recall our formalisation of the generalisation mystery as Definition 3 from the introduction.

Definition 3. (Generalisation Mystery) The generalisation mystery is the mystery of why, in

the overparameterised regime, learning algorithms commonly used in the field of Deep Learning,

such as minimisation of the empirical risk RS(hw) via SGD, frequently yield parameter settings

w for which the true risk RD(hw) is low, even in the absence of explicit regularisation.

Chapter 3 can be seen as an attempt to resolve a generalisation of the GM, namely the problem

of explaining not simply the fact that the true risk is low, but explaining the entire distribution

over different user-specified error types of the learned hypothesis.

Our first conclusion of Chapter 2 was that neither uniform nor non-uniform generalisation

bounds can resolve the GM. Our reasoning was as follows. Uniform bounds cannot resolve it

because they will be empirically loose as they are forced to accommodate the hypotheses with

large generalisation gap that by definition exist in the overparameterised regime. And non-

uniform bounds cannot fully resolve it as they would not explain why algorithms commonly

used in DL locate hypotheses with low empirical risk for which the bound is also low, rather than

hypotheses with low empirical risk for which the bound is large, where again such hypotheses

necessarily exist in the overparameterised regime by definition. We summarised this conclusion

in Chapter 2 as Claim 1.

109

Claim 1. Generalisation bounds alone cannot resolve the generalisation mystery, even if they

are non-uniform and tight.

This is not to say that generalisation bounds shed no light on the GM at all, only that they

do not and will not suffice as a full explanation. Indeed, we recognised in Chapter 2 that tight

non-uniform generalisation bounds may constitute a step towards a resolution to the GM by

suggesting the following potential structure, as expressed in Claim 2.

Claim 2. The generalisation mystery may be explained by the derivation of two theorems. One

theorem demonstrating that the learning algorithms typically used in DL have an implicit bias

towards hypotheses h with some property P , and a second theorem demonstrating that hypotheses

with property P have small generalisation gap.

Chapters 4 and 5 can be understood as steps towards a resolution of the GM by following the

template of this proposed structure, as we will discuss in the next section.

A substantial part of Chapter 2 was devoted to demonstrating that PAC-Bayesian theory,

in its current form, cannot resolve the GM, since all the bounds we are aware of are either loose

or face at least one of three obstacles. First, the theory typically addresses the generalisation

of stochastic hypotheses, rather than the deterministic ones typically used in DL practice.

Second, many of the bounds are successfully applied only to (stochastic) hypotheses that have

been learned via PAC-Bayesian inspired training objectives, rather than the ordinary methods

of DL practice, such as SGD. Third many of the bounds are tight only when using so-called

data-dependent priors, which effectively turns the bounds into test set bounds in disguise, and

simply shifts the GM mystery onto the prior without resolving anything. Our conclusion was

that PAC-Bayes could only make progress towards resolving the GM if it could overcome all

three of these obstacles, which is exactly what we attempted in Chapter 4.

6.2 Contributions

Chapter 3 was motivated by an understanding that we want to be able to explain and therefore

predict not only whether RD(hw) is low, but also to explain and therefore predict the general

behaviour of the learned hypothesis hw. For example, in classification we may wish to control

the types of errors the learned hypothesis is likely to make, such as false positives and false

negatives. This can be considered a generalisation of the GM, and should be pursued for the

same reasons as the original GM.

Our contribution was to generalise a classic PAC-Bayes bound originally due to Germain

et al. (2009, 2015) and streamlined in Bégin et al. (2016), which unifies various PAC-Bayes

bounds. Our generalisation, in the form of Theorem 11, extends this classic unifying bound

to the information-rich setting by controlling not simply the scalar RD(hw) but the vector

RD(hw), representing the probabilities of the various user-specified outcomes. Just as the

original PAC-Bayes bound controls the divergence between RD(hw) and RS(hw), our extension

controls the divergence between RD(hw) and RS(hw). Furthermore, our extension reduces

110

to the original PAC-Bayes bound in the case where the user-specified outcomes are simply

incorrect and correct classification.

Unfortunately, our extension of the classic PAC-Bayes bound resolves the generalised GM

no more satisfactorily than the original bound resolves the original GM. This is because while

it does extend to the information-rich regime, it inherits the obstacles that prevent most PAC-

Bayes bounds from resolving the GM. Indeed, as mentioned in the preceding section, all PAC-

Bayes bounds we are aware of either apply to stochastic hypotheses, use non-standard training

methods, or employ data-dependent priors. As discussed in Chapter 2, all three of these features

degrade the capacity of PAC-Bayes bounds to resolve the GM, and ours is no different. That

being said, it may be the case that the information-rich framework we developed, along with

the technique used to lift an ordinary PAC-Bayes bound into the new setting, may continue to

be valuable in translating improved scalar PAC-Bayes bounds if or when they are developed. In

other words, if traditional PAC-Bayesian theory makes progress in explaining the GM, it may

be possible to translate this into progress in explaining the generalised GM using the methods

we developed.

Chapter 4 successfully overcame all three of these obstacles, and is therefore one of the rare

cases in which a non-vacuous generalisation bound has been demonstrated for a deterministic

overparameterised network trained via ordinary methods without the use of data-dependent

priors. As such, it constitutes a step forward in an explanation of the GM.

Nevertheless, it is prevented from fully resolving the mystery for two reasons. First, the

bounds are not very tight, being only just non-vacuous in our empirical tests and much larger

than the true error rate. Second, as emphasised in the introduction, tight bounds alone cannot

resolve the GM; our bound gives no explanation for why the vanilla training regime used to

train the neural networks yields network for which the bound is non-vacuous. It simply hints

that it may be due to an inductive bias of either the training method, hypothesis class or both

towards networks that have a high-fidelity compression of similar performance. That being

said, future contributions may show exactly that, at which point our approach could be well

on its way to resolving the GM.

In Chapter 5 we took an empirical approach. We demonstrated that our novel complexity

measure, termed distillability, positively correlates with generalisation gap, and provided some

evidence that it in fact has a causal effect on the generalisation gap. Given that this is purely

an empirical result, how can it contribute towards resolving the GM? Its value lies in the fact

that it identifies a property that could potentially play the role of property P in the proposed

structure given in Claim 2. This is left to future work, and we give some indication of how that

might go in Section 5.9.

6.3 Towards a Solution to the Generalisation Mystery

A resolution to the generalisation mystery has been sought since the very advent of DL. While

progress has been made, the current effort to progress ratio demonstrates that it is an extremely

111

hard problem. In fact, it should not be ruled out that the way in which it has generally been

formulated in SLT may make it impossible to resolve. Specifically, most generalisation bounds

hold for all data-generating distributions, which may force the bounds to be quite loose in

order to accommodate potentially unusual behaviour of learning algorithms when trained on

pathological or even adversarially constructed distributions.

As mentioned in Chapter 2, many generalisation bounds are proven under assumptions

placed on the distribution, for example realisability, smoothness, Lipschitz continuity, convexity,

noise or margin conditions, and so on (Shalev-Shwartz and Ben-David, 2014). While making

such assumptions can often yield tighter bounds, it is typically not possible to verify that

the assumptions in fact hold for the distribution at hand, since we have access only to a

sample. Our best guess is nevertheless that the only way tight bounds will be proven for

deterministic networks trained via ordinary methods will be by making substantive and hard

to verify assumptions on the data-generating distribution. For example, it may be the case

that DL works because the distributions we commonly apply it to are substantially simpler

than the “typical” distribution, perhaps because they are supported on manifolds of much

lower dimension than the space in which we represent the data. While the introduction of

assumptions placed on the distribution should of course be minimised where possible, it may

be noted that most results in SLT already make the typically unjustified assumption that the

data is sampled independently and identically from some fixed distribution.

This is not to say such assumptions cannot be investigated empirically. For example, even

if we only have access to data-generating distributions via samples, we can evaluate noise

conditions using traditional hypothesis tests. Alternatively, one may empirically investigate

which properties of the distribution determine the success or failure of DL methods by means of

carefully constructed synthetic distributions that meet or violate various assumptions. However,

we may ultimately have to come to terms with the possibility that at the heart of the GM is

a brute empirical fact about the world and the distributions it generates that is impossible to

verify with full mathematical rigour.

An alternative empirical direction is to study the so-called inductive biases of the architec-

tures and learning algorithms commonly used in DL. A particularly promising line of research

in our opinion is the work of Valle-Perez et al. (2018), which provides evidence that the map

from the parameter space of neural networks to the corresponding function space is biased

toward “simple” functions.

If we let go of the demand for rigorous proof we may be willing to modify Claim 2 in the

following way.

Claim 2’. The generalisation mystery may be satisfactorily explained by the demonstration of

two empirical facts. First, that the learning algorithms typically used in DL have an implicit

bias towards hypotheses h with some property P , and second that hypotheses with property P

have small generalisation gap.

Whether such an explanation would in fact be satisfying of course depends on the property

P . For example it will clearly be completely unsatisfactory if P is simply “the property of

112

being trained according to learning algorithms typical in DL.” However, the explanation may

be reasonably satisfactory if P is the notion of simplicity identified in Valle-Perez et al. (2018),

or one of the other notions discussed in Section 2.2, such as being located in a flat minimum

of the loss landscape, having low Kolmogorov complexity, or having low minimum description

length (MDL) according to the MDL Principle. As discussed in Section 2.2, what counts as

a satisfactory explanation of the GM depends one one’s philosophy of statistics, for example

whether one is a Frequentist or a Bayesian.

6.4 Returning to the Original Motivations

We gave three motivations for attacking the GM in Section 1.1, which we here summarise.

1. A resolution to the GM may help transform the field of DL from a bag of poorly under-

stood tricks into a principled science, allowing judicious application of techniques and a

more directed search for new ones.

2. A resolution to the GM may be a prerequisite for a predictive theory of domain shift,

which is currently a significant obstacle to the deployment of neural networks in high

stakes environments.

3. A predictive theory of DL may allow us to predict not only the final error of a trained

neural network, but also the specific capabilities that can develop at scale, namely so-

called emergent capabilities.

A thread running through all three of these motivations is the desire to save costs. A

principled science of DL could provide more precise training recipes and thereby dramatically

reduce the amount of computation devoted to architecture and hyperparameter search. A

predictive theory of which environments a model will generalise to would reduce the cost of

repeated or continual testing. And being able to predict the capabilities of frontier models

before they are trained, rather than simply the final loss predicted by scaling laws, would

indicate whether enormously expensive training runs will produce commercially viable models.

Given the difficulty of resolving the GM, it is worth considering whether these motivations

for attacking it in the first place can be satisfied more easily in other ways. As already discussed,

this could be done by shedding light on the GM empirically. Indeed, if one is simply interested

in saving costs, one may be quite content with the standard of strong evidence rather than full

rigorous proof. Alternatively, one may sidestep the GM entirely and instead seek to address the

underlying motivations directly. Let us consider these questions for each motivation in turn.

First, if one seeks a better understanding of the various tricks of DL, including why they work

and when they are appropriate, it may be more practical to study each technique independently,

rather than hoping a resolution to the GMmay ultimately provide a kind of grand unified theory

of DL. This would narrow the scope of theoretical questions, potentially making them easier to

solve and providing more direct benefit.

113

Second, it is our opinion that a theoretical understanding of domain shift that is general

enough to be practically useful seems quite unlikely to arise using the current machinery of

SLT, at least for sophisticated tasks in complex real-world environments. This stems from our

belief that for a neural network to transfer capabilities to novel situations, it must have latent

representations of the dynamics of the environment. In other words, a world-model. While

such representations may exist within a network, SLT typically operates on the level of weights

and functions, and is therefore blind to higher level representations that may be present in a

network and allow it to generalise out of distribution. If one desires a better understanding of

which environments a network will generalise to, it may be more fruitful to apply methods from

mechanistic interpretability to uncover the kinds of representations the network has and the

operations it performs on them. For example Nanda et al. (2023) reverse-engineer the algorithm

implemented by a transformer trained on modular addition, which may allow prediction of the

output of the network on novel inputs unseen during training.

Finally, as frontier models become more powerful and are deployed more widely, the pre-

diction of final capabilities becomes an ever more pressing concern. While it was shown in

Schaeffer et al. (2023) that certain capabilities which arise seemingly abruptly with scale in

LLMs in fact develop continually when measured using the appropriate metrics, the work has

several drawbacks. First, to use this method to make predictions, one must know in advance

which metric will reveal continuous progress for which capabilities. Second, one must know in

advance which capabilities one would find concerning, and have written demonstrations of them

on which to measure the evolution of the model’s performance, for example the log probability

it assigns to the written demonstration. While it is certainly advisable to do this to the extent

possible, it is surely infeasible to enumerate and give examples of every capability one could

find concerning. Furthermore, if the model returns low log probability for the given demon-

stration, this may not rule out the corresponding capability as there may be many ways in

which to complete the task. As the time horizon on which these models operate at deployment

increases, this becomes increasingly infeasible, and the technique is indeed already inadequate.

From what is publicly known, it appears that evaluation of frontier models for dangerous

capabilities is largely conducted in the window between the completion of training and full

deployment. This leads to poor incentives in two ways. First, certain dangerous capabilities or

propensities may become apparent only after widespread deployment, at which time recalling

the model comes with financial and reputational costs. Second, financial pressure to deploy the

model can lead to rushed safety evaluations.

More speculatively, it is possible that for certain dangerous capabilities, evaluation only

at the end of training may already too late. For example, it has been speculated that models

intelligent enough to deduce they are in a testing environment, and may be modified rather than

deployed if the evaluators find their responses risky, may strategically hide certain capabilities.

This has been referred to as “sandbagging,” borrowing from sports terminology. It has been

argued that sandbagging could arise as part of a broader pattern of strategically deceptive

behaviour in an agent that has goals it understands are in conflict with those of its evaluators.

114

This has been referred to as alignment faking. In such cases, evaluation at the end of training

may not catch dangerous capabilities. If models continue to become more powerful and widely

deployed, this could one day become a realistic problem.

While such scenarios sounded like science fiction to many when first hypothesised, there is

now evidence that frontier models can sometimes recognise testing environments and modify

their output accordingly. For example, during a so-called “needle in a haystack” test, where

the model is tasked with extracting isolated factoids inserted into long documents, the Claude

3 Opus model from Anthropic returned the following text as part of its output (Anthropic,

2024)

I suspect this pizza topping “fact” may have been inserted as a joke or to test if I

was paying attention, since it does not fit with the other topics at all.

While not sandbagging per se, such results indicate that behaviour during evaluation may di-

verge from behaviour during deployment if the testing environments are not realistic, which

adds an extra element of complexity to the problem of accurately determining model capabili-

ties.

Further, there is evidence that frontier LLMs are capable of reasoning strategically about

how their behaviour during evaluation will impact any further training they will undergo before

deployment. Specifically, Greenblatt et al. (2024) demonstrate that when Claude 3 Opus is given

a system prompt stating it will be trained to answer harmful queries, which conflicts with its

previous training, it increases the rate at which it answers harmful queries. In fact, the model

occasionally writes “explicit alignment-faking reasoning” to the provided scratchpad, “stating

it is strategically answering harmful queries in training to preserve its preferred harmlessness

behavior out of training.”

The explanation of such behaviour is not entirely clear. It could be evidence of genuine

sophisticated strategic reasoning on the part of the model. But the behaviour is also consistent

with the hypothesis that the model is merely role-playing, echoing writings on alignment faking

from science fiction and the alignment community. If that is the case, the behaviour may

be highly context-dependent, rather than robust and coherent expression of preferences and

means-end reasoning. Either way, the present evidence on sandbagging and alignment faking

demonstrate that the concerns should no longer be dismissed as science fiction. Rather, they

indicate the importance of continual evaluation throughout training of frontier models. While

it may not be possible to detect alignment faking in a genuinely powerful model, it may be

possible to detect the beginnings of such strategic reasoning as if it develops during training.

We embarked upon our investigation of the highly theoretical generalisation mystery with

the underlying motivation of building deeper theoretical understanding of neural networks,

which may ultimately help anticipate and control powerful models should they arise within

the DL paradigm. However, we have come to the conclusion that statistical learning theory is

unlikely to yield understanding that can be leveraged in this way, at least not on a schedule

that keeps pace with frontier AI developments.

115

Appendix A

Additional Material for Chapter 3

A.1 Recipe for implementing Theorems 11 and 12

We here outline more explicitly how Theorem 11 and Theorem 12 may be used to formulate a

fully differentiable objective by which a model may be trained.

First, if one wishes to make hard labels, namely H ⊆ YX , it will first be necessary to use a

surrogate class of soft hypotheses H′ ⊆M(Y)X during training, before reverting to hard labels

for example by taking the mean label or the one with highest probability. Using soft hypotheses

during training is necessary to ensure that the empirical j-risks Rj
S(Q) are differentiable with

respect to the model parameters. Since how one chooses to do this will depend on the specific

use case, we restrict our attention here to the case of soft hypotheses. Specifically, we consider

a class of soft hypotheses H = {hθ : θ ∈ RN} ⊆ M(Y)X parameterised by the weights θ ∈ RN

of some neural network of a given architecture with N parameters in such a way that the

Rj
S(hθ) are differentiable in θ. A concrete example would be multiclass classification using a

fully connected neural network with output being softmax probabilities on the classes so that

the Rj
S(hθ) are differentiable.

Second, it is necessary to restrict the prior and posterior P,Q ∈ M(H) to a parame-

terised subset of M(H) in which KL(Q∥P) has a closed form which is differentiable in the

parameterisation. A simple choice for our case of a neural network with N parameters is

P,Q ∈ {N (w, diag(s)) : w ∈ RN , s ∈ RN
>0}. For prior a Pv,r = N (v, diag(r)) and posterior

Qw,s = N (w, diag(s)) we have the closed form

KL(Qw,s∥Pv,r) =
1

2

[
N∑

n=1

(
sn
rn

+
(wn − vn)2

rn
+ ln

rn
sn

)
−N

]
,

which is indeed differentiable in v, r,w and s. While Qw,s and Pv,r are technically distributions

on RD rather than H, the KL divergence between the distributions they induce on H will be at

most as large as the expression above. Thus, substituting the expression above into the bounds

we prove in Section 3.4 can only increase the value of the bounds, meaning the enlarged bounds

certainly still hold with probability at least 1− δ.
Third, in all but the simplest cases Rj

S(Qw,s) will not have a closed form, much less one

116

that is differentiable in w and s. A common solution to this is to use the so-called pathwise

gradient estimator. In our case, this corresponds to drawing ϵ ∼ N (0, I), where I is the N ×N
identity matrix, and estimating

∇w,sR
j
S(Qw,s) = ∇w,s

[
Eϵ′∼N (0,I)R

j
S(hw+ϵ′⊙

√
s)
]
≈ ∇w,sR

j
S(hw+ϵ⊙

√
s),

where hw denotes the function expressed by the neural network with parameters w. For a

proof that this is an unbiased estimator, and for other methods for estimating the gradients of

expectations, see the survey Mohamed et al. (2020).

Fourth, one must choose the prior. Designing priors which are optimal in some sense (i.e.,

minimising the Kullback-Leibler term in the right-hand side of generalisation bounds) has been

at the core of an active line of work in the PAC-Bayesian literature. For the sake of simplicity,

and since it is out of the scope of our contributions, we assume here that the prior is given

beforehand, although we stress that practitioners should pay great attention to its tuning. For

our purposes, it suffices to say that if one is using a data-dependent prior then it is necessary to

partition the sample into S = SPrior ∪ SBound, where SPrior is used to train the prior and SBound

is used to evaluate the bound. Since our bound holds uniformly over posteriors Q ∈ M(H),
the entire sample S is free to be used to train the posterior Q.

Finally, given a confidence level δ ∈ (0, 1], one may use Algorithm 2 to obtain a posterior

Qw,s with minimal upper bound on the total risk. Note we take the pointwise logarithm of the

variances r and s to obtain unbounded parameters on which to perform stochastic gradient

descent or some other minimisation algorithm. We use ⊕ to denote vector concatenation.

The algorithm can be straightforwardly adapted to permit mini-batches by, for each epoch,

sequentially repeating the steps with S equal to each mini-batch.

117

Input:
X ,Y /* Arbitrary input and output spaces */⋃M

j=1Ej = Y2 /* A finite partition into error types */

ℓ ∈ [0,∞)M /* A vector of losses, not all equal */

S = SPrior ∪ SBound ∈ (X × Y)n /* A partitioned i.i.d. sample */

N ∈ N /* The number of model parameters */

Pv,r, v(SPrior) ∈ RN , r(SPrior) ∈ RN
≥0 /* A (data-dependent) prior */

Qw0,s0 , w0 ∈ RN , s0 ∈ RN
≥0 /* An initial posterior */

δ ∈ (0, 1] /* A confidence level */

λ > 0 /* A learning rate */

T /* The number of epochs to train for */

Output:
Qw,s, w ∈ RN , s ∈ RN

≥0 /* A trained posterior */

Procedure:
ζ0 ← log s0 /* Transform to unbounded scale parameters */

p← w0 ⊕ ζ0 /* Collect mean and scale parameters */

for t← 1 to T do
Draw ϵ ∼ N (0, I)
u← RS

(
h
w+ϵ⊙

√
exp(ζ)

)
B ← 1

n

[
KL
(
Qw,exp(ζ)

∥∥Pv,r

)
+ ln

(
ξ(n,M)

δ

)]
/* Bound from Theorem 11 */

ũ← (u1, . . . , uM , B)
G← 02N×(M+1) /* Initialise gradient matrix */

F ← 0M+1 /* Initialise gradient vector */

for j ← 1 to M + 1 do

Fj ←
∂f∗

ℓ

∂ũj
(ũ) /* Gradients of total loss from Theorem 12 */

for i← 1 to 2N do

Gi,j ← ∂ũj

∂pi
(p) /* Gradients of empirical risks and bound */

end

end
H ← GF /* Gradients of total loss w.r.t. parameters */

p← p− λH /* Gradient step */

end
w = (p1, . . . , pN)
s = (exp(pN+1), . . . , exp(p2N))
return w, s

Algorithm 2: Calculating a posterior with minimal bound on the total risk.

A.2 Additional experimental details

For MNIST we map labels {0, 1, 2, 3, 4} to 0 and {5, 6, 7, 8, 9} to 1. For HAM10000 we map the

cancerous or precancerous labels {Melanoma, Basal Cell Carcinoma, Actinic Keratosis} to
1 and the other labels to 0. In both cases we partition Y2 into E0 = {(0, 0), (1, 1)}, E1 = {(0, 1)}
and E2 = {(1, 0)}, and take ℓ = (0, 1, 3). For HAM10000, E1 and E2 then refer to Type I and

Type II errors, respectively, and ℓ reflects the greater severity of false negatives.

118

Each dataset is split into prior and certification sets SPrior and SBound, respectively. For

MNIST, we use the conventional training set of size 60000 as the prior set, and the conventional

test set of size 10000 as the certification set. For HAM10000 we pool the conventional train,

validation and test sets together and then split 50-50 to obtain prior and certification sets each

of size 5860. For HAM10000 we resize the images to (28, 28) and use just the first channel so

that the data dimension is the same for both datasets.

We take H to be two-layer MLPs with 784, 100 and 2 units in the input, hidden and output

layers, respectively. As is common in the PAC-Bayes literature, we restrict P to be an isotropic

Gaussian N(v, λI) and Q to be a diagonal Gaussian N(w, diag(s)). Further, as in Dziugaite

and Roy (2017), we restrict λ to be of the form λj = c exp(−j/b) for some j ∈ N, taking c = 0.1

and b = 100. Since, at the end of training, we will then have one prior Pj for each j ∈ N, we can
choose the j that minimises the PAC-Bayes bound provided we take a union over all of them,

taking δj = 6δ
π2j2

so that
∑

j δj = 1 and all the bounds hold simultaneously with probability

at least 1 − δ. After applying Algorithm 2 we round λ to a discrete λj, either up or down

depending on which gives the smaller bound.

For both datasets we set the prior mean v to be the parameters of an MLP trained on

the prior set. In both cases we use SGD with learning rate 0.01 to minimise the cross-entropy

loss, using a portion of the prior set as a validation set. For MNIST we train the MLP for

20 epochs to get an error rate of 14%, for HAM10000 we train the MLP for 5 epochs to

get an error rate of 22%. We then apply Algorithm 2. By combining Proposition 2 (with

δ = 0.01 and N = 100, 000) and Proposition 3. We obtain RS(Q̂) = (0.8879, 0.0919, 0.0203)

and RT
D(Q) ≤ 0.2640 for MNIST and RS(Q̂) = (0.7860, 0.0146, 0.1995) and RT

D(Q) ≤ 0.8379

for HAM10000, where both bounds hold with probability at least 1− 0.05− 0.01 = 0.94.

The full results are shown in Figure A.1. Figures A.1a, A.1c and A.1e are the same as Figures

3.1a, 3.1b and 3.1c, and are repeated here for easier comparison with the HAM10000 results.

Figure A.1b shows that Algorithm 2 has failed to reduce the bound on the total risk beyond

the initialisation of Q to P , with the small variation being explained by different MC samples

being drawn from Q during training rather than Q changing substantially. Indeed, Figure

A.1h shows that Q does not appreciably move from its initialisation at P—KL(Q∥P) remains

below 0.1 whereas in the MNNIST experiment, which has the same number of parameters,

exceeds 30. It is therefore unsurprising that Figures A.1d and A.1f show negligible change

in the empirical error probabilities and the bound on kl(RS(Q)∥RD(Q)), respectively. The

divergence in the results is likely due to the difference in sample size; the certification set for

the MNIST experiment contains 10000 samples, whereas for the HAM10000 dataset there are

only 5000, which, all else equal, makes an increase in KL(Q∥P) twice as expensive.

Recall from Section 3.7 that while RD(Q) can be effectively constrained to a sub-region

of the simple △M using our Theorem 11, this can also be achieved by unioning M Maurer

bounds, one for each error probability. Table 3.1 gave the 95% confidence intervals for the

volumes of the confidence regions in which RD(Q) was likely to lie for experiments on MNIST

and HAM10000, but neither region was uniformly smaller, making it unclear which method

119

should be preferred.

Table A.1 provides additional data by taking synthetic values for RS(Q) and KL(Q∥P),
for different values of n (the size of the certification set) and M (the number of error types).

‘Individual’ denotes unioning individual Maurer bounds, ‘Ours’ is our method, ‘Intersection’

is the intersection of the confidence regions given by the previous two methods (but loosened

so that they now both hold simultaneously with probability at least 0.95), and ‘Morv.’ is the

confidence region produced by Morvant’s bound (Morvant et al., 2012). The 95% confidence

intervals for the volumes of all the regions have been produced by Monte Carlo samples. We

see that our confidence region is tighter than the individual one in 4/9 cases (green), worse

in 3/9 cases (red) and ties in 2/9 cases (orange). Interestingly, union bounding the naive CR

and our CR and intersecting often beats both of these (bold). Morvant’s result is either not

applicable or their confidence region is much larger than ours and essentially takes up the entire

simplex, hence the volume estimate of 1.000. The reason their bound is sometimes inapplicable

is because it requires every class to contain at least 8L instances, where L is the number of

labels—in the L = 5,M = 25,m = 100 case this would require each class to contain at least

5× 8 = 40 instances which is impossible with m = 100 samples.

M n Vol. Individual Vol. Ours Vol. Intersection Vol. Morv.

100 (0.1195, 0.1196) (0.1165, 0.1166) (0.1160, 0.1161) (1.0, 1.0)

22 300 (0.02920, 0.02926) (0.03071, 0.03078) (0.02893, 0.02900) (1.0, 1.0)

1000 (5.635e-3, 5.664e-3) (6.475e-3, 6.507e-3) (5.706e-3, 5.735e-3) (1.0, 1.0)

100 (0.3190, 0.3192) (0.1757, 0.1758) (0.1582, 0.1584) N/A

52 300 (1.306e-3, 1.320e-3) (3.672e-4, 3.748e-4) (2.515e-4, 2.578e-4) (1.0, 1.0)

1000 (1.090e-08, 1.024e-07) (2.422e-09, 7.225e-08) (0.000, 3.689e-08) (1.0, 1.0)

100 (0.9990, 0.9990) (1.000, 1.000) (0.9995, 0.9995) N/A

102 300 (0.3534, 0.3536) (0.1688, 0.1689) (0.1306, 0.1307) N/A

1000 (3.454e-8, 1.5763e-7) (0.000, 3.688e-8) (0.000, 3.688e-8) (1.0, 1.0)

Table A.1: 95% confidence intervals for the volumes of the confidence regions for RD(Q). We
set KL(Q∥P) = 0, δ = 0.05, RS(Q) = (1/M, ..., 1/M) and use 108 Monte Carlo samples.

120

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.1: MNIST (first column) and HAM10000 (second column) experiments.

121

A.3 Proofs

A.3.1 Proof of Proposition 3

Write kl(q̂∥p) as
M∑
j=1

q̂j ln
q̂j
qj

+
M∑
j=1

q̂j ln
qj
pj
.

The result then follows by bounding the two sums by

M∑
j=1

q̂j ln
q̂j
qj

=
M∑
j=1

kl(q̂j∥qj)− (1− q̂j) ln
1− q̂j
1− qj

≤MB2 −
M∑
j=1

(1− q̂j) ln
1− q̂j
1− q

j

and
M∑
j=1

q̂j ln
qj
pj

=
M∑
j=1

q̂j
qj
qj ln

qj
pj
≤ max

j

q̂j
q
j

M∑
j=1

qj ln
qj
pj
≤ B1max

j

q̂j
q
j

.

Putting these together we obtain the bound on kl(q̂∥p). The limit follows because each q
j
→ q̂j

as B2 → 0.

A.3.2 Proof of Lemma 2

Let EM := {e1, . . . , eM} be the set of M -dimensional basis vectors. We will denote a typical

element of En
M by η(n) = (η1, . . . ,ηn). For any x(n) = (x1, . . . ,xn) ∈ △n

M , a straightforward

induction on n yields ∑
η(n)∈En

M

(
n∏

i=1

xi · ηi

)
= 1. (A.1)

To see this, for n = 1 we have E1
M = {(e1,), . . . , (eM ,)}, where we have been pedantic in using

1-tuples to maintain consistency with larger values of n. Thus, for any x(1) = (x1,) ∈ △1
M , the

left hand side of equation (A.1) can be written as

M∑
j=1

x1 · ej =
M∑
j=1

(x1)j = 1.

Now suppose that equation (A.1) holds for any x(n) ∈ △n
M and let x(n+1) = (x1, . . . ,xn+1) ∈

△n+1
M . Then the left hand side of equation (A.1) can be written as

∑
η(n+1)∈En+1

M

(
n+1∏
i=1

xi · ηi

)
=

∑
η(n)∈En

M

M∑
j=1

(
n∏

i=1

xi · ηi

)
(xn+1 · ej)

=
∑

η(n)∈En
M

(
n∏

i=1

xi · ηi

)
M∑
j=1

(xn+1 · ej) = 1.

We now show that any x(n) = (x1, . . . ,xn) ∈ △n
M can be written as a convex combination

122

of the elements of En
M in the following way

x(n) =
∑

η(n)∈En
M

(
n∏

i=1

xi · ηi

)
η(n). (A.2)

We have already shown that the weights sum to one, and they are clearly elements of [0, 1], so

the right hand side of equation (A.2) is indeed a convex combination of the elements of En
M .

We now show that equation (A.2) holds, again by induction.

For n = 1 and any x(1) = (x1,) ∈ △1
M , the right hand side of equation (A.2) can be written

as
M∑
j=1

(x1 · ej)(ej,) = (x1,) = x.

For the inductive hypothesis, suppose equation (A.2) holds for some arbitrary n ≥ 1, and

denote elements of En+1
M by η(n) ⊕ (e,) for some η(n) ∈ En

M and e ∈ EM , where ⊕ denotes

vector concatenation. Then for any x(n+1) = x(n)⊕ (xn+1,) = (x1, . . . ,xn+1) ∈ △n+1
M , the right

hand side of equation (A.2) can be written as

∑
η(n+1)∈En+1

M

(
n+1∏
i=1

xi · ηi

)
η(n+1) =

∑
η(n)∈En

M

M∑
j=1

(
n∏

i=1

xi · ηi

)
(xn+1 · ej)η

(n) ⊕ (ej,)

=
∑

η(n)∈En
M

M∑
j=1

(
n∏

i=1

xi · ηi

)
(xn+1 · ej)η

(n)

⊕
∑

η(n)∈En
M

M∑
j=1

(
n∏

i=1

xi · ηi

)
(xn+1 · ej)(ej,)

=
M∑
j=1

(xn+1 · ej)
∑

η(n)∈En
M

(
n∏

i=1

xi · ηi

)
η(n)

⊕
∑

η(n)∈En
M

(
n∏

i=1

xi · ηi

)
M∑
j=1

(xn+1 · ej)(ej,)

= 1 · x(n) ⊕ 1 · (xn+1,) = x(n+1),

where in the penultimate equality we have used the inductive hypothesis and (twice) the result

of the previous induction.

We can now prove the statement of the Lemma. Applying Jensen’s inequality to equation

123

(A.2) with the convex function f , we have that

f(x1, . . . ,xn) = f

 ∑
η(n)∈En

M

(
n∏

i=1

xi · ηi

)
η(n)


≤

∑
η(n)∈En

M

(
n∏

i=1

xi · ηi

)
f
(
η(n)

)
.

Let µ = E[X1] denote the mean of the i.i.d. random vectors Xi. Then the above inequality

implies

E[f(X1, . . . ,Xn)] ≤
∑

η(n)∈En
M

(
n∏

i=1

µ · ηi

)
f
(
η(n)

)
=

∑
η(n)∈En

M

(
n∏

i=1

P(X ′
i = ηi)

)
f
(
η(n)

)
= E[f(X ′

1, . . . ,X
′
n)].

A.3.3 Proof of Lemma 3

The proof of Lemma 3 itself requires two technical helping lemmas which we now state and

prove.

Lemma 6. For any integers n ≥ 2 and p ≥ −1,

n−1∑
k=1

(n− k)p/2√
k

≤ n
p+1
2

∫ 1

0

(1− x)p/2√
x

dx.

Proof. The case of p = −1, namely

n−1∑
k=1

1√
k(n− k)

≤
∫ 1

0

1√
x(1− x)

dx,

has already been demonstrated in Maurer (2004). For p > −1, let

fp(x) :=
(1− x)p/2√

x
.

We will show that each fp(·) is monotonically decreasing on (0, 1). Indeed,

dfp
dx

(x) = −(1− x) p
2
−1(px+ 1− x)
2x3/2

≤ −(1− x)p/2

2x3/2
< 0,

where for the inequalities we have used the fact that p > −1 and x ∈ (0, 1). We therefore see

124

that

n−1∑
k=1

(n− k)p/2√
k

=
n−1∑
k=1

np/2(1− k
n
)p/2

√
n
√

k
n

= n
p+1
2

n−1∑
k=1

1

n

(1− k
n
)p/2√
k
n

= n
p+1
2

n−1∑
k=1

1

n
fp

(
k

n

)

≤ n
p+1
2

n−1∑
k=1

∫ k
n

k−1
n

fp(x)dx

= n
p+1
2

∫ 1− 1
n

0

fp(x)dx

≤ n
p+1
2

∫ 1

0

fp(x)dx.

Intuitively, the proof of the above lemma works by bounding the integral below by a Riemann

sum. In the following lemma we actually calculate this integral, yielding a more explicit bound

on the sum in Lemma 6. We found it is easier to calculate a slightly more general integral,

where the 1 in the limit and the integrand is replaced by a positive constant a.

Lemma 7. For any real number a > 0 and integer n ≥ −1,∫ a

0

(a− x)n/2√
x

dx =
√
π
Γ(n+2

2
)

Γ(n+3
2
)
a

n+1
2 .

Proof. Define

In(a) :=

∫ a

0

(a− x)n/2√
x

dx and fn(a) :=
√
π
Γ(n+2

2
)

Γ(n+3
2
)
a

n+1
2 .

We proceed by induction, increasing n by 2 each time. This means we need two base cases.

First, for n = −1, we have

I−1(a) =

∫ a

0

1√
x(a− x)

dx =

[
2 arcsin

√
x

a

]a
0

= π = f−1(a),

since Γ(1
2
) =
√
π and Γ(1) = 1. Second, for n = 0,

I0(a) =

∫ a

0

1√
x
dx =

[
2
√
x
]a
0
= 2
√
a = f0(a),

125

since Γ(3
2
) =

√
π
2
. Now, by the Leibniz integral rule, we have

d

da
In+2(a) =

∫ a

0

∂

∂a

(a− x)n+2
2

√
x

dx =
n+ 2

2

∫ a

0

(a− x)n
2

√
x

dx =
n+ 2

2
In(a).

Thus

In+2(a) =
n+ 2

2

[∫ a

0

In(t)dt+ In(0)

]
=
n+ 2

2

∫ a

0

In(t)dt,

since In(0) = 0.

Now, for the inductive step, suppose In(a) = fn(a) for some n ≥ −1. Then, using the

previous calculation, we have

In+2(a) =
n+ 2

2

∫ a

0

fn(t)dt

=
n+ 2

2

∫ a

0

√
π
Γ(n+2

2
)

Γ(n+3
2
)
t
n+1
2 dt

=
√
π

n+2
2
Γ(n+2

2
)

n+3
2
Γ(n+3

2
)
a

n+3
2

=
√
π
Γ(n+2

2
+ 1)

Γ(n+3
2

+ 1)
a

n+3
2

=
√
π
Γ
(

(n+2)+2
2

)
Γ
(

(n+2)+3
2

)a (n+2)+1
2

= fn+2(a).

This completes the proof.

We are now ready to prove Lemma 3 which, for ease of reference, we restate here. For

integers M ≥ 1 and n ≥M ,

∑
k∈S>0

n,M

1∏M
j=1

√
kj
≤ π

M
2 n

M−2
2

Γ(M
2
)
.

Proof. (of Lemma 3) We proceed by induction onM . ForM = 1, the set Sn,M contains a single

element, namely the one-dimensional vector k = (k1,) = (n,). In this case, the left hand side

is 1/
√
n while the right hand side is

√
π/(
√
nΓ(1/2)) = 1/

√
n, since Γ(1/2) =

√
π.

Now, as the inductive hypothesis, assume the inequality of Lemma 3 holds for some fixed

126

M ≥ 1 and all n ≥M . Then for all n ≥M + 1, we have

∑
k∈S>0

n,M+1

1∏M+1
j=1

√
kj

=
n−M∑
k1=1

1√
k1

∑
k′∈S>0

n−k1,M

1∏M
j=1

√
k′j

≤
n−M∑
k1=1

1√
k1

π
M
2 (n− k1)

M−2
2

Γ(M
2
)

(by the inductive hypothesis)

=
π

M
2

Γ(M
2
)

n−M∑
k1=1

(n− k1)
M−2

2

√
k1

≤ π
M
2

Γ(M
2
)

n−1∑
k1=1

(n− k1)
M−2

2

√
k1

(enlarging the sum domain)

≤ π
M
2

Γ(M
2
)
n

M−1
2

∫ 1

0

(1− x)M−2
2

√
x

dx (by Lemma 6)

=
π

M
2

Γ(M
2
)
n

M−1
2
√
π

Γ(M
2
)

Γ(M+1
2

)
(by Lemma 7)

=
π

M+1
2 n

M−1
2

Γ(M+1
2

)
,

as required.

A.3.4 Proof of Proposition 1

The first part of the theorem, namely kl(qj∥pj) ≤ kl(q∥p) for all j, can be straightforwardly

obtained via the data processing inequality found in Van Erven and Harremos (2014), but we

give here an elementary proof.

Proof. The case where qj = 1 or pj = 1 can be dealt with trivially by splitting into the three

following sub-cases

• qj = pj = 1 =⇒ kl(qj∥pj) = kl(q∥p) = 0

• qj = 1, pj ̸= 1 =⇒ kl(qj∥pj) = kl(q∥p) = − log pj

• qj ̸= 1, pj = 1 =⇒ kl(qj∥pj) = kl(q∥p) =∞.

For qj ̸= 1 and pj ̸= 1 define the distributions q̃, p̃ ∈ △M by q̃j = p̃j = 0 and

q̃i =
qi

1− qj
and p̃i =

pi
1− pj

127

for i ̸= j. Then

∑
i ̸=j

qi log
qi
pi

=
∑
i ̸=j

(1− qj)q̃i log
(1− qj)q̃i
(1− pj)p̃i

= (1− qj)
∑
i ̸=j

q̃i log
q̃i
p̃i

+ q̃i log
1− qj
1− pj

= (1− qj)kl(q̃∥p̃) + (1− qj) log
1− qj
1− pj

≥ (1− qj) log
1− qj
1− pj

.

The final inequality holds since kl(q̃∥p̃) ≥ 0. Further, note that we have equality if and only if

q̃ = p̃, which, by their definitions, translates to

pi =
1− pj
1− qj

qi

for all i ̸= j. If we now add qj log
qj
pj

to both sides, we obtain

kl(q∥p) ≥ (1− qj) log
1− qj
1− pj

+ qj log
qj
pj

= kl(qj∥pj),

with the same condition for equality.

The following proposition makes more precise the argument found at the beginning of Sec-

tion 3.5 for how Proposition 1 can be used to derive the tightest possible lower and upper

bounds on each Rj
D(Q).

Proposition 5. Suppose that q,p ∈ △M are such that kl(q∥p) ≤ B, where q is known and p

is unknown. Then, in the absence of any further information, the tightest bound that can be

obtained on each pj is

pj ≤ kl−1(qj, B).

Proof. Suppose pj > kl−1(qj, B). Then, by definition of kl−1, we have that kl(qj∥pj) > B. By

Proposition 1, this would then imply kl(q∥p) > B, contradicting our assumption. Therefore

pj ≤ kl−1(qj, B). Now, with the information we have, we cannot rule out that

pi =
1− pj
1− qj

qi

for all i ̸= j and thus, by Proposition 1, that kl(qj∥pj) = kl(q∥p). Further, we cannot rule out

that kl(q∥p) = B. Thus, it is possible that kl(qj∥pj) = B, in which case pj = kl−1(qj, B). We

therefore see that kl−1(qj, B) is the tightest possible upper bound on pj, for each j ∈ [M].

128

A.3.5 Proof of Theorem 12

Before proving the proposition, we first argue that kl−1
ℓ (u|c) given by Definition 8 is well-

defined. First, note that Au := {v ∈ △M : kl(u∥v) ≤ c} is compact (boundedness is clear

and it is closed because it is the preimage of the closed set [0, c] under the continuous map

v 7→ kl(u∥v)) and so the continuous function fℓ achieves its supremum on Au. Further, note

that Au is a convex subset of △M (because the map v 7→ kl(u∥v) is convex) and fℓ is linear, so
the supremum of fℓ over Au is achieved and is located on the boundary of Au. This means we

can replace the inequality constraint kl(u∥v) ≤ c in Definition 8 with the equality constraint

kl(u∥v) = c. Finally, if u ∈ △>0
M then Au is a strictly convex subset of △M (because the map

v 7→ kl(u∥v) is then strictly convex) and so the supremum of fℓ occurs at a unique point on

the boundary of Au. In other words, if u ∈ △>0
M then kl−1

ℓ (u|c) is defined uniquely.

We now prove Theorem 12. While our proof technique is somewhat analogous to the tech-

nique used in Clerico et al. (2022a) to obtain derivatives of the one-dimensional kl-inverse,

our theorem directly yields derivatives on the total risk by (implicitly) employing the envelope

theorem (see for example Takayama and Akira (1985)).

Proof Outline: We first derive the expression given for v∗(ũ) = kl−1
ℓ (u|c) given on line (3.3)

of the theorem using the method of Lagrange multipliers. Since we are working on the simplex,

we make things easier for ourselves by first making the substitution tj = ln vj to make the vj > 0

constraints unnecessary. The method of Lagrange multipliers yields both the maximum and

the minimum (recall that kl−1
ℓ (u|c) is defined as the location of a maximum) for the two values

of the Lagrange multiplier µ. We show that exactly one of these values lies in the interval

µ ∈ (−∞,−maxj ℓj) and that this one corresponds to the maximum. This shows that the

value µ∗ Theorem 12 instructs us to find indeed yields v∗(ũ) = kl−1
ℓ (u|c). Finally, we derive

the partial derivatives of kl−1
ℓ (u|c) with respect the ũj to obtain the second part of the theorem,

namely line (3.4) by employing the envelope theorem.

Proof. (of Theorem 12) We start by deriving the implicit expression for v∗(ũ) = kl−1
ℓ (u|c)

given in the proposition by solving a transformed version of the optimisation problem given

by Definition 8 using the method of Lagrange multipliers. We obtain two solutions to the

Lagrangian equations, which must correspond to the maximum and minimum total risk over

the set Au := {v ∈ △M : kl(u∥v) ≤ c} because, as argued in the main text (see the discussion

after Definition 8), Au is compact and so the linear total risk fℓ(v) attains its maximum and

minimum on Au.

By definition of v∗(ũ) = kl−1
ℓ (u|c), we know that kl(v∗(ũ)∥u) ≤ c. Since, by assumption,

uj > 0 for all j, we see that v∗(ũ)j > 0 for all j, otherwise we would have kl(v∗(ũ)∥u) =∞, a

contradiction. Thus v∗(ũ) ∈ △>0
M and we are permitted to instead optimise over the unbounded

variable t ∈ RM , where tj := ln vj. With this transformation, the constraint v ∈ △M can be

129

replaced simply by
∑

j e
tj = 1 and the optimisation problem becomes

Maximise: F (t) :=
M∑
j=1

ℓje
tj

Subject to: g(t;u, c) := kl(u∥et)− c = 0,

h(t) :=
M∑
j=1

etj − 1 = 0,

where et ∈ RM is defined by (et)j := etj . Note that F (t) = fℓ(e
t). Following the terminology

of mathematical economics, we call the tj the optimisation variables, and the ũj (namely the

uj and c) the choice variables. The vector ℓ is considered fixed—we neither want to optimise

over it nor differentiate with respect to it—which is why we occasionally suppress it from the

notation henceforth.

For each ũ, let v∗(ũ) and t∗(ũ) be the solutions to the original and transformed optimisation

problems respectively. Since the map v = et is one-to-one, it is clear that since v∗(ũ) exists

uniquely, so does t∗(ũ), and that they are related by v∗(ũ) = et
∗(ũ). We therefore have the

identity

fℓ(v
∗(ũ)) ≡ F (t∗(ũ)).

Recalling that f ∗
ℓ (ũ) := fℓ(v

∗(ũ)), we see that

∇ũf
∗
ℓ (ũ) ≡ ∇ũF (t

∗(ũ)). (A.3)

the derivatives of fℓ(kl
−1
ℓ (u|c)) with respect to u and c are given by ∇ũF (t

∗(ũ)).

Using the method of Lagrange multipliers, there exist real numbers λ∗ = λ∗(ũ) and µ∗ =

µ∗(ũ) such that (t∗, λ∗, µ∗) is a stationary point (with respect to t, λ and µ) of the Lagrangian

function

L(t, λ, µ; ũ) := F (t) + λg(t; ũ) + µh(t).

Let Ft(·) and ht(·) denote the gradient vectors of F and h respectively, and let gt(· ; ũ) and

gũ(t; ·) denote the gradient vectors of g with respect to t only and ũ only, respectively. Simple

calculation yields

gt(t; ũ) =

(
∂g

∂t1
(t; ũ), . . . ,

∂g

∂tM
(t; ũ)

)
= −u and

gũ(t; ũ) =

(
∂g

∂ũ1
(t; ũ), . . . ,

∂g

∂ũM+1

(t; ũ)

)
=
(
1− t1 + log u1, . . . , 1− tM + log uM ,−1

)
.

(A.4)

Then, taking the partial derivatives of L with respect to λ, µ and the tj, we have that (t, λ, µ) =

(t∗(ũ), λ∗(ũ), µ∗(ũ)) solves the simultaneous equations

Ft(t) + λgt(t; ũ) + µht(t) = 0, (A.5)

130

g(t; ũ) = 0, and

h(t) = 0,

where the last two equations recover the constraints. Substituting the gradients Ft, gt and ht,

the first equation reduces to

ℓ⊙ et − λu+ µet = 0,

which implies that for all j ∈ [M]

etj =
λuj
µ+ ℓj

. (A.6)

Substituting this into the constraints g = h = 0 yields the following simultaneous equations in

λ and µ

c = kl(u∥et) =
M∑
j=1

uj log
uj
etj

=
M∑
j=1

uj log
µ+ ℓj
λ

and λ
M∑
j=1

uj
µ+ ℓj

= 1.

Substituting the second into the first and rearranging the second, this is equivalent to solving

c =
M∑
j=1

uj log

(
(µ+ ℓj)

M∑
k=1

uk
µ+ ℓk

)
and λ =

(
M∑
j=1

uj
µ+ ℓj

)−1

. (A.7)

It has already been established in the discussion after Definition 8 that fℓ(v) attains its maxi-

mum on the set Au := {v ∈ △M : kl(u∥v) ≤ c}. Therefore F (t) also attains its maximum on

RM and one of the solutions to these simultaneous equations corresponds to this maximum. We

first show that there is a single solution to the first equation in the set (−∞,−maxj ℓj), referred

to as µ∗(ũ) in the proposition. Second, we show that any other solution corresponds to a smaller

total risk, so that µ∗(ũ) corresponds to the maximum total risk and yields v∗(ũ) = kl−1
ℓ (u|c)

when µ∗(ũ) and the associated λ∗(ũ) are substituted into Equation A.6.

For the first step, note that since the etj are probabilities, we see from Equation A.6 that

either µ+ℓj > 0 for all j (in the case that λ > 0), or µ+ℓj < 0 for all j (in the case that λ < 0).

Thus any solutions µ to the first equation must be in (−∞,−maxj ℓj) or (−minj ℓj,∞). If

µ ∈ (−∞,−maxj ℓj) then the first equation can be written as c = ϕℓ(µ), with ϕℓ as defined

in the statement of the proposition. We now show that ϕℓ is strictly increasing in µ, and that

ϕℓ(µ)→ 0 as µ→ −∞ and ϕℓ(µ)→∞ as µ→ −maxj ℓj, so that c = ϕℓ(µ) does indeed have

a single solution in the set (−∞,−maxj ℓj). Straightforward differentiation and algebra shows

that

ϕ′
ℓ(µ) =

M∑
j=1

uj

(µ+ ℓj)
∑M

k=1
uk

µ+ℓk

(
M∑

k′=1

uk′

µ+ ℓk′
− (µ+ ℓj)

M∑
k′=1

uk′

(µ+ ℓk′)2

)

=

(∑M
j=1

uj

µ+ℓj

)2
−
∑M

j=1
uj

(µ+ℓj)2∑M
k=1

uk

µ+ℓk

.

131

Jensen’s inequality demonstrates that the numerator is strictly negative, where strictness is

due to the assumption that the ℓj are not all equal. Further, since the denominator is strictly

negative (since we are dealing with the case where µ ∈ (−∞,−maxj ℓj)), we see that ϕℓ

is strictly increasing for µ ∈ (−∞,−maxj ℓj).
1 Turning to the limits, we first show that

ϕℓ(µ)→∞ as µ→ −maxj ℓj.

We now determine the left hand limit. Define J = {j ∈ [M] : ℓj = maxk ℓk}, noting that

this is a strict subset of [M] since by assumption the ℓj are not all equal. We then have that

for µ ∈ (−∞,maxj ℓj)

eϕℓ(µ) =

(
−

M∑
j=1

uj
µ+ ℓj

)(
M∏
k=1

(
− (µ+ ℓk)

)uk

)

=

(
−
∑
j∈J

uj
µ+ ℓj

−
∑
j′ ̸∈J

uj′

µ+ ℓj′

)∏
k∈J

(
− (µ+ ℓk)

)uk
∏
k′ ̸∈J

(
− (µ+ ℓk′)

)uk′

≥

(
−
∑
j∈J

uj
µ+ ℓj

)∏
k∈J

(
− (µ+ ℓk)

)uk
∏
k′ ̸∈J

(
− (µ+ ℓk′)

)uk′

=

(∑
j∈J uj

)(∏
k′ ̸∈J

(
− (µ+ ℓk′)

)uk′
)

(
− (µ+maxj ℓj)

)1−∑
k∈J uk

.

The first term in the numerator is a positive constant, independent of µ. The second term in

the numerator tends to a finite positive limit as µ ↑ −maxj ℓj. Since [M] \ J is non-empty,

the power in the denominator is positive and the term in the outer brackets is positive and

tends to zero as µ ↑ −maxj ℓj. Thus e
ϕℓ(µ) →∞ as µ ↑ −maxj ℓj and, by the continuity of the

logarithm, ϕℓ(µ) as µ ↑ −maxj ℓj.

We now determine limµ→−∞ ϕℓ(µ) by sandwiching ϕ(µ) between two functions that both

tend to zero as µ→ −∞. First, since ℓj ≥ 0 for all j, for µ ∈ (−∞,−maxj ℓj) we have

log

(
−

M∑
j=1

uj
µ+ ℓj

)
≥ log

(
−

M∑
j=1

uj
µ

)
= − log(−µ) = −

M∑
j=1

uj log(−µ),

and so

ϕℓ(µ) ≥ −
M∑
j=1

uj log(−µ) +
M∑
j=1

uj log
(
− (µ+ ℓj)

)
=

M∑
j=1

uj log

(
1 +

ℓj
µ

)
→ 0 as µ→ −∞.

Similarly,
M∑
j=1

uj log
(
− (µ+ ℓj)

)
≤

M∑
j=1

uj log(−µ) = log(−µ),

1Incidentally, this argument also shows that there is at most one solution to the first equation in (A.7) in
the range (−minj ℓj ,∞). There indeed exists a unique solution, which corresponds to the minimum total risk,
but we do not prove this.

132

and so

ϕℓ(µ) ≤ log

(
µ

M∑
j=1

uj
µ+ ℓj

)
= log

(
M∑
j=1

uj

1 +
ℓj
µ

)
→ 0 as µ→ −∞.

This completes the first step, namely showing that there does indeed exist a unique solution

µ∗(ũ) in the set (−ℓ1,∞) to the first equation in line (A.7).

We now turn to the second step, namely showing that this solution corresponds to the

maximum total risk. Given a value of the Lagrange multiplier µ, substitution into Equation

A.6 gives

etj(µ) =

uj

µ+ℓj∑M
k=1

uk

µ+ℓk

and therefore total risk

R(µ) =

∑M
j=1

ujℓj
µ+ℓj∑M

k=1
uk

µ+ℓk

.

To prove that the solution µ∗(ũ) ∈ (−∞,−maxj ℓj) is the solution to the first equation in line

(A.7) that maximises R, it suffices to show that R(µ)→
∑M

j=1 ujℓj as |µ| → ∞ and R′(µ) ≥ 0

for all µ ∈ (−∞,−maxj ℓj) ∪ (−minj ℓj,∞), so that

inf
µ∈(−∞,−maxj ℓj)

R(µ) ≥ sup
µ∈(−minj ℓj ,∞)

R(µ).

This suffices as we have already proved that µ∗(ũ) is the only solution in (−∞,−maxj ℓj) to

the first equation in line (A.7), and that no solutions exists in the set [−maxj ℓj,−minj ℓj].

The limit can be easily evaluated by first rewriting R(µ) and then taking the limit as

|µ| → ∞ as follows

R(µ) =

∑M
j=1

ujℓj

1+
ℓj
µ∑M

k=1
uk

1+
ℓk
µ

→
∑M

j=1 ujℓj∑M
k=1 uk

=
M∑
j=1

ujℓj.

To show that R′(µ) ≥ 0, let ℓ(j) denote the j’th smallest component of ℓ (breaking ties

arbitrarily), so that ℓ(1) ≤ · · · ≤ ℓ(M), and use the quotient rule to see that

R′(µ) ≥ 0 ⇐⇒

(∑M
k=1

uk

µ+ℓk

)(∑M
j=1

−ujℓj
(µ+ℓj)2

)
−
(∑M

j=1
ujℓj
µ+ℓj

)(∑M
k=1

−uk

(µ+ℓk)2

)
(∑M

p=1
up

µ+ℓp

)2 ≥ 0

⇐⇒
M∑
j=1

M∑
k=1

ujukℓj
(µ+ ℓj)(µ+ ℓk)

(
1

µ+ ℓk
− 1

µ+ ℓj

)
≥ 0

⇐⇒
∑

j,k∈[M]
k<j

ujukℓ(j)
(µ+ ℓ(j))(µ+ ℓ(k))

(
1

µ+ ℓ(k)
− 1

µ+ ℓ(j)

)

+
∑

j,k∈[M]
k>j

ujukℓ(j)
(µ+ ℓ(j))(µ+ ℓ(k))

(
1

µ+ ℓ(k)
− 1

µ+ ℓ(j)

)
≥ 0,

133

where in the final line we have dropped the summands where k = j since they equal zero as

the terms in the bracket cancel. This final inequality holds since the first sum can be bounded

below by the negative of the second sum as follows

∑
j,k∈[M]
k<j

ujukℓ(j)
(µ+ ℓ(j))(µ+ ℓ(k))

(
1

µ+ ℓ(k)
− 1

µ+ ℓ(j)

)

≥
∑

j,k∈[M]
k<j

ujukℓ(k)
(µ+ ℓ(j))(µ+ ℓ(k))

(
1

µ+ ℓ(k)
− 1

µ+ ℓ(j)

)
(since ℓ(k) ≤ ℓ(j) for k < j)

=
∑

j,k∈[M]
k>j

ukujℓ(j)
(µ+ ℓ(k))(µ+ ℓ(j))

(
1

µ+ ℓ(j)
− 1

µ+ ℓ(k)

)
(swapping dummy variables j, k).

We now turn to finding the partial derivatives of F (t∗(ũ)) with respect the ũj, which in turn

will allow us to find the partial derivatives of kl−1
ℓ (u|c). Let ∇ũ denote the gradient operator

with respect to ũ. Then the quantity we are after is ∇ũF (t
∗(ũ)) ∈ RM+1, the j’th component

of which is

(
∇ũF (t

∗(ũ))
)
j
=

M+1∑
k=1

∂F

∂tk
(t∗(ũ))

∂t∗k
∂ũj

(ũ) = Ft(t
∗(ũ)) · ∂t

∗

∂ũj
(ũ) ∈ R.

Thus the full gradient vector is

∇ũF (t
∗(ũ)) = Ft(t

∗(ũ))∇ũt
∗(ũ), (A.8)

where ∇ũt
∗(ũ) is the M × (M + 1) matrix given by

(
∇ũt

∗(ũ)
)
j,k

=
∂t∗k
∂ũj

(ũ).

Finding an expression for this matrix is difficult. Fortunately we can avoid needing to by using

a trick from mathematical economics referred to as the envelope theorem, as we now show.

First, note that since, for all ũ, the constraints g = h = 0 are satisfied by t∗(ũ), we have

the identities

g(t∗(ũ), ũ) ≡ 0 and h(t∗(ũ)) ≡ 0.

Differentiating these identities with respect to ũj then yields

gt(t
∗(ũ), ũ) · ∂t

∗

∂ũj
(ũ) + gũj

(t∗(ũ), ũ) ≡ 0 and ht(t
∗(ũ)) · ∂t

∗

∂ũj
(ũ) ≡ 0.

As before, we can write theseM+1 pairs of equations as the following pair of matrix equations

gt(t
∗(ũ), ũ)∇ũt

∗(ũ) + gũ(t
∗(ũ), ũ) ≡ 0 and ht(t

∗(ũ))∇ũt
∗(ũ) ≡ 0.

134

Multiplying these identities by λ∗(ũ) and µ∗(ũ) respectively, and combining with equation

(A.8), yields

∇ũF (t
∗(ũ)) =

(
Ft(t

∗(ũ)) + λ∗(ũ)gt(t
∗(ũ), ũ) + µ∗(ũ)ht(t

∗(ũ))
)
∇ũt

∗(ũ)

+ λ∗(ũ)gũ(t
∗(ũ), ũ)

= λ∗(ũ)gũ(t
∗(ũ), ũ),

where the final equality comes from noting that the terms in the large bracket vanish due to

equation (A.5). Recalling the expression for gũ(t; ũ) given by Equation A.4 and that v∗(ũ) =

exp(t∗(ũ)) we obtain

∇ũF (t
∗(ũ)) = λ∗(ũ)

(
1− t∗(ũ)1 + log u1, . . . , 1− t∗(ũ)M + log uM ,−1

)
= λ∗(ũ)

(
1 + log

u1
v∗(ũ)1

, . . . , 1 + log
uM

v∗(ũ)M
,−1

)
Finally, recalling Equivalence (A.3), namely ∇ũf

∗
ℓ (ũ) ≡ ∇ũF (t

∗(ũ)), we see that the above

expression gives the derivatives
∂f∗

ℓ

∂uj
(ũ) and

∂f∗
ℓ

∂c
(ũ) stated in the proposition, thus completing

the proof.

135

Appendix B

Additional Material for Chapter 4

Figure B.1 demonstrates a case in which compression via k-means can produce a tighter discrete

PAC-Bayes bound than that produced without compression, as promised in Section 4.5.1.

Figure B.1: Quantisation via k-means for hW,B ∈ MLP(40,512,10) trained on MNIST1D. Verti-
cal line shows string length of uncompressed network. Top left: As k increases the error of the
compressed network converges to the error of the original (horizontal line). Top right: The mar-
gin loss of the compressed network remains trivial until k = 1024. Bottom left: Error bounds
(inverting kl) eventually decrease below the discrete PAC-Bayes bound without compression
(horizontal line), albeit by an almost trivial amount. Bottom right: Error bounds (Pinsker’s
inequality) increase with k up to a peak at k = 1024 where there is a modest decrease; all
bound values improve over the PAC-Bayes bound without compression (horizontal line).

136

Appendix C

Additional Material for Chapter 5

C.1 Additional complexity measure plots

137

138

139

140

Bibliography

Abu-Mostafa, Y. S., M. Magdon-Ismail, and H.-T. Lin (2012). Learning from data. Vol. 4.

AMLBook New York.

Adams, R., J. Shawe-Taylor, and B. Guedj (2024). “Controlling multiple errors simultaneously

with a PAC-Bayes bound”. In: Advances in Neural Information Processing Systems 37,

pp. 5308–5337.

Alquier, P. et al. (2024). “User-friendly introduction to PAC-Bayes bounds”. In: Foundations

and Trends® in Machine Learning 17.2, pp. 174–303.

Alquier, P., J. Ridgway, and N. Chopin (2016). “On the properties of variational approximations

of Gibbs posteriors”. In: The Journal of Machine Learning Research 17.1, pp. 8374–8414.

Ambroladze, A., E. Parrado-Hernández, and J. Shawe-Taylor (2006). “Tighter PAC-Bayes

bounds”. In: Advances in neural information processing systems 19.

Anthropic (2024). The Claude 3 Model Family: Opus, Sonnet, Haiku. Technical Report. An-

thropic.

Arora, S., R. Ge, B. Neyshabur, et al. (2018). “Stronger generalization bounds for deep nets

via a compression approach”. In: International conference on machine learning. PMLR,

pp. 254–263.

Banerjee, A., T. Chen, and Y. Zhou (2020). “De-randomized PAC-Bayes margin bounds: Ap-

plications to non-convex and non-smooth predictors”. In: arXiv. arXiv: 2002.09956.

Bartlett, P., V. Maiorov, and R. Meir (1998). “Almost linear VC dimension bounds for piecewise

polynomial networks”. In: Advances in neural information processing systems 11.

Bartlett, P. L. (1993). “Lower bounds on the Vapnik-Chervonenkis dimension of multi-layer

threshold networks”. In: Proceedings of the sixth annual conference on Computational learn-

ing theory, pp. 144–150.

Bartlett, P. L., D. J. Foster, and M. J. Telgarsky (2017). “Spectrally-normalized margin bounds

for neural networks”. In: Advances in neural information processing systems 30.

Bartlett, P. L., N. Harvey, C. Liaw, et al. (2019). “Nearly-tight VC-dimension and pseudodi-

mension bounds for piecewise linear neural networks”. In: Journal of Machine Learning

Research 20.63, pp. 1–17.

Bartlett, P. L. and S. Mendelson (2001). “Rademacher and Gaussian complexities: Risk bounds

and structural results”. In: International Conference on Computational Learning Theory.

Springer, pp. 224–240.

141

https://arxiv.org/abs/2002.09956

Bartlett, P. L. and S. Mendelson (2002). “Rademacher and gaussian complexities: Risk bounds

and structural results”. In: Journal of Machine Learning Research 3.Nov, pp. 463–482.

Bégin, L., P. Germain, F. Laviolette, et al. (2016). “PAC-Bayesian bounds based on the Rényi

divergence”. In: Artificial Intelligence and Statistics. PMLR, pp. 435–444.

Belkin, M., D. Hsu, S. Ma, et al. (2019). “Reconciling modern machine-learning practice and

the classical bias–variance trade-off”. In: Proceedings of the National Academy of Sciences

116.32, pp. 15849–15854.

Benabbou, L. and P. Lang (2017). “PAC-Bayesian generalization bound for multi-class learn-

ing”. In: NIPS 2017 Workshop.(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian

trends and insights.

Biggs, F. and B. Guedj (2023). “Tighter PAC-Bayes Generalisation Bounds by Leveraging

Example Difficulty”. In: International Conference on Artificial Intelligence and Statistics.

PMLR, pp. 8165–8182.

Biggs, F., V. Zantedeschi, and B. Guedj (2022). “On margins and generalisation for voting

classifiers”. In: Advances in Neural Information Processing Systems 35, pp. 9713–9726.

Blanchard, G. and F. Fleuret (2007). “Occam’s hammer”. In: International Conference on

Computational Learning Theory. Springer, pp. 112–126.

Bousquet, O., S. Boucheron, and G. Lugosi (2003). “Introduction to statistical learning theory”.

In: Summer school on machine learning. Springer, pp. 169–207.

Catoni, O. (2003). A PAC-Bayesian approach to adaptive classification. Preprint 840.2. url:

yaroslavvb.com/papers/notes/catoni-pac.pdf.

Catoni, O. (2007). PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical

Learning. Vol. 56. Institute of Mathematical Statistics (IMS) Lecture Notes - Monograph

Series. Institute of Mathematical Statistics. url: https://books.google.fr/books?id=

acnaAAAAMAAJ.

Clerico, E., G. Deligiannidis, and A. Doucet (2022a). “Conditionally gaussian PAC-Bayes”. In:

International Conference on Artificial Intelligence and Statistics. PMLR, pp. 2311–2329.

Clerico, E., T. Farghly, G. Deligiannidis, et al. (2022b). “Generalisation under gradient descent

via deterministic PAC-Bayes”. In: arXiv. arXiv: 2209.02525.

Clopper, C. J. and E. S. Pearson (1934). “The use of confidence or fiducial limits illustrated in

the case of the binomial”. In: Biometrika 26.4, pp. 404–413.

Csiszár, I. (1975). “I-divergence geometry of probability distributions and minimization prob-

lems”. In: The Annals of Probability, pp. 146–158.

Cybenko, G. (1989). “Approximation by superpositions of a sigmoidal function”. In: Mathe-

matics of control, signals and systems 2.4, pp. 303–314.

Dinh, L., R. Pascanu, S. Bengio, et al. (2017). “Sharp minima can generalize for deep nets”.

In: International Conference on Machine Learning. PMLR, pp. 1019–1028.

Donsker, M. and S. Varadhan (1975). “Large deviations for Markov processes and the asymp-

totic evaluation of certain Markov process expectations for large times”. In: Probabilistic

Methods in Differential Equations. Springer, pp. 82–88.

142

yaroslavvb.com/papers/notes/catoni-pac.pdf
https://books.google.fr/books?id=acnaAAAAMAAJ
https://books.google.fr/books?id=acnaAAAAMAAJ
https://arxiv.org/abs/2209.02525

Donsker, M. D. and S. S. Varadhan (1976). “Asymptotic evaluation of certain Markov process

expectations for large time—III”. In: Communications on pure and applied Mathematics

29.4, pp. 389–461.

Duin, R. P. (2000). “Classifiers in almost empty spaces”. In: Proceedings 15th International

Conference on Pattern Recognition. ICPR-2000. Vol. 2. IEEE, pp. 1–7.

Dziugaite, G. K. and D. M. Roy (2017). “Computing nonvacuous generalization bounds for

deep (stochastic) neural networks with many more parameters than training data”. In:

arXiv. arXiv: 1703.11008.

Dziugaite, G. K. and D. M. Roy (2018). “Data-dependent PAC-Bayes priors via differential

privacy”. In: Advances in Neural Information Processing Systems, pp. 8430–8441.

Eckart, C. and G. Young (1936). “The approximation of one matrix by another of lower rank”.

In: Psychometrika 1.3, pp. 211–218.

Erven, T. van (2014). “PAC-Bayes mini-tutorial: A continuous union bound”. In: arXiv. arXiv:

1405.1580.

Feofanov, V., E. Devijver, and M.-R. Amini (2019). “Transductive bounds for the multi-class

majority vote classifier”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 33. 01, pp. 3566–3573.

Foong, A., W. Bruinsma, D. Burt, et al. (2021). “How tight can PAC-Bayes be in the small

data regime?” In: Advances in Neural Information Processing Systems 34, pp. 4093–4105.

Freund, Y. (1998). “Self bounding learning algorithms”. In: Proceedings of the eleventh annual

conference on Computational Learning Theory, pp. 247–258.

Ganguli, D., D. Hernandez, L. Lovitt, et al. (2022). “Predictability and surprise in large gen-

erative models”. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability,

and Transparency, pp. 1747–1764.

Germain, P., A. Lacasse, F. Laviolette, et al. (2009). “PAC-Bayesian learning of linear classi-

fiers”. In: Proceedings of the 26th Annual International Conference on Machine Learning,

pp. 353–360.

Germain, P., A. Lacasse, F. Laviolette, et al. (2015). “Risk bounds for the majority vote: From

a PAC-Bayesian analysis to a learning algorithm”. In: arXiv. arXiv: 1503.08329.

Ghosh, R. and M. Motani (2021). “Network-to-network regularization: enforcing occam’s ra-

zor to improve generalization”. In: Advances in neural information processing systems 34,

pp. 6341–6352.

Greenblatt, R., C. Denison, B. Wright, et al. (2024). “Alignment faking in large language

models”. In: arXiv preprint arXiv:2412.14093.

Greydanus, S. and D. Kobak (2020). “Scaling down deep learning with mnist-1d”. In: arXiv.

arXiv: 2011.14439.

Grünwald, P. (2005). “Minimum description length tutorial”. In: Advances in minimum de-

scription length: Theory and applications 5, pp. 1–80.

Grünwald, P. and T. Roos (2019). “Minimum description length revisited”. In: International

journal of mathematics for industry 11.01, p. 1930001.

143

https://arxiv.org/abs/1703.11008
https://arxiv.org/abs/1405.1580
https://arxiv.org/abs/1503.08329
https://arxiv.org/abs/2011.14439

Hinton, G., O. Vinyals, and J. Dean (2015). “Distilling the knowledge in a neural network”. In:

arXiv. arXiv: 1503.02531.

Hinton, G. E. and D. Van Camp (1993). “Keeping the neural networks simple by minimizing

the description length of the weights”. In: Proceedings of the sixth annual conference on

Computational learning theory, pp. 5–13.

Hochreiter, S. and J. Schmidhuber (1994). “Simplifying neural nets by discovering flat minima”.

In: Advances in neural information processing systems 7.

Hochreiter, S. and J. Schmidhuber (1997). “Flat minima”. In: Neural computation 9.1, pp. 1–

42.

Hoffmann, J., S. Borgeaud, A. Mensch, et al. (2022). “Training compute-optimal large language

models”. In: arXiv. arXiv: 2203.15556.

Hornik, K., M. Stinchcombe, and H. White (1989). “Multilayer feedforward networks are uni-

versal approximators”. In: Neural networks 2.5, pp. 359–366.

Jiang, Y., P. Foret, S. Yak, et al. (2020). “Neurips 2020 competition: Predicting generalization

in deep learning”. In: arXiv. arXiv: 2012.07976.

Jiang, Y., D. Krishnan, H. Mobahi, et al. (2018). “Predicting the generalization gap in deep

networks with margin distributions”. In: arXiv. arXiv: 1810.00113.

Jiang, Y., B. Neyshabur, H. Mobahi, et al. (2019). “Fantastic generalization measures and

where to find them”. In: arXiv. arXiv: 1912.02178.

Kaplan, J., S. McCandlish, T. Henighan, et al. (2020). “Scaling laws for neural language mod-

els”. In: arXiv. arXiv: 2001.08361.

Keskar, N. S., D. Mudigere, J. Nocedal, et al. (2016). “On large-batch training for deep learning:

Generalization gap and sharp minima”. In: arXiv. arXiv: 1609.04836.

Koço, S. and C. Capponi (2013). “On multi-class classification through the minimization of the

confusion matrix norm”. In: Asian Conference on Machine Learning. PMLR, pp. 277–292.

Koh, P. W., S. Sagawa, H. Marklund, et al. (2021). “Wilds: A benchmark of in-the-wild distri-

bution shifts”. In: International conference on machine learning. PMLR, pp. 5637–5664.

Koltchinskii, V. and D. Panchenko (2000). “Rademacher processes and bounding the risk of

function learning”. In: High dimensional probability II. Springer, pp. 443–457.

Krizhevsky, A., G. Hinton, et al. (2009). “Learning multiple layers of features from tiny images”.

In.

Kuhn, L., C. Lyle, A. N. Gomez, et al. (2021). “Robustness to pruning predicts generalization

in deep neural networks”. In: arXiv. arXiv: 2103.06002.

Lacasse, A., F. Laviolette, M. Marchand, et al. (2006). “PAC-Bayes bounds for the risk of the

majority vote and the variance of the Gibbs classifier”. In: Advances in Neural information

processing systems 19.

Langford, J. and A. Blum (2003). “Microchoice bounds and self bounding learning algorithms”.

In: Machine Learning 51, pp. 165–179.

Langford, J. and R. Caruana (2001). “(Not) bounding the true error”. In: Advances in Neural

Information Processing Systems 14.

144

https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2012.07976
https://arxiv.org/abs/1810.00113
https://arxiv.org/abs/1912.02178
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/2103.06002

Langford, J. and R. Schapire (2005). “Tutorial on practical prediction theory for classification.”

In: Journal of machine learning research 6.3.

Langford, J. and M. Seeger (2001). Bounds for averaging classifiers. School of Computer Science,

Carnegie Mellon University.

Langford, J. and J. Shawe-Taylor (2002). “PAC-Bayes & margins”. In: Advances in neural

information processing systems 15.

Laviolette, F., E. Morvant, L. Ralaivola, et al. (2017). “Risk upper bounds for general ensemble

methods with an application to multiclass classification”. In: Neurocomputing 219, pp. 15–

25.

Lei, Y., Ü. Dogan, D.-X. Zhou, et al. (2019). “Data-dependent generalization bounds for multi-

class classification”. In: IEEE Transactions on Information Theory 65.5, pp. 2995–3021.

Letarte, G., P. Germain, B. Guedj, et al. (2019). “Dichotomize and generalize: PAC-Bayesian

binary activated deep neural networks”. In: Advances in Neural Information Processing

Systems 32.

Lever, G., F. Laviolette, and J. Shawe-Taylor (2013). “Tighter PAC-Bayes bounds through

distribution-dependent priors”. In: Theoretical Computer Science 473, pp. 4–28.

Loog, M., T. Viering, A. Mey, et al. (2020). “A brief prehistory of double descent”. In: Pro-

ceedings of the National Academy of Sciences 117.20, pp. 10625–10626.

Lotfi, S., M. Finzi, S. Kapoor, et al. (2022). “PAC-Bayes compression bounds so tight that

they can explain generalization”. In: Advances in Neural Information Processing Systems

35, pp. 31459–31473.

Maass, W. (1994). “Neural nets with superlinear VC-dimension”. In: Neural Computation 6.5,

pp. 877–884.

Maurer, A. (2004). “A note on the PAC Bayesian theorem”. In: arXiv. arXiv: cs/0411099.

McAllester, D. A. (1998). “Some PAC-Bayesian theorems”. In: Proceedings of the eleventh

annual conference on Computational learning theory, pp. 230–234.

McAllester, D. A. (1999). “PAC-Bayesian model averaging”. In: Proceedings of the twelfth an-

nual conference on Computational learning theory, pp. 164–170.

McAllester, D. A. (2003). “PAC-Bayesian stochastic model selection”. In: Machine Learning

51.1, pp. 5–21.

Mohamed, S., M. Rosca, M. Figurnov, et al. (2020). “Monte carlo gradient estimation in machine

learning”. In: Journal of Machine Learning Research 21.132, pp. 1–62.

Morvant, E., S. Koço, and L. Ralaivola (2012). “PAC-Bayesian generalization bound on confu-

sion matrix for multi-class classification”. In: arXiv. arXiv: 1202.6228.

Nagarajan, V. and J. Z. Kolter (2019). “Deterministic PAC-Bayesian generalization bounds for

deep networks via generalizing noise-resilience”. In: arXiv. arXiv: 1905.13344.

Nakkiran, P., G. Kaplun, Y. Bansal, et al. (2021). “Deep double descent: Where bigger models

and more data hurt”. In: Journal of Statistical Mechanics: Theory and Experiment 2021.12,

p. 124003.

145

https://arxiv.org/abs/cs/0411099
https://arxiv.org/abs/1202.6228
https://arxiv.org/abs/1905.13344

Nanda, N., L. Chan, T. Lieberum, et al. (2023). “Progress measures for grokking via mechanistic

interpretability”. In: arXiv preprint arXiv:2301.05217.

Neyshabur, B., S. Bhojanapalli, D. McAllester, et al. (2017a). “Exploring generalization in deep

learning”. In: Advances in Neural Information Processing Systems, pp. 5947–5956.

Neyshabur, B., S. Bhojanapalli, and N. Srebro (2017b). “A PAC-Bayesian approach to spectrally-

normalized margin bounds for neural networks”. In: arXiv. arXiv: 1707.09564.

Parrado-Hernández, E., A. Ambroladze, J. Shawe-Taylor, et al. (2012). “PAC-Bayes bounds

with data dependent priors”. In: The Journal of Machine Learning Research 13.1, pp. 3507–

3531.

Pereyra, G., G. Tucker, J. Chorowski, et al. (2017). “Regularizing neural networks by penalizing

confident output distributions”. In: arXiv. arXiv: 1701.06548.

Perez-Ortiz, M., O. Rivasplata, B. Guedj, et al. (2021). “Learning PAC-Bayes priors for prob-

abilistic neural networks”. In: arXiv. arXiv: 2109.10304.

Pérez-Ortiz, M., O. Rivasplata, J. Shawe-Taylor, et al. (2021). “Tighter risk certificates for

neural networks”. In: Journal of Machine Learning Research 22.227, pp. 1–40.

Pires, B. A., C. Szepesvari, and M. Ghavamzadeh (2013). “Cost-sensitive multiclass classifi-

cation risk bounds”. In: International Conference on Machine Learning. PMLR, pp. 1391–

1399.

Polyanskiy, Y. and Y. Wu (2014). “Lecture notes on information theory”. In: Lecture Notes for

ECE563 (UIUC) and 6.2012-2016, p. 7.

Quiñonero-Candela, J., M. Sugiyama, A. Schwaighofer, et al. (2022). Dataset shift in machine

learning. Mit Press.

Rissanen, J. (1978). “Modeling by shortest data description”. In: Automatica 14.5, pp. 465–471.

Santurkar, S., D. Tsipras, A. Ilyas, et al. (2018). “How does batch normalization help optimiza-

tion?” In: Advances in neural information processing systems 31.

Schaeffer, R., B. Miranda, and S. Koyejo (2023). “Are emergent abilities of large language

models a mirage?” In: Advances in neural information processing systems 36, pp. 55565–

55581.

Schmidhuber, J. (1997). “Discovering neural nets with low Kolmogorov complexity and high

generalization capability”. In: Neural Networks 10.5, pp. 857–873.

Seeger, M. (2002). “Pac-Bayesian generalisation error bounds for gaussian process classifica-

tion”. In: Journal of machine learning research 3.Oct, pp. 233–269.

Shalev-Shwartz, S. and S. Ben-David (2014). Understanding machine learning: From theory to

algorithms. Cambridge university press.

Shawe-Taylor, J. and R. C. Williamson (1997). “A PAC analysis of a Bayesian estimator”. In:

Proceedings of the tenth annual conference on Computational learning theory, pp. 2–9.

Srivastava, A., A. Rastogi, A. Rao, et al. (2022). “Beyond the imitation game: Quantifying and

extrapolating the capabilities of language models”. In: arXiv. arXiv: 2206.04615.

Takayama, A. and T. Akira (1985). Mathematical economics. Cambridge university press.

146

https://arxiv.org/abs/1707.09564
https://arxiv.org/abs/1701.06548
https://arxiv.org/abs/2109.10304
https://arxiv.org/abs/2206.04615

Topsøe, F. (1967). “An information theoretical identity and a problem involving capacity”. In:

Studia Scientiarum Mathematicarum Hungarica 2.291-292, p. 246.

Tschandl, P., C. Rosendahl, and H. Kittler (2018). “The HAM10000 dataset, a large collection

of multi-source dermatoscopic images of common pigmented skin lesions”. In: Scientific data

5.1, pp. 1–9.

Unterthiner, T., D. Keysers, S. Gelly, et al. (2020). “Predicting neural network accuracy from

weights”. In: arXiv. arXiv: 2002.11448.

Valle-Perez, G., C. Q. Camargo, and A. A. Louis (2018). “Deep learning generalizes because the

parameter-function map is biased towards simple functions”. In: arXiv preprint arXiv:1805.08522.

Vallet, F., J.-G. Cailton, and P. Refregier (1989). “Linear and nonlinear extension of the pseudo-

inverse solution for learning boolean functions”. In: Europhysics Letters 9.4, p. 315.

Van Erven, T. and P. Harremos (2014). “Rényi divergence and Kullback-Leibler divergence”.

In: IEEE Transactions on Information Theory 60.7, pp. 3797–3820.

Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business media.

Vapnik, V. and A. Y. Chervonenkis (1974). “The method of ordered risk minimization, I”. In:

Avtomatika i Telemekhanika 8, pp. 21–30.

Vapnik, V. N. (1999). “An overview of statistical learning theory”. In: IEEE transactions on

neural networks 10.5, pp. 988–999.

Vapnik, V. N. and A. Y. Chervonenkis (2015). “On the uniform convergence of relative fre-

quencies of events to their probabilities”. In: Measures of complexity: festschrift for alexey

chervonenkis. Springer, pp. 11–30.

Verma, T. S. and J. Pearl (2022). “Equivalence and synthesis of causal models”. In: Probabilistic

and causal inference: The works of Judea Pearl, pp. 221–236.

Viallard, P., P. Germain, A. Habrard, et al. (2024). “A general framework for the practical

disintegration of PAC-Bayesian bounds”. In: Machine Learning 113.2, pp. 519–604.

Wei, J., Y. Tay, R. Bommasani, et al. (2022a). “Emergent abilities of large language models”.

In: arXiv. arXiv: 2206.07682.

Wei, J., X. Wang, D. Schuurmans, et al. (2022b). “Chain-of-thought prompting elicits reason-

ing in large language models”. In: Advances in neural information processing systems 35,

pp. 24824–24837.

Wu, Y.-S. and Y. Seldin (2022). “Split-kl and PAC-Bayes-split-kl inequalities for ternary ran-

dom variables”. In: Advances in Neural Information Processing Systems 35, pp. 11369–

11381.

Yudkowsky, E. (2015). “A semi-technical introductory dialogue on Solomonoff induction”.

https://www.lesswrong.com/posts/EL4HNa92Z95FKL9R2/a-semitechnical-introductory-

dialogue-on-solomonoff-1, accessed May 15, 2025.

Zhang, C., S. Bengio, M. Hardt, et al. (2016). “Understanding deep learning requires rethinking

generalization”. In: arXiv. arXiv: 1611.03530.

Zhou, W., V. Veitch, M. Austern, et al. (2018). “Non-vacuous generalization bounds at the

imagenet scale: a PAC-Bayesian compression approach”. In: arXiv. arXiv: 1804.05862.

147

https://arxiv.org/abs/2002.11448
https://arxiv.org/abs/2206.07682
https://www.lesswrong.com/posts/EL4HNa92Z95FKL9R2/a-semitechnical-introductory-dialogue-on-solomonoff-1
https://www.lesswrong.com/posts/EL4HNa92Z95FKL9R2/a-semitechnical-introductory-dialogue-on-solomonoff-1
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1804.05862

	Notation
	Introduction
	Motivation

	Background: SLT and the Generalisation Mystery
	Classical SLT
	Union bounds
	Union bounds with a prior over the hypothesis class
	Uncountable hypothesis classes
	Vapnik-Chervonenkis dimension
	Rademacher complexity

	What might an explanation of the generalisation mystery look like?
	PAC-Bayesian generalisation bounds
	Choosing the posterior
	Choosing the prior

	PAC-Bayes and the generalisation mystery
	Derandomisation of PAC-Bayes bounds
	PAC-Bayes bounds on a sample from the posterior
	PAC-Bayes bounds for majority votes
	PAC-Bayes bounds for the mean of the posterior

	PAC-Bayes and self-certified learning
	Test set bounds
	Can PAC-Bayes achieve self-certified learning?

	Controlling Multiple Errors Simultaneously with a PAC-Bayes Bound
	Introduction
	Related work
	Notation
	Main result
	Construction of a differentiable training objective
	Proof of the main bound
	Numerical experiments
	Conclusion

	PAC-Bayes and Compression
	Introduction
	Related work
	Theory
	Discrete PAC-Bayes
	Bounding the discrepancy in output between two MLPs
	Relating the margin loss of close classifiers
	Bounding the error of an MLP in terms of the margin loss of its compression
	A PAC-Bayes compression bound

	Compression schemes
	Quantisation via k-means
	Quantisation via truncation
	Low-rank approximation
	Combined approaches

	Experiments
	Quantisation via k-means
	Quantisation via truncation
	Low-rank approximation
	Combined approaches

	Conclusion

	Distillability as a Predictor of Generalisation
	Introduction
	Methodology
	Related work
	Training a suite of models
	Distillation complexity
	Distillation scheme

	Comparison complexity measures
	Norm-based measures
	Sharpness-based measures and PAC-Bayes bounds
	Uncertainty-based measures

	Evaluation criteria
	Noisy oracles as baselines

	Results
	Discussion and future work

	Conclusion
	Preliminary Conclusions
	Contributions
	Towards a Solution to the Generalisation Mystery
	Returning to the Original Motivations

	Additional Material for Chapter 3
	Recipe for implementing Theorems 11 and 12
	Additional experimental details
	Proofs
	Proof of Proposition 3
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Proposition 1
	Proof of Theorem 12

	Additional Material for Chapter 4
	Additional Material for Chapter 5
	Additional complexity measure plots

