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ARTICLE INFO ABSTRACT

Keywords: County-level energy planning within Kenya is becoming increasingly important and relevant following the
U4RIA evolving governance system and energy planning responsibilities. This paper presents county-resolution energy
MAED

demand projections alongside the underlying energy demand models in support of both integrated national
planning, and county energy planning. The COunty-REsolution energy system Demand models (CORE-D)
introduce a new methodological approach to overcome historic energy planning barriers. It is based on a spatial
disaggregation of whole energy system demand modelling through downscaling to produce individual county
demand models, facilitating the future incorporation of county level data, priorities, and plans for demand
assessment. CORE-D can support county energy planning processes by enabling the development of, and facil-
itating stakeholder discussion on, energy demand projections under various county-level scenarios. In providing
a consistent framework for energy demand analysis across all counties the approach particularly supports a
coherent integration of county plans to national-level analyses and policy processes. This paper, through pre-
senting baseline national projections at various scales, alongside demonstrative scenarios for Kilifi county which
align county projections to existing nationally employed modelling methodologies, provides a foundational tool
for subsequent stakeholder-driven enhancements, capacity building exercises, integration of richer and updated
datasets, and robust decision-making analyses. The models, and methodologies, have been developed through
collaboration with both county and national stakeholders within Kenya.

County energy planning
Energy systems
Open-access model
Open-source
Governance dialogues
Multi-level governance
Renewable energy

1. Introduction

The Kenyan Energy Act of 2019 devolves energy planning functions
to Kenya’s forty-seven county governments through the creation of in-
dividual county energy plans (CEP), to be integrated into national scale
planning following compliance with the integrated national energy
planning (INEP) framework [1]. Alongside CEP development, the Ken-
yan government has current evolving and ongoing initiatives, such as
the Integrated National Energy Plan (INEP) and National Energy Policy
2025-2034 [2] which have identified multi-level governance and
planning county-to-national dialogues as a key priority for future
development within the energy sector. This multi-level governance
approach to energy planning has posed two main problems within
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Kenya of (a) limited resources and capacity within county governments,
and (b) national level models containing limited consideration for sub-
national governments. Subsequent energy modelling analysis within
Kenya has therefore typically contained limited-to-no consideration for
multi-scale governance [3].

County energy planning development within Kenya has faced many
challenges preventing the development and publication of individual
CEPs due to a lack of available data, resources, priority, and capacity
within the energy specific planning teams and departments. Conse-
quently, as of 2023, only six counties had finished their CEP processes
(with only three publicly available) and fifteen had begun development,
leaving twenty-six counties with no progress on the development of their
energy plans. Additionally, of the completed plans, there is a lack of
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standardisation and consistent methodology, with various planning
approaches having been adopted such as a three-step process in Nakuru,
a five-step process in Kitui, and an energy delivery model (EDM) in Kitui
and Meru [1]. Additionally, energy modelling tool adoption varies from
OnSSET used by Makueni, Kitui, and Narok, to LEAP adopted by Nakuru.
As such, the data collected and produced, the modelling inputs, results
and insights gained, and the content of CEPs varies across the counties
with existing plans and limited-to-no data available for the counties with
no progression in their energy plans.

Alternatively, at the national level, energy planning has widely
developed and applied various modelling tools, including the OSe-
MOSYS modelling tool, to aid whole energy system planning, including
through conducting integrated flexibility assessment [4], developing the
national cooking transition strategy [5], and assessing green hydrogen
development pathways [6]. As a result, the current energy modelling
landscape within Kenya remains fragmented, with great inconsistencies
in county resolution data and across county and national modelling ef-
forts, making both county energy planning procedures and
county-national dialogue a challenge.

The developed methodology employed within this study involves the
creation of county-resolution energy demand projections (CORE-D) for
Kenya, which can be used for (a) county planning procedures and sce-
nario analysis in isolation and (b) integrated into national and regional
level modelling tools as demand inputs. The models and projections
produced provide a basis for an accessible and synergised demand
analysis approach across the counties, with a consistent set of data re-
quirements and produced energy demands, subsequently facilitating a
standardised integration to national level models. This leads to a bi-
directional modelling dialogue where national stakeholders can pro-
vide feedback and input into the development of county level demand
projections, alongside county stakeholders integrating their needs and
priorities. Such a method captures the multi-scale governance within
Kenyan energy planning and facilitates dialogue between national and
county levels.

Through the development of open-sourced energy demand pro-
jections, county-specific data can be represented, allowing the capturing
of county specific context, needs, and priorities within their energy
sectors, and enabling the integration of such projections produced into
future national level modelling. Additionally, through employing a
downscaling approach, historic barriers to county scale energy model-
ling of data availability can be overcome, allowing the integration of
both downscaled data in instances of data unavailability, and existing
county scale data where accessible. The adoption of the open-source,
free, and accessible demand modelling tool MAED is used as a simple
tool which is accessible to non-experts, facilitating easy uptake in
resource strained planning units, allowing for seamless future updating
of the models in instances of greater data availability. Additionally,
MAED demand projections are already adopted and integrated into
national power planning by the Least Cost Power Development Planning
Team [7], and such development for county level projections will
further synergise county and national planning.

Energy demand is an integral, yet often overlooked, component of
energy modelling and planning more broadly, with projections forming
the main driving parameter for future resource and supply allocation
[8]. Typically, energy modelling studies focus on supply optimisation or
simulation with little focus placed on demand projection formulation
[9]. Energy demand forecasts are therefore typically reduced to basic
projections which link base year aggregate energy consumption with a
singular driving parameter such as total GDP or total population. Despite
this, energy demand estimates, particularly for electricity demand, have
potential wide reaching and costly impacts, with under estimation
leading to black outs and supply gaps, and over estimation leading to
financial losses and grid instability [10]. By focusing solely on energy
demand, this study looks to demand projections in more detail, devel-
oping in depth whole energy system projections to be used for capacity
building efforts, studies, and planning at multiple geographical
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resolutions and sectoral scales, responding to and capturing the char-
acteristics of energy planning processes in the Kenyan devolved gover-
nance system.

A related study explored the development of a framework for
improved representation of county energy system and planning prior-
ities at a national scale, through developing a disaggregated national
whole energy system OSeMOSYS model to represent multi-level gover-
nance through both national and county level representation [11].
Additionally, this article directly builds on an accompanying
data-in-brief which highlights the data used within this study alongside
a detailed and extensive description of the methodological process
employed within this study including the novel downscaling approach
developed [12].

As such this study specifically focuses on demand projections which,
whilst also being used in isolation for county level analysis and capacity
building, can facilitate national and county bi-directional dialogues.
CORE-D therefore produces demand projections in a consistent format
relevant to national scale energy models and could be used as demand
input parameters for supply optimisation via model soft linking. Addi-
tionally, the study aims to provide zero-order baseline demand models,
utilising best available data, as capacity building tools overcoming his-
toric barriers to both county energy planning and wider integrated na-
tional energy planning in Kenya, demonstrating a possible method for
producing multi-level modelling dialogues. Therefore, the novel con-
tributions of this study are:

(1). The development of a downscaling approach to overcome bar-
riers to data availability and achieve county-resolution energy
data.

(2). The production of forty-seven open-source county energy de-
mand models and baseline county, regional, and national pro-
jections for Kenya.

(3). The production of tools to support county level capacity building
efforts and overcome historic barriers to county energy planning
of resource availability and capacity.

(4). The production of county energy demand baseline projections in
a standardised format to facilitate multi-scale modelling via
model soft linking.

(5). Facilitate bi-directional energy dialogues via consistent data
requirement, allowing subsequent stakeholder-driven enhance-
ments, integration of richer and updated datasets, and robust
decision-making analyses.

2. Background

In recent years, a growing number of studies have looked at energy
modelling to inform energy system planning in Low- and Middle-Income
Countries (LMICs) and within Kenya specifically. Common trends,
themes and challenges across such studies are identified by several ar-
ticles [9,13-20], including a recent review of energy modelling studies
specifically looking at Kenyan case studies [21]. A review of integrated
energy systems modelling in Sub-Saharan Africa by Musonye et al. [13]
discovered a lack of authorship by relevant Sub-Saharan African (SSA)
institutions and stakeholders, identifying a need for increased capacity
building efforts within such counties. Similar conclusions on unequal
authorship outside of SSA are highlighted by Blimpo et al. [19]. Akpa-
hou et al. [17] examine modelling studies for development and find that
historically, energy modelling tools have failed to fully captures SSA’s
unique features and respond to the specific needs of energy planning
within the region. A further review on challenges in energy system
modelling by Fodstad et al. [18] examined spatial resolution in model-
ling studies and found that many studies either neglect to outline in-
formation on their spatial resolution or use single node region models
with little studies assessing multi-scale modelling. When examining the
modelling research landscape in Kenya, Fields et al. [21] find data
availability, and model scope are the main challenges to modelling
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research within the region. They also identify increased geographical
resolution as a main future research direction within Kenyan energy
modelling. Subsequently, this research aims to address such identified
challenges and future development areas for research within Kenya,
with a novel production of energy demand projections at increased
geographical resolutions, supporting multi-scale modelling efforts and
facilitating bi-directional energy modelling dialogue, via accessible
open-source data and modelling produced using a replicable
methodology.

2.1. Energy modelling with Kenyan applications

Energy modelling tools have wide application within literature
examining Kenyan case studies in recent years, ranging in geographical
scope from national [4,6,22-26] to county [27-31], and local resolu-
tions [32-38]. Single mode national model studies include Kehbila et al.
[25] who apply the LEAP model to examine potential GHG mitigation
pathways, assessing the projected emissions from existing Kenyan en-
ergy plans and examining alternatives. Lubello et al. [6] develop a na-
tional whole energy system OSeMOSYS model to explore the role of
green hydrogen for fertiliser and steel industries under various sce-
narios. Fields et al. [24] use OSeMOSYS to examine various clean energy
transition pathways for Kenya’s power sector under rapidly intensifying
demand, examining various existing energy targets and policies as sce-
narios. Carvallo et al. [26] featured an increased spatial granularity
within their national SWITCH model, capturing the forty-seven counties
as ‘load zones’ to explore low carbon pathways for Kenyas power sector.

Numerous studies within Kenya have applied a soft-linking model-
ling methodology to examine energy system development. Kihara et al.
[4] link the capacity expansion model (CEM), OSeMOSYS, with the
production cost model (PCM), FlexTool, to examine potential grid issues
under high variable renewable energy sources. Additionally, soft-linking
methodologies have been employed with the specific aim of achieving
increase spatial and temporal resolutions within studies. Moksnes et al.
[23] soft link OnSSET and OSeMOSYS modelling tools to investigate
electrification pathways for Kenya, with the aim of capturing both the
spatial and temporal dynamics of the two models. Similarly, Millot et al.
[22] develop the OSeMOSYS-FlexTool soft-linking framework outlined
in Kihara et al. [4] to include geospatially explicit descriptions of vari-
able renewable energy to enhance power system model planning.
Additionally, Moksnes et al. [39] develop a novel modelling workflow
called ‘GEOSeMOSYS’ which enables the linking of geospatial data with
the OSeMOSYS to achieve increase spatial and temporal resolution in
optimisation models. A synthesis of the main characteristics of each
selected national modelling study is reported in Table 1.

2.2. Spatial resolution and multi-scale modelling

Various energy modelling reviews have identified increased
geographical resolution within the captured models, and the integration
of multi-scale modelling considerations, as the main challenges, or
development pathways for future studies [3,40-44]. Additionally, it is
consistently concluded across studies assessing the impact of increased
spatial granularity that such model development can produce varying
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results to singular node models, often producing a lower cost overall
solution, and locational shifts in the installed capacity [43,45]. For
example, Rauner et al. [46] examine spatial patterns of German power
system demand at different scales, concluding that a spatial dissonance
emerged in studies which used levelized cost of electricity (LCOE) pro-
duced results based on economic optimality of single power plant
ownerships rather than levels of local power demand. Serpe et al. [47]
use the case study of a capacity expansion model for the US to examine
the impact of varying spatial resolutions on energy system projections
and solve times, concluding that higher resolution models produced
different projected energy mixes to lower resolutions, and allowed for
higher fidelity analysis. Brinkerink et al. [48] assess the implications of
spatial resolution on a global electricity systems model through four
spatial scenarios of regional (271 nodes), national (172 nodes), conti-
nental (6 nodes), and global (1 node), and conclude that model results
varied across the scales, with increased resolution leading to a decreased
required renewable capacity.

As such, there has been a trend in research to increase spatial scales
within modelling studies, primarily with national models moving
beyond singular nodes to an increased resolution. Brandes et al. [49]
increase the spatial resolution of their energy model for Germany by
extending the model from a singular node to multiple nodes for each of
the ten administrative states, to capture the grid exchanges between
regions within Germany. Siala & Mahfouz [50] identified a lack of
correlation between distribution of data and administrative divisions in
European country-level optimisation studies and developed a clustering
methodology to optimise expansion planning which accounts for
defined regions in an energy system. Clustering methods are also seen in
case studies of the North Sea region [44], and Germany and Spain [51].

Whilst comparatively scarce to studies examining increased spatial
granularity, research has also focused on capturing multi-level gover-
nance arrangements underpinning energy systems [3]. Particularly
prevalent are case studies looking to multi-scale governance in
Denmark. Alberg et al. [52] develop a methodology for local and na-
tional energy system interaction based on allocating shares to the local
systems which requires individual balancing and does not consider
import or export opportunities. An alternative approach was developed
in an additional study by Alberg et al. [53] which models imports and
exports from surrounding grids as an additional single technology.
However, both approaches take single local systems in isolation, with
limited interaction or illustration of how such local systems sit or
interact with the national system. Thellufsen & Lund [54] develop a
model using EnergyPLAN for better local action and national coordi-
nation, measuring the electricity balance between local and national
energy systems via adding an additional parameter within the local
energy models of ‘excess electricity’. Such a framework balances the
local and national integration, allowing the modelling of electricity
supply that can be imported and exported on an hourly basis.

2.3. MAED modelling

The Model for the Analysis of Energy Demand (MAED) has had wide
application to case studies globally of varying geographical, temporal,
and sectoral resolutions [55]. An outlined description of the MAED

Table 1

An overview of the key characteristics of the identified existing Kenya national modelling studies.
Study Reference Year Model Geographical Coverage Spatial Resolution Soft-Link
Carvallo et al [26] 2017 SWITCH National County (47 nodes) No
Moksnes et al [23] 2017 0SeMOSYS & OnSSET National Sub-National (geospatial) Yes
Kehbila et al [25] 2021 LEAP National National No
Fields et al [24] 2023 0SeMOSYS National National No
Kihara et al. [4] 2024 0SeMOSYS & FlexTool National National Yes
Millot et al [22] 2024 0SeMOSYS & FlexTool & GIS National Sub-National (20 geospatial clusters) Yes
Moksnes et al [39] 2024 GEOSeMOSYS (GIS & 0SeMOSYS) National Sub-National cells (40 by 40 km clusters) Yes
Lubello et al [6] 2025 0SeMOSYS National National No
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model can be found in the methodology section below (Section 3),
alongside the model manual [56]. Whilst the MAED model has not been
applied to any Kenyan case studies in existing academic literature, there
have been multiple applications in Sub-Saharan Africa including
Cameroon [57], Rwanda [58], Sierra Leone [59], and Tanzania [60].
Geographical scales vary across MAED applications from city [61], to
provincial [62], and national [63]. Additionally, sectoral and energy
type coverage also differs across existing studies, from examining
households [64] and manufacturing [65] sectors in isolation, to
modelling electricity demand [66-68], and whole energy systems [69,
70]. Temporal modelling periods examined within MAED studies also
vary from six years [63] to forty years [69]. Additionally, numerous
studies have soft linked the MAED model with capacity expansion
models such as MARKAL [71], MESSAGE [57], LEAP [72], and OSe-
MOSYS [73] where MAED demand projection outputs are used as de-
mand input figures for supply optimisation. This diverse applications of
the MAED model suggest that it has high utility for vast case study
application due to its flexible and easy methodology and could provide
an interesting tool for development for Kenyan case studies. Addition-
ally, MAED’s methodology is already used within national Kenyan en-
ergy planning, with the least cost power development plan (LCPDP)
developing an excel based energy demand projection based on MAED
principles [7]. Critically, as MAED is already used for modelling in
practice within Kenya, subsequent development of MAED models to
respond to the needs of Kenyan energy planning processes (in this case
energy devolution and integrated national energy planning) will widen
the applicability of such research on the ground. Therefore, this research
seeks to develop existing MAED application, aligning county demand
projections to national demand planning methodologies and structures,
facilitating integrated national energy planning and bi-directional
county-national modelling dialogues in line with Kenyan energy pol-
icy priorities.

3. Methodology

This section outlines the methodological workflow developed for the
data collection and manipulation employed, and subsequent county
energy demand models and projections created. The county demand
models are created using MAED. MAED is an open-sourced bottom-up
whole energy system simulation modelling tool developed by the In-
ternational Atomic Energy Agency (IAEA), which produces dis-
aggregated annual energy demand projections. MAED offers a flexible
methodology where the user can define the geographical and sector
aggregation scales captured, allowing the modelled to be uniquely
tailored to the case study being examined. Fig. 1 outlines the most basic
structure of the MAED energy models (and the structure employed
within this study), with further disaggregation for the sectors facilitated
at the user’s discretion depending on data availability and the purpose of
the energy model development and study. MAED derives the demand
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projections through combining energy intensities for the various defined
sectors per energy type (motive power, thermal, and electricity use) and
fuel types (solar thermal, biomass, traditional fuels, fossil fuels and
electricity) with socio-economic driving factors (population growth
rates, GDP growth rates, urbanisation rates and sectoral shares of GDP).
Household energy demand is projected using population driving factors
(such as population growth rates, urbanisation rates, household size)
whereas all economic sectors (agriculture, construction, mining,
manufacturing, and services) are projected using economic driving
factors (GDP growth rates, sectoral shares of GDP). The model produces
both final and useful energy demand per sector and fuel type. More in
depth information on the model structure and methodology can be
found in the published handbook [56].

MAED was chosen as the modelling tool due to the national Least
Cost Power Development planning unit in Kenya, utilising the same
methodology to produce their own national scale demand projections
for the power sector [7]. As such, by synergising county demand
methods and projections in line with those currently utilised by national
planning units, CORE-D can better facilitate modelling dialogues and
county-national integrated modelling. Additionally, MAEDs ‘simple’
methodology, overcomes historic barriers to county energy planning
within Kenya such as data availability, time, and resource capacity
within planning units [1,74,75]. The models basic structure, with the
option for further sectoral resolution manipulation, is not data intensive,
requiring socio-economic data which is widely reported globally from
census and economic reports, with the option to capture increased res-
olutions in cases where data-availability is higher. Additionally, the
model only requires a minimum single base-year data collection, which
can be chosen based on the best available data for the case study,
overcoming barriers of limited and intermittent data and for planning
units with restricted resources. Alongside this, the MAED models were
developed specifically as a capacity building and educational resource
due to the availability of free online courses and training material which
can aid the user in learning how to create their own basic model and
produce their own demand projections [76,77], alongside in person
capacity building training opportunities and online troubleshooting and
support [75]. CORE-D employs a novel downscaling methodology to
overcome historic barriers to county data availability, in order to gain
county resolution energy balances. Such methodology involves a
three-step process of: (a) collecting raw data from national energy bal-
ances, (b) processing the national energy balance to align with the
structure required for MAED, and (c) disaggregating national energy
demand proportional to county Gross County Product (GCP) and pop-
ulation data. Energy consumption for the economic sectors (agriculture,
construction, mining, manufacturing, and services) was disaggregated
equivalently to the individual counties sectoral economic contribution
to the national sectoral GDP. Similarly, household energy consumption
was disaggregated equivalently to the percentage of the total national
population residing in each individual county. An illustrative

Energy
Demand

Agriculture

R “

Manufacturing

Households

l—|—|

Services

Fig. 1. An illustrative overview of the most basic energy demand model structure within the Model for the Analysis of Energy Demand [12].
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representation of the downscaling methodology employed using a case
study of Kilifi County can be found in Fig. 2.

An in-depth overview of the downscaling methodology developed
and applied within this study is outlined in an accompanying data-in-
brief [12]. The energy demand models in this study were created and
published in such a way to facilitate easy uptake by academics, planners,
and policy makers to allow further model development in the future. All
the models are published on the free Zenodo repository (for example
Wajir County [79]), with individual data notes explaining the method-
ology, data and model development steps, excel file data templates to
allow easy updating of data in the future, and the MAED model zip files
for all 47 counties. As such, the MAED models can easily be uploaded
onto the MAED user interface and used for further study in the future.
Consequently, MAED is used to overcome barriers to uptake in counties
with low capacity and prior modelling experience, with opportunities
for further model uptake and development in the future.

3.1. Approach

This study develops individual whole energy system demand models
for all forty-seven counties in Kenya, producing a baseline demand
projection from 2023 to 2070, with the years from 2019 to 2023 as a
calibration period using historic report socio-economic and demand
data, taking the total modelling period from 2019 to 2070. This long-
term modelling period is in line with the national whole energy sys-
tem (WESM) OSeMOSYS optimisation modelling period used by in-
county national planning teams as an attempt to align national and
county modelling initiatives to better facilitate modelling dialogues
[11].. The authors acknowledge that the base year of 2019 is becoming
outdated, and whilst it is kept to coincides with current national
modelling practices and is used alongside further calibration years of
2020-2023, it is expected that both WESM and subsequently CORE-D
will revise the modelling period in the upcoming year to accommo-
date model and data updates.

The workflow to develop the county models can be broken down into
six key steps illustrated in Fig. 3. The model workflow can be categorised
as: 1) collecting datasets, 2) data processing and manipulation, 3)
configuring the model inputs, 4) performing model runs, 5) results
analysis, with an optional step of 6) results processing into model
parameter inputs. The steps can be split into two halves, with step 1-3
involving the model preparation, and steps 4-6 involving the model
running [12].

3.1.1. Model preparation

The primary phase of the workflow involves model preparation, with
the first step being the collection of data. Three types of data were
collected based on data availability and accessibility and were ranked in
priority order as: (a) county data — either county resolved national data
or data collected and produced directly from existing county energy

National Energy
Balance Per
Sector (TJ)

National
Manufacturing
6388.93T)

National
Households
52403.84T)
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plans or wider planning efforts, (b) national data sets with no processing
or downscaling, and (c) processed national resolution data which has
been downscaled to a county resolution via a methodology developed by
the authors. Data were collected via best-available website, reports, and
databases from both national and international organisations alongside
existing models and academic articles. A full overview of the collected
data, and the downscaled methodology employed, can be found in the
associated data article [12]. Once the county and national data was
collected, and processed where necessary (step 2), the data was then
manually inputted into forty-seven independent MAED models for each
of the counties (step 3).

Baseline model parameters included consistent economic sectoral
configuration across the modelling period, GCP growth gradually
declining at an annual rate of 0.05 %, and a steady 0.5 % urbanisation
rate across the modelling period. Individual county priorities, plans, and
contexts were not integrated at this stage of the study. This is due to a
lack of county data, and as 26 counties are yet to start their county
energy plans, data availability particularly in relation to county targets
and development priorities, remains poor and fragmented. Alongside
this the aim of this research is not to provide an in-depth production and
analysis of county demand projection scenarios but instead to (a)
explore methods to facilitate integrated national energy planning, (b)
align methodologies and demand projection structures from both na-
tional and county resolution energy planning, and (c) to produce base-
line models as capacity building tools and to overcome historic barriers
of county energy planning of limited resources. A full overview of the
baseline scenario assumptions can be found in [12].

3.1.2. Model running

Following the undertaking of the steps outlined in the primary model
preparation phase, the second phase of running the model was under-
taken starting with scenario performance (step 4). Due to the time
scales, and demonstrative nature of this primary research study, only
one zero-order basic baseline scenario was performed for each of the
county models. The model runs produced simple demand projections
from 2019 to 2070 and were intended to provide an example of baseline
modelling results and outcomes which could be produced through
applying the data and methodology outlined in this article. Results
analysis was conducted following the production of the baseline pro-
jections, including an assessment of the multi-scale nature of the
modelling results from both geographical and fuel type scope. An
exploration of the results through analysis (step 5) and processing (step
6) in more detail will be explored in Section 4.

4. Results and discussion

The created energy demand models and subsequent projections
produced can be utilised to support energy planning efforts across scales
within Kenya, considering different geographic, sectoral and fuel foci.
All demand projections produced can increase the modelling resolutions

County Sectoral
Contribution (%)

Kilifi GCP
Contribution
4.64%

Kilifi Population
Contribution
3.14%

Fig. 2. The downscaling methodology used to obtain county resolution energy balances from the national energy balance data for 2019 for Kilifi County [78]..
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Fig. 3. An illustration of the five step (with an optional sixth step) methodological workflow to produce county energy demand projections.
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Fig. 4. An illustrative example highlighting the range of potential multi-geographical scale demand projections (PJ) to be produced from 2019-2070 with (a) a

baseline demand projection for Kilifi county, (b) a baseline regional demand projection for the coastal region disagregated by county, (c) a baseline national demand
projection for Kenya disagregated by region.
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from singular nodes for optimisation or simulation modelling inputs
(whether geographical or sectoral) to explore a more detailed and sub-
sequently representative energy model. Geographical, sectoral and fuel
type scope can be picked by the user based on the modelling research
aims and objectives and what is most relevant to the case study being
examined. Such resolutions could include electricity demand projections
for the coastal region of Kenya, rural cooking demand projections for
Kilifi County, or national scale whole energy system demand projections
with a county geographical and six sector resolution. The following
subsections (4.1 — 4.2) provide baseline, singular scenario, multi-scale
results to be gained from applying the MAED models produced. Addi-
tionally, subSection 4.3. provides an illustrative comparison of three
possible demand scenarios for Kilifi County utilising the collected data
and subsequent model developed.

4.1. Multi-Geographical scale modelling

The demand projections produced can be used for various multi-scale
geographical resolution modelling. Whilst the initial MAED models
produce all demands in a standard county resolution format, the user
can self-aggregate the demand to multiple resolutions and therefore
could be used as modelling demand inputs for a variety of Kenyan
contexts. For example, national demand projections could be produced
at three resolutions (national, regional, and county) providing flexibility
for the model user to utilise the demand resolution most appropriate to
their research and/or computer processing capacity. In cases where 47
demand node representation is infeasible due to technological limita-
tions, the user can self-aggregate the produced county demands to their
desired resolution.

Fig. 4 provides an example of possible multi-geographical scale de-
mand modelling projections produced. In the baseline projections, de-
mand for Kilifi County will increase from 1.99PJ in 2019 to 9.3PJ in
2070. For the total coastal region, demand is seen to increase from
5.63PJ in 2019 to 34.21PJ in 2070 and national demand increases from
64.11PJ in 2019 to 384.61PJ in 2070. Therefore, in the baseline pro-
jections, Kilifi County demand forms 35.3 % of the total coastal region
demand, and 3.1 % of total national demand in 2019. This changes to
27.19 % of the total coastal regional demand, and 2.42 % of the total
national demand in 2070.

Such a methodology could be especially useful for energy planning,
particularly for power providers who operate with regional electricity
management and distribution. However, care should be taken when
adopting regional forecasts to align utility region boundaries with the
geographical scope included in county boundaries. Additionally, the
development of individual county projections which account for the
needs and priorities of county plans and development goals can then be
aggregated to a national scale and integrated into a national energy
optimisation model with individual county demand inputs. Thus, help-
ing to facilitate county-to-national modelling dialogues and multi-level
energy governance planning through aligning modelling methodolo-
gies and demand projections produced and utilised by planners.
Therefore, county planning, through demand projections, whilst un-
dertaken separately to national level optimisation models, can also feed
into such models as input parameters facilitating multi-level governance
dialogues within energy models.

4.2. Multi-Sectoral resolution modelling

Similarly, the demand models produced can also be tailored to
varying sectoral resolutions aside from assessing the whole energy sys-
tem together, to focusing on a specific fuel type or sub-sector. Kenya has
a variety of plans and strategies which have explicit connections to
energy, such as the cooking transition strategy [5], the least cost power
development plan [7], and the slum upgrading and prevention strategy
[80], alongside the national energy policy [2]. The methodology utilised
provides flexibility in producing energy demands at multiple sectoral
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scales. As such, sector resolution can be varied responding to energy
governance structures of the case study, for example as household en-
ergy usage remains a core part of county energy planning jurisdictions it
could be most relevant to have household demand remain at a county
level, whereas manufacturing policy and production may be most rele-
vant to be represented at a national level. Due to the fluid nature of
CORE-D model, the sectoral resolution of demand projections can
therefore change in response to continued developments in county en-
ergy planning mandates and increased county responsibilities. Similarly,
as the demand projections produced in MAED are already disaggregated
by fuel type, CORE-D provides the opportunity to assess electricity de-
mand, additionally at various geographical scales, in isolation.

Fig. 5 provides an example of possible multi-sectoral scale demand
modelling projections produced using CORE-D by focussing on house-
hold energy demand. In the illustrative baseline household projections
produced for Kilifi County, demand increases from 1.64PJ in 2019 to
3.36PJ in 2070. For the coastal regional total household demand, an
increase is seen from 4.01PJ to 11.99PJ in 2070 and for total national
household demand from 52.03PJ in 2019 to 160.75PJ. Subsequently,
Kilifi household demand forms 40.89 % of the coastal regional total
household demand, and 3.15 % of the total national household demand
in 2019. Alternatively, in 2070 Kilifi household demand forms 28 % of
the total coastal region household demand, and 2.09 % of the total na-
tional household demand in 2070. Alongside this, household demand
forms 82.41 % of Kilifi county’s total energy demand in 2019,
decreasing across the modelling period to form only 36.13 % in 2070.
For the Coastal regional demand, household energy forms 71.4 % of the
total in 2019, rapidly decreasing to 35.1 % in 2070. This trend is also
seen at the national level, with household energy forming 81.14 % of
total energy demand in 2019 and reducing to 41.8 % by 2070.

4.3. Demand projections

Alongside providing an opportunity for the representation of multi-
geographical scale, and multi-sectoral resolution within energy de-
mand, the CORE-D demand models can also be used to analyse future
demand projections under varying possible future scenario conditions..
Whilst an in-depth energy demand projection assessment for Kilifi uti-
lising CORE-D would require extensive stakeholder engagement and co-
creation, initial MAED results can provide insights to show how CORE-D
could be used for county case studies in isolation and as capacity
building tools for further data integration, alongside feeding into the
regionally and nationally aggregated demand as previously illustrated
[81].

Two further illustrative future scenarios, alongside the baseline
projection, are developed for Kilifi and subsequent projections produced
compared. Such scenarios form a baseline, higher, and lower scenario
coinciding with baseline, vision and low scenarios employed by the
national LCPDP demand scenarios [7,82]. Such ambitious and reserved
demand scenarios are consistently conducted in demand assessments to
provide a range of possible demand to be considered for uncertainty
analysis [8,9,15]. Subsequently, the higher ‘ambitious’ scenario illus-
trates a potential future where GCP, population, and urbanisation
growth rates are higher than the baseline scenario. Additionally, the
lower ‘reserved’ scenario illustrates a potential future where GCP,
population, and urbanisation growth rates are lower than the baseline
scenario. Despite conducting and publishing their CEP [81], Kilifi
County energy plan contains no whole energy system demand pro-
jections, nor any data on base year energy balances or total county de-
mand. As such, validation can’t yet be undertaken from comparing
MAED county demand results to existing CEPs. An overview of the
scenario constraints inputted to produce the projections are outlined in
Table 2.

An illustration of the demand projections produced from 2019 to
2070 are shown in Fig. 6. Under all three modelled scenarios, total en-
ergy demand is expected to increase significantly across the modelling
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Fig. 5. An illustrative example highlighting the range of potential multi-sectoral scale demand projections (PJ) to be produced from 2019-2070 with (a) a baseline
household demand projection for Kilifi county, (b) a baseline regional household demand projection for the coastal region disagregated by county, (c) a baseline

national household demand projection for Kenya disagregated by region.

period. The baseline demand produced increases from 1.99PJ in 2019 to
9.27PJ in 2070. Comparatively, the demand in 2070 reaches 11.82PJ in
the high scenario and 7.82PJ in the low scenario, a total range of 4PJ.
This subsequent range of demand projections produced across the sce-
narios can be used as input parameters for supply optimisation analysis,
particularly through providing a demand uncertainty range to be stud-
ied by robust decision making (RDM) techniques [83]. Whilst the sce-
narios developed within this article form basic future development
pathways, they illustrate potential outputs which can be gained through

application of the CORE-D models. Future research can be conducted to
develop the development scenarios further, to capture a more detailed
representation of county social and economic development goals,
alongside energy system expansion priorities.

4.4. Limitations and future developments

As indicated previously, this article offers an exploratory look into
the county energy demands produced and a discussion into the potential



N. Fields et al.

Table 2
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Constraints for Kilifi County’s Gross County Product (GDP) %, Population Growth % and Urbanisation %, across the three illustrative modelled scenarios of baseline,

low, and high across the projection period of 2023-2070.

Gross County Product %

2023 2030 2040 2050 2060 2070
Baseline 6.87 6.52 6.02 5.52 5.02 4.52
Low 6.87 6.38 5.68 4.98 4.28 3.58
High 6.87 6.66 6.36 6.08 5.76 5.46
Population change %
2023 2030 2040 2050 2060 2070
Baseline 1.91 1.7 1.4 1.18 1.06 0.96
Low 1.91 1.63 1.28 1.04 0.83 0.81
High 1.91 1.86 1.71 1.67 1.66 1.65
Urbanisation %
2023 2030 2040 2050 2060 2070
Baseline 29.1 32.6 37.6 42.6 47.6 52.6
Low 29.1 31.9 35.9 39.9 43.9 47.9
High 29.1 33.3 39.3 45.3 51.3 57.3
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Fig. 6. Total whole energy system demand forecast from 2019 to 2070 across the three modelled scenarios for Kilifi County, with 2019-2023 as the calibrated

base years.

multi-scale applications from such projections and therefore does not
offer in depth scenario development and subsequent results analysis.
Instead, this paper serves as a starting point in which further develop-
ment of the CORE-D models, through subsequent stakeholder-driven
enhancements, capacity building exercises, integration of richer and
updated datasets, and robust decision-making analyses can follow.
Therefore CORE-D is not the final product, and further integration of
additional county-level datasets, priorities, and visions, following the
future production of additional CEPs is needed to refine assumptions
used within the model. The current version of CORE-D has therefore
limited readiness for detailed county scale scenario analysis and subse-
quently such a study has not been performed within this paper.

A main area of interest for future development of the demand pro-
jections is the integration of additional datasets. The expansion of data
to be more inclusive and representative to the energy needs of com-
munities within Kenya is a priority for further development, particularly
capturing explicit energy demand profiles for Gender and Social Inclu-
sion (GESI), resilience and climate adaptation considerations. Such
further developments could include additional disaggregation of the

household sectors by household type (informal versus formal settle-
ments), or demographic characteristics (gender of household head, age
of household head). Under the current MAED structure and interface,
such disaggregated typologies remain challenging to capture and would
require further extensive development to the model code and additional
data collection and manipulation.

Engaging county, and national, stakeholders is essential for such
future developments, including data collection and further model en-
hancements for CORE-D. Strengthening partnerships and model co-
production with county stakeholders is crucial through collaborative
data sharing and collection, alongside capacity building and knowledge
sharing. Establishing strong collaborative partnerships with stake-
holders will guarantee that CORE-D continues to integrate the most up-
to-date and accurate data and remain relevant and representative of
current planning priorities and processes within Kenya. Further model
development could also include opportunities for collaboration, capac-
ity building, model co-production and scenario analysis for individual
county case studies, enhancing the integration of county characteristics,
priorities and visions into CORE-D results.
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Further, there is currently no way to run multiple counties at once or
disaggregate a national model to county resolutions within the MAED
interface, and so CORE-D instead relies on 47 separate MAED models.
This can prove time consuming for cases where the user is interested in
national, or regional, scale projections with county resolutions. How-
ever, this does allow for additional flexibility for the user to choose
which counties they are interested in and reduces the intensity for
technologies which would struggle to run a high-resolution national
model. The future development of a data pipeline through a script which
manually takes the MAED excel results files and converts the data into
demand modelling inputs for optimisation models such as OSeMOSYS
will further facilitate seamless multi-scale modelling and governance
dialogues from county to national scales and will reduce time for the
user. Such soft-linking approaches would allow the county resolution
demand projections to be used not only for demand modelling and
analysis but also be integrated into supply modelling as a key parameter
input.

5. Conclusion

In conclusion, CORE-D presents novel county resolution whole en-
ergy system demand models for Kenya, overcoming historic barriers to
county and multi-scale modelling of resource and data unavailability. It
offers a potential solution to supporting multi-level governance di-
alogues and integrated national energy planning within Kenya, forming
a basis for accessible and consistent data inputs and demand analysis
across counties. Through aligning demand methodologies at the county
scale to existing national energy planning, CORE-D facilitates bi-
directional dialogues from integrated modelling techniques, allowing
consistent demand information to feed into national models. Addition-
ally, the methodology offers flexibility in scales depending on research
aims, from varying geographical, sector and fuel type detail. Through
the creation of forty-seven individual models for each of the counties,
CORE-D can capture the unique features of each county’s energy sectors
alongside capturing individual county energy priorities and needs, thus
creating projections which are more representative than national scale
projections which omit regional differences. Therefore, CORE-D pro-
vides free and accessible resources which can be used to support energy
planning processes within Kenya, responding to the changing policy
landscape of devolved and integrated energy planning, enabling the
future development of enhanced demand projections under varying
scenarios to county energy planning. Additionally, it facilitates the
integration of county resolution demand projections into national and
regional scale energy supply models and analysis. Finally, CORE-D
provides a capacity building and educational tool, overcoming historic
barriers to county energy planning in Kenya of limited resources and
capacity.

Data availability

Links to data repository are available in the paper and in the Sup-
plementary files. This work follows the U4RIA guidelines which provide
a set of high-level goals relating to conducting energy system analyses in
countries. This paper was carried out involving stakeholders in the
development of models, assumptions, scenarios and results (Ubuntu/
Community). The authors ensure that all data, source code and results
can be easily found, accessed, downloaded and viewed (retrievability),
licensed for reuse (reusability), and that the modelling process can be
repeated in an automatic way (repeatability). The authors provide
complete metadata for reconstructing the modelling process (recon-
structability), ensuring the transfer of data, assumptions and results to
other projects, analyses and models (interoperability), and facilitating
peer-review through transparency (auditability).
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