E-Companion for “Incentivizing flexible workers in the gig econ-

omy: The case of ride-hailing”
Summary of Notations
n represents the number of locations.

T = (@i j)nxn represents the transition matrix where a;; > 0 denotes the probability that a
person at location ¢ wishes to travel to location j.

0 represents the total number of drivers. The number of passengers is normalized to 1.
d;; is the physical distance between locations i and j.
p; is the per-mile price for a ride originating from location 3.

¢; is the commission rate (percentage of the revenue that the driver takes home) for a ride

originating from location 3.

x; and y; denote the number of cars and people at location ¢ with ) )" ; z; =6 and )" y; = 1.
r; = y;(1 — p;) denotes the number of people willing to hire a car at location i.

m; = min{r;, z;} is the number of matches generated at location i.

7; is the probability that a driver who is searching at location ¢ finds a passenger.

w refers to the wage that drivers could earn in the labor market.

©p, is the probability that a driver matched with a passenger continues to offer driving services
in the next period.

@y is the probability that a driver without a match continues to remain in service in the next
period. We assume that ¢ > ¢y, i.e. being matched increases the likelihood of remaining in
the service while being unmatched increases the likelihood of dropping out.

o =(o1,...,0,) is the unique steady-state vector of the transition matrix 7'
M = z;‘:l m; denotes the total matches generated.

d; = Z’jl:l a; ;0; j is the average trip length of a ride originating from 7. We label the locations
from 1 to n in such a way that d; < ds < ... < d,.

7 is the platform’s per-period earnings.

Es(d) = > 0id; is a weighted sum of distances dy, ...,d, and can be interpreted as the
average trip length in the city. E,(v/d) = St 04V/d; is similar.

0; is the threshold (minimum number of cars) necessary to maintain the interior equilibrium

under model ¢ =1, ..., 4.

h(p) =2 ity 12, and  g(p) =X L, oipids.



0 = pw represents the labor supply function, where w, with some abuse of notation, is expected
earnings and p is the labor market sensitivity parameter.

67 is the optimal entry under model i.

cs; is the consumer surplus at location 4, while C'S' is the total consumer surplus.

a € (0,1) is the proportion of (behavioral) customers who turn off their app and exit the
platform when they realize that it is using location-specific pricing and not uniform pricing.

€(pi, i) is the elasticity of the price p; with respect to p. Similarly, €(¢;, ) is the elasticity of
commission rate ¢; with respect to u.



A.2 Driver Entry: An Alternative Approach

In the main text, driver entry is modeled by the relationship 6 = pw, where p captures the labor
market’s sensitivity to earning opportunities. Here, instead of relying on a single parameter, we
offer a more granular approach to modeling driver entry and examine the robustness of our earlier
results.

To start, suppose that the potential driver force consists of I distinct groups, each with a
different likelihood of joining the platform. Specifically, each individual in group ¢ = 1,2,...,1
has a reservation wage to participate, and these reservation wages are distributed according to
a cumulative distribution function F;. An individual participates only if his reservation wage is
less than or equal to the expected earnings in the market, w. Consequently, the total number of
participants from group i is equal to

where 1; is the measure of individuals in that group. Summing over all groups, the total number
of drivers entering the platform is equal to

1

0=> i Fi(w). (18)

=1

With this new approach, we depart from a single sensitivity parameter, and instead model driver
entry as a composite expression. It depends on the size of each group, 1;, their likelihood of
participation, Fj, and the expected earnings, w. We now proceed to derive the optimal entry under
Model 4. While the main text is based on four operational models, for brevity, here we focus on
Model 4, omitting model-specific indices when understood.

The profit is given by (13). Substituting for prices, given by (32), the expression becomes

T =Ey (d) 0 —E2(Vd)6? —wh (1 — @p) .

The platform solves maxy 7(p) subject to (18). The first-order condition yields?®

=B (d) ~ 0BV —w (1= ) — 0.1 —on) 5 = 0.

Applying the Implicit Function Theorem to (18), we have

dw 1
o L - filw)

Thus, after substituting for (18), the first-order condition becomes

S i Fi(”w)‘
ZZ'I:I Vi - fi(w)

251t is straightforward to verify that the second order condition holds under mild conditions. Indeed, note that

E, (d) = 2E2(Vd sz' i(w) +w (1 —pn) + (1= pn) (19)

d’m 2 dw d*w
= = 2F2(Vd) —2— (1 — 6(1—
- (V) =22 (1= gn) = 01— 1)
The first two terms are negative, whereas the last term can be positive or negative. Unless ¢, is too small and F;s
are extremely convex, the total sum remains negative, satisfying the second order condition.



Participation CDFs

Entries (group-wise and total) vs wpin,

Average Price and Commission vs wp;,

1 0.4
09 0.4 El
3
= 0.6
£ o8 035 Z
= \ > 2
Z 07 . P :
] 03 . - g 05
2 N - K
© 06 . . ©
a 0.25 . -7 g
205 So oL g 04
3
2 0.2 R 8
< 0.4 , > =l
i . N ¥
5 0.15 L, . 03
= 03 . N o)
z N &
0.2 04 |- ==Group 1 .. g
—— Fi(w): Group 1 oosh |7~ - Group 2 e Z 02 —— Average Price
0.1 . 8 ~ F
Fy(w): Group 2 Total Entry S~ . —— Avrage Commission
0 0 0.1
0 2 4 6 8 10 0 1 2 3 4 5 0 1 2 3 4 5
w Wmin Wmin

Figure 9: CDFs, Entry, Average Price and Commission

Drivers can be categorized in many ways, such as by gender, age, whether they use the platform for
primary or supplemental income, whether they are exclusive drivers or multi-homing drivers, and
so on. After compiling the necessary information—including the number of different groups, their
density functions, and population measures—the platform can determine the optimal compensation
level w using (19). The corresponding level of entry € can then be recovered via (18). Once 6 is
pinned down, the remaining objects—prices, commissions, profits—can be determined as was done
previously.
As an example, suppose there are two distinct groups with equal population size, i.e. let I = 2
with 11 = 19 = 1. Suppose that the CDF of Group 1 is given by
Fi(w) = {?Uw , %f W i
= i w > Wi,
where Wy, is the minimum earnings threshold below which Group 1 drivers do not participate.
Once this threshold is met, though, they are not too selective about additional compensation. (Fig.
9 illustrates Fj for wp, = 2.) It is sensible to think that this behavior reflects drivers who rely
on the platform for their primary income and need a minimum level of earnings to justify their
participation.
For Group 2, the CDF is given by

w

w+s’

Fg(w) =

where a higher value of s shifts the CDF downward, indicating a lower likelihood of participation.
As an illustration, Fig. 9 plots F for s = 10. Group 2 drivers are more flexible and, unlike Group 1
drivers, respond to earning opportunities even at low levels of w. This behavior is consistent with
individuals who drive to earn supplementary income.

Given F and Fb, we simulate key equilibrium outcomes against w,;,, the earning threshold
below which no one from Group 1 participates. (As in earlier examples, we consider a city with
five locations, using the layout and transition matrix shown in Fig. 1, right panel.) A higher wy,,
shifts F} to the right, making the drivers in this group less responsive to earning opportunities,
and therefore, less likely to participate. In the simulation we vary wy,;, between 0.5 to 5. As wpin
increases, Group 1 drivers become less responsive to driving opportunities, and consequently, entry
from Group 1 drops significantly. In contrast, entry by Group 2 rises, but total entry still decreases
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Figure 10: Driver compensation, Profits and Consumer Surplus

(Fig. 9, middle panel).

To see why, note that the platform raises both prices and commission rates across all locations
to address the reduced responsiveness of Group 1 drivers. These adjustments result in an overall
rise in driver compensation w. Since F5 remains unchanged, the higher compensation attracts more
drivers from Group 2, sharply increasing their presence in the driver fleet. However, the shifting
F} means that, despite the rise in compensation, fewer drivers from Group 1 choose to join the
platform, leading to a decline in total entry. Finally, the reduced total entry, combined with higher
prices and increased driver compensation, results in lower profits and consumer surplus. (All these
claims can be verified via Fig. 9 and 10.) This richer model of driver entry allows the platform to
better anticipate participation behavior by each group, predict the composition of the driver fleet,
and assess how different types of drivers respond to changes in commissions and prices.

These findings are consistent with the results presented in the previous section. Indeed, a rise
in Wy, in this alternative version of driver entry is akin to a fall in g in the benchmark model.26
Proposition 7 shows that when p declines, prices and commissions rise, w increases, entry falls, and
both profits and consumer surplus fall. The simulations in here confirm these insights, reinforcing
the robustness of our earlier results.

Further note that as wy,;, rises, the platform responds by increasing commission rates much more
sharply than prices (Fig. 9, right panel). A modest price increase is still required to balance the
demand with the reduced overall driver supply, but it remains significantly smaller in magnitude
than the corresponding adjustment in commissions. This observation is in line with Remark 2,
which argues that commissions are a more effective tool than prices for managing labor market
fluctuations. The intuition is the same: higher commissions directly incentivize drivers without
reducing customer demand. In contrast, raising prices suppresses demand, making it a less effective
way to incentivize drivers.

To conclude, instead of summarizing labor market sensitivity with a single parameter, here we
explicitly account for differences across driver groups, including their population sizes and partici-
pation behavior. Despite these added details, the main insights remain unchanged, which reinforces

the validity of our original approach and confirms the robustness of our earlier results.

26 AS Wimin increases from 0.5 to 5, the resulting w rises from 0.78 to 5, while § drops from 0.43 to 0.33. In the
benchmark model the relationship between w and 6 is given by 6 = pw, which means that the implied p falls from
0.55 to 0.07.



A.3 Proofs

Proof of Lemma 1. A Markov chain with a finite state space is said to be reqular if a power of
its transition matrix has only positive entries. In our model n is finite and since a; ; > 0 it is easy
to verify that 72 has only positive entries. It follows that the Markov chain associated with 7T is
regular and thus ergodic. For an ergodic Markov chain, there is a unique steady state vector

n
o= (o1,..,0n) with o; >0 and Zoi =1
i=1

satisfying o = oT'. Furthermore, any vector v > 0 such that v = vT must be a multiple of o (see
Grinstead and Snell (1998), Theorem 11.10). In the steady state m = m7T, which implies that
m; = Co;, where ( is a positive scalar. Since ) " ;0; =1 we have (=" ;m; =M. R

Proof of Lemma 2. By contradiction, suppose that at location 1 we have x1 < r1. Since 7; < 1
for i > 2 we have x; > r; for ¢ > 2. It follows that m; = x1 and m; = r;; thus

n n
M = E m; =1 + E Ti.
i=1 1=2

Per (2), m; = o;M; hence 1 = 01 M and r; = o;M and therefore r; = o;x1/01 for i > 2. At
location 1 we have n; = 1, thus (4) implies

pedy = w (1 — ).
Substituting this relationship into (6) yields

(o} (1 — gol) d19
(1 —n)Eo (d) +di (n — 1)

Noting (i) r; = (1 —p)ys, (i) Dory v =1, (iii) Y.y 05 = 1 and (iv) 7, = oyz1/0y for i > 2, we
have

Ir1 =

_ T1
rp<r & p<p=1-——.
o1
Furthermore, using these equalities, the platform’s profit in (8) can be written as
1 x1
T=pEs;(d) — —w |[(1—w)0—(on—01) —|.
o1 01
The profit function 7 rises in p, which means that setting p < p is suboptimal to p = p. Thus, an
outcome with 1 < r1 cannot be an equilibrium. H

Proof of Proposition 1. Recall that r; < x; for all i; thus m; = r; and n; = r;/x; Furthermore,
since (i) m; = oy M, (ii) r; = y; (1 — p) and (iii) Y ;" ; y; = 1 we have

M=1-p and r=0;(1-p),

and therefore
T=p(l—p)Es(d) —wl(l—@)8— (on—¢1) (1-p)].



The platform’s problem is

maxm s.t. r; < x; for all 7,
2

where the constraints obtain per Lemma 2. The objective function is concave in p; thus, ignoring
the constraints, the first-order condition yields the global maximum
pint = L (en —p)w
2 2, (d)
Now focus on the constraints. First note that r; < x; < n; < 1. Since d; < ds < ... < dj,, only
can be equal to 1, while all other 7;s must be strictly less than 1. The relevant constraint, therefore,
is the first one 71 < 1. Equation (4) implies.

m <1 w(l—ph)<ped;.
Furthermore, using (7) we have

w1l =)0 (on — 1) w
" (I-p)pEs(d)  pE,(d) (20)

Substituting p™ and c into the inequality above yields 7y <1 < 6 > 0, where

5, = (1—<Ph)Eo(d)+80h—<Pl] (1 (Sﬁh—wz)w)’

-4
di (1 — ) 1—y ] \2 2E, (d)

i.e. if there are sufficiently many cabs in the city, then the constraint is slack and p"™ is feasible.
We refer to this outcome as the interior equilibrium. If however, § < 0; then the constraint m <1
binds, and therefore per equation (4) we have

pedy = w (1 —p).
Substituting for ¢ yields the corner equilibrium price

cor _ 1 _ dl(l_gpl)e
Eo (d) (1 = ¢n) +di (on — ¢1)

p

Commission rates ¢ and ¢®" can be obtained by substituting p* and p°" into (20). B

Proof of Lemma 3. Fix some p and let Sy denote the set of locations in which demand is
greater than or equal to supply, with at least one location exhibiting excess demand, and S; the
set of locations with excess supply, i.e. So={i € N:r; > z;} with at least one inequality strict and
Slz{i eN:r; <xi}.

Case 1 - 81 # 0 : Since z; < r; we have n; = 1 for all i € Sp. Similarly x; > r; < n; < 1 for all
i € Si. The indifference condition (4) implies

pid; = pjdj, for all 4,5 € Sy and pid; < pjdj, for all i € Sg and j € S7.

Suppose that the platform leaves prices in Sy intact but increases prices in Sy to p} = p; +¢;, where



the vector ¢ is positive but infinitesimally small, satisfying
g;d; = Ejdj, for all 1,] € So.

Note that pid; = pd;, which means n; = 7 for all i, € So. It follows that either n; = 1 or 7; < 1
for all ¢ € Sp. Since € can be arbitrarily small, it can be chosen to ensure that

m,=1, foralli €Sy while pid; <pjd;, foralli € Sy and j € Sy,

Locations in Syp: Prices are higher after the intervention. As for the number of rides, before the
intervention m; = z;. The fact that n, = 1 implies that after the intervention we have m| =
z; however, note that x; > x; because now more drivers search in Sy. Since both the prices and
the number of rides go up, the platform earns more in Sy than it did before.

Locations in S7: Prices remain intact. The number of rides also remains the same. To see why, note
that after the intervention we have p;d; < p;d; for all i € Sp and j € Sy, which means that 7} < 1
for all j € &1. This, in turn, implies that the number of matches at each location in S7 remains the
same. It follows that the platform earns the same in S; as it did before. The intervention allows
the platform to move some idle drivers in &7 to Sy and earn more; thus, the initially conjectured

outcome cannot be an equilibrium.

Case 2 - 8y = (): Along this outcome z; < r; for all ¢ = 1,...,n with at least one inequality strict;
thus n; = 1 for all ¢ = 1,..,n. Pick location j as a reference point, and note that since 7; = 1 the
indifference condition (4) becomes p;d; = p;d;, for all i. Substituting this relationship into (6) we
obtain x; = 0,60 for all i. Recall that r; = y; (1 — p;) ; thus ; < r; & y; > 0;0/(1 — p;), with at least
one inequality strict. It follows that

Susy il e A ;:9_[

The second step obtains because Y ;" ;y; = 1 and p;d; = pjd;. The inequality A (p;) < 0 is

n

417
oid;
_— < 0.
i=1 di_pjdj]

strict because at least one location has x; < r;. Note that A increases in p; and A (1) > 0. Since
A (pj) < 0, there exists some p; € (pj, 1) satisfying A(p};) = 0. So, if the platform increases p; to pj
at location j, while also ensuring that pid; = p/;d; at other locations, then zj = r| for all i, i.e. no
location exhibits excess demand. Prior to the intervention we had z; < r;, with at least one strict
inequality; thus the number of rides was equal to m; = z; = ;0 for all i. After the intervention, we
have x} = r}; thus, the number of rides is still equal to m = z, = ;0 for all i. Prices, on the other
hand, are now higher, which means that the platform earns more than before. It follows that the
initially conjectured outcome cannot be an equilibrium. H

Proof of Proposition 2. Ignoring the constraints, the platform solves

max  (p) = max [g(p) +w(pn — )]k (p) —w(l—w)b.

The first order condition with respect to p; implies

(1—p)2di=[g(P)+w(on—@)]h(p)~" foralli=1,..n.



It follows that p; = 1 — (1 — p;) \/d;/d;; hence

pint — 1 Eeld) Fwlen 1)
' 2VAE(Vd)

Substituting p; into (7) yields the equilibrium commission rate

int

A (1l ) O, (@2 L 2w(en— )
By (d)? —w?(on — @) Eo(d)—w(on—wr)

Claim 1 The objective function 7 (p) is strictly concave in p.

We start by showing that h~!(p)is strictly concave. The strategy is to establish that h=! (p) lies
underneath its linearization at some p°, which is given by

2
W' p)=h (%) + VAT (%) (p—p") = > m : [; lt_jp()] ~

i
The function is concave if h=! (p) < b1 (p), i.e. if
n

2
o "o (1—p;) 0
[Zl ] <2 (1-p)? Zl—}%"

—p
i=1 p; i=1 1=1

Letting t; = ,/‘?171;0’;;) and s; = /175-, the inequality becomes

n 2 n n
[Z tisi] < Z t? Z 8?.
=1 =1 =1

The result follows from Cauchy-Scwharz. Note that the inequality is strict; thus h=!(p)is strictly
concave. Observe that 7 (p) = [g(p) + w (¢n — ¢;)] h~(p) minus a constant, where g is linear and
increasing; whereas h=! is strictly concave and decreasing in p. Thus 7 is strictly concave (Boyd
et al. (2004), pg. 119).

For this (interior) equilibrium to emerge we need r; < x1 < 11 < 1 which is equivalent to

w (1 —p) < prdic,

i.e. the constraint at location 1 ought to be slack. After substituting for ¢, the condition is equivalent
to 0 > 5270, where

- {E(, (d) +w (pn — 901)} { (1 = on) {Eq (d) —w (¢n — 1)}
20 2 (1 — (pl) EU(\/Q)Q 2p1d1

+ on — @z} : (23)

If the constraint is slack at location 1 then it is slack at every other location (Lemma 4); thus
0> §270 is sufficient. Finally, the inequality pﬁ”t < pé’fl follows from the fact that d; < d;4;.



Proof of Lemma 4. If Ay = 0 then the constraint is slack at location k, thus

Ty < = [g(p)Jr(th—st)w h(P)_l_e((Ph_@l)%<pkdk9 (i)

¢
Furthermore, the first-order condition implies

(1—pe)’de=[g(P)+w(en— @) h(p)~" (i)

Now by contradiction suppose A;1+1 > 0. Since the constraint is assumed to bind at location k£ + 1
we have

h(p)~' =0 (en — 1) %

(iii)

The profit function 7 is strictly concave. The constraint is assumed to bind at location k + 1. This

w
Prt1dr10 = |g (P) + (on — ¢1) -

implies
i1 (1= pry1)? < [g(P) +w (on — @) h(P) ™! (iv)

Since dj.41 > di, equations (ii) and (iv) together imply that

di, (1 = pi)® > di1 (1 — prs1)® = D1 > i

Notice, however, (i) and (iii) together imply that py > piy1; a contradiction. Thus A;41 must be
zero. The second part of the Lemma is proved similarly. B

Proof of Proposition 3. Equation (10) implies that
p@kdi = kadl for i = 1, ceny k.

The inequality p;; > ... > pg follows from the fact that di < ... < d. Similarly, equation (11)
implies that

(1= pig) Vdi = (1 = pug) Vo for i=k+1,..,n.

Again, the inequality py,r > ... > pg41x follows from dy < ... < dy,. To compute the commission
rate, note n; = 1 for ¢ = 1, .., k, thus equation (4) becomes

crpigdi = w (1 —pp), fori=1,.,k.
Noting that p; r.d; = p1 xdi, this relationship implies
ek =w (1 —n) /p1rdi (24)

Therefore, if a feasible pq j exists then ¢j can be computed using the relationship above. In what
follows, we will show the existence of such a p; . With no loss in generality let ¢;, = ¢, thus
equations (10) and (11) can be rewritten as

Q:=g(p)/h(p)=pidif for i=1,...,k and (1—p)’di=Q for i=k+1,..,n

The prices in regime—k can be written in terms of p; ; as follows:

pik =pi1rdi/d; fori=1,..,k and p; =1—/p1pdif/d; fori=k+1,..,n. (25)

10



Substituting these relationships into the equality p 1.d16 = 2 yields

P1,kd1 Zl 101+Zz ja1 Oidi — /PLrd10 Y0 0iV/d;

Ap (pl k) : k
Zz 1 d; —p1 kdl WZ’L k+1 0—1\/»2

pl’kdle =0. (26)

The rest of the proof is by induction. The first step is to show that when & = 1 there exits some
p11 € (0,1) satisfying A; = 0. First, note that if p;; = 1 then A; (1) < 0. Indeed when p;; =1
. d
the expression d";%d i
when A is evaluated at p{™ and 65, which are given by (22) and (23), we obtain Ay (p{"'; 620) = 0.
Since A; falls in 0 we have A; (p’lnt) > 0 for 0 < 9_2,0. The function A; is continuous; thus, by

the Intermediate Value Theorem there exists a p1; between pi™ and 1 satisfying Ay (p11) = 0.

in the denominator tends to infinity; rendering Ay (1) = —d160 < 0. Second,

Remaining prices are pinned down through (25); i.e

pin =1—1/p11d16/d; for i =2,....,n

Since dp < ... < d it is easy to see that ps1 < ... < pp 1. Furthermore, since p;; is feasible, i.e.
p1,1 € (0,1), all other prices are also feasible.

Per Lemma 4 the relevant constraint when & = 1 is pp 1d20 > 2. When the constraint binds,
we have pg1d2f =  and when it is slack we have (1 — pg,l)2 do = ). Thus the critical value of
satisfies
(1—p21)?

podel = (1 —pa1)?dy = 0 = 0y :=
P21

The constraint is slack when 6 > 61; thus regime-1 obtains when 6 € [§271, §270). This establishes the
claims of the Proposition when k = 1.

Now, for the inductive step, suppose the claims in the body of the proposition are valid for the
case k — 1, i.e. when 0 € [527k—1,§2,k:—2) there exists py ,—1 € (0,1) satisfying Ag_1 (p1,x—1) = 0.
Note when p;, = 1, we have Ay (1) < 0. Indeed if p; ;, = 1 then the expression Zle #ﬁcﬁ in
the denominator tends to infinity for ¢ = 1, which means that Ag (1) = —d;0 < 0. Next, we will
show that Ay (plvk,l; 927;6,1) = 0. Per the inductive step we have

Pra1di S o + S oids — /Dre1di0 S, 0i/d;
k1 o.ds 1 T
Zi=1 di—]’ll,kz—ldl \/pl,k—ldle ZiZk O_’L\/>’L

Ap_1(prr—1) = — p1x—1d10 = 0.

The numerator of the first expression can be written as follows

P1k— 1d1201 Z di — \/P1,k—1d10 Z O’z\ﬁ"‘{akdk_akplk 1d1 — \/P1,k—1d190’k\/£}-

i=k+1 i=k+1

Similarly, the denominator is equal to

i 1 Z 0'\/>—|— oV dy _ ordg ‘
dz_plk 1d1 VP1k—1d10 i) ! VD1 g—1d10  dg — p1g—1di

Per the inductive step when 6 = égvk_l, where égJﬁ_l =(1 —pk,k_l)Q /Pk,k—1 we have py p_1dy =

11



Pk,k—1dk; thus
VPrk-1d10 = (dg — p1g—1d1) /\/dy.

Using this relationship, we note that the expressions in curly brackets in the numerator and
the denominator are both zero. Once these terms vanish, it is easy to check that the remain-
ing expressions in Ag_j (p1x—1) are as in Ay (p1x—1), which means that Ag_; (p17k_1;§27k_1) =
Ay (pl,k_l;t%,k_l) = 0. Since Ay, falls in 6, we have A (p1x—1) > 0 whenever § < 1. Since
Aj (1) < 0, the Intermediate Value Theorem guarantees existence of a py j € (p1x—1, 1) satisfying
Ak (p1x) = 0.

The remaining prices are pinned down through (25). Since p; 4, is feasible, i.e. since p1;1 € (0,1),
all other prices are also feasible. Per Lemma 4, the relevant constraint is pjy1 xdig4160 > 2. When
the constraint binds, we have pyy1 rpdi410 = Q and when it is slack we have (1 — pk+1,k)2 dii1 = Q.
Thus the critical value of @ satisfies

(1 — pry1)’

) ~
Pt 1,k @r10 = (1 = prg1k)” dig1 = 0 = Oo 1=
Pk+1,k

The constraint is slack when 6 > 9_27]5 thus regime—k obtains when 6 € [527/6, 9_2,k:+1)- This establishes
the proof of existence for a feasible p; . To characterize it, start with equation (26), which can be
rewritten as

P1kdlzz 191 — 2P1kvd1 > k+1Uz\/7 (1- )plkdlzz 104

1/2
+p1k21 k+1 oid; ‘*’217/ Vdi0 Zz k+1sz Zz k+1 oidi =0 .

To obtain an approximate solution, we impose the relationship p;; = 1 — xf and linearize the
higher order terms as follows: p% 2 1—2k0, p?/k ~1-— %Iie, pi/kz 1- f/<c9 Substituting these

expressions into the above equation and solving for x, we have

K= A YL o (27)
dlZz 101+9d12 IJZ+ZZ k+lald +2Vd1 Zz kJrIJZ\/>Z

which characterizes p; . Remaining prices can be obtained via (25). Finally we turn to the lower
bound for prices. In regime-k we have

(1= pri)’di <Q and  ppyypdi16 > Q.

The first inequality is due to the fact that the constraint binds at location k, whereas the second
one obtains because the constraint is slack at location k + 1. Furthermore py, j, and py41 1 satisfy

Prkdid = dpy1(1 — pryag)? = Q.

Substituting these relationships into the inequalities above yields py i > Pmin and pg41k > Pmin
where puin is given in the body of the Proposition. H

Proof of Lemma 5. The commission vector c is incentive compatible if it satisfies (5), which,
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after substituting for m; and x; is equivalent to

(L=p)p)_oicidi = w[(1— 1) 6 — (on — 1) (1= )]
=1

Furthermore, recall that r; < z; < w (1l —¢p) < peid;. Per our conjecture, under ¢ we have
peid; > w (1 — ) for i < k and peid; = w (1 — ¢p,) for i > k4 1.27 We will construct a new
¢ by marginally shaving off the rates of ¢ at locations where the constraint is slack (but without
rendering any of these constraints binding) and marginally increasing the rates at locations where
the constraint is binding. Let

G=c—¢g fori<k and é=c +e fori>k+1,

where (g1, ...,e,) € (0,1)" is an arbitrarily small tuple satisfying

n

k
Zaidi&“i: Z Uidié“i.
=1

i=k+1
Note that
n k n n
> oiditi = oidi(ci—e) + Y oidi(cite) =) oidic,
=1 i=1 i=k+1 i=1
thus €, too, is incentive compatible. Since (g1, ...,&y,) can be picked arbitrarily small, the inequality

pi¢id; > w (1 — p) can be satisfied for all i. B

Proof of Proposition 4. The platform solves
max p (1= p) Eo (d) —w (1 = @) 0+ w (on — 1) (1= p) st w (1= 1) < pesds.

The objective function is concave in p; thus, ignoring the constraints, the first-order condition yields
the interior price
m_ 1 (en—pw
2 2E, (d)

The commission rates must satisfy (12), which after re-arranging becomes

L w(l-@)f (ph—p)w
;Uzczdz_ (I—-p)p D ‘ (28)

Since there are n commission rates, there exists a continuum of solutions to (28), i.e., the commission
rates are indeterminate in the interior equilibrium. Note that if the constraints are active, i.e., if
peid; = w (1 — ¢p,), then

Zaicidi =w(l—p)/p. (29)
i=1

2TFor ease of exposition, we assume that the constraints are slack at locations 1,...,k and that they bind at the
remaining locations; however, this is without loss of generality. The proof can be recast when the constraints are
slack/binding at some randomly selected locations.
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Substituting this and p™ into (28) we see that if § > 03, where

b — Ey (d) + (¢on — 1) w
5 2E, (d) ’

then w (1 — ¢p) < peid; i.e. the constraints are slack and we have an interior equilibrium. If, on the
other hand, # < 3 then the constraints bind, i.e. w (1 — ¢p) = pe;d;, and therefore (28) and (29)
imply that

w (1 —¢p)

cor _1_6 d cor __ .
P and ¢ (1-0)d,

(30)
This concludes the proof of Proposition 4. B

Proof of Proposition 5. The platform solves

max 7 (p) = max g (p) +w (pn — )] b (p) ™' —w(1— )0,

sit. r; < xp < w(l —pp) < picid; for all 4.

Suppose the constraints are slack. The platform’s problem is the same as the unconstrained problem
in Model 2; thus pﬁ”t is the same as the interior price there, i.e.

int _ 1 _ Eo(d) +wlpn—¢1)

h 2V B, (V) o

The commission rates must satisfy (14) which, after re-arranging becomes

Zaipicidi =w [h (p) (1 - SOZ) 0 — (‘Ph - (Pl)] :

Since there are n commission rates, there exists a continuum of solutions satisfying this equality.
Now suppose the constraints are active, i.e. suppose p;c;d; = w (1 — ¢p,), for all i. Substituting
these equalities into (14) yields h (p) = 1/6. The platform, therefore, solves

maxp 7 (p) s.t. h(p)=1/6,

while the commission rates are uniquely pinned down via p;c;d; = w (1 — ¢p), for all i. Letting A
denote the Lagrange multiplier, the first order condition with respect to p; is given by (recall that
7 (p) is strictly concave and h (p) is strictly convex)

di (1 —pi)? = [9(p) + w(en — @)]h(p) " + Ak (p) .

Since the right hand side is not indexed by i, we have d; (1 — p;)* = d; (1 — p;)*. Combining this
relationship with the constraint h (p) = 1/6 yields

pqor =1— EJ(\/a)

¢ N 0. (32)

14



Substituting p{°" into pic;d; = w (1 — ¢p,) yields
w (1 — pp)
o = . 33
T 4 JaE. () 33)
Finally the threshold 6, can be obtained via 6 = 1/h (pmt), yielding
= E,(d —
5y~ B+ wion—g) 5

2E2(V/d)

This completes the proof of Proposition 5. B

Proof of Proposition 6. Start with Model 4. The platform’s profit function is given by (13).
Recall that if § > 4 then the (interior) prices are given by (31) and if § < @, then the (corner)
prices are given by (32). First we show that the optimal # cannot exceed 4. By contradiction,
suppose it does, i.e., focus on the region where > 6,. Substituting the interior prices (31) and the
labor supply relationship w = 6/p into the profit function (13), we have

[Eo (d) + 6 (on — 1) /u)* (1= 1) 67
A2 (Vd) woo

m =

The platform solves maxy 7. The first order condition yields

é _ (SOh - SOZ) Ea(d) )
AR2(Vd) (1= 1) = (on — 1)° /1

Per our conjecture we must have 6 > 64. The inequality holds if ¢p + ¢; > 2, which is impossible
because both ¢, and ¢; are less than 1; a contradiction. Thus the optimal # must be less than 6.
Conjecturing this to be the case, and now substituting the corner prices (32) into the profit function
(13), we have

7 = E, (d)0 — E2(VA)0* — 02 (1— @) /.

The profit function is strictly concave in 6. The first-order condition yields

E, (d)
2(1—p) /u+ 2E2(Vd)

0 =

Basic algebra shows that indeed @} < 6, verifying our conjecture. This establishes the optimal
entry under Model 4. Going through the same procedure, one can obtain optimal entries 07 for
Model 1 and 65 for Model 3, which are on display in (16).

Turning to Model 2, equation (10) implies

9 (Px)
h (px)

where we take ppj as reference. Recall that when ¢, and ¢; are close to each other, p;; is

—o PLkdioh — @
—¢n h(pr) 1—¢n’

1
= p1,kd191

approximated by p; = 1 — 6. Using this relationship and substituting w = 6/p into (9), the profit
is approximately equal to

1—
o = di6 — rd16? — Twe? (35)

15



Maximizing 7o with respect to 6 yields the expression for 65, given by (17).
Now we will show that (i) 85 > 603, (ii) 6] > 65 and 67 > 6} unless p is too small, and finally
(iii) 65 > 05 unless p is too small. Starting with (i), we note that

0; > 03 < E2(Vd) < By (d),

which, in turn, is equivalent to
n n 2
Zgidi > [Z O’i\/di] .
i=1 i=1

Letting t; = v/0;d; and s; = \/o; and noting that Y o; = 1, the inequality can be rewritten as

n n n 2
Z t? Z 812 > [Z tisil .
=1 =1 =1

The result follows from Cauchy-Schwarz and completes the proof of 8} > 3. Turning to (ii), note
that the inequality 67 > 603 holds if

pdy > 1 — ¢ +di (on — 1) /Eo (d) .

The expression on the right-hand side is less than 1 because d; < E, (d) . The parameter d; typically
exceeds 1; therefore the inequality holds unless p is too small. It is straightforward to verify that
07 > 6} holds under a similar condition. Now turn to (iii). First we establish the inequality
k < di/Es (d). After substituting for s, while noting that the most restrictive case involves k = 1,
we need

d10'1 dl
< .
d101(1 +(9) + 2?22 oid; + 2v/d16 2?22 oiVd; E, (d)
Noting that E, (d) = >_;" | 0yd;, the inequality holds. Now compare 65 and 03:

05> 05 ¢ B (d)dy (1= 7) > - [B (d) (1 = 1) = (1= 1)

The right hand side is positive since d; < E,(d), whereas the left hand side is positive since
k < di/Es (d). The comparison between 65 and 63, therefore, depends primarily on . If p is large
then 05 exceeds 03, whereas if p is small then the opposite is true. W

Proof of Proposition 7. In Model 4 6} is given by (16). Since w = 0/, we have

E,(d)
2(1— pn) + 2uE2(Va)

wy =

Note that 0} rises while w} falls in p. Substituting 6} into (32) yields

dp; _ E.(Vd) dbj

dp — Vd; dp’

establishing that p; decreases with p, as 6] increases in p. Turning to the commission rate from

16



(33)
dc} c; pcid;  do;

A [

dp o (L—n)05% du
Substituting for df} /du, this expression implies

dc*
d—z <0< Ey(d) < 2/dE,(Vd),
which is equivalent to p > 0; thus implying dc} /du < 0. Now consider the expressions for matches
(My), profits (m4), and consumer surplus (CSy), given by (36), (38), and (39), respectively. Since
df;/dp > 0, all three outcomes increase with pu.

In Model 2, optimal entry 65 is given by (17), which increases in u. Using w = 6/u, we have

dq
2(1 = p1 + Kpdy)’

wy =

which decreases in p. Given the price relation p; , = 1 — k6, we obtain

d *
P1.k _ —/{d02

0.
du du <

The commission rate satisfies (24), which implies

dc dw3 < dpr g
wy.
dp dp P1k d 2

Substituting for w3 and p;; confirms that the inequality on the right-hand side holds, so the
commission rate decreases in p. Turning to profits, given by (41), we have

dmy di(1 — @)

1
dp A (prdy +1—¢p)?

which is positive. Furthermore, both the number of matches and the amount of consumer surplus,
as given in (42), increase in p because 65 increases in p. This confirms the stated claims for Models
2 and 4. Analogous steps can be used to verify the corresponding results for Models 1 and 3. B

Proof of Remark 2. Consider Model 3, and recall the relationship
peid; = w (1 —op).
Totally differentiating with respect to u yields

pdw _pdp | pdei
wdp  pdp o cpdp’
e(wp)  elpp)  elein)

i.e. the elasticity of the total driver compensation w with respect to p is equal to the sum of the
elasticities of the price and commission rates with respect to pu. Noting that p = 1 — 65, where 63

17



is given by (16), we have

Eq (d) p
1 _‘10/1) +Eo (d)M

(1 — n) € (w, )
2(1—¢p) + pE, (d)

e(w,,u):—( and € (p, p) =

Elasticities € (p, ), € (c;, pu) and € (w, ) are all negative. It is straightforward to verify that

e (p, )| < 0.5 e (w, p)|,

i.e. €(p,p) constitutes less than 50% of e(w, ), which implies that € (¢;, u) exceeds 50%. In other
words, the platform responds more strongly through commissions than through prices. This confirms
the Remark under Model 3.

Now consider Model 4. The process is the same, but the relevant equations are now

E2(v/d)
E; (d)

*2 (1 _@h) EO’(\/g)

e (w, ) = —20; YR, (d) /By (V)0

and € (p;,p) = —26

where p; is given by (32) and 6} is given by (16). The inequality |e (p;, )| < 0.5 |e (w, )| boils down
to

2(1;%) (B, (d) - V&iE, (V)| < B2(Vd) [2B, (V) — E, ()],

which typically holds true (unless d;, ¢ and p are all too small).
Turning to Model 2, we have p; ;, = 1 — k63 where 63 is given by (17). The relevant equations

are
(1—¢p) dipk

(kpdy +1— @) (1 — K63)
It is straightforward to show that as long as x > 0 the inequality |e (p1x, 1)| < 0.5 e (w, p)| holds

Kudy
rudy +1 — ¢

e(w,p) = and € (p1g, p) = ~3

true. Finally, the process for Model 1 is the same as the one for Model 2, except k is replaced with
dy/E4 (d) . Since this expression is positive, the inequality holds under Model 1 as well. Bl

Proof of Proposition 8. The total number of matches is equal to M = > ; m;. With Model 4
mi = oih (p)~ ", whereas with Model 3 m; = o5 (1 — p) . Prices in Model 4 are given by (32) and in
Model 3 by (30). Substituting for prices, we have

M4 = 91 and M3 = 9; (36)

The inequality My > Mjz follows from the fact that 65 > 65 (Proposition 6). In Model 1 m; =
0; (1 — p), where p is given by (21). After substituting for the price

di (1 — ) 07
Eq (d) (1 —n) +di (pn — 1)

Basic algebra establishes that Mz > M if

M; =

(B (d) — d) [(Eq (d) + d1) (1 = ) + di (on — 1)] > 0. (37)

The first term is positive because di < do < ... < d,. The expression inside the square brackets
is positive because 1 > ¢y > ¢;. The inequality holds true, thus Ms > M; follows. Now turn to

18



profits. Substituting for prices

Eq (d)2 K

1 E,(d)’p 1
41 — ¢y + pE2(Vd)

:11—%4-#1@0(@

3 and w4 =

The inequality 74 > 73 follows from the fact that E, (d) > E2. Turning to Model 1, we have

= 1 pdiEq (d) (1 — o)
dud? (1 — @) +Ey (1—@p) +di (on — 1) (1= @p)

Routine algebra shows that the inequality w3 > 7 reduces to (37), which holds. Now, turn to the
consumer surplus. After substituting for prices and 65 ad 6; we have

1 B, (d) o _ 1 EA(VAEZ(d)
B (R () | (R YRS 1oy 5 %9
Similarly, for Model 1
Sy = 1 dzll/ﬂ(l - SOl)QEJ(d) (40)

T 8[ud}(1— @1) + Eo(d(l — 9p)2 + di(1— on)(on — 1))

The inequality C'Ss > C'S; reduces to (37), which holds true. Finally C'Sy > C'Ss is equivalent to
B2 (VA)E,(d) > (1 — on)?/i?,

which is typically true, unless ¢p and p are both too small.
Substituting the expression for 63 into (35) yields the profit in Model 2

pdi

1
= 41
4purd; +1— ¢y (41)

2
Note that 1
T3 > Ty & p [E2 (d) (1 — ¢1) — di (1 — ¢n)] > Eq (d) [di — Eq (d) &].

The expression on the left is positive because E, (d) > d;. The expression on the right is positive
as K < d1/Ey(d). The comparison between my and 73, therefore, hinges primarily on the value
of u: when g is small, we have w3 > mo; when p is large, the inequality reverses. Note that this
observation aligns with the simulations in Figure 4.

The number of matches and the amount of consumer surplus in Model 2 are given by

n

1 o;d;
My =h(p)! d CSy=- Gl
2=nh(p) " an 2= 3 21 (p)

(1—pi).

Recall that prices in Model 2 are bounded below by puin, given in Proposition 3. Upper bounds for
Ms and CSs can be obtained by substituting pmi, for prices. We have

_ _ 1 2
My = \/052/4+ 05— 03/2 and  OS; = SE,(d) [,/9;2/4 + 05— 9;/2} . (42)
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M is close to 3. Similarly C'Ss is close to %EU (d) 932, In comparison, under Model 3 we have

M3 = 0} and CS3 = %EU (d) 632

Recall that 03 exceeds 65 when p is small, while the reverse holds when p is large (see the proof of

Proposition 6). It follows that, Model 3 generates more matches and higher consumer surplus when
i is small, whereas Model 2 performs better on both dimensions when p is large. B

A.4 Transition and Distance Matrices

In what follows we provide the transition and distance matrices for NYC.
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