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Abstract

On-demand platforms like ride-sharing services rely heavily on economic incentives to attract,

retain, and manage independent workers who have significant discretion over whether and where

to work. Using an analytically tractable spatial model, we explore the impact of different pricing

and commission strategies on customer demand, driver entry and retention, and their location

choices. Our model yields several unique results and actionable insights. We find that flexible

commission policies are more effective than fixed commission policies in allocating drivers ef-

ficiently across locations, reducing bottlenecks, and improving driver retention. We also show

that commission-based interventions are more effective than price interventions in responding

to labor market changes, as they directly affect driver incentives without distorting customer

demand. Finally, if fairness-sensitive customers are prevalent in the market, then fixed pricing,

combined with flexible commissions, becomes the optimal rule. Simulations based on actual ride

patterns from New York City and Los Angeles confirm our insights.
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1 Introduction

Uber operates in over 70 countries and 10,000 cities, and it has reported an average of 28 million trips

per day globally in 2024 (Uber, 2024). Finding and keeping drivers have always been a challenge

for ride-hailing platforms as they experience significant driver turnover (Brown, 2019; Cook et al.,

2020). Indeed, according to a report by Uber, 11% of new drivers stop driving within a month, and

about half of them leave within a year (Huet, 2015). Flexible labor supply in ride-sharing platforms

has been further affected by the recent emergence of alternative work options such as food and

grocery delivery (Bursztynsky, 2021), and ongoing issues with drivers’ employment rights, working

and pay conditions (Paul, 2021).

In modern ride-sharing, platforms engage with a large number of drivers whose participation

and retention are highly responsive to earning opportunities. When a platform offers attractive

earnings—through high fares and favorable commission rates—drivers would be more inclined to

log in and accept rides. Conversely, if the incentives are insufficient, drivers might decide to log off
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and stop accepting rides. For instance, a driver might use both Uber and Lyft apps simultaneously

and switch between them (Allon et al., 2023a). Additionally, it is important to recognize that these

dynamics are also influenced by local labor market conditions, which can differ from city to city.

Pricing plays a crucial dual role in this ecosystem by influencing both drivers’ expected earnings

and customer demand. Generally, drivers prefer higher prices, but such prices can deter potential

riders and decrease demand. Conversely, lower prices make rides more affordable, boosting demand.

Finally, the spatial differentiation of supply and demand can create varying earning opportunities,

attracting more drivers to certain locations and impacting service availability in other areas.

Given these dynamics, the platform must adopt a comprehensive approach in its operational

policy decisions, considering the interplay between pricing policies, driver entry and exit, customer

demand, and drivers’ location choices. That is, the platform needs to create the right incentives

using alternative compensation schemes in the right market, retain the right fleet size, serve the

right locations, and ultimately maintain a smooth and successful operation in serving customers.

To study the strategic impact of such incentives, we develop an analytically tractable model based

on four key features.

First, the model is spatial in that the platform and the drivers operate over a network of

locations with differing distances and traffic flows. Indeed, some locations have fundamentally

different demand patterns as they consistently pull in and send away more traffic than others1. The

spatial structure allows the platform to account for such variations in local demand and supply, as

well as the self-selection of drivers who choose where to search for passengers based on location-

specific factors such as local demand, price, and commission rates. By employing a spatial model, the

platform effectively takes a system-wide view, choosing prices and commissions while anticipating

how each decision shapes city-wide outcomes.

Second, we consider four alternative operational models: (1) Fixed price, fixed commission; (2)

Flexible price, fixed commission; (3) Fixed price, flexible commission; and (4) Flexible price, flexible

commission, comparing their performance in terms of the number of matches and profits. These

four schemes capture a wide range of real-world practices employed by ride-sharing platforms such

as Uber and Lyft. Under fixed pricing, the platform charges a uniform, per-mile rate across the

entire city. In contrast, flexible pricing involves location-specific rates. Uber, for instance, employs

“route-based pricing”, setting different prices for routes based on “their understanding of demand

patterns”. This approach is justified by the fact that “traveling between a fancy neighborhood and a

city center [...] might cost a premium rate” (Mahdawi, 2018).2 This is akin to the notion of flexible

pricing in our paper. In contrast, Lyft’s “Price Lock” allows riders to subscribe to fixed fares for

specific recurring routes, turning the typical dynamic pricing into predictable fixed prices (Morrow,

2024). Fixed and flexible commission rates are defined likewise. While the fixed commission model is

more common—e.g., in most cities, Uber takes a fixed 25% commission and drivers keep 75% of the

revenue (Uber, 2020)—some platforms have experimented with schemes involving location-specific

or dynamic commissions. For example, Lyft has implemented “Bonus Zones,” where drivers receive

1For instance, based on actual ride patterns, we observe that in Los Angeles there is consistently high flow of traffic
to and from Santa Monica, West Hollywood and the Los Angeles International Airport, but the same is not true for,
say, Studio City or Pacific Palisades.

2We should mention that our notion of flexible pricing, which is akin to Uber’s route-based pricing, is different from
“surge pricing”, which addresses temporary demand spikes due to events like major sports games or bad weather.
Instead, we note that some locations have fundamentally different demand patterns. Such persistent long-term
differences call for flexible schemes in which prices and commission rates can be conditioned on location-specific
factors.
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bonus payments for picking up riders in certain areas, thereby creating location-specific incentives

under fixed pricing—a structure that seems to correspond to fixed-price flexible commission model

(Model 3) in our paper.3

Third, the platform faces a flexible labor supply, which makes driver entry endogenous in our

model. By setting prices and commissions, the platform determines the expected earnings for

drivers, which, in turn, determines the amount of driver entry. These policies also influence how

drivers distribute themselves across locations based on earning potential. As a result, the choice of

prices and commissions impacts both the size of the driver fleet as well as its allocation in the city.

Fourth, drivers’ participation depends on their ability to secure customers. Those who repeat-

edly struggle to find customers may become “discouraged” and ultimately leave the platform (as

discussed further below). That is, driver retention is also endogenous in our model. Finally, in

Section 5.2, we further consider the presence of behavioral customers who may react negatively to

location-specific pricing due to perceived fairness concerns.

Our analysis reveals important insights as well as several actionable operational strategies by the

platform. Our first results pertains to the interplay between operational policies, driver incentives,

and fleet size. A primary challenge for the platform is ensuring an even distribution of drivers across

the city, particularly by incentivizing them towards undesirable locations, as failing to do so could

turn such locations into bottlenecks. With fixed commission models (Operational Models 1 and

2), the platform can address this issue only through price interventions, which not only distort the

demand but also do a poor job of incentivizing drivers. In contrast, flexible commission policies

(Models 3 and 4) can efficiently utilize available vehicles for rides without resorting to unnecessary

price hikes.

This difference has further implications when considering free entry. Due to their under-

utilization of available vehicles, fixed commission models often result in a larger fleet size. In

contrast, flexible commission models prevent bottlenecks and maximize the use of available vehi-

cles, thereby reducing the need for a large fleet. A smaller fleet size, however, does not equate

to fewer matches or reduced profits. Indeed, our analysis demonstrates that flexible commission

models, by effectively utilizing drivers, generate more matches, higher profits, and greater consumer

surplus. This presents an opportunity for the platform to leverage flexible commissions which can

enhance its operational performance.

Our second result highlights a key connection between flexible commissions and driver retention.

Consistent with recent research on driver motivation (Hall and Krueger, 2018; Allon et al., 2023a,b),

we recognize that drivers may drop out if they struggle to find passengers, while successful matches

encourage continued participation. This notion yields an important insight. Under a fixed com-

mission system, to mitigate the dropout risk, the platform must reduce prices to stimulate demand

and help drivers secure matches. By contrast, with flexible commissions, such price adjustments are

unnecessary. Indeed, flexible commission systems utilize the driver fleet more efficiently, so drivers

consistently find customers and, therefore, are unlikely to drop out prematurely. Consequently, the

platform benefits from not having to deal with the disruption associated with the frequent turnover

of drivers. This represents a significant operational advantage for the platform.

Our third result focuses on how the platform optimally responds to changes in the local labor

3Ola, a platform from India, has piloted a flat-fee model where drivers pay a fixed daily amount to access the
platform and keep all fare revenue (OutlookBusiness, 2025). Bolt, on the other hand, has tested performance-based
commissions, offering reduced commission rates to top-rated drivers (AInvest, 2025). While these are not directly
location-contingent in the sense modeled here, they reflect a broader trend toward flexible, nonstandard approaches
to driver compensation.
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market conditions. The extent of driver entry depends on the attractiveness of earning opportu-

nities. When drivers become less responsive to such opportunities—indicating a reduced market

sensitivity—the platform faces a challenge in maintaining an adequate number of drivers to meet the

demand. To address this, the platform must improve expected earnings. Our analysis suggests that

this is best achieved by raising commissions (drivers’ share of the revenue), rather than prices. This

is because higher commissions incentivize drivers without suppressing customer demand, whereas

higher prices reduce demand, making them a suboptimal tool for attracting drivers. Our result,

therefore, has a clear actionable insight: when faced with changing labor market conditions, the

platform should prioritize the use of commissions. Doing so successfully incentivizes drivers and

ensures an adequately sized driver fleet while preserving a stable demand.

Fourth, to illustrate our findings in a real-world setting, we calibrate the model for New York

City and Los Angeles based on ride patterns we extracted from a publicly available connectome

map on Uber’s website. Our simulations reveal two important insights: (i) We document that the

performance of operating models depends on how balanced a city’s traffic structure is in terms

of trip lengths and traffic flows. If these parameters show significant variation across the city,

then pursuing a non-flexible policy is more “costly” for the platform. Because Los Angeles has

a more imbalanced traffic structure than New York in our data, non-flexible rules fare worse in

Los Angeles than in New York. Our subsequent simulations based on randomly generated cities

with varying distances and transition matrices further confirm this insight. (ii) Since Model 4

(flexible commission, flexible price) encompasses the other operating models as special cases, it

outperforms them in generating profits. Interestingly, however, the performance difference between

Model 3 (flexible commission, fixed price) and Model 4 is minimal. This observation highlights the

importance of flexible commissions in preventing bottlenecks and efficiently utilizing drivers across

the city. Once this aspect is accounted for, the advantage of pursuing a location-specific pricing

scheme seems to be relatively small.

Finally, our fifth result provides a more nuanced connection between customer behavior and the

optimal operating policy. As noted above, Model 4 outperforms the other operating models and is,

in principle, the platform’s best option. However, the fact that Model 3—which relies on uniform

pricing—performs nearly as well introduces an important caveat. Model 4 incorporates location-

specific pricing, meaning that certain areas may face significantly higher prices than others. This can

alienate behavioral customers who perceive such differences as unfair and respond by disengaging

from the platform.4 If the share of such customers exceeds a threshold, Model 4’s profitability falls

below that of Model 3. This result offers a key managerial insight for the platform. Behavioral

reactions by customers can offset the benefits of location-specific pricing. When a large segment

of customers responds this way, a uniform pricing strategy, combined with flexible commissions,

becomes the optimal approach.

2 Related Literature

Our study focuses on ride-hailing with the objective of efficiently matching riders and drivers.

To provide context, we briefly review the relevant literature on the taxi industry that forms the

4Though somewhat different, Uber’s surge pricing resembles the pricing scheme in Model 4, and the backlash
against it suggests that some customers indeed perceive such practices as unfair. It is described as “price gouging”
by The New York Times (Lowrey, 2014), “exploitative” by Harvard Business Review (Dholakia, 2015), and a “scam”
by CNN Business (Morrow, 2024).
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foundation of our work. Lagos (2000) highlights endogenous search frictions in the taxi-cab market.

Buchholz (2022) considers a non-stationary environment by employing data from New York City

and analyzing the dynamic spatial equilibrium of taxi-cabs. Our research extends this body of work

by incorporating a platform that sets prices and commission rates, whereas in the aforementioned

models, there is no platform and prices are exogenous.

Our work is related to two-sided markets (Parker and Van Alstyne, 2005; Rochet and Tirole,

2006; Armstrong, 2006) and the literature on peer-to-peer matching platforms (Einav et al., 2016;

Cramer and Krueger, 2016; Benjaafar and Hu, 2020) with a focus on ride-hailing (Wang et al.,

2019; Chakravarty, 2021; Naumov and Keith, 2022). While the study of pricing strategies has a

long history in the two-sided markets literature (Rochet and Tirole, 2003; Parker and Van Alstyne,

2005; Eisenmann et al., 2006; Weyl, 2010; Tan et al., 2020), there has been increased attention on the

design of on-demand ride-hailing platforms and corresponding incentive schemes with the ultimate

goal of better matching demand with supply (Cachon et al., 2017; Bai et al., 2019). However, most

of these studies have focused on addressing short-term demand fluctuations with dynamic surge

pricing (Chen and Sheldon, 2015; Banerjee et al., 2015; Castillo et al., 2017; Castillo, 2023).

Ride-sharing platforms’ pricing, wage, and compensation decisions have attracted attention

(Cachon et al., 2017; Hu and Zhou, 2019; Cohen and Zhang, 2022); however, these studies do not

explicitly take into account spatial features of the city where the platform operates. Indeed, a key

aspect of the process of matching demand with supply in ride-sharing is the spatial differentiation

of consumer demand and the direct influence of pricing policies on the strategic search behavior

of drivers across various locations, which has received relatively little attention in the literature.

Exceptions include Guda and Subramanian (2019) who study surge pricing and information sharing

in a two-zone-two-period setup and more importantly Bimpikis et al. (2019) who explore spatial

price discrimination for a ride-sharing platform.

We significantly extend this line of work by concentrating on driver entry, driver retention, and

customer fairness concerns—factors that increasingly influence platform operations. We build on

a spatial model while differing from Bimpikis et al. (2019) in several important aspects. First,

driver entry in our model is endogenous, and the optimal fleet size depends on the labor market

sensitivity to earning opportunities. Second, driver retention is also endogenous, as drivers may

become discouraged and drop out prematurely if they cannot find enough matches. Finally, we

consider the presence of behavioral customers who may react negatively to location-specific pricing

due to perceived fairness concerns. Thanks to these novel features, our model yields several unique

results and actionable insights. To summarize briefly: (i) Adopting a flexible (location-specific)

commission policy leads to more matches, which in turn improves driver retention and reduces

operational disruptions5. (ii) Adjusting commissions, rather than prices, is a more effective way

to respond to labor market fluctuations6. (iii) If fairness-sensitive customers are prevalent, then

5This result obtains because flexible-commission models with free entry lead to equilibrium outcomes in which all
active drivers are fully utilized, so that no driver prematurely exits. The nature of this equilibrium and its impact on
driver retention is not trivial and to our knowledge, has not been documented in the literature.

6When the labor supply becomes less responsive, the platform’s profit will be negatively affected, and the platform
should respond by improving the expected earnings of the drivers. However, it is not clear how the platform should
adjust its policies to achieve this. Both prices and commissions can, in principle, be used to improve earnings to
induce more driver entry, but their equilibrium implications are hard to predict. Our analysis—both theoretical and
numerical—shows that the platform should rely primarily on commission adjustments, with price adjustments playing
a peripheral role. This result is not immediate and we believe our study is the first in the literature to identify and
explain this specific nature of the policy response.
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uniform pricing, combined with flexible commissions, becomes the optimal rule7. To the best of

our knowledge, these assumptions and the resulting managerial insights are unique to our model,

making it a distinct and significant contribution to the literature.

Finally, our work also has broad connections with the literature on incentives and compensation

plan design (Jain, 2012; Chan et al., 2014). Previous literature explored how to best align incentives

of flexible workers with those of the firm by considering commissions and bonuses (Schöttner,

2017). More recent work focused on two-sided market platforms and examined the compensation

of salespeople employed by such platforms in the presence of network effects (Bhargava and Rubel,

2019). A common aim of this literature is to understand how different compensation schemes affect

the effort choices of salespeople who have considerable autonomy and flexibility in their work. In

a similar spirit, our study investigates how an on-demand platform designs incentives to manage a

highly independent and flexible workforce effectively.

3 Model

3.1 Environment

Time is discrete and continues forever. We consider a city that consists of n ≥ 2 locations and

is populated by a continuum of passengers with size 1 and a continuum of cars with size θ. The

number of passengers and cars at location i are denoted by yi > 0 and xi > 0 and they satisfy∑n
i=1 yi = 1 and

∑n
i=1 xi = θ. The physical distance between locations i and j is denoted by δi,j

and people’s moves across these locations are governed by a Markov process, characterized by the

exogenous row stochastic transition matrix T = (ai,j)n×n where ai,j > 0 denotes the probability

that a person at location i wishes to travel to location j.

People and cabs are matched via an online platform that sets prices and commission rates.

People’s willingness to pay is uniformly distributed in [0, 1]; so, if the platform sets price pi at

location i then there are ri = yi(1− pi) riders willing to hire a cab at that location. The remaining

people are assumed to use public transport or other means of travel, and they do not generate any

revenue for the platform. The platform’s software identifies cabs and passengers at location i and

creates matches according to mi = min{ri, xi}. Cabs can accommodate only a single passenger per

trip and the assignments are random; thus, the probability that a driver who is searching at location

i finds a passenger is equal to

ηi =
mi

xi
= min

{
ri
xi
, 1

}
.

Occasionally, we refer to ηi as the utilization rate at location i, because from the platform’s point

of view ηi represents the percentage of cabs utilized in a ride.

7It is intuitive that fairness-sensitive customers would respond negatively to location-specific pricing, thereby
undermining the performance of Model 4. A similar effect would likely arise in extensions of models such as Bimpikis
et al. (2019), where origin- or origin-destination-based pricing can likewise deter fairness-minded users and reduce the
attractiveness of such pricing schemes. However, the magnitude of this effect is not immediately clear, nor is it obvious
whether it is substantial enough to warrant a change in the platform’s policy choice. In our model, the performance
gap between Model 4 and Model 3 (uniform price, flexible commission) is typically small, especially when the city
layout and traffic flows are relatively uniform. Numerous simulations—based on both real-world ride patterns in New
York and Los Angeles, and randomly generated city structures—confirm this finding. As a result, only a small share
of fairness-sensitive customers is enough to overturn the platform’s preference for Model 4. This is an actionable
implication for platform design: it shows that the presence of such customers, even in small numbers, should not be
ignored when choosing between flexible and uniform pricing regimes.
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In addition to matching passengers to cabs, the platform sets prices and commission rates across

the city. In terms of notation, pi refers to the per-mile price associated with rides originating from

location i. Similarly, the commission rate ci refers to the percentage of the revenue that the driver

takes home after completing a ride originating from location i. Drivers participate in this market if

their expected earnings are greater than or equal to their outside option, w, which is the wage they

could earn in the labor market. For now the parameters θ and w are exogenous. Later, in Section

5, we will relax this assumption by allowing free entry.

Each period starts with a matching session in which vacant cars at each location are matched

with passengers. We ignore operating costs (petrol, insurance, etc.) as one can redefine the outside

option net of such expenses. In line with recent studies on driver motivation and retention (Hall

and Krueger, 2018; Allon et al., 2023b), we assume that drivers are more likely to be discouraged

and quit if they struggle to find passengers. This can be in the form of, for instance, a driver simply

switching off the app and logging on to another one, e.g., a driver switching from Uber to Lyft,

commonly known as multi-homing in the literature (Allon et al., 2023a). In contrast, successful

matches enhance their likelihood of continuing to offer services. More specifically, drivers matched

with a passenger complete their journey, and continue to the next period with probability φh. Drivers

without a match, on the other hand, continue with probability φl. We assume that φh > φl, i.e.,

being matched increases the likelihood of remaining in the service while being unmatched increases

the likelihood of dropping out. At the end of each period, passengers reach their destinations,

matches are dissolved, and the process starts again. When deciding where to search, drivers not

only take into account the probability of finding a customer ηi, but also the price pi, the commission

rate ci, and the average trip length originating from that location. Below we analyze their problem.

3.2 Drivers’ Problem and the Steady State Equilibrium

Let Vi denote the value of searching at location i before the matching session starts. We have

Vi = ηi

n∑
j=1

ai,j(cipiδi,j + φhVj) + (1− ηi)φl max{Vj}nj=1.

With probability ηi, the driver is assigned to a passenger, and with probability ai,j , the passenger

travels to location j. If the driver agrees to take this trip, then his payoff is equal to the share of

the revenue cipiδi,j plus the value of search at location j. With probability (1 − ηi)φl, he gets no

passenger and does not drop out, in which case, again, he obtains the value of search. A cab that is

unable to get a passenger can move to another location if it is more advantageous to search there,

which is why max{Vj}nj=1 appears in the last expression. Drivers are allowed to refuse a match,

but if they do so, they must wait until the next round, i.e., they cannot instantaneously re-enter

the matching pool to draw a better ride. (Below we show that, in equilibrium, drivers do not turn

down a match and go empty in search of a better opportunity.)

Steady State Equilibrium. We focus on a steady state in which the number of incoming rides

to a location is equal to the number of outgoing rides from that location, i.e.

mi = a1,im1 + ...+ an,imn, for all i.

The left-hand side represents the outflow from i, whereas the right-hand side is the inflow into i.

Since each ride consists of one passenger and one driver, the equation ensures that in the steady
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state, the number of passengers and the number of drivers at each location remain unchanged.8

Some drivers may drop out, but since they are replaced one for one, this process does not affect the

equation above. The relationship holds across the entire city, so letting m = (m1, ...,mn) we write

m = mT. (1)

Lemma 1 The number of rides in the steady state satisfies

mi = σiM, (2)

where M =
∑n

j=1mj, and σ > 0 is the unique steady state vector of the transition matrix T .

All proofs are in the E-Companion. If there are a total of M moves in the city, then a fraction

σi ∈ (0, 1) of those moves must be originating from location i. In the steady state, the incoming

and outgoing traffic flows are equal to each other, so an alternative interpretation of (2) is that a

fraction σi of the traffic must be directed towards i. Either way, the parameter σi is a proxy of how

attractive/busy the location is. If σi is high, then we infer that location i is busy as it pulls in and

sends out a significant amount of traffic.

Furthermore, we assume that in the steady state, drivers are indifferent across locations, i.e.

V1 = ... = Vn = V. (3)

The indifference condition implies that max{Vj}nj=1 = V ; thus in equilibrium, drivers have no strict

incentive to relocate and search at another location.9 Our notion of the steady-state is characterized

by [i] the stationarity of the distribution of people across locations, captured by equation (1), and

[ii] drivers’ indifference across locations, captured by equation (3). Temporary or even cyclical

imbalances in the flow of traffic due to, say, rush hours, bad weather, football games, etc., may

violate these conditions. Ignoring such fluctuations, we take a rather long-term view of the market

and posit that the number of passengers at each location remains intact; thus [i] must hold. Likewise,

there should not be a lasting difference in expected profits across locations, affirming that condition

[ii] must be maintained. This notion of equilibrium is common in dynamic search and matching

models, e.g. Lagos (2000), as it yields analytically tractable results.

Simplifying the expression for Vi, we have

Vi = V =
ηipicidi

1− φl − ηi(φh − φl)
for all i, where di =

n∑
j=1

ai,jδi,j

is the average trip length of a ride originating from i. We label the locations 1 to n such that

d1 < d2 < ... < dn,

i.e., location 1 has the shortest expected trip length, whereas location n has the longest. (We ignore

8People who have a low willingness to pay choose alternative methods of transportation. Though we remain
agnostic about such passengers, we implicitly assume that the number of such passengers entering and exiting is the
same, ensuring that equation (1) is sufficient for maintaining a steady state.

9In equilibrium, drivers do not turn down a match and go empty in search of a better opportunity. To see why,
note that if a driver idles, he walks away with φlV , whereas if he accepts a match, then he obtains piciδi,j + φhV.
The second expression is larger than the first; thus, no driver idles voluntarily.
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Figure 1: Layout and traffic flows

equalities.) Note that di depends on both on δi,j and ai,j ; thus, a location does not have to be

physically the closest to other locations to have the smallest di.

Example. Consider the city in Figure 1 (left panel) and suppose that the transition probabilities

are equal to each other (middle panel), i.e. ai,j = 1/4 and ai,i = 0. The expected trip lengths are

equal to dA = 3.7, dB = 4.7, dC = 3.2, dD = 5.4, dE = 6.1.10 Location C sits at the intersection

of routes and, as expected, it has the shortest trip length; thus, it can be labeled as location 1.

A ranks second; so it is 2, B is 3, D is 4, and E is 5. Now suppose C attracts more traffic than

other locations, e.g., suppose that 70% of traffic out of any location is directed towards C, while the

remaining 30% is shared equally between the other three locations (i.e., ai,C = 0.7 and ai,j = 0.10,

i, j ̸= C). As for the traffic out of C, suppose it is still equally shared across the four destinations,

i.e., aC,i = 0.25. These flows are depicted in the right panel of Figure 1. The expected trip lengths

are now equal to dA = 2.8, dB = 3.1, dC = 3.2, dD = 4.0, dE = 5.7. Now A and B, despite being

physically more remote, have shorter trip lengths than C. This is because when calculating dA and

dB, shorter distances have a weight of 70% whereas longer distances have only 10%. The imbalance

in the traffic flow changes the ranking; so, now location A ought to be labeled as 1, B as 2, C as 3,

D as 4, and finally E as 5.

The re-labeling is important for the following reasons. From a driver’s perspective the location

with the minimum di is the least desirable location, and depending on the operating model, this

location turns into a bottleneck if there are not sufficiently many cars in the city. The bottleneck

location is typically the most central one–the one with a short physical distance to every other

location–however, as the example illustrates, this is not always the case. Additionally, the location

of the bottleneck can shift as the traffic flow changes. In the paper, we use numerical labels to

identify locations, but it is important to note that these labels are relative and may vary if the

transition matrix or city layout changes (for example, due to road closures or the creation of new

roads that create new connections).

Drivers participate if V ≥ w, i.e. if their expected earnings are at least as good as their outside

option, w. The platform will not pay more than w, thus

V = w ⇔ ηi[picidi + (φh − φl)w] = w(1− φl). (4)

10Consider location A and note that δA,B = 4.24, δA,C = 2.24, δA,D = 5.24, and δA,E = 3.16. Since ai,j = 1/4, the
expected length of a trip originating from A is equal to dA = (4.24 + 2.24 + 5.24 + 3.16)/4 = 3.72. Other trip lengths
can be calculated similarly.

9



After substituting for ηi the equality becomes

mi[picidi + (φh − φl)w] = xiw(1− φl), for all i. (5)

Combining (2) and (5) with the fact that
∑n

i=1 xi = θ we obtain

xi =
σipicidi + σi(φh − φl)w∑n
j=1 σjpjcjdj + (φh − φl)w

θ, (6)

which pins down the number of cars at location i as a function of prices, commission rates, and

expected trip lengths. Drivers prefer locations that are more busy (high σi) and that have longer

trip lengths (high di). In addition, xi rises in the price pi and the commission rate ci; thus, the

platform can encourage drivers to search at location i by raising pi or ci. Such decisions are part of

the platform’s problem, which we study next.

Platform’s Problem. The platform’s per-period profit is equal to

π =

n∑
i=1

mipidi −
n∑

i=1

mipicidi.

The first term is the revenue generated through rides, the second term is the payout to drivers.

Using the indifference condition in (5) the second term becomes

n∑
i=1

mipicidi = w(1− φl)θ − (φh − φl)wM. (7)

Thus

π =
n∑

i=1

mipidi − w [(1− φl)θ − (φh − φl)M ] (8)

The substitution of (7) eliminates commission rates from the platform’s objective function. The

platform picks prices to maximize the revenue while the commission vector c ensures drivers’ partic-

ipation and indifference via (5). Occasionally, we refer to such a c as incentive compatible. Finally,

the platform’s lifetime profit is equal to π/(1− β), where β is the discount factor.11

A steady state equilibrium is a time-invariant tuple {(pi, ci, xi, yi)}ni=1 such that (i) the platform

maximizes its lifetime profit; (ii) drivers participate, and they are indifferent across locations; (iii)

the inflow of moves equals to the outflow at each location; (iv) the total measures of cabs and

passengers are equal to θ and 1, respectively.

For now, we treat the number of drivers θ as an exogenous parameter. Later in Section 5, we

relax this assumption with free entry and determine the optimal fleet size. In what follows, we will

analyze four different operating models:

• Model 1: Single Price, Single Commission Rate: pi = p and ci = c for all i.

• Model 2: Multiple Prices, Single Commission Rate: pi is location specific, but ci = c for all i.

• Model 3: Single Price, Multiple Commission Rates: pi = p but ci is location specific

11To save on notation, we leave out the discount factor in drivers’ payoff calculations. The drop-out probabilities
1− φh and 1− φl serve as substitutes for discount factors, guaranteeing that drivers’ lifetime payouts remain finite.
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• Model 4: Multiple Prices, Multiple Commission Rates: Both pi and ci are location specific.

4 Operating Models

4.1 Model 1: Single Price, Single Commission Rate

We start with the claim that the probability of finding a customer, ηi, can be equal to 1 only at

location 1, the location with the minimum distance. At remaining locations ηi must be strictly less

than 1. To see why, note that since ci = c and pi = p, the indifference condition (4) boils down to

pc(ηidi − ηjdj) + (ηi − ηj)(φh − φl)w = 0 for all i, j.

If di < dj , then considering that φh > φl, the equality is possible only if ηi > ηj . Since d1 < ... < dn,

only η1 can be equal to 1, while all other ηis must be strictly less than 1.

We say there is excess demand at location i if xi < ri, i.e. if there are fewer cars than passengers.

The previous claim rules out the possibility of excess demand at locations i = 2, ..., n. At location 1,

however, η1 may be equal to 1, which occurs when x1 = r1 or when x1 < r1. The following Lemma

rules out the latter scenario.

Lemma 2 There cannot be an equilibrium in which x1 < r1.

In the proof, we start with a scenario with excess demand, and show that the platform is better

off by increasing the price to absorb the excess demand and match it with the local supply. Before

moving forward, let us introduce the following notation:

Eσ(d) =

n∑
i=1

σidi and Eσ(
√
d) =

n∑
i=1

σi
√
di.

The expression Eσ (d) is a weighted sum of dis and can be interpreted as the average trip length in

the city. Eσ(
√
d) is similar.

Proposition 1 If θ > θ̄1 then we have an interior equilibrium where the platform sets pint and

cint and all locations exhibit excess supply. If θ ≤ θ̄1 then the platform sets pcor and ccor.12 In this

corner equilibrium, the local supply matches the local demand at location 1, however, there is excess

supply at the remaining locations.

If there are sufficiently many cars in the city, i.e., if θ > θ̄1, then the platform optimally sets the

interior price pint. Along this outcome, all locations have more cars than passengers, but there is a

caveat. Location 1, with its shortest expected trip length, sees fewer cars per passenger compared

to any other location. Conversely, location n attracts more cars per passenger due to its longer trip

length. The other locations fall somewhere in between these two extremes.

If the number of cars is insufficient, θ ≤ θ̄1, then the platform experiences excess demand at

location 1, so it resorts to a price increase to alleviate the excess demand (see Figure 2, left panel).

In this corner equilibrium, the ratio of customers to cabs satisfies ηi < η1 = 1, i.e. the local supply

and demand are balanced at location 1—the least desirable location for drivers—but there is an

oversupply of cabs at other locations. This outcome is wasteful from the platform’s perspective. If

12Analytic expressions for θ̄1, p
int, cint, etc. can be found in the proof of Proposition 1 in the E-Companion.
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Figure 2: Model 1

the platform could somehow—e.g., by adopting a flexible commission model like Model 3—redirect

surplus drivers to location 1, then it could avoid unnecessary price increases and cater to more

customers. However, due to the inflexibility of the operating model, it cannot do so, resulting in

location 1 becoming a bottleneck.

Driver Retention and Pricing Policy. Recall that in our model, drivers who successfully find

customers are more likely to continue to drive, whereas drivers unable to find a match are more

prone to dropping out. In what follows we explore how the platform reacts to this.

Remark 1 A reduction in φl results in a decrease in price and an increase in the likelihood of

finding a customer across all locations.13

The Remark establishes that as φl decreases—indicating a heightened risk of drivers becoming

discouraged and quitting—the platform lowers the price.14 This adjustment is driven by the fact

that lower prices stimulate more demand, improving the chances of drivers finding customers. This

can also be seen in the middle and left panels of Figure 2: As φl decreases, the platform reduces

the price (middle panel), which then increases the probability of finding a customer ηi across all

locations (right panel). The higher ηis, in turn, help prevent drivers from dropping out. Indeed

the platform’s success in retaining drivers depends on its ability to ensure a steady stream of ride

requests for drivers, providing them with consistent opportunities to earn income and reinforcing

their decision to remain active on the platform.

Note that, in contrast to what one might expect, increasing prices does not lead to higher driver

retention. Drivers drop out due to a lack of customers, and the platform addresses the root issue

by lowering prices to stimulate demand. This dynamic underscores the interplay between driver

retention and pricing strategy. Finally, the Remark also holds true for operating models 2, 3, and 4.

However, as the underlying intuition remains unchanged, we will not reiterate it for the remaining

models.

4.2 Model 2: Multiple Prices, Single Commission Rate

Lemma 3 There cannot be an equilibrium in which xi < ri at any location i.

13The proof of the Remark involves showing that dpint/dφl and dpcor/dφl are both positive while dηi/dφl is negative
(analytic expressions for the prices as well as ηi are in the proof of Proposition 1). We omit this step as it is relatively
straightforward.

14A decrease in φl could be due to competition from other platforms that drivers can easily switch to. For example,
multi-homing drivers may opt to switch from Uber to Lyft if they cannot find enough attractive opportunities.
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This is similar to Lemma 2 and it has the same intuition. In the proof, we show that in case of

excess demand, the platform is better off by increasing prices at locations where demand outstrips

supply. This helps reduce local demand while incentivizing drivers to move toward those locations.

Per the Lemma ri ≤ xi ⇔ mi = ri for all i. Since mi = σiM and
∑n

i=1 yi = 1, we have M = h(p)−1

and mi = ri = σih(p)
−1, where

h(p) =
n∑

i=1

σi
1− pi

and g(p) =
n∑

i=1

σipidi.

Substituting for mi, we have

π(p) = [g(p) + w(φh − φl)]h(p)
−1 − w(1− φl)θ. (9)

The platform solves

max
p

π(p) s.t. ri ≤ xi for all i,

where the constraints ri ≤ xi follow from Lemma 3.

Proposition 2 If θ > θ̄2,0 then the platform sets pinti and cint. In this interior equilibrium, the

constraints are slack, so there is excess supply at all locations. Equilibrium prices satisfy pint1 <

pint2 < ... < pintn .

The interior equilibrium emerges if there are sufficiently many cars in the city (θ > θ̄2,0). With

a surplus of cars, the platform can set prices without being concerned with attracting drivers to

undesirable locations. In such an equilibrium, prices satisfy pi < pi+1, i.e. the platform sets higher

prices at locations with longer trip lengths. This relationship can also be seen in the left panel of

Figure 3, where prices in the interior region θ > θ̄2,0 satisfy p1 < ... < p5.
15 The platform faces

a standard trade-off between extensive and intensive margin effects. On the extensive margin, it

generates more matches by lowering prices, whereas on the intensive margin, it raises more money

from each ride by increasing prices. The intensive margin effect is stronger at locations with longer

trip lengths; thus the platform sets prices satisfying the above relationship.

If θ falls below θ̄2,0 then the interior demand cannot be sustained with the available cars in the

city and the constraints ri ≤ xi start to bind. In what follows we demonstrate that the constraints

become activated in an orderly manner, first at location 1, then at location 2, and so on.

Lemma 4 Let λk denote the Lagrange multiplier associated with the constraint rk ≤ xk for location

k. If λk = 0 then λk+1 = 0. Similarly if λk+1 > 0 then λk > 0.

The Lemma says that if the constraint is slack at location k, then it must be slack at longer-distance

locations. Conversely, if it binds at location k, then it must also bind at shorter-distance locations.

The implication is that the constraints bind in an orderly fashion, starting at the location with the

shortest trip length (location 1), then at the location with the second shortest trip length (location

2), and so on. Letting k = 1, .., n, we refer to regime−k as the outcome in which the first k

15In the simulations, we consider a city with five locations. The layout of the city and the transition matrix are
as in Figure 1, right panel. Later, we calibrate the model for New York City and Los Angeles using real-world ride
patterns from Uber. The findings from these two sets of simulations are highly comparable in nature.
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Figure 3: Prices in models 2, 3, 4

constraints are active. Prices in regime-k satisfy

pi,kdi[(1− φl)θh(pk)− (φh − φl)] = (1− φh)g(pk) for i = 1, ..., k and (10)

[g (pk) + w (φh − φl)]h (pk)
−1 = (1− pi,k)

2di for i = k + 1, ..., n. (11)

The first set of equations follows from the binding constraints at locations 1 through k, while the

second set arises from the first-order conditions at locations k+ 1 through n. The commission rate

is then determined to satisfy the indifference condition (7).

Proposition 3 Regime–k obtains if θ ∈ [θ̄2,k, θ̄2,k−1). In this parameter region, there exists a set

of feasible prices p1,k, ..., pn,k and a commission rate ck satisfying (10), (11) and (7). Prices satisfy

p1,k > p2,k... > pk,k and pn,k > pn−1,k... > pk+1,k, and are bounded below by pmin = 1 + θ/2 −√
θ2/4 + θ. Finally, p1,k can be approximated by p1,k = 1 − κθ, where κ is given by (27), and the

remaining prices can be pinned down via (25).

The left panel in Figure 3 provides an illustration. If θ falls below θ̄2,0 (about 0.6 in the

simulation), then the platform runs out of cars at location 1, and the constraint r1 ≤ x1 binds.

In response, the platform increases p1, which lowers the local demand r1 and increases the local

supply x1 (by encouraging more drivers towards that location). The price intervention matches the

local demand and supply, so η1 = 1. At other locations, however, ηis are still less than 1. If θ

falls further, e.g. below 0.57 in the simulation, then p2 starts to rise in location 2, and if it falls

below 0.52 then p3 starts to rise in location 3 to match the local demand and supply. Even though

the model cannot avoid bottlenecks, it still manages them locally by using location-specific prices,

and as a result, it does not disturb the demand at other locations too much. For instance, when θ

falls below θ̄2,0, the price at location 1 surges up, but prices at remaining locations stay relatively

unchanged.

The above observations seem to resonate with the surge pricing strategy employed by Uber. The

surge pricing scheme kicks in when the number of passengers asking for a ride at a location exceeds

the number of available drivers at that location, which in our model is equivalent to the constraint

ri ≤ xi becoming active. Uber executives defend the surge pricing practice saying it serves their

goal of “relentless reliability to manage the marketplace math so that supply and demand match

as perfectly as possible in the face of ever-shifting, highly unpredictable circumstances” (Wohlsen,

2013). Our results seem to confirm a similar insight. Indeed when p1 surges up at location 1, the

local demand r1 goes down while the local supply x1 goes up. Furthermore, Uber’s practice is
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location-specific, i.e., while the price may surge at an excess demand location, it remains unchanged

at other locations. This outcome is also similar to what we observe in our simulations.

In highlighting our model’s insights that may be relevant to real practice, such as surge pricing,

we should note the following caveat. Our model is based on a steady-state setting; as such, Figure

3 depicts steady-state equilibrium prices associated with different values of θ. Uber’s surge pricing

practice, on the other hand, appears to be a temporary and transitional solution; thus, it may not

be directly comparable to our steady-state results.

4.3 Model 3: Single Price, Multiple Commission Rates

Lemma 3 remains valid, i.e. there cannot be an equilibrium in which a location exhibits excess

demand. Save for some minor differences (instead of prices, the platform uses commission rates to

incentivize drivers towards excess demand locations) the proof remains the same, so we only provide

a sketch here. Fix some p and let S0 denote the set of locations in which demand is greater than

or equal to supply, with at least one location exhibiting excess demand, and S1 the set of locations

with excess supply. Suppose that S1 is non-empty. If the platform leaves the price p as well as

the commission rates in S0 intact, but reduces the commission rates in S1, then some drivers in

S1 would flow towards locations in S0, creating more rides there. If the reduction is infinitesimally

small, then despite losing drivers to S0, none of the locations in S1 would fall into excess demand,

and the remaining drivers would still be able to serve the initial demand. Overall, the platform

would not lose any profits in S1, yet it would create more rides and more profits in S0 rendering

the intervention profitable. Now suppose S1 is empty, i.e. at every location we have xi ≤ ri with

at least one inequality strict. Since all cars are being used in a ride, and there is still some excess

demand, the platform can earn more by increasing p to the point where demand equals to supply

at every location, rendering the conjectured outcome a non-equilibrium. In conclusion, so long as

there is excess demand in the city, the platform has a profitable intervention; thus, there cannot be

an equilibrium in which xi < ri at any i.

Since ri ≤ xi, we have mi = ri = yi(1− p). Recall that mi = σiM and
∑n

i=1 yi = 1, so

mi = ri = σi(1− p) and M = (1− p) .

Substituting these into (8) yields

π = (1− p) pEσ (d)− w[(1− φl)θ − (φh − φl) (1− p)].

The commission vector c must be incentive-compatible, i.e. it should satisfy (7), which, after

substituting for mi becomes

(1− p)

[
p

n∑
i=1

σicidi + (φh − φl)w

]
= w (1− φl) θ. (12)

The constraint ri ≤ xi, after substituting for ri and xi, and using the equality above is equivalent

to

ri ≤ xi ⇔ w (1− φh) ≤ pcidi.

Recall that in Model 2, the constraints became active in an orderly fashion, starting at location 1

and then at location 2, and so on. Here, this is no longer the case.
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Lemma 5 Fix p. Suppose there exists an incentive compatible c under which ri < xi for i ≤ k and

ri = xi for i > k. Then there exists another incentive-compatible ĉ under which ri < xi for all i.

The idea behind the proof is this. We can generate a new ĉ by marginally shaving off the

rates of c at locations where the constraint is slack (but without rendering any of these constraints

binding) and marginally increasing the rates at locations where the constraint is binding. Thus,

by construction, all constraints become slack under ĉ. The Lemma rules out the possibility that

ri < xi for some locations and ri = xi at other locations. Either the constraints are slack at all

locations or they bind at all locations. We can now characterize the equilibrium.

Proposition 4 If θ > θ̄3 then all locations exhibit excess supply, i.e. ηi < 1 for all i. The platform

sets pint, but the commission rates are indeterminate. If, however, θ ≤ θ̄3, then ηi = 1 for all i, i.e.

no cab idles at any location, while the platform sets pcor and ccori .

If θ is sufficiently large, then the platform can experiment with a wide range of commission

schemes and still keep the customer-to-cab ratio ηi below 1 at all locations. If, however, θ falls

below θ̄3, the platform becomes unable to circumvent the constraints due to the overall shortage

of drivers. Consequently, ηi reaches 1 across all locations, resulting in the platform operating at

full capacity throughout the city. As the driver supply fails to meet interior demand, the price

inevitably begins to increase (see the middle panel in Figure 3).

In contrast to the preceding two models, Model 3 gives the platform the ability to avoid bot-

tlenecks. Thanks to the flexible commission structure, the platform does not resort to a price

intervention until the passenger-to-cab ratio is equal to 100% at every location. Up to that point,

by adjusting the commission rates—increasing them at less desirable locations, decreasing them at

more desirable locations, or a combination—the platform manages to spread the cars evenly and

serve the demand associated with the interior solution. Thus, in contrast to the previous model, no

location turns into a bottleneck.

4.4 Model 4: Multiple Prices, Multiple Commission Rates

Finally, we turn to the most flexible operating model. As before, we start with the claim that there

cannot be an equilibrium in which xi < ri at any i. (The proof is omitted as it closely resembles

the previous ones.) Since ri ≤ xi we can write mi = ri = yi(1 − pi) and since mi = σiM, and∑n
i=1 yi = 1, we have

mi = ri = σi/h(p).

Substituting for mi, the platform’s profit is equal to

π(p) = [g(p) + w(φh − φl)]h(p)
−1 − w(1− φl)θ. (13)

The commission vector c must be incentive-compatible in that it should satisfy drivers’ indifference

via equation (5), which, after substituting for mi and xi, becomes[
n∑

i=1

σipicidi + (φh − φl)w

]
h (p)−1 = w (1− φl) θ. (14)

The constraint ri ≤ xi, after substituting for ri and xi, and using the equality above is given by

ri ≤ xi ⇔ w(1− φh) ≤ picidi for all i.
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Since the commission rates are flexible, either the constraints are slack at all locations or they bind

at all locations. In other words, there cannot be a scenario where picidi > w for some locations and

picidi = w at other locations. When faced with such an outcome, the platform can simply shave off

the commission rates at excess supply locations and increase the rates at constrained locations to

slacken those constraints. The proof of this claim is practically the same as the proof of Lemma 5;

thus it is skipped here.

Proposition 5 If θ > θ̄4 then all locations exhibit excess supply. The platform sets pinti but the

interior commission rates are indeterminate. If, however, θ ≤ θ̄4, then no location exhibits excess

supply. Along this outcome the platform sets pcori and ccori .

With sufficiently many cars in the city (θ > θ̄4), the equilibrium is interior and no constraint ri ≤
xi is active. Thanks to the flexible nature of the commissions, the platform avoids the constraints

until θ = θ̄4. Up to that point, by fine-tuning the location-specific rates, the platform incentivizes

the drivers to spread themselves across the city in an even way, and thereby, it avoids bottlenecks.

If, however, θ falls below θ̄4, then the interior demand cannot be addressed with the number of

available cars, so prices start to rise (see the right panel in Figure 3).

Equilibrium prices satisfy pi < pi+1, i.e. the platform sets higher prices at locations with

higher di. This relationship is similar to what we saw in Model 2 and shares the same underlying

logic. In Model 2, the relationship broke down in the corner region because, in that model, prices at

bottleneck locations had to surge up to incentivize drivers. Here, the commission rates are employed

for this purpose; thus, the relationship remains valid both in the interior and the corner equilibria.

5 Free Entry

So far, we treated θ and w as exogenous parameters. We now relax this restriction by assuming

that drivers are free to enter, and the labor supply is governed by

θ = µw (15)

where w, with some abuse of notation, is expected earnings and µ is a labor market sensitivity

parameter, i.e., the higher the value of µ, the more responsive the supply is to a change in expected

earnings. The equation indicates a positive relationship between earnings and entry meaning that

higher prices or commissions attract more drivers to the platform. This positive relationship is

backed by empirical research on labor supply in the gig economy. For instance, a recent study

by Castillo (2023) examined Uber drivers’ labor choices in the greater Houston area, discovering a

positive relationship between earning opportunities and driving hours, both in the short-term and

long-term.

Here we rely on the parameter µ to capture labor market responsiveness to earning opportunities.

As a robustness check, in Section A.2 we present a more granular approach, where we distinguish

between different groups within the potential driver pool, each varying in population size and

responsiveness. This framework not only helps the platform determine optimal entry levels and

driver compensation but also provides insight into the composition of total entry—specifically, how

much each subgroup contributes—and how different groups adjust to changes in commission rates

and prices.
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In what follows, we analyze the selection of the optimal number of drivers θ∗i under model i.

Start with Model 4 and recall that the platform’s profit function is

π(p) = [g(p) + w(φh − φl)]h(p)
−1 − w(1− φl)θ.

If θ > θ4 then the price vector p is given by (31) and if θ ≤ θ4 then it is given by (32). In the proof

of Proposition 6 we show that the relevant region to consider is θ ≤ θ4
16, thus the platform solves

max
θ
π(p) s.t. (15) and (32),

to obtain the optimal entry θ∗4. We use the same procedure for the other models as well.17

Proposition 6 Optimal entries are given by

θ∗1 =
1

2

µd1 [Eσ (d) (1− φh) + d1 (φh − φl)]

µd21 (1− φl) + Eσ (d) (1− φh)
2 + d1 (1− φh) (φh − φl)

, (16)

θ∗3 =
Eσ (d)

2 (1− φh) /µ+ 2Eσ (d)
and θ∗4 =

Eσ (d)

2 (1− φh) /µ+ 2E2
σ(
√
d)
.

The optimal entry under Model 2 is approximately equal to

θ∗2 =
d1

2(1− φl)/µ+ 2κd1
. (17)

Fixed commission models generally lead to more entries than flexible commission models.

The platform picks prices and commission rates, while the number of entrants is pinned down

through the indifference condition (14). A generous combination of c and p rewards drivers with

high earnings, leading to a large number of drivers entering the market, while a less generous

combination leads to the opposite. The equilibrium values of c and p ensure that the right number

of drivers enter the market.

Fixed commission models, 1 and 2, generally lead to more entries than flexible commission

models, 3 and 4. This is because flexible commission models can efficiently utilize all available

vehicles in rides, leading to fewer cars being needed. Fixed commission models, on the other hand,

create bottlenecks and under-utilize drivers in rides. Therefore, they require more cars to function,

which means higher entry numbers. Higher entries, however, do not translate to increased matches

or profits. We will revisit this point in Proposition 8.

Labor Market Sensitivity. A key factor that affects the number of drivers entering the market,

as well as other equilibrium objects—prices, commissions, number of matches, etc.—is the labor

market sensitivity parameter, µ.

Proposition 7 A fall in µ results in higher prices and commissions, and in higher driver com-

pensation overall. Additionally, it leads to lower entries, fewer matches, lower profits, and lower

consumer surplus.

16The intuition is this. In the region θ > θ4, there is an excess supply of drivers, leading to the under-utilization of
some drivers, which is suboptimal. Therefore, the optimal entry must be in the region θ ≤ θ4.

17We solve a sequential optimization problem where the parameter θ is initially fixed—as it was up to this point—
and its optimal value is obtained subsequently.
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Figure 4: Labor Supply, Profits and Consumer Surplus

A decline in µ causes a rotation in the labor supply curve, indicating that fewer drivers would

join the platform when offered the same level of compensation. To attract drivers, the platform

responds by increasing prices and commission rates. However, despite the higher compensation,

overall entry declines. Figure 4 (left panel) illustrates this effect. The labor supply curve is given

by w = θ/µ. When µ = 1, labor supply is relatively responsive, with the optimal entry, assuming

Model 4, calculated as θ = 0.5 and the corresponding expected compensation as w = 0.5 (point A

in the figure). As sensitivity drops to µ = 0.3, the labor supply curve rotates upward, becoming less

responsive to earning opportunities. In response, the platform raises prices and commission rates

significantly (not shown here) to attract drivers, resulting in a more than threefold increase in overall

compensation, reaching w = 1.54 (point B). Despite this increase, the new entry θ falls slightly below

the previous level. The remainder of the Proposition is straightforward to understand. Due to the

higher prices, demand for rides falls compared to previous levels. As a result, fewer matches occur,

leading to lower profits and smaller consumer surplus. These claims are also evident in the middle

and right panels of Figure 4, showing that across all operational models, both profits and consumer

surplus fall as µ falls.

Remark 2 In response to changes in µ, the platform relies more heavily on commission adjust-

ments than price adjustments. For instance, a decrease in µ results in a larger relative increase in

commissions.

In the proof we show that |ϵ (ci, µ)| > |ϵ (pi, µ)| , where ϵ (ci, µ) is the elasticity of the commission

rates with respect to µ, and ϵ (pi, µ) is the elasticity of prices with respect to µ. Both elasticities

are negative, hence, the inequality is expressed in terms of absolute values. The inequality estab-

lishes that the platform’s adjustments to commissions are (significantly) more pronounced than its

adjustments to prices.

For instance, if µ falls then potential drivers become less likely to join. The platform responds

to this by offering a higher overall compensation level to maintain sufficient driver numbers. This is

achieved by raising both commissions and prices, but the commission increase is significantly larger.

The rationale for this is that raising prices suppresses customer demand, while raising commissions

incentivizes drivers without unnecessarily affecting demand. A small price increase is still needed

to eventually balance the demand with the reduced driver supply, but it is (much) smaller than the

commission adjustment.

We explore this insight further in Section A.2 with a different model of labor supply and driver

entry. Our simulation looks at how commission rates and prices change as the minimum wage
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drivers require to join the platform increases. In our current setup, this is equivalent to µ falling.

The simulations (right panel of Figure 9) show that the platform responds to this with a modest

price increase and a much larger increase in commissions.

A more general implication of the aforementioned results is that the platform must prioritize

consideration of the labor market sensitivity specific to the cities or localities in which it operates. It

should tailor its operating models, pricing structures and commissions based on these local factors,

rather than relying on overarching, one-size-fits-all policies. Indeed, Uber already seems to be taking

this approach: in its recent efforts to grow its driver base in London and across the UK to meet the

growing demand, Uber has announced changes to its pricing and driver compensation policy which

critically “vary city by city” (Uber, 2022b).

5.1 Profits, Consumer Surplus, and Social Welfare

The consumer surplus at location i is given by

csi =

n∑
j=1

yiai,jδi,j

∫ 1

pi

(v − pi)dF (v)

where v is the willingness to pay, pi is the price and F (v) is the CDF governing v. Noting that∑n
j=1 ai,jδi,j = di and F (v) = v (uniform distribution) we have

csi =
1

2
midi(1− pi).

The equation follows from the fact that, in equilibrium, we have mi = yi(1 − pi). The consumer

surplus for the entire city is equal to

CS =
1

2

n∑
i=1

midi (1− pi) .

We can now compare the operating models based on the number of matches they generate, as well

as the amount of profits and consumer surplus they produce.

Proposition 8 We have (i) M4 > M3 > M1, (ii) π4 > π3 > π1, and generally (iii) CS4 > CS3 >

CS1. In other words, Model 4 outperforms Model 3 in terms of creating more matches, profits,

and consumer surplus, and Model 3, in turn, outperforms Model 1. The performance of Model 2

is comparable to that of Model 3. When µ is small, Model 3 outperforms Model 2 by generating

more matches, higher profits, and greater consumer surplus. Conversely, when µ is large, Model 2

outperforms Model 3.

Flexible commission models, 3 and 4, make efficient use of all available vehicles, leading to

higher performance. In contrast, fixed commission models, 1 and 2, suffer from inefficiencies such

as bottlenecks and under-utilized drivers, resulting in fewer matches, lower profits, and reduced

consumer surplus. The middle and right panels of Figure 4 provide an illustration for these insights.

The Proposition establishes them analytically.

Model 4 stands out as the most versatile operating model and generally delivers the best perfor-

mance across all metrics. On the other hand, Model 1 is the least flexible and tends to perform the

poorest. Models 2 and 3 fall in between. While this observation may not be surprising, it is worth
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noting that in situations involving behavioral customers who may perceive location-specific pricing

as “unfair”, Model 3 might actually outperform Model 4. Below we will come back to this point.

One might wonder how, say, Model 4 can create more profits and more consumer surplus at

the same time, as higher profits usually mean lower consumer surplus. This is possible because,

due to its flexible nature, it creates more matches than other models, which translates into more

profits and more consumer surplus. Said differently, it creates a bigger pie; thus higher profits do

not necessarily equate to lower consumer surplus.

Driver Retention. Before moving to the next section, we revisit how changes in φl affect platform

outcomes under free entry. Recall that a lower φl raises the likelihood that unmatched drivers be-

come discouraged and leave the platform. In Models 1 and 2, this dropout risk prompts the platform

to lower prices to stimulate demand and increase the matching rate. While this response reduces

premature driver exit, it also lowers platform profits. In contrast, in flexible commission models,

3 and 4, the equilibrium objects—amount of entry, prices, commission rates, profits, matches—do

not depend on φl at all.
18 This is because the flexible commission policy ensures full utilization of

the driver fleet, so no driver remains unmatched in equilibrium. As a result, the risk of premature

dropout has no bearing on the platform’s pricing or profit.

The implication is that if the platform adopts a flexible commission policy, it can significantly

reduce the risk of drivers leaving the market too soon. The flexible commission rule ensures that

drivers are fully utilized, and as a result, the platform benefits from not having to deal with the dis-

ruption and challenges associated with the frequent turnover of drivers. This represents a significant

operational advantage for the platform.

Social Welfare. We define social welfare as the sum of platform profits, consumer surplus, and

driver surplus, i.e. SW = π + CS + DS. Driver surplus arises because the equilibrium wage is

pinned down by the marginal driver—the one just indifferent between entering or not. Other

drivers are willing to participate at lower earnings, so when they receive the equilibrium wage, they

are effectively paid more than the minimum amount that would have induced them to join. This

gap between what they actually earn and the level at which they would have participated represents

an extra rent. Summing these rents across all such drivers yields the total driver surplus.

In this sense, driver surplus reflects the extra benefit received by drivers who would have been

willing to participate even at lower earnings. Its magnitude depends on how many drivers enter and

how the wage compares to their underlying participation thresholds. Since these elements interact

in nontrivial ways with operating models, we evaluate driver surplus as part of the numerical

simulations in the next section, when we analyze New York City and Los Angeles.

5.2 Behavioral Customers

Model 4 delivers the highest profits and is therefore, in principle, the natural choice for the platform.

However, it relies on location-specific pricing, which results in higher prices in certain areas. This

practice may be perceived as unfair by some passengers, potentially leading them to disengage from

18In Model 1, a decline in φl leads the platform to lower the price (see equation 21), which in turn reduces its profit.
The same relationship holds in Model 2, where a lower φl reduces platform profit, given by (41). In contrast, in
Models 3 and 4, driver entry (16), prices (30, 32), profits (38), and the remaining equilibrium objects are independent
of φl.

21



the platform. As a result, Model 4’s performance may fall short of uniform-pricing alternatives such

as Model 3, particularly in markets where fairness concerns strongly influence consumer behavior.

Indeed, customers seem to develop mental reference points based on their past experiences or

their expectations of what should be a “fair” price (Bolton et al., 2003). In the context of ride-

hailing, these reference points may come from previous trips, competitors’ prices, or the platform’s

fares in the past. When Model 4 creates relatively higher fares at certain locations, customers may

perceive these deviations as losses, leading to dissatisfaction and calling such a practice as unfair.

This sense of unfairness can be further compounded by inequity aversion (Fehr and Schmidt, 1999),

where customers compare their fare to what others might be paying. Those who pay higher fares

may think that riders in other locations are receiving better deals for basically the same service.

This feeling of inequity may provoke emotional responses, including disengaging from the platform

and seeking alternative options.

The response to Uber’s surge pricing appears to support these ideas.19 Despite its economic ra-

tionale, surge pricing has faced significant backlash, illustrating how price differences—whether due

to short-term fluctuations or long-term structural factors—can lead to strong consumer dissatisfac-

tion. It is described as “price gouging” by The New York Times (Lowrey, 2014) and “exploitative”

by Harvard Business Review (Dholakia, 2015). CNN Business went further, labeling such pric-

ing practices as feeling like a “scam”(Morrow, 2024). These negative perceptions have even led

competitors to explore alternative strategies. For instance, Lyft introduced a $2.99 monthly sub-

scription service called Price Lock, which fixes fares on specific routes at select times. According

to the company’s CEO, this feature was designed to address what he called the app’s “most hated

feature”(CBS News, 2024). These concerns highlight a critical trade-off for ride-hailing platforms.

If fairness concerns lead to a significant drop in consumer participation, the platform, then, needs

to reconsider its pricing strategy.

Considering the presence of such customers, a uniform pricing approach, as in Model 3, could

prove more effective. To explore this point in more detail, suppose that a proportion α ∈ (0, 1) of

customers turn off their app when they realize that the app is using location-specific pricing.20 In

Model 4, due to the shrinking customer base, the new optimal entry is approximately equal to

θ′4 = (1− α)θ∗4.

To see why, note that the parameter θ represents the ratio of drivers to customers. If the measure

of customers drops from 1 to 1 − α, then the amount of entry adjusts proportionally. With the

reduced entry, the profit now shrinks to

π′4 = (1− α2)π4,

which is obtained by substituting θ′4 into the profit function in Model 4. (Expressions for π3 and

π4 are given by (38) in the E-Companion.)

If, on the other hand, the platform were to use Model 3, then it would still earn π3 because it

is based on uniform pricing and, therefore, the parameter α has no impact. It is clear that if α is

19Surge pricing, as practiced by Uber, is based on real-time demand fluctuations, whereas Model 4’s location-specific
pricing in our model reflects long-term structural factors. Both strategies, however, result in price differences across
locations, which is the primary driver of consumer dissatisfaction.

20To maintain the steady state, we implicitly assume that the proportion of such customers is equal to α across all
locations, i.e., no location exhibits a significantly higher or lower proportion of such customers compared to others.
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sufficiently large, then Model 4 under-performs Model 3. In particular one can show that π3 > π′4 if

α >

√
µ[Eσ (d)− E2

σ(
√
d)]

1− φh + µEσ (d)
.

The threshold on the right-hand side depends, among other things, on the traffic and the shape

of a city. In cities where the traffic is balanced and locations have similar expected travel distances,

Eσ(d) and E2
σ(
√
d) will be close to each other, so even a small α will cause Model 4 to under-

perform Model 3. For instance, using the results from our calibration in the next section, the

implied threshold for New York is approximately 10%, i.e., if more than 10% of customers are

sensitive to fairness concerns, then the platform would be better off implementing a uniform pricing

policy rather than a flexible one. The implication is that in cities where fairness sensitivity is

prevalent, adopting a uniform pricing structure could improve customer engagement and long-term

profitability.

A natural question is how one might estimate α, the share of fairness-sensitive consumers.

One can consider two complementary approaches. First, discrete choice surveys or experiments

could present respondents with ride options with and without location-specific pricing, allowing

researchers to quantify the share of fairness-sensitive consumers. This approach has precedent in

the behavioral operations and transportation literature, including studies of fairness perceptions

in car ownership and road pricing schemes (Schuitema et al., 2011). Second, one could use rich

transaction-level data from a platform that has experimented with different pricing policies across

locations. By comparing observed rider choices before and after the introduction of such pricing—

while controlling for supply-side and demand-side factors—it would be possible to back out the

fraction of users whose behavior is consistent with fairness sensitivity.

In the preceding analysis, we focused on comparing Models 3 and 4 while intentionally excluding

1 and 2. To see why, note that Model 1 uses uniform pricing, which avoids the issue of behavioral

customers. However, Model 3 also has uniform pricing, avoids the behavioral customer issue, and,

as shown in Proposition 8, outperforms Model 1. Therefore, further consideration of Model 1 is

unnecessary. Model 2, on the other hand, relies on location-specific pricing and thus faces the same

challenges with behavioral customers. Since Model 4 encompasses Model 2 as a special case and

performs better, Model 2 does not warrant further consideration either. For these reasons, when

accounting for behavioral customers, the relevant comparison is the one between Models 3 and 4.21

A Brief Discussion on Fairness Concerns. The literature on fairness in behavioral economics

is vast, and we do not attempt a comprehensive review in our study. Instead, we highlight several

key contributions that have shaped the way fairness considerations are understood in pricing and

market behavior, and we take these insights as a guide in analyzing our platform pricing setting.

Fairness concerns often shape behavior in market transactions and in many cases act as a

“behavioral constraint” for firms. Kahneman et al. (1986) show that consumers evaluate price

changes not only by their economic impact but also by their perceived fairness. Raising a price is

21Even though Models 1 and 2 are ultimately dominated in terms of outcomes, they are still worth examining.
These models serve as important benchmarks that help clarify the role of flexibility in platform design. By starting
from the least flexible setting and gradually introducing location-specific pricing and commissions, we can identify the
issues that arise when the platform lacks flexibility—such as the emergence of bottlenecks, under-utilization of the
driver fleet, or the need for demand-distorting price interventions. By comparing these outcomes with those under
Models 3 and 4, we can identify the operational value of introducing flexibility in pricing or commissions. We thank
an anonymous reviewer for prompting us to explore this point.
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deemed acceptable if it maintains a certain amount of profit (for example, to cover higher costs),

but the same price increase is widely judged unfair if it is seen as exploiting a surge in demand.

Such perceptions effectively impose a constraint on sellers—hence the title of their seminal paper.

When pricing decisions overlook this behavioral constraint, the outcome can be costly: cus-

tomers may abandon the relationship, turn to competitors, spread negative word-of-mouth, or take

other actions that undermine the firm. Xia et al. (2004) document these effects and emphasize

that managers must be mindful of customer reactions when setting prices. Survey evidence con-

firms that practitioners themselves recognize this constraint. For example, Eyster et al. (2021)

summarize responses from more than 12,000 firm managers and find that considerations of “im-

plicit contracts” with customers consistently rank among the most important explanations for price

rigidity. Managers frequently report implicitly stabilizing prices “out of fairness to customers,” with

such concerns receiving the highest median rank among competing theories.

Taken together, these studies establish that fairness concerns act as a fundamental behavioral

constraint on pricing policy. Our paper builds directly on this principle and applies it to the context

of ridesharing and platform policy design. Indeed, our analysis shows that fairness concerns influence

the effectiveness of alternative platform policies, highlighting the interaction between operational

decisions and perceived fairness.

5.3 Calibration

In what follows, we calibrate the model for New York City and Los Angeles based on real-world ride

patterns. Before giving the details of our calibration, we provide a brief discussion on the background

of ride-hailing in both cities. Uber began operating in New York City in 2011, launching in Man-

hattan as one of its first major expansions beyond San Francisco. Lyft entered the market in 2014,

initially serving Brooklyn and Queens (Luckerson, 2014). However, in Manhattan—particularly

Midtown, the Upper East Side, Chelsea, and the West Village—yellow cabs remain competitive due

to high street-hailing demand. Indeed, these neighborhoods account for a disproportionate share of

total ride activity in both the taxi and ride-sharing datasets which we discuss below.

Uber launched in Los Angeles in 2011, with Lyft following in 2013. Unlike New York, LA had a

weaker incumbent taxi industry and little tradition of street-hailing, allowing ride-sharing to scale

rapidly. The city’s dispersed layout—with major hubs such as Downtown LA, West Hollywood,

Santa Monica, and LAX separated by longer travel distances—leads to a more imbalanced traffic

structure than in NYC. This difference has implications for platform performance in our model

which we explore in more detail below.

Our data is extracted from a publicly available connectome map of rides on Uber’s website.

(Uber, 2019; Bimpikis et al., 2019). Much like a classical connectome map showing point-to-point

spatial connectivity of neural pathways in the brain, the connectome map that was available on

Uber’s website included a visual map of the ride patterns during July 2014 among the neighborhoods

of these cities. Actual ride frequencies, however, were not readily available in this visual map.

Using the open html code of the website, we were able to scrape the data to obtain raw details

such as borders defining various neighborhoods in both cities (much like the n locations in our

model), the name of each neighborhood, the latitude/longitude coordinates defining the center of

each neighborhood, as well as the weights of links between each coordinate, proxying the relative

likelihood of a ride going from one coordinate to the other. We then created the transition matrix T
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Figure 5: Traffic Flow Maps in NYC and LA

using the ride patterns between the nodes, and the distance matrix via Google Maps API using the

coordinates of the nodes (see the E-Companion for the transition and distance matrices for NYC).22

To visualize the traffic flows, we constructed network maps using the scraped data, which include

neighborhood-level ride flows and the geographic coordinates of each location. We interpret the

transition matrix T as a weighted directed graph, where each edge ai,j reflects the traffic intensity

from location i to j. Line thicknesses are proportional to these weights, while node sizes reflect the

steady-state mass σi, capturing how busy each location is. The resulting network is overlaid on

actual city maps using the corresponding geo-coordinates.

Figure 5 presents the resulting visualizations. In both cities, blue lines indicate light traffic, green

lines moderate flows, and yellow lines heavy traffic. Larger orange dots indicate busier locations. In

New York, the busiest areas include Midtown, Upper East Side, Chelsea, and West Village. In Los

Angeles, high-traffic zones includeWest Hollywood, Beverly Hills, Downtown LA, Santa Monica, and

Westchester (LAX). While New York displays a relatively balanced and interconnected network,

Los Angeles exhibits more polarized flows, with dense west-side activity and sparse connections

elsewhere. These structural differences have important implications for the relative performance of

alternative operating models.23

22For NYC there were 29 locations, so our data-scraping process yielded a 29-by-29 matrix containing the weights
of links across all locations, proxying the strength of the flow of traffic to and from each location. Out of 29 locations,
there were 4 locations with a zero row or column, which meant that during that relatively short period, there was no
traffic to or from those locations. We deleted those locations, so the final weight matrix was based on 25 locations. We
recovered the transition matrix T from this weight matrix by normalizing the sum of the row vectors to 1. In addition,
in both cities, some diagonal elements of the transition matrices were non-zero, which means that several rides that
started and ended within the same neighborhood, e.g. Upper East Side in NYC. Similarly some non-diagonal elements
were zero, indicating no rides took place between those locations. These facts violate our assumptions that ai,j > 0
and ai,i = 0, but they do not affect the inner workings of the model. Our assumptions are sufficient, but not necessary,
to ensure that the transition matrix has a unique steady state vector σ. Our calculations show that the transition
matrices associated with both cities are ergodic; thus they both have unique steady-state vectors. Finally, the distance
matrix in our model is symmetric, i.e. δi,j = δj,i, however on occasion the distances between points i and j returned
by the Google Maps API varied depending on which one was chosen as the origin and destination. We ignored such
minor differences and used the shortest distance instead.

23To assess the robustness of our traffic patterns, we also analyzed the official yellow cab data from New York City
for March 2024, made available by the NYC Taxi & Limousine Commission. The dataset contains over 3.5 million
trips. After matching pickup and dropoff zone codes to location names, we constructed a full trip matrix across zones.
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Figure 6: Performance of operating models in NYC and LA

Based on the transition matrix T we next calculate the platform’s profit under each model

and compare their performances. Figure 6 depicts equilibrium profits against the labor market

sensitivity µ. Model 4 is the most versatile operating system and encompasses the other models as

special cases; as such π4 serves as a benchmark in the simulations. The panels illustrate π1, π2 and

π3 as a fraction of π4. Note that we assume no behavioral customers in the simulations.

The left and the middle panel in Figure 6 show the performance of fixed commission models

(1 and 2). In NYC, they yield profits 10% to 20% lower than the benchmark, with even lower

outcomes observed in LA. The right panel shows the performance of Model 3, and interestingly, the

under-performance is not significant, with a difference of less than 2% in NYC and less than 5% in

LA. This highlights the importance of flexible commissions in avoiding bottlenecks and distributing

the drivers evenly across the city; once this factor is considered, the benefits of location-specific

pricing appear to be relatively modest.

A second observation is that the results are higher in NYC than they are in LA (Figure 6,

all three panels). This is because traffic patterns in NYC are more uniform than they are in LA.

More specifically, if the components of σ vary too much, then we say the traffic in that city is

relatively non-uniform as some locations are significantly more popular than others. A similar

argument applies if the components of the distance vector d vary significantly. In our model the

equilibrium prices and commissions depend on σi and di; if they vary too much across locations, then

so should prices and commissions. A non-uniform traffic structure, therefore, calls for varied prices

and commission rates. The implication is that in a city where these variables differ significantly,

pursuing a non-flexible policy is more costly. In NYC the coefficient of variation for σ is 0.98, and

for d it is 0.32. The corresponding numbers in LA are 1.52 and 0.35, implying that LA indeed has

a more varied traffic structure than NYC. This explains why in the simulations the inflexible rules

fare worse in LA than they do in NYC.

To confirm these insights, we randomly generated 100 cities, each consisting of 20 locations

with distances varying from 4 to 12 miles. Accompanying transition matrices, too, were randomly

generated. In each map, we computed the profits under each scheme, as well as the coefficient of

The resulting traffic flows revealed a highly similar traffic structure to that in our scraped Uber dataset. In both cases,
core Manhattan neighborhoods dominate overall ride activity. The yellow cab data, for instance, shows Upper East
Side (North and South), Midtown, Lincoln Square, Upper West Side, and Chelsea as the most active locations. These
closely overlap with the top-ranked zones in the Uber data. Although the data come from different providers and are
nearly a decade apart, the similarity in spatial patterns supports the reliability of our scraped data as a representation
of NYC traffic flows. Due to their similar patterns and for brevity, we did not include a separate figure for the yellow
cab data. A similar comparison was unfortunately not feasible for Los Angeles, due to the lack of publicly available
ride-level data of comparable quality.
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Figure 7: Traffic imbalance and profits in randomly generated cities

variation of σ: the higher the coefficient of variation, the more varied the traffic pattern in that city.

We, then, plotted the profit ratios π1
π4
, π2
π4

and π3
π4

in each map against the corresponding coefficient

of variation and observed a clear downward trend in each panel in Figure 7. This confirms the

previous insight that following a fixed rule—price-wise, commission-wise or both—becomes more

costly for the platform as traffic patterns become more non-uniform (proxied by the coefficient of

variation).

Social Welfare. Figure 8 plots social welfare, defined as the sum of platform profits, consumer

surplus, and driver surplus, for both cities24. The patterns closely mirror those observed in the

profit simulations: flexible commission models (3 and 4) deliver the highest levels of social welfare,

while fixed commission models (1 and 2) consistently under-perform.

The reason is straightforward. Models 3 and 4 make the most efficient use of the driver fleet: they

avoid bottlenecks, fully utilize available drivers, and achieve more matches than fixed commission

models. This efficiency allows them to operate with a smaller fleet size, which in turn raises platform

profits and consumer surplus. The only trade-off is that a smaller fleet generates less driver surplus,

since relatively fewer drivers are earning above their participation thresholds. As a result, the

performance gap in terms of social welfare is somewhat narrower than the gap in profits, but the

ranking of the models remains unchanged.

Overall, the inclusion of driver surplus does not alter the main conclusion: flexible commis-

sion models remain the dominant performers, and their advantage persists when all stakeholders’

interests are taken into account.

6 Conclusion

On-demand platforms are characterized by the flexible nature of work and the supply of independent

workers, who have significant discretion over when and where to work, whether to continue working

for a given platform or switch to an alternative work opportunity. Platforms, therefore, need to pro-

vide attractive earning opportunities and devise effective compensation mechanisms to incentivize

and retain these independent workers. In addition, a key feature and complexity of ride-sharing

platforms is the spatial differentiation of supply and demand with varying earning opportunities,

24For each value of µ, we determine the optimal entry level θ∗ under each operating model along with the corre-
sponding equilibrium compensation w∗. In the labor supply curve, θ∗ marks the marginal driver, who is indifferent
between participating at w∗ and staying out. Drivers below this margin would have been willing to enter at lower
pay, so the difference between their participation thresholds and w∗ represents an additional rent. Summing these
rents across all such drivers yields the total driver surplus.

27



0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LA

NYC

0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LA

NYC

0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LA

NYC

Figure 8: Social Welfare

which may lead drivers to concentrate in high-demand areas and leaving other areas with reduced

service.

In light of these considerations, the platform should adopt an operational framework that explic-

itly accounts for the inter-dependencies among pricing strategies, consumer demand, driver entry

and exit, and drivers’ search behavior across locations. To sustain an optimal fleet size and ensure

consistent service to customers, the platform must design compensation structures that align driver

incentives with market conditions and are tailored to the specific features of each market.

Our analysis reveals several new insights and offers actionable operational strategies to the

platforms. The results from our analytically tractable model highlight critical advantages of a

flexible (location-specific) commission policy, which we believe has significant practical potential

to be implemented for operational advantage. Indeed, ride-sharing platforms increasingly explore

various ways to address location-specific supply and demand imbalances. For example, Lyft has

introduced targeted promotions and incentives in Bonus Zones—areas with a high demand and

a low number of drivers— while Uber has implemented Boost+ zones, which pay drivers extra

for trips that begin in designated areas (Lyft, 2024; Uber, 2022a). Our study offers a systematic

and strategic understanding of why flexible commission policy is an effective tool to address such

imbalances.

In the absence of flexible commissions, the platform needs to address the supply and demand

imbalances through price interventions, which suppress consumer demand and do not suitably

incentivize drivers. In contrast, flexible commission policies can efficiently utilize available vehicles

without resorting to unnecessary price hikes. Moreover, in a setting with free entry, such efficient

utilization of drivers reduces the need for an excessively large fleet. Even though a smaller fleet

size is associated with smaller driver surplus, flexible commission models still lead to more matches,

resulting in higher platform profits, increased consumer surplus and ultimately higher social welfare.

A second advantage of flexible commission policies is their role in driver retention. When drivers

struggle to find rides, they may switch to a different platform or exit the market altogether (Hall

and Krueger, 2018; Allon et al., 2023a,b). By allowing the platform to better allocate drivers across

locations, such policies increase the likelihood that each driver secures a match. This improved

utilization lowers the risk of early market exit, resulting in reduced turnover and stronger retention.

This represents a significant operational advantage for the platform.

Ride-sharing platforms are paying closer attention to local labor market conditions (Uber,

2022b), yet among various alternative pricing policies and implementation options, it is not clear

which strategies would work better and why. Our analysis offers a clear managerial insight in
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response to labor market fluctuations: when drivers become less responsive to earning opportuni-

ties, the platform should prioritize adjusting commissions rather than prices. Raising commissions

improves driver participation without dampening consumer demand, whereas raising prices risks

reducing demand without effectively addressing the labor supply challenges.

Finally, while flexible (location-specific) pricing may be attractive for the platform, a well-

documented concern in practice is the negative behavioral reaction by some customers who perceive

flexible pricing as “unfair” and “exploitative”, akin to customer reaction to surge pricing (Lowrey,

2014; Dholakia, 2015; Morrow, 2024). With this in mind, a noteworthy result of our analysis is that

fixed pricing can, in fact, outperform flexible pricing. This finding highlights a critical trade-off

for ride-sharing platforms and offers an important actionable insight. The behavioral reaction of

fairness-sensitive customers can reduce the efficiency benefits of adopting flexible pricing. As such,

if the percentage of such customers is large enough, then using a simple fixed pricing policy (coupled

with flexible commissions) is a more effective and profitable tool in comparison to flexible pricing.

Our real-world calibration of the model for New York City and Los Angeles, and subsequent

simulations in randomly generated cities, confirm our results and provide an additional managerial

insight. We find that the performance of operating models critically depends on how balanced

a city’s traffic structure is in terms of trip lengths and traffic flows. If these parameters show

significant variation, then pursuing a non-flexible policy is more “costly” for the platform. Thus, a

key takeaway for platform managers is that cities with more uneven traffic patterns stand to gain

the most from adopting flexible policies.

Our study comes with some limitations. We acknowledge that our model is stylized and some

of our findings are descriptive in nature; as such, their implementation in the field requires a

careful approach. However, we believe that our analytical model complements conventional big data

analysis by offering a structured framework to uncover the underlying mechanisms and strategic

interactions among ride-hailing stakeholders—drivers, customers, and the platform itself. Indeed,

while platforms collect vast amounts of transactional data, big data models often function as black

boxes, identifying correlations or making predictions, but not fully explaining why certain pricing

and commission strategies work better than others. Moreover, since big data analytics inherently

relies on observed outcomes, it may struggle to evaluate untested interventions or policy changes—

such as how driver retention or the composition of the driver workforce might change under a

redesigned pricing or commission policy.

These limitations highlight the need for a theory-driven framework that clarifies how platform

policies shape outcomes across the system. Our model offers a general equilibrium approach that

captures the effects of pricing and commission strategies on key performance dimensions. It gener-

ates testable hypotheses about how these policies influence driver entry and retention, profitability,

and overall platform efficiency—insights that can support empirical research and inform managerial

experimentation.

While the model is stylized, it serves as a tool to anticipate the effects of platform policies in

environments where empirical evidence may be limited or unavailable. The value of the model lies

in its ability to inform, not replace, data-driven decision-making. Of course, the effectiveness of any

specific intervention and policy examined in our study ultimately depends on empirical validation

and real-world experimentation.
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