
A E-Companion for “Incentivizing flexible workers in the gig econ-

omy: The case of ride-hailing”

A.1 Summary of Notations

• n represents the number of locations.

• T = (ai,j)n×n represents the transition matrix where ai,j > 0 denotes the probability that a

person at location i wishes to travel to location j.

• θ represents the total number of drivers. The number of passengers is normalized to 1.

• δi,j is the physical distance between locations i and j.

• pi is the per-mile price for a ride originating from location i.

• ci is the commission rate (percentage of the revenue that the driver takes home) for a ride

originating from location i.

• xi and yi denote the number of cars and people at location i with
∑n

i=1 xi = θ and
∑n

i=1 yi = 1.

• ri = yi(1− pi) denotes the number of people willing to hire a car at location i.

• mi = min{ri, xi} is the number of matches generated at location i.

• ηi is the probability that a driver who is searching at location i finds a passenger.

• w refers to the wage that drivers could earn in the labor market.

• φh is the probability that a driver matched with a passenger continues to offer driving services

in the next period.

• φl is the probability that a driver without a match continues to remain in service in the next

period. We assume that φh > φl, i.e. being matched increases the likelihood of remaining in

the service while being unmatched increases the likelihood of dropping out.

• σ =(σ1, ..., σn) is the unique steady-state vector of the transition matrix T .

• M =
∑n

j=1mj denotes the total matches generated.

• di =
∑n

j=1 ai,jδi,j is the average trip length of a ride originating from i. We label the locations

from 1 to n in such a way that d1 < d2 < ... < dn.

• π is the platform’s per-period earnings.

• Eσ(d) =
∑n

i=1 σidi is a weighted sum of distances d1, ..., dn and can be interpreted as the

average trip length in the city. Eσ(
√
d) =

∑n
i=1 σi

√
di is similar.

• θ̄i is the threshold (minimum number of cars) necessary to maintain the interior equilibrium

under model i = 1, ..., 4.

• h(p) =
∑n

i=1
σi

1−pi
and g(p) =

∑n
i=1 σipidi.
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• θ = µw represents the labor supply function, where w, with some abuse of notation, is expected

earnings and µ is the labor market sensitivity parameter.

• θ∗i is the optimal entry under model i.

• csi is the consumer surplus at location i, while CS is the total consumer surplus.

• α ∈ (0, 1) is the proportion of (behavioral) customers who turn off their app and exit the

platform when they realize that it is using location-specific pricing and not uniform pricing.

• ϵ(pi, µ) is the elasticity of the price pi with respect to µ. Similarly, ϵ(ci, µ) is the elasticity of

commission rate ci with respect to µ.
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A.2 Driver Entry: An Alternative Approach

In the main text, driver entry is modeled by the relationship θ = µw, where µ captures the labor

market’s sensitivity to earning opportunities. Here, instead of relying on a single parameter, we

offer a more granular approach to modeling driver entry and examine the robustness of our earlier

results.

To start, suppose that the potential driver force consists of I distinct groups, each with a

different likelihood of joining the platform. Specifically, each individual in group i = 1, 2, ..., I

has a reservation wage to participate, and these reservation wages are distributed according to

a cumulative distribution function Fi. An individual participates only if his reservation wage is

less than or equal to the expected earnings in the market, w. Consequently, the total number of

participants from group i is equal to

ψi · Fi(w),

where ψi is the measure of individuals in that group. Summing over all groups, the total number

of drivers entering the platform is equal to

θ =

I∑
i=1

ψi · Fi(w). (18)

With this new approach, we depart from a single sensitivity parameter, and instead model driver

entry as a composite expression. It depends on the size of each group, ψi, their likelihood of

participation, Fi, and the expected earnings, w. We now proceed to derive the optimal entry under

Model 4. While the main text is based on four operational models, for brevity, here we focus on

Model 4, omitting model-specific indices when understood.

The profit is given by (13). Substituting for prices, given by (32), the expression becomes

π = Eσ (d) θ − E2
σ(
√
d)θ2 − wθ (1− φh) .

The platform solves maxθ π(p) subject to (18). The first-order condition yields25

dπ

dθ
= Eσ (d)− 2θE2

σ(
√
d)− w (1− φh)− θ (1− φh)

dw

dθ
= 0.

Applying the Implicit Function Theorem to (18), we have

dw

dθ
=

1∑I
i=1 ψi · fi(w)

.

Thus, after substituting for (18), the first-order condition becomes

Eσ (d) = 2E2
σ(
√
d)

I∑
i=1

ψi · Fi(w) + w (1− φh) + (1− φh)

∑I
i=1 ψi · Fi(w)∑I
i=1 ψi · fi(w)

. (19)

25It is straightforward to verify that the second order condition holds under mild conditions. Indeed, note that

d2π

dθ2
= −2E2

σ(
√
d)− 2

dw

dθ
(1− φh)− θ (1− φh)

d2w

dθ2
.

The first two terms are negative, whereas the last term can be positive or negative. Unless φh is too small and Fis
are extremely convex, the total sum remains negative, satisfying the second order condition.
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Figure 9: CDFs, Entry, Average Price and Commission

Drivers can be categorized in many ways, such as by gender, age, whether they use the platform for

primary or supplemental income, whether they are exclusive drivers or multi-homing drivers, and

so on. After compiling the necessary information—including the number of different groups, their

density functions, and population measures—the platform can determine the optimal compensation

level w using (19). The corresponding level of entry θ can then be recovered via (18). Once θ is

pinned down, the remaining objects—prices, commissions, profits—can be determined as was done

previously.

As an example, suppose there are two distinct groups with equal population size, i.e. let I = 2

with ψ1 = ψ2 = 1. Suppose that the CDF of Group 1 is given by

F1(w) =

{
0 if w < wmin

w−wmin
w if w ≥ wmin,

where wmin is the minimum earnings threshold below which Group 1 drivers do not participate.

Once this threshold is met, though, they are not too selective about additional compensation. (Fig.

9 illustrates F1 for wmin = 2.) It is sensible to think that this behavior reflects drivers who rely

on the platform for their primary income and need a minimum level of earnings to justify their

participation.

For Group 2, the CDF is given by

F2(w) =
w

w + s
,

where a higher value of s shifts the CDF downward, indicating a lower likelihood of participation.

As an illustration, Fig. 9 plots F2 for s = 10. Group 2 drivers are more flexible and, unlike Group 1

drivers, respond to earning opportunities even at low levels of w. This behavior is consistent with

individuals who drive to earn supplementary income.

Given F1 and F2, we simulate key equilibrium outcomes against wmin, the earning threshold

below which no one from Group 1 participates. (As in earlier examples, we consider a city with

five locations, using the layout and transition matrix shown in Fig. 1, right panel.) A higher wmin

shifts F1 to the right, making the drivers in this group less responsive to earning opportunities,

and therefore, less likely to participate. In the simulation we vary wmin between 0.5 to 5. As wmin

increases, Group 1 drivers become less responsive to driving opportunities, and consequently, entry

from Group 1 drops significantly. In contrast, entry by Group 2 rises, but total entry still decreases
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Figure 10: Driver compensation, Profits and Consumer Surplus

(Fig. 9, middle panel).

To see why, note that the platform raises both prices and commission rates across all locations

to address the reduced responsiveness of Group 1 drivers. These adjustments result in an overall

rise in driver compensation w. Since F2 remains unchanged, the higher compensation attracts more

drivers from Group 2, sharply increasing their presence in the driver fleet. However, the shifting

F1 means that, despite the rise in compensation, fewer drivers from Group 1 choose to join the

platform, leading to a decline in total entry. Finally, the reduced total entry, combined with higher

prices and increased driver compensation, results in lower profits and consumer surplus. (All these

claims can be verified via Fig. 9 and 10.) This richer model of driver entry allows the platform to

better anticipate participation behavior by each group, predict the composition of the driver fleet,

and assess how different types of drivers respond to changes in commissions and prices.

These findings are consistent with the results presented in the previous section. Indeed, a rise

in wmin in this alternative version of driver entry is akin to a fall in µ in the benchmark model.26

Proposition 7 shows that when µ declines, prices and commissions rise, w increases, entry falls, and

both profits and consumer surplus fall. The simulations in here confirm these insights, reinforcing

the robustness of our earlier results.

Further note that as wmin rises, the platform responds by increasing commission rates much more

sharply than prices (Fig. 9, right panel). A modest price increase is still required to balance the

demand with the reduced overall driver supply, but it remains significantly smaller in magnitude

than the corresponding adjustment in commissions. This observation is in line with Remark 2,

which argues that commissions are a more effective tool than prices for managing labor market

fluctuations. The intuition is the same: higher commissions directly incentivize drivers without

reducing customer demand. In contrast, raising prices suppresses demand, making it a less effective

way to incentivize drivers.

To conclude, instead of summarizing labor market sensitivity with a single parameter, here we

explicitly account for differences across driver groups, including their population sizes and partici-

pation behavior. Despite these added details, the main insights remain unchanged, which reinforces

the validity of our original approach and confirms the robustness of our earlier results.

26As wmin increases from 0.5 to 5, the resulting w rises from 0.78 to 5, while θ drops from 0.43 to 0.33. In the
benchmark model the relationship between w and θ is given by θ = µw, which means that the implied µ falls from
0.55 to 0.07.
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A.3 Proofs

Proof of Lemma 1. A Markov chain with a finite state space is said to be regular if a power of

its transition matrix has only positive entries. In our model n is finite and since ai,j > 0 it is easy

to verify that T 2 has only positive entries. It follows that the Markov chain associated with T is

regular and thus ergodic. For an ergodic Markov chain, there is a unique steady state vector

σ = (σ1, .., σn) with σi > 0 and

n∑
i=1

σi = 1

satisfying σ = σT . Furthermore, any vector v > 0 such that v = vT must be a multiple of σ (see

Grinstead and Snell (1998), Theorem 11.10). In the steady state m = mT , which implies that

mi = ζσi, where ζ is a positive scalar. Since
∑n

i=1 σi = 1 we have ζ :=
∑n

i=1mi ≡M. ■

Proof of Lemma 2. By contradiction, suppose that at location 1 we have x1 < r1. Since ηi < 1

for i ≥ 2 we have xi > ri for i ≥ 2. It follows that m1 = x1 and mi = ri; thus

M =
n∑

i=1

mi = x1 +
n∑

i=2

ri.

Per (2), mi = σiM ; hence x1 = σ1M and ri = σiM and therefore ri = σix1/σ1 for i ≥ 2. At

location 1 we have η1 = 1, thus (4) implies

pcd1 = w (1− φh) .

Substituting this relationship into (6) yields

x1 =
σ1 (1− φl) d1θ

(1− φh)Eσ (d) + d1 (φh − φl)
.

Noting (i) ri = (1− p) yi, (ii)
∑n

i=1 yi = 1, (iii)
∑n

i=1 σi = 1 and (iv) ri = σix1/σ1 for i ≥ 2, we

have

x1 < r1 ⇔ p < p̄ ≡ 1− x1
σ1
.

Furthermore, using these equalities, the platform’s profit in (8) can be written as

π = pEσ (d)
x1
σ1

− w

[
(1− φl) θ − (φh − φl)

x1
σ1

]
.

The profit function π rises in p, which means that setting p < p̄ is suboptimal to p = p̄. Thus, an

outcome with x1 < r1 cannot be an equilibrium. ■

Proof of Proposition 1. Recall that ri ≤ xi for all i; thus mi = ri and ηi = ri/xi Furthermore,

since (i) mi = σiM, (ii) ri = yi (1− p) and (iii)
∑n

i=1 yi = 1 we have

M = 1− p and ri = σi (1− p) ,

and therefore

π = p (1− p)Eσ (d)− w [(1− φl) θ − (φh − φl) (1− p)] .
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The platform’s problem is

max
p
π s.t. ri ≤ xi for all i,

where the constraints obtain per Lemma 2. The objective function is concave in p; thus, ignoring

the constraints, the first-order condition yields the global maximum

pint =
1

2
− (φh − φl)w

2Eσ (d)
.

Now focus on the constraints. First note that ri ≤ xi ⇔ ηi ≤ 1. Since d1 < d2 < ... < dn, only η1
can be equal to 1, while all other ηis must be strictly less than 1. The relevant constraint, therefore,

is the first one η1 ≤ 1. Equation (4) implies.

η1 ≤ 1 ⇔ w (1− φh) ≤ pcd1.

Furthermore, using (7) we have

c =
w (1− φl) θ

(1− p) pEσ (d)
− (φh − φl)w

pEσ (d)
. (20)

Substituting pint and c into the inequality above yields η1 ≤ 1 ⇔ θ ≥ θ̄1, where

θ̄1 :=

[
(1− φh)Eσ (d)

d1 (1− φl)
+
φh − φl

1− φl

](
1

2
+

(φh − φl)w

2Eσ (d)

)
,

i.e. if there are sufficiently many cabs in the city, then the constraint is slack and pint is feasible.

We refer to this outcome as the interior equilibrium. If however, θ < θ̄1 then the constraint η1 ≤ 1

binds, and therefore per equation (4) we have

pcd1 = w (1− φh) .

Substituting for c yields the corner equilibrium price

pcor = 1− d1 (1− φl) θ

Eσ (d) (1− φh) + d1 (φh − φl)
. (21)

Commission rates cint and ccor can be obtained by substituting pint and pcor into (20). ■

Proof of Lemma 3. Fix some p and let S0 denote the set of locations in which demand is

greater than or equal to supply, with at least one location exhibiting excess demand, and S1 the

set of locations with excess supply, i.e. S0= {i ∈ N : ri ≥ xi} with at least one inequality strict and

S1= {i ∈ N : ri < xi} .

Case 1 - S1 ̸= ∅ : Since xi ≤ ri we have ηi = 1 for all i ∈ S0. Similarly xi > ri ⇔ ηi < 1 for all

i ∈ S1. The indifference condition (4) implies

pidi = pjdj , for all i, j ∈ S0 and pidi < pjdj , for all i ∈ S0 and j ∈ S1.

Suppose that the platform leaves prices in S1 intact but increases prices in S0 to p′i = pi+ εi, where
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the vector ε is positive but infinitesimally small, satisfying

εidi = εjdj , for all i, j ∈ S0.

Note that p′idi = p′jdj , which means η′i = η′j for all i, j ∈ S0. It follows that either η
′
i = 1 or η′i < 1

for all i ∈ S0. Since ε can be arbitrarily small, it can be chosen to ensure that

η′i = 1, for all i ∈ S0 while p′idi < pjdj , for all i ∈ S0 and j ∈ S1,

Locations in S0: Prices are higher after the intervention. As for the number of rides, before the

intervention mi = xi. The fact that η′i = 1 implies that after the intervention we have m′
i =

x′i; however, note that x′i > xi because now more drivers search in S0. Since both the prices and

the number of rides go up, the platform earns more in S0 than it did before.

Locations in S1: Prices remain intact. The number of rides also remains the same. To see why, note

that after the intervention we have p′idi < pjdj for all i ∈ S0 and j ∈ S1, which means that η′j < 1

for all j ∈ S1. This, in turn, implies that the number of matches at each location in S1 remains the

same. It follows that the platform earns the same in S1 as it did before. The intervention allows

the platform to move some idle drivers in S1 to S0 and earn more; thus, the initially conjectured

outcome cannot be an equilibrium.

Case 2 - S1 = ∅: Along this outcome xi ≤ ri for all i = 1, ..., n with at least one inequality strict;

thus ηi = 1 for all i = 1, .., n. Pick location j as a reference point, and note that since ηi = 1 the

indifference condition (4) becomes pidi = pjdj , for all i. Substituting this relationship into (6) we

obtain xi = σiθ for all i. Recall that ri = yi (1− pi) ; thus xi ≤ ri ⇔ yi ≥ σiθ/(1− pi), with at least

one inequality strict. It follows that

n∑
i=1

yi >

n∑
i=1

σiθ

1− pi
⇔ ∆(pj) := θ −

[
n∑

i=1

σidi
di − pjdj

]−1

< 0.

The second step obtains because
∑n

i=1 yi = 1 and pidi = pjdj . The inequality ∆ (pj) < 0 is

strict because at least one location has xi < ri. Note that ∆ increases in pj and ∆ (1) > 0. Since

∆ (pj) < 0, there exists some p′j ∈ (pj , 1) satisfying ∆(p′j) = 0. So, if the platform increases pj to p
′
j

at location j, while also ensuring that p′idi = p′jdj at other locations, then x′i = r′i for all i, i.e. no

location exhibits excess demand. Prior to the intervention we had xi ≤ ri, with at least one strict

inequality; thus the number of rides was equal to mi = xi = σiθ for all i. After the intervention, we

have x′i = r′i; thus, the number of rides is still equal to m′
i = x′i = σiθ for all i. Prices, on the other

hand, are now higher, which means that the platform earns more than before. It follows that the

initially conjectured outcome cannot be an equilibrium. ■

Proof of Proposition 2. Ignoring the constraints, the platform solves

max
p

π (p) = max
p

[g (p) + w (φh − φl)]h (p)
−1 − w (1− φl) θ.

The first order condition with respect to pi implies

(1− pi)
2 di = [g (p) + w (φh − φl)]h (p)

−1 for all i = 1, ..., n.
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It follows that pj = 1− (1− pi)
√
di/dj ; hence

pinti = 1− Eσ (d) + w (φh − φl)

2
√
diEσ(

√
d)

. (22)

Substituting pi into (7) yields the equilibrium commission rate

cint =
4w (1− φl) θEσ

(√
d
)2

Eσ (d)
2 − w2 (φh − φl)

2 − 2w (φh − φl)

Eσ (d)− w (φh − φl)
.

Claim 1 The objective function π (p) is strictly concave in p.

We start by showing that h−1(p)is strictly concave. The strategy is to establish that h−1 (p) lies

underneath its linearization at some p0, which is given by

ĥ−1(p) = h−1(p0) +∇h−1
(
p0

) (
p− p0

)
=

∑
i

σi (1− pi)

(1− p0i )
2

·

[∑
i=1

σi
1− p0i

]−2

.

The function is concave if h−1 (p) < ĥ−1 (p) , i.e. if[
n∑

i=1

σi
1− p0i

]2

<

n∑
i=1

σi (1− pi)

(1− p0i )
2

n∑
i=1

σi
1− pi

.

Letting ti ≡
√

σi(1−pi)
(1−p0i )

2 and si ≡
√

σi
1−pi

, the inequality becomes

[
n∑

i=1

tisi

]2

<

n∑
i=1

t2i

n∑
i=1

s2i .

The result follows from Cauchy-Scwharz. Note that the inequality is strict; thus h−1(p)is strictly

concave. Observe that π (p) = [g(p) + w (φh − φl)]h
−1(p) minus a constant, where g is linear and

increasing; whereas h−1 is strictly concave and decreasing in p. Thus π is strictly concave (Boyd

et al. (2004), pg. 119).

For this (interior) equilibrium to emerge we need r1 ≤ x1 ⇔ η1 ≤ 1 which is equivalent to

w (1− φh) ≤ p1d1c,

i.e. the constraint at location 1 ought to be slack. After substituting for c, the condition is equivalent

to θ ≥ θ̄2,0, where

θ̄2,0 :=

{
Eσ (d) + w (φh − φl)

2 (1− φl)Eσ(
√
d)2

}{
(1− φh) {Eσ (d)− w (φh − φl)}

2p1d1
+ φh − φl

}
. (23)

If the constraint is slack at location 1 then it is slack at every other location (Lemma 4); thus

θ > θ̄2,0 is sufficient. Finally, the inequality pinti < pinti+1 follows from the fact that di < di+1. ■
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Proof of Lemma 4. If λk = 0 then the constraint is slack at location k, thus

ri < xi ⇒
[
g (p) + (φh − φl)

w

c

]
h (p)−1 − θ (φh − φl)

w

c
< pkdkθ (i)

Furthermore, the first-order condition implies

(1− pk)
2 dk = [g (p) + w (φh − φl)]h (p)

−1 (ii)

Now by contradiction suppose λk+1 > 0. Since the constraint is assumed to bind at location k + 1

we have

pk+1dk+1θ =
[
g (p) + (φh − φl)

w

c

]
h (p)−1 − θ (φh − φl)

w

c
(iii)

The profit function π is strictly concave. The constraint is assumed to bind at location k + 1. This

implies

dk+1 (1− pk+1)
2 < [g (p) + w (φh − φl)]h (p)

−1 (iv)

Since dk+1 > dk, equations (ii) and (iv) together imply that

dk (1− pk)
2 > dk+1 (1− pk+1)

2 ⇒ pk+1 > pk.

Notice, however, (i) and (iii) together imply that pk > pk+1; a contradiction. Thus λk+1 must be

zero. The second part of the Lemma is proved similarly. ■

Proof of Proposition 3. Equation (10) implies that

pi,kdi = p1,kd1 for i = 1, ..., k.

The inequality p1,k > ... > pk,k follows from the fact that d1 < ... < dn. Similarly, equation (11)

implies that

(1− pi,k)
√
di = (1− pn,k)

√
dn for i = k + 1, ..., n.

Again, the inequality pn,k > ... > pk+1,k follows from d1 < ... < dn. To compute the commission

rate, note ηi = 1 for i = 1, .., k, thus equation (4) becomes

ckpi,kdi = w (1− φh) , for i = 1, .., k.

Noting that pi,kdi = p1,kd1, this relationship implies

ck = w (1− φh) /p1,kd1. (24)

Therefore, if a feasible p1,k exists then ck can be computed using the relationship above. In what

follows, we will show the existence of such a p1,k. With no loss in generality let φh = φl, thus

equations (10) and (11) can be rewritten as

Ω := g (p) /h (p) = pidiθ for i = 1, ..., k and (1− pi)
2 di = Ω for i = k + 1, ..., n.

The prices in regime−k can be written in terms of p1,k as follows:

pi,k = p1,kd1/di for i = 1, .., k and pi,k = 1−
√
p1,kd1θ/di for i = k + 1, .., n. (25)
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Substituting these relationships into the equality p1,kd1θ = Ω yields

∆k (p1,k) :=
p1,kd1

∑k
i=1 σi +

∑n
i=k+1 σidi −

√
p1,kd1θ

∑n
i=k+1 σi

√
di∑k

i=1
σidi

di−p1,kd1
+ 1√

p1,kd1θ

∑n
i=k+1 σi

√
di

− p1,kd1θ = 0. (26)

The rest of the proof is by induction. The first step is to show that when k = 1 there exits some

p1,1 ∈ (0, 1) satisfying ∆1 = 0. First, note that if p1,1 = 1 then ∆1 (1) < 0. Indeed when p1,1 = 1

the expression σ1d1
d1−p1,kd1

in the denominator tends to infinity; rendering ∆1 (1) = −d1θ < 0. Second,

when ∆1 is evaluated at pint1 and θ̄2,0, which are given by (22) and (23), we obtain ∆1

(
pint1 ; θ̄2,0

)
= 0.

Since ∆1 falls in θ we have ∆1

(
pint1

)
> 0 for θ < θ̄2,0. The function ∆1 is continuous; thus, by

the Intermediate Value Theorem there exists a p1,1 between pint1 and 1 satisfying ∆1 (p1,1) = 0.

Remaining prices are pinned down through (25); i.e.

pi,1 = 1−
√
p1,1d1θ/di for i = 2, ..., n.

Since d2 < ... < dn it is easy to see that p2,1 < ... < pn,1. Furthermore, since p1,1 is feasible, i.e.

p1,1 ∈ (0, 1), all other prices are also feasible.

Per Lemma 4 the relevant constraint when k = 1 is p2,1d2θ ≥ Ω. When the constraint binds,

we have p2,1d2θ = Ω and when it is slack we have (1− p2,1)
2 d2 = Ω. Thus the critical value of θ

satisfies

p2,1d2θ = (1− p2,1)
2 d2 ⇒ θ = θ̄2,1 :=

(1− p2,1)
2

p2,1
.

The constraint is slack when θ ≥ θ1; thus regime-1 obtains when θ ∈ [θ̄2,1, θ̄2,0). This establishes the

claims of the Proposition when k = 1.

Now, for the inductive step, suppose the claims in the body of the proposition are valid for the

case k − 1, i.e. when θ ∈ [θ̄2,k−1, θ̄2,k−2) there exists p1,k−1 ∈ (0, 1) satisfying ∆k−1 (p1,k−1) = 0.

Note when p1,k = 1, we have ∆k (1) < 0. Indeed if p1,k = 1 then the expression
∑k

i=1
σidi

di−p1,kd1
in

the denominator tends to infinity for i = 1, which means that ∆k (1) = −d1θ < 0. Next, we will

show that ∆k

(
p1,k−1; θ̄2,k−1

)
= 0. Per the inductive step we have

∆k−1 (p1,k−1) =
p1,k−1d1

∑k−1
i=1 σi +

∑n
i=k σidi −

√
p1,k−1d1θ

∑n
i=k σi

√
di∑k−1

i=1
σidi

di−p1,k−1d1
+ 1√

p1,k−1d1θ

∑n
i=k σi

√
di

− p1,k−1d1θ = 0.

The numerator of the first expression can be written as follows

p1,k−1d1

k∑
i=1

σi +

n∑
i=k+1

σidi −
√
p1,k−1d1θ

n∑
i=k+1

σi
√
di +

{
σkdk − σkp1,k−1d1 −

√
p1,k−1d1θσk

√
dk

}
.

Similarly, the denominator is equal to

k∑
i=1

σidi
di − p1,k−1d1

+
1√

p1,k−1d1θ

n∑
i=k+1

σi
√
di +

{
σk

√
dk√

p1,k−1d1θ
− σkdk
dk − p1,k−1d1

}
.

Per the inductive step when θ = θ̄2,k−1, where θ̄2,k−1 = (1− pk,k−1)
2 /pk,k−1 we have p1,k−1d1 =

11



pk,k−1dk; thus √
p1,k−1d1θ = (dk − p1,k−1d1) /

√
dk.

Using this relationship, we note that the expressions in curly brackets in the numerator and

the denominator are both zero. Once these terms vanish, it is easy to check that the remain-

ing expressions in ∆k−1 (p1,k−1) are as in ∆k (p1,k−1) , which means that ∆k−1

(
p1,k−1; θ̄2,k−1

)
=

∆k

(
p1,k−1; θ̄2,k−1

)
= 0. Since ∆k falls in θ, we have ∆k (p1,k−1) > 0 whenever θ < θ̄2,k−1. Since

∆k (1) < 0, the Intermediate Value Theorem guarantees existence of a p1,k ∈ (p1,k−1, 1) satisfying

∆k (p1,k) = 0.

The remaining prices are pinned down through (25). Since p1,k is feasible, i.e. since p1,1 ∈ (0, 1),

all other prices are also feasible. Per Lemma 4, the relevant constraint is pk+1,kdk+1θ ≥ Ω. When

the constraint binds, we have pk+1,kdk+1θ = Ω and when it is slack we have (1− pk+1,k)
2 dk+1 = Ω.

Thus the critical value of θ satisfies

pk+1,kdk+1θ = (1− pk+1,k)
2 dk+1 ⇒ θ = θ̄2,k :=

(1− pk+1,k)
2

pk+1,k
.

The constraint is slack when θ ≥ θ̄2,k; thus regime−k obtains when θ ∈ [θ̄2,k, θ̄2,k+1). This establishes

the proof of existence for a feasible p1,k. To characterize it, start with equation (26), which can be

rewritten as

p21,kd1
∑k

i=1 σi − 2p
3/2
1,k

√
d1θ

∑n
i=k+1 σi

√
di − (1− θ) p1,kd1

∑k
i=1 σi

+ p1,k
∑n

i=k+1 σidi + 2p
1/2
1,k

√
d1θ

∑n
i=k+1 σi

√
di −

∑n
i=k+1 σidi = 0 .

To obtain an approximate solution, we impose the relationship p1,k = 1 − κθ and linearize the

higher order terms as follows: p21,k ≈ 1−2κθ, p
3/2
1,k ≈ 1− 3

2κθ, p
1/2
1,k ≈ 1− 1

2κθ. Substituting these

expressions into the above equation and solving for κ, we have

κ =
d1

∑k
i=1 σi

d1
∑k

i=1 σi + θd1
∑k

i=1 σi +
∑n

i=k+1 σidi + 2
√
d1θ

∑n
i=k+1 σi

√
di
, (27)

which characterizes p1,k. Remaining prices can be obtained via (25). Finally we turn to the lower

bound for prices. In regime-k we have

(1− pk,k)
2dk < Ω and pk+1,kdk+1θ > Ω.

The first inequality is due to the fact that the constraint binds at location k, whereas the second

one obtains because the constraint is slack at location k + 1. Furthermore pk,k and pk+1,k satisfy

pk,kdkθ = dk+1(1− pk+1,k)
2 = Ω.

Substituting these relationships into the inequalities above yields pk,k > pmin and pk+1,k > pmin

where pmin is given in the body of the Proposition. ■

Proof of Lemma 5. The commission vector c is incentive compatible if it satisfies (5), which,

12



after substituting for mi and xi is equivalent to

(1− p) p
n∑

i=1

σicidi = w [(1− φl) θ − (φh − φl) (1− p)] .

Furthermore, recall that ri ≤ xi ⇔ w (1− φh) ≤ pcidi. Per our conjecture, under c we have

pcidi > w (1− φh) for i ≤ k and pcidi = w (1− φh) for i ≥ k + 1.27 We will construct a new

ĉ by marginally shaving off the rates of c at locations where the constraint is slack (but without

rendering any of these constraints binding) and marginally increasing the rates at locations where

the constraint is binding. Let

ĉi = ci − εi for i ≤ k and ĉi = ci + εi for i ≥ k + 1,

where (ε1, ..., εn) ∈ (0, 1)n is an arbitrarily small tuple satisfying

k∑
i=1

σidiεi =

n∑
i=k+1

σidiεi.

Note that
n∑

i=1

σidiĉi =

k∑
i=1

σidi (ci − εi) +

n∑
i=k+1

σidi (ci + εi) =

n∑
i=1

σidici,

thus ĉ, too, is incentive compatible. Since (ε1, ..., εn) can be picked arbitrarily small, the inequality

piĉidi > w (1− φh) can be satisfied for all i. ■

Proof of Proposition 4. The platform solves

max
p

p (1− p)Eσ (d)− w (1− φl) θ + w (φh − φl) (1− p) s.t. w (1− φh) ≤ pcidi.

The objective function is concave in p; thus, ignoring the constraints, the first-order condition yields

the interior price

pint =
1

2
− (φh − φl)w

2Eσ (d)
.

The commission rates must satisfy (12), which after re-arranging becomes

n∑
i=1

σicidi =
w (1− φl) θ

(1− p) p
− (φh − φl)w

p
. (28)

Since there are n commission rates, there exists a continuum of solutions to (28), i.e., the commission

rates are indeterminate in the interior equilibrium. Note that if the constraints are active, i.e., if

pcidi = w (1− φh) , then
n∑

i=1

σicidi = w (1− φh) /p. (29)

27For ease of exposition, we assume that the constraints are slack at locations 1, ..., k and that they bind at the
remaining locations; however, this is without loss of generality. The proof can be recast when the constraints are
slack/binding at some randomly selected locations.
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Substituting this and pint into (28) we see that if θ > θ̄3, where

θ̄3 =
Eσ (d) + (φh − φl)w

2Eσ (d)
,

then w (1− φh) < pcidi i.e. the constraints are slack and we have an interior equilibrium. If, on the

other hand, θ ≤ θ̄3 then the constraints bind, i.e. w (1− φh) = pcidi, and therefore (28) and (29)

imply that

pcor = 1− θ and ccori =
w (1− φh)

(1− θ) di
. (30)

This concludes the proof of Proposition 4. ■

Proof of Proposition 5. The platform solves

max
p

π (p) = max
p

[g (p) + w (φh − φl)]h (p)
−1 − w (1− φl) θ,

s.t. ri ≤ xi ⇔ w (1− φh) ≤ picidi for all i.

Suppose the constraints are slack. The platform’s problem is the same as the unconstrained problem

in Model 2; thus pinti is the same as the interior price there, i.e.

pinti = 1− Eσ (d) + w (φh − φl)

2
√
diEσ(

√
d)

. (31)

The commission rates must satisfy (14) which, after re-arranging becomes

n∑
i=1

σipicidi = w [h (p) (1− φl) θ − (φh − φl)] .

Since there are n commission rates, there exists a continuum of solutions satisfying this equality.

Now suppose the constraints are active, i.e. suppose picidi = w (1− φh) , for all i. Substituting

these equalities into (14) yields h (p) = 1/θ. The platform, therefore, solves

maxp π (p) s.t. h (p) = 1/θ,

while the commission rates are uniquely pinned down via picidi = w (1− φh) , for all i. Letting λ

denote the Lagrange multiplier, the first order condition with respect to pi is given by (recall that

π (p) is strictly concave and h (p) is strictly convex)

di (1− pi)
2 = [g(p) + w(φh − φl)]h(p)

−1 + λh (p) .

Since the right hand side is not indexed by i, we have di (1− pi)
2 = dj (1− pj)

2 . Combining this

relationship with the constraint h (p) = 1/θ yields

pcori = 1− Eσ(
√
d)√

di
θ. (32)
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Substituting pcori into picidi = w (1− φh) yields

ccori =
w (1− φh)

di −
√
diEσ(

√
d)θ

. (33)

Finally the threshold θ̄4 can be obtained via θ = 1/h
(
pint

)
, yielding

θ̄4 =
Eσ (d) + w (φh − φl)

2E2
σ(
√
d)

. (34)

This completes the proof of Proposition 5. ■

Proof of Proposition 6. Start with Model 4. The platform’s profit function is given by (13).

Recall that if θ > θ4 then the (interior) prices are given by (31) and if θ ≤ θ4 then the (corner)

prices are given by (32). First we show that the optimal θ cannot exceed θ4. By contradiction,

suppose it does, i.e., focus on the region where θ > θ4. Substituting the interior prices (31) and the

labor supply relationship w = θ/µ into the profit function (13), we have

π =
[Eσ (d) + θ (φh − φl) /µ]

2

4E2
σ(
√
d)

− (1− φl) θ
2

µ
.

The platform solves maxθ π. The first order condition yields

θ̂ =
(φh − φl)Eσ(d)

4E2
σ(
√
d) (1− φl)− (φh − φl)

2 /µ
.

Per our conjecture we must have θ̂ > θ4. The inequality holds if φh + φl > 2, which is impossible

because both φh and φl are less than 1; a contradiction. Thus the optimal θ must be less than θ4.

Conjecturing this to be the case, and now substituting the corner prices (32) into the profit function

(13), we have

π = Eσ (d) θ − E2
σ(
√
d)θ2 − θ2 (1− φh) /µ.

The profit function is strictly concave in θ. The first-order condition yields

θ∗4 =
Eσ (d)

2 (1− φh) /µ+ 2E2
σ(
√
d)
.

Basic algebra shows that indeed θ∗4 < θ4, verifying our conjecture. This establishes the optimal

entry under Model 4. Going through the same procedure, one can obtain optimal entries θ∗1 for

Model 1 and θ∗3 for Model 3, which are on display in (16).

Turning to Model 2, equation (10) implies

g (pk)

h (pk)
= p1,kd1θ

1− φl

1− φh
−
p1,kd1
h (pk)

φh − φl

1− φh
,

where we take p1,k as reference. Recall that when φh and φl are close to each other, p1,k is

approximated by p1,k = 1−κθ. Using this relationship and substituting w = θ/µ into (9), the profit

is approximately equal to

π2 = d1θ − κd1θ
2 − 1− φl

µ
θ2. (35)
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Maximizing π2 with respect to θ yields the expression for θ∗2, given by (17).

Now we will show that (i) θ∗4 > θ∗3, (ii) θ
∗
1 > θ∗3 and θ∗1 > θ∗4 unless µ is too small, and finally

(iii) θ∗2 > θ∗3 unless µ is too small. Starting with (i), we note that

θ∗4 > θ∗3 ⇔ E2
σ(
√
d) < Eσ (d) ,

which, in turn, is equivalent to
n∑

i=1

σidi >

[
n∑

i=1

σi
√
di

]2

.

Letting ti ≡
√
σidi and si ≡

√
σi and noting that

∑
σi = 1, the inequality can be rewritten as

n∑
i=1

t2i

n∑
i=1

s2i >

[
n∑

i=1

tisi

]2

.

The result follows from Cauchy-Schwarz and completes the proof of θ∗4 > θ∗3. Turning to (ii), note

that the inequality θ∗1 > θ∗3 holds if

µd1 > 1− φh + d1 (φh − φl) /Eσ (d) .

The expression on the right-hand side is less than 1 because d1 < Eσ (d) . The parameter d1 typically

exceeds 1; therefore the inequality holds unless µ is too small. It is straightforward to verify that

θ∗1 > θ∗4 holds under a similar condition. Now turn to (iii). First we establish the inequality

κ < d1/Eσ (d). After substituting for κ, while noting that the most restrictive case involves k = 1,

we need
d1σ1

d1σ1(1 + θ) +
∑n

i=2 σidi + 2
√
d1θ

∑n
i=2 σi

√
di
<

d1
Eσ (d)

.

Noting that Eσ (d) =
∑n

i=1 σidi, the inequality holds. Now compare θ∗2 and θ∗3:

θ∗2 > θ∗3 ⇔ Eσ (d) d1 (1− κ) >
1

µ
[Eσ (d) (1− φl)− d1 (1− φh)] .

The right hand side is positive since d1 < Eσ(d), whereas the left hand side is positive since

κ < d1/Eσ (d) . The comparison between θ∗2 and θ∗3, therefore, depends primarily on µ. If µ is large

then θ∗2 exceeds θ∗3, whereas if µ is small then the opposite is true. ■

Proof of Proposition 7. In Model 4 θ∗4 is given by (16). Since w = θ/µ, we have

w∗
4 =

Eσ(d)

2(1− φh) + 2µE2
σ(
√
d)
.

Note that θ∗4 rises while w∗
4 falls in µ. Substituting θ∗4 into (32) yields

dp∗i
dµ

= −Eσ(
√
d)√

di

dθ∗4
dµ

,

establishing that p∗i decreases with µ, as θ∗4 increases in µ. Turning to the commission rate from
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(33)
dc∗i
dµ

= −c
∗
i

µ
+

µc∗2i di
(1− φh)θ

∗2
4

dθ∗4
dµ

.

Substituting for dθ∗4/dµ, this expression implies

dc∗i
dµ

< 0 ⇔ Eσ(d) < 2
√
diEσ(

√
d),

which is equivalent to p∗i > 0; thus implying dc∗i /dµ < 0. Now consider the expressions for matches

(M4), profits (π4), and consumer surplus (CS4), given by (36), (38), and (39), respectively. Since

dθ∗4/dµ > 0, all three outcomes increase with µ.

In Model 2, optimal entry θ∗2 is given by (17), which increases in µ. Using w = θ/µ, we have

w∗
2 =

d1
2(1− φl + κµd1)

,

which decreases in µ. Given the price relation p1,k = 1− κθ, we obtain

dp1,k
dµ

= −κdθ
∗
2

dµ
< 0.

The commission rate satisfies (24), which implies

dc

dµ
< 0 ⇔ dw∗

2

dµ
p1,k <

dp1,k
dµ

w∗
2.

Substituting for w∗
2 and p1,k confirms that the inequality on the right-hand side holds, so the

commission rate decreases in µ. Turning to profits, given by (41), we have

dπ2
dµ

=
1

4

d21(1− φl)

(µκd1 + 1− φl)
2 ,

which is positive. Furthermore, both the number of matches and the amount of consumer surplus,

as given in (42), increase in µ because θ∗2 increases in µ. This confirms the stated claims for Models

2 and 4. Analogous steps can be used to verify the corresponding results for Models 1 and 3. ■

Proof of Remark 2. Consider Model 3, and recall the relationship

pcidi = w (1− φh) .

Totally differentiating with respect to µ yields

µ

w

dw

dµ︸ ︷︷ ︸
ϵ(w,µ)

=
µ

p

dp

dµ︸ ︷︷ ︸
ϵ(p,µ)

+
µ

ci

dci
dµ︸ ︷︷ ︸

ϵ(ci,µ)

,

i.e. the elasticity of the total driver compensation w with respect to µ is equal to the sum of the

elasticities of the price and commission rates with respect to µ. Noting that p = 1 − θ∗3, where θ
∗
3

17



is given by (16), we have

ϵ (w, µ) = − Eσ (d)µ

(1− φh) + Eσ (d)µ
and ϵ (p, µ) =

(1− φh) ϵ (w, µ)

2 (1− φh) + µEσ (d)
.

Elasticities ϵ (p, µ), ϵ (ci, µ) and ϵ (w, µ) are all negative. It is straightforward to verify that

|ϵ (p, µ)| < 0.5 |ϵ (w, µ)| ,

i.e. ϵ (p, µ) constitutes less than 50% of ϵ(w, µ), which implies that ϵ (ci, µ) exceeds 50%. In other

words, the platform responds more strongly through commissions than through prices. This confirms

the Remark under Model 3.

Now consider Model 4. The process is the same, but the relevant equations are now

ϵ (w, µ) = −2θ∗4
E2
σ(
√
d)

Eσ (d)
and ϵ (pi, µ) = −2θ∗24

(1− φh)

µEσ (d)

Eσ(
√
d)

√
di − Eσ(

√
d)θ∗4

,

where pi is given by (32) and θ∗4 is given by (16). The inequality |ϵ (pi, µ)| < 0.5 |ϵ (w, µ)| boils down
to

2 (1− φh)

µ

[
Eσ (d)−

√
diEσ(

√
d)
]
< E2

σ(
√
d)

[
2Eσ(

√
d)
√
di − Eσ (d)

]
,

which typically holds true (unless di, φh and µ are all too small).

Turning to Model 2, we have p1,k = 1 − κθ∗2 where θ∗2 is given by (17). The relevant equations

are

ϵ (w, µ) = − κµd1
κµd1 + 1− φl

and ϵ (p1,k, µ) = − (1− φl) d1µκ

2 (κµd1 + 1− φl)
2 (1− κθ∗2)

.

It is straightforward to show that as long as κ > 0 the inequality |ϵ (p1,k, µ)| < 0.5 |ϵ (w, µ)| holds
true. Finally, the process for Model 1 is the same as the one for Model 2, except κ is replaced with

d1/Eσ (d) . Since this expression is positive, the inequality holds under Model 1 as well. ■

Proof of Proposition 8. The total number of matches is equal to M =
∑n

i=1mi. With Model 4

mi = σih (p)
−1 , whereas with Model 3 mi = σi (1− p) . Prices in Model 4 are given by (32) and in

Model 3 by (30). Substituting for prices, we have

M4 = θ∗4 and M3 = θ∗3. (36)

The inequality M4 > M3 follows from the fact that θ∗4 > θ∗3 (Proposition 6). In Model 1 mi =

σi (1− p) , where p is given by (21). After substituting for the price

M1 =
d1 (1− φl) θ

∗
1

Eσ (d) (1− φh) + d1 (φh − φl)
.

Basic algebra establishes that M3 > M1 if

(Eσ (d)− d1) [(Eσ (d) + d1) (1− φh) + d1 (φh − φl)] > 0. (37)

The first term is positive because d1 < d2 < ... < dn. The expression inside the square brackets

is positive because 1 > φh > φl. The inequality holds true, thus M3 > M1 follows. Now turn to
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profits. Substituting for prices

π3 =
1

4

Eσ (d)
2 µ

1− φh + µEσ (d)
and π4 =

1

4

Eσ (d)
2 µ

1− φh + µE2
σ(
√
d)
. (38)

The inequality π4 > π3 follows from the fact that Eσ (d) > E2
σ. Turning to Model 1, we have

π1 =
1

4

µd21Eσ (d) (1− φl)

µd21 (1− φl) + Eσ (1− φh)
2 + d1 (φh − φl) (1− φh)

.

Routine algebra shows that the inequality π3 > π1 reduces to (37), which holds. Now, turn to the

consumer surplus. After substituting for prices and θ∗3 ad θ∗4 we have

CS3 =
1

8

E3
σ(d)

[(1− φh)/µ+ Eσ(d)]2
and CS4 =

1

8

E2
σ(
√
d)E2

σ(d)

[(1− φh)/µ+ E2
σ(
√
d)]2

. (39)

Similarly, for Model 1

CS1 =
1

8

d41µ
2(1− φl)

2Eσ(d)

[µd21(1− φl) + Eσ(d(1− φh)2 + d1(1− φh)(φh − φl)]2
. (40)

The inequality CS3 > CS1 reduces to (37), which holds true. Finally CS4 > CS3 is equivalent to

E2
σ(
√
d)Eσ(d) > (1− φh)

2/µ2,

which is typically true, unless φh and µ are both too small.

Substituting the expression for θ∗2 into (35) yields the profit in Model 2

π2 =
1

4

µd21
µκd1 + 1− φl

. (41)

Note that

π3 > π2 ⇔
1

µ

[
E2
σ (d) (1− φl)− d21 (1− φh)

]
> Eσ (d) [d1 − Eσ (d)κ] .

The expression on the left is positive because Eσ (d) > d1. The expression on the right is positive

as κ < d1/Eσ(d). The comparison between π2 and π3, therefore, hinges primarily on the value

of µ: when µ is small, we have π3 > π2; when µ is large, the inequality reverses. Note that this

observation aligns with the simulations in Figure 4.

The number of matches and the amount of consumer surplus in Model 2 are given by

M2 = h (p)−1 and CS2 =
1

2

n∑
i=1

σidi
h (p)

(1− pi) .

Recall that prices in Model 2 are bounded below by pmin, given in Proposition 3. Upper bounds for

M2 and CS2 can be obtained by substituting pmin for prices. We have

M2 =
√
θ∗22 /4 + θ∗2 − θ∗2/2 and CS2 =

1

2
Eσ(d)

[√
θ∗22 /4 + θ∗2 − θ∗2/2

]2
. (42)
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M2 is close to θ∗2. Similarly CS2 is close to 1
2Eσ (d) θ

∗2
2 . In comparison, under Model 3 we have

M3 = θ∗3 and CS3 =
1

2
Eσ (d) θ

∗2
3 .

Recall that θ∗3 exceeds θ∗2 when µ is small, while the reverse holds when µ is large (see the proof of

Proposition 6). It follows that, Model 3 generates more matches and higher consumer surplus when

µ is small, whereas Model 2 performs better on both dimensions when µ is large. ■

A.4 Transition and Distance Matrices

In what follows we provide the transition and distance matrices for NYC.
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