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Abstract

Bubble suspensions are complex systems with applications across various industries. Despite
their prevalence, experimental data for understanding their rheology and validating existing
models remain sparse. This thesis aims to provide a detailed experimental characterisation of
the rheological behaviour of bubble suspensions, particularly to aid the oral care industry in
understanding how bubbles influence the rheological properties of their formulations. The
dissertation begins by examining the effect of bubbles on the rheology of a Newtonian matrix,
progressing to explore their impact on more complex matrices. Alongside conventional
rheological tests, a novel rheo-optical set up was employed to visualise the suspension
behaviour under shear. First, the steady shear viscosity of bubble suspensions in Newtonian
media was investigated. Rheo-optical experiments revealed the shear-induced formation of
bubble clusters and threads, suggesting that the shear-thinning behaviour of bubble suspensions
originates from both bubble clustering and deformation, rather than solely deformation. The
research then delved into the linear viscoelastic properties of bubble suspensions in Newtonian
media, crucial for various industrial applications. SAOS results showed that bubble fluid
dynamic interactions affected suspension elasticity by introducing additional relaxation modes
at low oscillation frequencies. Building on the results obtained in Newtonian media, the final
part of the research focused on the influence of bubbles on more intricate matrices typically
used in oral care formulations. This study examined the steady shear viscosity of bubble
suspensions in a shear thinning Carbopol dispersion, followed by the addition of surfactant to
increase matrix complexity. Bubbles induced additional shear-thinning effects in both matrices.
In the pure Carbopol matrix, significant bubble coalescence resulted in the formation of bubble
clusters and threads as larger bubbles, confined by the flow, aligned with the fluid streamlines.
Adding surfactant mitigated bubble coalescence, showing less pronounced bubble clustering

compared to both the pure Carbopol and the Newtonian matrices.
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Impact Statement

In today’s landscape, the demand for increasingly sophisticated formulated products,
combined with the need to maintain unwavering product quality, presents a manufacturing
challenge in developing novel complex formulations. This challenge is especially significant
in the development of personal care products like toothpaste, where multiple functional
ingredients must be combined effectively, while maintaining a reliable manufacturing process
and key sensory attributes, such as texture, appearance, and mouthfeel, that are critical for
consumer satisfaction. During the development of a new toothpaste formulation, the
interactions between individual components are not always clear. Moreover, the already
intricate and variable rheological properties of such formulations are further complicated by
the entrapment of air during the mixing process. The presence of air bubbles significantly
impacts the rheological behaviour of these formulations, leading to inconsistencies in

subsequent manufacturing steps, such as tube filling, and affecting the final product properties.

The motivation for this work stemmed from the industrial interest in understanding the effect
of bubbles on the rheological properties of novel oral non-aqueous formulations, currently
produced by GlaxoSmithKline to treat dental hypersensitivity. Comprehending the influence
of bubbles allows the oral care industry to efficiently control the rheological properties of their
formulations, leading to enhanced manufacturing efficiency and consistently high-quality
products. Following this interest, the main scope of this research was to provide a systematic
experimental characterisation of the rheological behaviour of bubble suspensions in matrices
of increasing complexity. These matrices ranged from simple Newtonian fluids to more
complex shear-thinning fluids, typically used in the GSK formulations. The key findings of
this thesis offer insights into two critical areas: (i) the effect of bubbles in Newtonian matrices,
including their behaviour and interactions under different flow conditions, and the complex
rheological phenomena they induce, and (ii) the physical interactions between bubbles and

non-Newtonian matrices and their influence on the suspension rheological properties.

The experimental data generated and analysed in this thesis are fundamental for
understanding the interplay between bubbles and fluid matrices in different contexts,
facilitating the development of novel formulations with consistent rheological properties.
Moreover, these findings are valuable for validating existing rheological models proposed for
the rheology of bubble suspensions, and can be of great interest to other industries, such as

food, oil and gas, and personal care products. In these industries, air is incorporated in the



formulations to improve various product properties, including texture and flavour release (e.g.,

chocolate), structural integrity and flow properties (e.g., acrated cement), and spreadability and

cleansing properties (e.g., foam cleansers).

Highlights

1.

The steady shear rheology of semi-dilute polydisperse bubble suspensions in a
Newtonian ambient fluid was investigated to elucidate the role of polydispersity on the
steady-shear viscosity of such systems. Detailed theoretical calculations revealed that
the effect of polydispersity on suspension viscosity becomes apparent only if the bubble
size distribution is bimodal, with very small and very large bubbles having similar
volume fractions. In any other case, the polydisperse suspension can be considered as
monodisperse, with a diameter equal to the volume-weighted average diameter. Steady-
shear rheological tests showed an unexpected double power-law decay in suspension
relative viscosity, while subsequent novel rheo-optical experiments linked the first
decay to the shear-induced formation of bubble clusters and threads and the second to
bubble deformation. Despite numerous experimental studies on the steady-shear
properties of bubble suspensions, this investigation represents the first study to clearly
reveal the shear-induced formation of bubble clusters and threads, which contribute to
additional shear-thinning effects, and to clarify the influence of polydispersity without
relying on system-dependent empirical approaches.

The linear viscoelastic properties of semi-dilute polydisperse bubble suspensions were
investigated experimentally through small amplitude oscillatory shear (SAOS) tests
performed in a rheo-optical set up. This coupled approach offered a higher confidence
in the experimental measurements, because it allowed investigating the effects of
bubble size distribution and various SAOS measurement artifacts, including bubble
rise, coalescence, and changes in bubble spatial organisation over time, which can
influence the rheological measurements of bubble suspensions. The study produced
reliable experimental results for validating existing models proposed for the linear
viscoelastic behaviour of bubble suspensions and shed light on the rather unexplored
effect of bubble fluid dynamic interactions on suspension elasticity. It also clarified the
conditions under which pre-shearing can effectively mitigate these effects.
Understanding the linear viscoelastic properties of such systems and the influence of
pre-shearing conditions is paramount for efficiently designing and controlling

manufacturing processes to achieve desired final product properties.



3.

The physical interplay between bubbles and a shear-thinning Carbopol dispersion, both
with and without the addition of a surfactant (Sodium Dodecyl Sulphate, SDS), was
studied via steady shear experiments. This study provided valuable insights into the
influence of bubbles on more complex matrices typically found in oral care
formulations. The results highlighted how matrix composition affects the interactions
between individual components in these suspensions, leading to phenomena such as
bubble coalescence and clustering, which directly impact the rheological behaviour of
these systems. This study paves the way to further exploration of the intricate interplay

between bubbles and shear-thinning matrices in complex formulations.
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Chapter 1

Introduction

1.1 Scope of the research

The scope of this work is to provide a comprehensive understanding of how bubbles affect
the rheological properties of matrices with increasing complexity, ranging from simple
Newtonian fluids to complex shear-thinning fluids commonly used in oral health formulations.
The research is part of the EPSRC Future Formulations grant CORAL, a collaboration between
the Departments of Chemical Engineering, Mechanical Engineering and Mathematics at UCL,
and is partly sponsored by the industrial partner GlaxoSmithKline. The overall aim is to
introduce new fundamental insights into complex formulations, contributing to enhanced
control over their final rheological properties, improved manufacturing efficiency, and

consistent product quality.

1.2 Motivation

In today’s diverse industries, the development of complex formulated products is essential
to meet the ever-evolving needs of consumers. Products such as personal care items,
construction materials, food products, and inks rely on the precise combination of multiple
phases and active ingredients to achieve specific textures, functionalities, and benefits. This
intricate process presents significant manufacturing challenges, requiring a deep understanding
of how different components interact and how these interactions influence the overall
performance and stability of the product. The oral care industry exemplifies this complexity,
with toothpaste serving as a prime example. Integrating novel functionalities into this daily
essential while maintaining consistent quality and a reliable manufacturing process is crucial
not only for manufactures but also for consumer health and well-being (WHO, 2020). Typical
toothpaste formulations consist of a dense suspension of thickening and abrasive substances,
flavours, surfactants, and therapeutic agents such as fluoride, all within a liquid matrix of

humectants and water (Liu et al., 2015).

The complexity of toothpaste formulations increases when addressing specific oral health

issues, such as dental hypersensitivity. This led to the development of novel non-aqueous
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formulations incorporating bioactive glass. In the presence of saliva, this biocompatible
material reacts rapidly with the surrounding tissue, forming a mineral layer of
hydroxycarbonate apatite that protects exposed dentin and relieves pain (Petrovi¢ et al., 2023).
The absence of water in these new formulations significantly alters the interplay between
ingredients, leading to significant changes in the product's microstructure and flow properties.
The behaviour of these formulations can vary dramatically with slight alterations in process
conditions, ingredient concentrations, or the sequence in which they are added to the

formulation.

The introduction of bubbles during the high shear-mixing of the various components adds
yet another layer of complexity to an already challenging formulation. Bubbles have been
shown to significantly influence the rheological properties of a system, with their impact being
highly dependent on factors such as the bubble volume fraction, the matrix composition, the
interactions between bubbles and other formulation components, and the applied flow
conditions. This variability introduces additional manufacturing challenges and complicates
control over the final product's properties, making it difficult to achieve consistent product
quality and a reliable manufacturing process. Therefore, comprehensive rheological
characterisation that clarifies the effect of bubbles on the flow properties of such systems is

paramount for developing high-quality products with reliable and predictable properties.

1.3 Research objectives

This research aims to investigate how bubbles generated during the manufacturing process
of novel oral non-aqueous formulations developed by GlaxoSmithKline affect their rheological
properties. Toothpaste formulations are inherently complex materials from a rheological
perspective, exhibiting distinctive shear-thinning behaviour and often yield stress properties
that define their sensory qualities and how consumers perceive them (Ahuja et al., 2020).
Understanding and controlling their intricate rheological behaviour is essential for processes
such as dispensing, pumping and end usage, as well as for ensuring stable formulations with
consumer-preferred sensory attributes. From a manufacturing standpoint, this knowledge is
also critical for optimising processing conditions, minimising downtime, and reducing wasted

material (Ahuja and Potanin, 2018).

The challenge of controlling the rheological properties of these formulations is further
complicated by the entrapment of air bubbles during the initial manufacturing stage. This stage

involves the production of a non-aqueous matrix composed of a liquid phase (i.e., glycerol)
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and a polymer gel phase (formed with a carbomer and polyethylene glycol (PEG)), to which
the solid phase and various additives are subsequently added. The process is conducted in large
batch mixers where the polymer gel phase is mixed with the liquid phase. The final properties
of the toothpaste heavily depend on the homogeneity of the non-aqueous matrix, highlighting
the crucial role of high-shear mixing during this stage. However, this intense mixing also causes
air to get entrapped in the mixture, which, due to the mixture’s high viscosity, becomes difficult

to release, effectively creating a bubble suspension.

The presence of bubbles has been recognized in the literature for inducing shear-thinning
and other non-Newtonian phenomena even in Newtonian matrices (Llewellin et al., 2002a;
Mader et al., 2013; Morini et al., 2019). Hence, the interaction of bubbles with an already
rheologically complex non-aqueous matrix complicates matters even more. In this specific
case, the entrapment of bubbles in the toothpaste matrix has been associated with stringiness
in the formulation, which interferes with consistent filling, slowing down the line operation,
and ultimately reducing manufacturing efficiency. These significant manufacturing challenges
coupled with the need to ensure final products with consistent sensory properties underscore
the need for studying and characterising the effect of bubbles on the rheology of toothpaste

formulations.

This study presents significant challenges because bubble suspensions, even in Newtonian
media, remain relatively unexplored compared to emulsions and particle suspensions. This is
primarily due to two factors: a) bubble suspensions are inherently less stable systems, making
it difficult to generate and maintain them for long enough to enable experimental investigation,
and b) the rheological models generated for emulsions and particle suspensions cannot be
directly applied to bubble suspensions due to the different nature of the dispersed phase, as
bubbles are inviscid and incompressible. Therefore, there are still unexplored aspects of the

rheology of bubble suspensions in Newtonian ambient fluids.

One such aspect is the effect of polydispersity on the viscosity of bubble suspensions, an
issue that has been scarcely addressed in the literature and mostly through empirical
approaches, despite the widespread presence of polydisperse systems in industrial applications.
To address this gap, the influence of different bubble sizes on the viscosity of bubble
suspensions is investigated through a combination of theoretical analysis and rheological
testing with the aim of deriving system-independent insights. Furthermore, this research

provides a deeper understanding of the shear-thinning behaviour of bubble suspensions, with
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rheo-optical experiments revealing the role of shear-induced phenomena, such as bubble

clustering and threading, in this process.

Another aspect requiring investigation in bubble suspensions with Newtonian ambient
fluids regards their linear viscoelastic properties, for which there is a distinct lack of
experimental data in the literature. Obtaining reliable experimental data to better understand
these properties is of paramount importance for effectively controlling manufacturing
processes and achieving products with desired texture and spreadability. Therefore, a
systematic experimental characterisation of the linear viscoelastic properties of bubble
suspensions in Newtonian matrices is conducted through SAOS rheological tests performed in
a rheo-optical setup. This study produces reliable experimental data that elucidate the effect of
bubbles in suspension elasticity, providing a foundation for similar investigations in more

complex non-Newtonian matrices.

Following the study of bubble suspensions in Newtonian media, the steady-shear viscosity
of bubble suspensions with a shear-thinning ambient fluid is investigated experimentally with
the aim of evaluating the impact of bubbles on the rheology of more complex matrices. The
shear-thinning matrix used in this study consists of a Carbopol dispersion in a mixture of PEG
and glycerol, simulating the composition used in the initial manufacturing stage of the non-
aqueous formulations of interest. To examine how matrix composition influences the way
bubbles behave and interact with the matrix, surfactant (SDS) was introduced in the mixture to
increase matrix complexity, and the steady-shear viscosities of bubble suspensions with and
without surfactant were compared. This study focuses on the interplay between bubbles and
matrix components in more complex matrices and how these interactions affect the suspension
flow properties. These findings aim to provide the oral care industry with valuable insights on
how to control and optimise the rheological properties of their products by fine-tuning the

matrix composition. Hence, the objectives of this work can be summarized as follows:

e Investigate the impact of different bubble sizes on the steady-shear viscosity of semi-
dilute bubble suspensions in Newtonian media via theoretical analysis and rheological
tests;

e Flucidate the effect of shear-induced phenomena, such as bubble clustering and
threading, on the steady-shear viscosity of semi-dilute bubble suspensions in

Newtonian media;
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e Provide a systematic experimental characterisation of the linear viscoelastic behaviour
of semi-dilute bubble suspensions in Newtonian media, using a combination of SAOS
tests and rheo-optical experiments to ensure greater reliability of experimental results;

e Examine the effect of bubble-fluid dynamic interactions on the elasticity of bubble
suspension in Newtonian media, and clarify the conditions under which pre-shearing
can mitigate these effects;

e Investigate experimentally the steady-shear viscosity of semi-dilute bubble suspensions
in shear-thinning matrices of increasing complexity, and elucidate the interplay between

bubbles and matrix components and its impact on the suspension viscosity.

1.4 Thesis outline

The dissertation is organised into six chapters. A brief introduction to the motivation and
background for this research has been given in this chapter, along with the primary objectives
of the work. Chapter 2 provides a literature review, laying the theoretical groundwork essential
for interpreting the results presented in the following chapters. First, general concepts on the
rheology of complex fluids are introduced, followed by a more detailed analysis of the
rheological properties of bubble suspensions in Newtonian media. Finally, the chapter provides
some key literature insights on the rheology of bubble suspensions in non-Newtonian media,

focusing specifically on (i) shear-thinning and (ii) yield stress ambient fluids.

The results are presented across Chapters 3 to 5, with each chapter including a small
introduction, its individual methodology, results and conclusion subsections. Chapter 3
discusses the steady-shear viscosity of semi-dilute polydisperse bubble suspensions in
Newtonian media. The study combines theoretical analysis, steady-shear rheological tests and
rheo-optical experiments to elucidate how different bubble sizes and shear-induced
phenomena, such as the formation of bubble clusters and threads, influence the suspension
relative viscosity. The findings of this chapter clarify the role of polydispersity without relying
on system-dependent empirical approaches and highlight the complex shear-thinning nature of
bubble suspensions, driven not only by bubble deformation, as previously understood, but also

by the shear-induced clustering and alignment of bubbles.

Chapter 4 examines the linear viscoelastic behaviour of semi-dilute polydisperse bubble
suspensions in Newtonian media through SAOS rheological tests. A rheo-optical setup was
employed to visualise the behaviour of the suspensions during these tests, aiming to investigate

how bubble size distribution and various SAOS measurement artifacts — such as bubble rise,
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coalescence, and changes in bubble spatial organisation over time — affect the obtained
viscoelastic trends. The combination of SAOS rheological data, image analysis, and
experimental data fitting provided valuable insights into bubble fluid dynamic interactions,

their impact on the suspension elasticity, and the role of pre-shearing in mitigating these effects.

Chapter 5 explores the impact of a shear-thinning matrix on the steady-shear viscosity of
bubble suspensions, focusing on the interactions between the bubbles and matrix components.
The study examines the steady-shear viscosity of bubble suspensions in two shear-thinning
matrices: (i) a Carbopol dispersion, and (ii) a Carbopol dispersion with added surfactant,
Sodium Dodecyl Sulphate (SDS), to increase matrix complexity. Rheo-optical experiments are
conducted to visualise the phenomena taking place during shearing and to investigate how the
interplay between bubbles and matrix components drives the rheological response. The results
highlight the critical role of matrix composition, demonstrating that the rheological behaviour
of more complex formulations is significantly shaped by the intricate interactions among their

individual components.

Finally, Chapter 6 summarises the key findings of this research and outlines future

perspectives.
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Chapter 2

Theoretical Background and Literature Review

This chapter aims to provide a comprehensive overview of the theoretical background required
to understand the research results. First, general concepts on the rheology of complex fluids
are introduced, focusing on the material functions that are most pertinent to the subsequent
results chapters. Next, a detailed analysis of the rheological properties of bubble suspensions
in Newtonian media is presented, along with a discussion on existing rheological models and
their limitations. Lastly, the rheology of bubble suspensions with non-Newtonian ambient

fluids is discussed, particularly in the context of shear-thinning and yield stress matrices.

2.1 Rheology of complex fluids

Fluid rheology is a vast field of study, essential for addressing fluid dynamics problems
involving complex fluids and for gaining insight into the microscopic interactions within new
complex formulations. Due to the extensive nature of the subject, a wealth of literature has
been dedicated to examining different types and properties of fluids and materials. This section
aims to present fundamental concepts pertinent to this research, outlining the primary material
functions used throughout the thesis to describe the rheological behaviour of the systems under

investigation.

Incompressible fluids are generally characterised by their stress response to externally
applied deformations. The kind and extent of this response are closely tied to the material's
internal microstructure. Thus, rheological testing is used to correlate the flow behaviour of a
complex fluid to its underlying microstructure by subjecting the fluid to simple flow fields. The
two primary types of flow used in rheological measurements are (i) shear flows and (i1) shear-
free flows, each producing unique material functions that offer different insights into the fluid’s

properties.

In shear flows, deformation is exerted tangentially to each element of the fluid. A basic way
to represent this type of flow in a two-dimensional space is through the parallel-plate paradigm,

depicted in Fig. 2.1.
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Figure 2.1: Schematic of a shear flow in a parallel plate configuration.

In this case, a fluid is placed between two parallel plates separated by a small distance, and
the top plate is moved in the x-direction with a velocity v,. The resulting strain, or deformation
y, experienced by a fluid element with a differential thickness dy can be described at every

point within the fluid domain as follows:

__das
)’—dy

(2.1)

where ds is the differential distance covered by a fixed fluid element over a differential time
interval dt. The shear strain y is the only non-zero element of the deformation tensor. The
absolute value of the rate at which this strain changes over time, specifically due to shear forces,
is known as the shear rate y and is expressed as:

1.ds _ dvy

¥ =% dy ~ dy (2.2)

where dv, (m/s) is the velocity of the upper plate. The correlation of the shear deformation y
and the shear rate y with the force per unit area (N/m?), or shear stress t, applied to induce

deformation, is strictly fluid-dependent and represents the most common way to classify fluids.

In shear-free flows, the applied deformation consists only of normal components, with all
shear components of the velocity gradient being equal to zero (i.e., y;; = 0,i # j). A typical
example of shear-free flow is the extensional flow, which in a three-dimensional space is

defined by the elongational rate ¢ as follows:

1. 1. : . 4y
Uy =_ng;vy =—Egy;vZ=£Z where €=d—ZZ (2-3)

In an extensional flow, every fluid element experiences extension in one direction and
contraction in the other two, due to the fluid being incompressible. Unlike shear flow, where

surfaces slide relative to each other, here one can observe rigid areas that either approach or
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move away from each other in the direction of motion. From a dynamic perspective, an
extensional deformation is possible only when there is a difference in the normal stresses acting

on two orthogonal surfaces of the material (Macosko, 1994):
T=1Ty — T, = —N(€)E (2.4)

where Ty and 7, represent the normal stresses applied to the perpendicular and longitudinal
surfaces of the fluid element, respectively, and 7, (€) is the extensional viscosity, which is
different from the shear viscosity 77. Note that certain materials, such as polymer blends, exhibit
normal stress differences also in simple shear flows. This phenomenon is linked with the

inherent elastic component of these materials.

In the present work, only shear rheology techniques were employed. Therefore, the
following sections concentrate solely on the material functions that can be derived from shear

flow and the corresponding classifications of complex fluids.

2.1.1. Newtonian fluid behaviour

Following what was stated in the section above, it is then possible to classify fluids
depending on their response to an external shear stress. Considering the parallel plate paradigm
illustrated in Fig. 2.1, for a Newtonian fluid, the velocity gradient induced in the fluid layer
along the y component (shear rate y,,, (s1) is directly proportional to the applied shear stress
(Txy (N m)). The constant of proportionality is the viscosity of the fluid 1 (Pa s), leading to

the following equation, commonly known as Newton’s law (Bird et al., 2002):

F Jvy .
Z = ‘[xy = —T’ (%) = —T]’yxy (25)

The Newtonian viscosity, as defined in the equation above, does not depend on the shear rate
and is solely determined by the material’s unique properties, including its temperature and

pressure (Chhabra and Richardson, 2011).

To extend Eq. 2.5 to the more complex case of three-dimensional flows, one must consider
all nine components of the stress tensor acting on a single fluid element (Fig. 2.2). The normal
components of the stress tensor g;; are the sum of two distinct contributions: one related to the
pressure exerted by the fluid on the external environment, and the other to the flow as shown

below (Bird et al., 2002):

o =p+T1;withi=x,y,z (2.6)
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where the pressure contribution is defined as follows:

_1
p= 5 (axx + Oyy + Gzz) (2~7)
Y a
P+ Tyy
A —_
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Figure 2.2: Stress components in the three-dimensional flow.

From Egs. 2.5 and 2.6, one obtains:
Tyx T Tyy + 7T, =0 (2.8)

For a Newtonian fluid under simple shear flow, the deviatoric normal stress components are

all zero:
Tux = Tyy =Tzz =0 (2.9)

Thus, a fluid can be classified as Newtonian if it meets two conditions: (i) its viscosity remains
constant with shear, and (i1) it demonstrates zero normal stresses. Hence, in a three-dimensional

space, the Newtonian stress tensor can be expressed as follows (Macosko, 1994):
o=pl—puy (2.10)
where ¥ = [Vv + (Vv)T] is twice the rate of deformation tensor.

2.1.2. Generalised Newtonian fluid behaviour

Fluids that do not meet the conditions presented above are commonly known as ‘non-

Newtonian’ fluids. The simplest deviation from Newtonian behaviour is described by the
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generalised Newtonian fluid model, which treats the fluid viscosity as a function of the shear

rate rather than a constant:

t=—n[Vv+ WVv)T] = —ny (2.11)

n=n) (2.12)

where T is the stress tensor including only the flow contributions and y is the shear rate. In a

three-dimensional space, the shear rate is defined as the magnitude of the rate of deformation

tensor (Bird et al., 1987):
. 1,. .
= /5()/:)/) (2.13)

The generalised Newtonian model describes only how viscosity changes with shear rate,
without accounting for any characteristics related to viscoelasticity. Therefore, it is applicable
only to purely viscous (inelastic) non-Newtonian fluids. Figure 2.3 depicts the qualitative
relationship between shear stress and shear rate when the fluid behavior deviates from the
Newtonian case. Shear-thinning is the most frequently observed non-Newtonian behavior in

industrial applications and is typically associated with polymer blends.
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Figure 2.3: Types of generalised Newtonian fluids (Chhabra and Richardson, 2011).

Figure 2.4 illustrates the key characteristics of shear-thinning fluids, primarily showing that
the measured viscosity decreases with increasing shear rate. At very low and very high shear
rates, shear-thinning materials typically display Newtonian behavior, leading to a zero-shear
viscosity 1, plateau at low shear rates and an infinite-shear viscosity 1., plateau at high shear
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rates. The specific features of any flow curve are largely determined by the material's
microstructure. For instance, in polymer solutions, the extent of the zero-shear plateau grows
as the polymer’s molecular weight decreases, as their molecular weight distribution becomes

narrower, and as the polymer concentration in the solution reduces (Bird et al., 1987).

Shear stress [Pa]
T Viscosity [Pas] 3

\\ nOO
slope = 1 *\

102 100 100 100 102
Shear rate [1/s]

Figure 2.4: Qualitative representation of shear-thinning behaviour.

Throughout the years, various empirical models have been developed to represent viscosity

as a function of shear rate, with the power law model being the simplest:
n=Ky*! (2.14)

where K and n are empirical fitting parameters, known as the fluid consistency and flow index,

respectively.

The power law model is applicable to both shear-thinning and shear-thickening fluids. In the
case of shear-thinning fluids, n falls between 0 and 1, while for shear-thickening fluids, n
exceeds 1. The further the flow index deviates from 1, which corresponds to the Newtonian
behaviour, the more pronounced the non-Newtonian effects become. Despite its widespread
application in process engineering, the power law model has limitations, particularly in
capturing the zero-shear and infinite-shear Newtonian plateaus. To address these shortcomings,
more sophisticated models have been developed, based on assumptions about how the
material’s molecular network evolves under simple shear stress (Cross, 1965). A characteristic
example is the Carreau-Yasuda constitutive equation, which effectively captures both the zero-

shear and high-shear viscosity plateaus:
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n-—1
a

N =7Nw+ @w —n)[1+ (A1)%] (2.15)

where A, is the Carreau characteristic time which is linked to the inverse of the shear rate at
which the shear-thinning behaviour begins, n is the flow index, and a is a fitting parameter
associated with the smoothness of the transition from zero-shear plateau to the shear-thinning

region. Other common generalised Newtonian constitutive equations are outlined below:

Ellis model n = —2°—— (2.16a)
{az)
Cross model 1712 = 1 (2.16b)
N-TNeo  1+KY"
n-n L
Carreau model # =[1+ (A.9)?] 2 (2.16¢)
Herschel-Bulkley model ¢ = g, + Ky" 0 > 0, (2.16d)

Note that in Eq. 2.16a, @ and g, , are the two fitting parameters of the Ellis model, with
being the equivalent of the flow index and 0y, representing a stress threshold. For gy, = o
the model simplifies to the Newtonian case, while for a/a; /, > 1, it reduces to the power law
model (Eq. 2.14). Eq. 2.16d is known as the Herschel-Bulkley model and is presented in a
different format compared to the rest. This model applies to viscoplastic fluids, which are
characterised by the presence of a yield stress o,,. Typical examples of viscoplastic materials
include emulsions, suspensions and polymeric gels (Larson, 1999). Though yield stress is
theoretically impossible to determine for a real fluid, as by definition it is the stress value at
shear rate equal to zero, it practically refers to the minimum stress required to break down the
material’s internal microstructure and cause viscous deformation. Below this threshold, the

material can be considered as an elastic solid with infinite viscosity.

All the models presented above can be fitted to rheological data obtained from steady-shear
tests, where a constant shear rate is applied, and the corresponding stress is measured once
steady-state conditions are reached. This is repeated across a wide range of shear rates,

typically between 10~ and 10° s7!, to obtain the material’s characteristic flow curve.

2.1.3. Viscoelastic fluid behaviour

The types of complex fluid behaviour discussed so far have been associated solely with the
presence of viscous stresses in response to a material’s deformation or flow. However, many
materials of practical significance, such as gels, pastes, and polymer blends, present also an

elastic component, forming another important class of complex fluids, known as viscoelastic
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fluids. The rheological properties of these fluids lie between viscous liquids and elastic solids,

: : . . . d
meaning that part of the applied shear stress is used to generate a velocity gradient (diyx) and

part of it gets stored in the material as shear energy (Ferry, 1980). Thus, suggesting that the
material may partially recover its original structure once the stress is removed. This response
depends on both the material’s distinct microstructure and the shear conditions it has undergone
(Bird et al., 1987). Therefore, by measuring the viscoelastic properties of a material, one can
gain valuable insights into its specific characteristics and the time needed for its internal
microstructure to rearrange, which is closely connected to the material’s inherent nature and

physicochemical properties (Ferry, 1980).

In the context of this research, the investigation of viscoelasticity becomes particularly
relevant, as the presence of bubbles has been shown to induce viscoelastic phenomena even in
Newtonian ambient fluids. Consequently, the viscoelastic properties of bubble suspensions
have been studied with the aim of gaining insights into their unique microstructure and
understanding how this influences their macroscopic flow behaviour. This section presents the
material functions typically used to describe viscoelasticity, along with fundamental models
proposed in the literature to characterise the behaviour of viscoelastic fluids. The application

of these models to bubble suspensions is discussed in Section 2.2.
Viscoelastic material functions

The material functions used to describe the viscoelastic nature of a material can be
categorised based on the applied flow field. In simple steady shear flows, elastic effects are
indicated by the presence of non-zero normal stresses (7;;), which arise from the material’s
inherent nature rather than the imposed flow conditions. In this context, elastic effects are not
determined by the specific values of the three normal stress components but by the differences
between them. Thus, for an incompressible fluid subjected to steady shear flow, the elastic

behaviour is typically quantified by measuring the first and second normal stress differences:
Ny = Tyy — Tyy = — 2 2162 y;x (2.17a)
NZ =Ty —Tzz = — l‘UZ(V) V;x (2-17b)

where x is the flow direction, y is the velocity gradient direction and z is the neutral direction.
Here, N;, N, are the first and second normal stress differences and ¥;, ¥, are known as the
first and second normal stress coefficients, respectively. Eq. 2.17 demonstrates that the normal

stress differences have a non-linear relationship with the applied shear rate. The behaviour of
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the normal stress coefficients in response to shear rate varies based on the type of viscoelastic

fluid.
The first normal stress coefficient can be experimentally determined via simple steady-shear
tests in a cone-plate rotational rheometer as follows:

2F
nR?_p)’/z

(2.18)

1:

where F is the measured normal force exerted by the fluid on the rheometer plates, R._,, is the

radius of the cone-plate geometry and y is the applied shear rate, which remains uniform across

the gap in this specific setup.

For polymer solutions, ¥; typically demonstrates a zero-shear plateau, followed by a shear-
thinning behaviour. The second normal stress coefficient is more difficult to measure, as it
requires the measurement of the local stress distribution across the plate surface. Limited
experimental studies suggest that ¥, is negative and smaller in magnitude compared to ¥;

(Bird et al., 1987).

In this work, the viscoelasticity of the tested bubble suspensions was not described through
normal stress differences and coefficients due to difficulties associated with their experimental
measurement. Specifically, instead of a cone-plate geometry typically used for measuring ¥;,
a parallel plate geometry was employed to prevent bubble confinement issues that could arise
from the smaller gap in cone-plate configurations. The viscoelastic properties of the bubble
suspensions were assessed through material functions obtained in unsteady shear flow, and

specifically, through small amplitude oscillatory shear (SAOS) tests.

SAOS tests provide useful insight into the relaxation processes occurring within a material’s

microstructure after the application of a linear sinusoidal shear deformation, as follows:
Yyx(t) = Vosinwt;y;j =0 i,j #x,y (2.21)

where y, represents the infinitesimal amplitude of the sinusoidal deformation and w is the

oscillation frequency. The corresponding shear rate can then be expressed as:
Yyx(t) = wypcoswt;y;; =0 i,j #x,y (2.22)
According to the Boltzmann superposition principle, the effects of small sequential strain

changes are additive (Ferry, 1980). Hence, the corresponding shear stress 7,,, is defined as:
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Ty () = [ Gt = )y ()t (2.23)

Eq. 2.23 can be used to define the relaxation modulus G(t), which describes how a material
recovers, or relaxes, from being deformed, essentially by reflecting how much stress remains
in the material as time passes after deformation. G(t) is expressed as a decreasing function
because, as time passes, the material adjusts and reduces the residual stress. Thus, more recent
deformations have a greater impact on the material’s response than older ones, since the stress
from earlier deformations has already had time to relax. G(t) can be expressed as a single or

multi-mode exponential function as follows:
G(t) = XL, Giexp (— t/4;) (2.24)

where N represents the number of relaxation modes, with each relaxation mode corresponding
to a distinct relaxation process occurring over a specific time scale 4;. For an infinite number
of relaxation modes, G (t) can be described using a continuous relaxation spectrum H(A) (Bird

et al., 1987), as shown below:
G(t) = f, H(A) exp(— t/A) dIn A (2.25)

By substituting Eq. 2.22 into Eq. 2.23 and replacing t — t’ with s, one obtains the following

expression for the shear stress:
Ty (t) = —f G(s) wyy cos[w(t —s)] ds
0

= yolw fooo G(s) sinws ds| sinwt + yo[w fooo G (s) cos ws ds| cos wt (2.26)

As observed, the two terms in brackets are independent of the elapsed time, with the first term
being in phase with the deformation and the second being in phase with the shear rate.

Consequently, Eq. 2.26 can be expressed as follows:
Tyx(t) = — ¥ (G’ sinwt + G" cos wt) (2.27)

where G' is the storage modulus, which describes the material’s elastic character, and G" is
the loss modulus, which represents its viscous character. Considering the stress amplitude 7,

Eq. 2.27 can be rewritten as:

Ty (t) = — 1 sin(wt + §) = — 7 cos § sin wt — 7 sin § cos wt (2.28)
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Thus, the linear viscoelastic material functions can be defined as follows:

G'=2cosé (2.29a)
Yo

G" =2sins (2.29b)
Yo

§=G"/G (2.29¢)

The phase angle § represents the relative importance of the viscous and elastic components
of a material. For a purely viscous material, the storage modulus equals zero and § equals m/2.
On the other hand, for a purely elastic material, the loss modulus is equal to zero, leading to a
zero phase angle as well (Larson, 1999). Like normal stress differences, the trends of the linear
viscoelastic material functions depend on the specific properties of the fluid. Several
viscoelastic models of different complexity have been proposed to describe these material

functions. The simplest, but still the most fundamental, is the Maxwell model.
Maxwell model

The Maxwell model considers both the viscous and the elastic character of a material by
representing its rheological properties with a spring and a dashpot connected in series (Fig.
2.5). In this configuration, the spring models the elastic component of the material, governed
by Hooke’s law, while the dashpot represents the viscous component, described by Newton’s
law. In the Maxwell model the stress contributions from both components are equal, and the
total strain of the system is the sum of the individual strains, thus yielding the following

constitutive equation:
ot .
T+ /15 =—1n0Y (2.30)

where T is the deviatoric stress tensor, 1, represents the fluid’s zero-shear viscosity, 4 is the
fluid’s relaxation time (defined as the ratio of 1, to the spring’s elastic modulus G,), and y is

the rate of deformation tensor.

Figure 2.5: Schematic of a Maxwell unit.
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Eq. 2.30 is written in terms of material coordinates; thus, the partial time derivative (d/0t)
is essentially a material derivative. For a steady-shear flow from a Lagrangian perspective (i.e.,
from the viewpoint of an observer moving along with a fluid element as it flows), ¥ remains
constant with time. Consequently, Eq. 2.30 can be treated as a first order differential equation,

resulting in:
T+ 1Y =Aexp(—t/A); A =Ti=0 + No¥t=0 (2.31)

From Eq. 2.31, it can be concluded that over a time of order of magnitude A, T ~ n,¥, i.c.,
the material behaves like a Newtonian fluid with viscosity 74. For transient flows, y varies in
time, with ¢;, denoting the timescale of its variation, thus Eq. 2.31 no longer applies. However,
in this case the fluid behaviour can be interpreted using a scaling approach, for which the

following dimensionless variables are introduced:

| =
I~

t

Y=t (2.32)

f .

ty

~
N

c

where for each variable, the scalar appearing at the denominator is the scale of that variable. In

terms of these variables, Eq. 2.30 reads:

T+ (A/t) 52 = = (Mo¥e/Te) ¥ (2.33)

The ratio A/t; is referred to as the Deborah number (De). It appears in the Maxwell
constitutive equation for unsteady states and serves as an indicator of whether the material will
behave as a Newtonian fluid or as a Hookean solid (Larson, 1999). For De « 1, the timescale
over which the rate of deformation changes significantly is much longer than the material's
relaxation time. As a result, the material relaxes before experiencing significant variation in

¥y. In this case, T ~ — (noY./T.) ¥, leading 7. ~ 1o}, . Hence, the material behaves like a

Newtonian fluid. Conversely, when De > 1, (1/t;) % dominates over T, and Eq. 2.33 yields

(/l/ty)g ~— (MoYe/Tc) ¥. In this case, the material behaves as a Hookean solid, where
Tc ~ G, With G = 1 /A and v, = y,.t; (¥ being the deformation scale).

At this point, it is important to note that the Maxwell equation is linear, and therefore it
cannot predict non-linear viscoelastic effects, such as normal stress differences. To account for

such phenomena, one should use the upper-convected Maxwell model, which will be discussed

in more detail in the following section. However, the classic Maxwell model remains useful
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for describing the linear viscoelastic material functions derived from SAOS tests. The
relaxation modulus for a Maxwell fluid can be written in terms of the relaxation time A and

zero-shear viscosity 7, as follows:

t —(+—¢' . 1] ’
Ty = [ Re (/R y (¢ dt (2.34)

By substituting the expression for 7, (Eq. 2.21) into Eq. 2.34, the shape of the G’, G" curves

for a Maxwell fluid can be predicted as follows:

r_ noAw?

G = Jue (2.352)
1 _  Now

G =T (2.35b)

By normalizing Eq. 2.35 with the Hooke’s elastic modulus G, = 1,/A, and considering the
characteristic timescale for the variation of shear rate in an oscillatory shear flow, which is
directly linked to the oscillation frequency (t;~1/w), Eq. 2.35 can be expressed in terms of

the Deborah number as follows:

’ De?
G' = Tf)«ﬁ (2363)
" D
= Tl)e«ﬂ (236b)

Observing Eq. 2.36, it becomes evident that at low oscillation frequencies, i.e., for De < 1,
G'~De? and G''~De. In this regime, known as the terminal viscous regime, both viscoelastic
moduli increase with De but at different rates. Specifically, G’ follows a power law with a slope
of 2, while G" increases linearly with De. At higher oscillation frequencies, i.e., for De > 1,
Eq. 2.36 yields G'~1 and G"'~1/De, indicating that the storage modulus reaches a constant
value (i.e., G, ), while the loss modulus gradually decreases toward zero. For De = 1, the two
moduli intersect, marking the transition from a viscous to an elastic regime, where G’ stabilises
to a plateau and G'' approaches zero. The relaxation time of the material can be determined
from the inverse of the oscillation frequency at which the two moduli intersect. Fig. 2.6 (black

lines) illustrates typical G', G" curves for a Maxwell fluid.
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Figure 2.6: Example of G’ (solid lines) and G"' (dashed lines) for a single-mode and a three-mode
Maxwell fluid.

For more complex relaxation behaviours, the shapes of G'(w) and G"(w) may differ from
the patterns previously described. In such cases, a generalised Maxwell model can be used to
better capture the fluid’s response. This approach models the fluid as consisting of N Maxwell
elements arranged in series. Following the linear superposition principle, the total stress is
calculated as the sum of the stresses from each individual element. Consequently, Eq. 2.35 can

be written more generally as follows:

ili
=X, fﬂ;‘;z (2.37a)
6" =3, (2.37b)

For comparison purposes, Fig. 2.6 also displays an example of G’ and G"' curves corresponding

to a generalised Maxwell fluid with three relaxation modes (red lines).

Upper-convected Maxwell model

As mentioned earlier, the classic Maxwell model is linear and so cannot predict non-linear
viscoelastic phenomena such as normal stress differences. To address this limitation, non-linear
models were developed, with the upper-convected Maxwell model being the simplest among
them. In this model, the material time derivative of the deviatoric stress tensor is replaced by
the convected time derivative, resulting in a modified form of Eq. 2.30. This version, scaled

and expressed using dimensionless variables, reads:
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z . N\t _ _ row . -
T+ W) - W) T+7 (52) = — (ove/7) ¥ (238)

where d/0t is the material time derivative, dv/0X is the dimensionless velocity gradient
tensor, and (8%/0x)T is its transpose. On the left-hand side of Eq. 2.38, two dimensionless
numbers are present: one is the Deborah number (De = 1/t;) and the other is the Weissenberg
number, defined as Wi = Ay, (Larson, 1999). This number is associated with the non-linear

part of Eq. 2.38 — the part that in shear flows results into normal stress differences.

Analysing the different regimes of the Deborah and Weissenberg numbers provides valuable

insights into the material behaviour. When De < 1 and Wi < 1, Eq. 2.38 yields T ~ (no—n)y,

Tc
so that 7. ~ ny¥,, indicating a Newtonian fluid-like behaviour. When De <« 1 and Wi > 1,

the non-linear term of Eq. 2.38 becomes important, while (4/t;)0,T is still negligible

compared to T. Considering the dimensional variables, Eq. 2.38 can be approximated with:

ou\ T ] :

T— /1[(3—:) T+ T (a—:)] = —noY (2.39)
For a simple shear flow, this yields 7, = —241,72, Tey = —No¥, Tyy = 0, showing that the
first normal stress difference is not zero and is related to Wi, highlighting the influence of

nonlinear effects. For De > 1 and Wi «< 1, Eq. 2.38 simplifies to (1/t;)0,T ~ MoVe/T)Y >

indicating behaviour similar to that of a Hookean solid with 7. ~ G,y.. In cases where both

De >» 1 and Wi > 1, the material exhibits characteristics of a nonlinear solid.

In essence, the Deborah number determines whether the material behaves like a Newtonian
fluid or an elastic Hookean solid, while the Weissenberg number reflects the importance of
nonlinear effects, such as normal stress differences, relative to viscous stresses (Dealy, 2010;

Poole, 2012).
Jeffreys model

The Maxwell and upper-convected Maxwell models previously discussed provide
fundamental insights into the viscoelastic behaviour of materials and form the basis for more
advanced models. While essential for understanding simpler systems, these models cannot
fully capture the behaviour of more complex, multiphase systems. The Jeffreys model extends
the Maxwell framework, offering a more comprehensive description of the viscoelastic
behaviour in dilute suspensions consisting of viscoelastic particles dispersed in a Newtonian

fluid. These particles can be solid particles, droplets, polymeric molecules or bubbles. The
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Jeffreys model suggests that the total stress in the suspension is the sum of the stress
contributions of the solvent and the dispersed phase (Bird et al., 1987). The solvent is a

Newtonian fluid, and the particles obey the Maxwell equation as follows:
. ot .
r=rp+rs;rs=—nsy;rp+/16—:’=—npy (2.40)

where 7 is the deviatoric stress tensor of the mixture, subscripts s and p denote the solvent and
the particles, respectively, 1, is the Newtonian viscosity of the solvent (constant), and d/dt is

the material time derivative. The Jeffreys constitutive equations is then given by:
at . ay

In Eq. 2.41, ng = ns + 1y, is the zero-shear viscosity of the suspension, A is the relaxation
time of the viscoelastic particles, and A, = An,/n, is known as the retardation time. The
relaxation time for a single fluid droplet in simple shear is given by the expression A =
(1 + B)(nsR) /o, where B is the viscosity ratio between the dispersed and continuous phases,
R is the radius of the relaxed droplets, assumed to be all identical, and o is the interfacial
tension between the two phases (Loewenberg and Hinch, 1996). In the case of inviscid bubbles,

where B = 0, this expression reduces to 1 = (nsR) /0.

As seen, Eq. 2.41 is linear and, similarly to the Maxwell equation, cannot predict non-linear
effects, such as normal stress differences. The Jeffreys constitutive equation features an
additional term compared to the Maxwell equation, and a scaling analysis can be used to
understand how this term affects the rheological behaviour of the mixture. Using the scales

given in Eq. 2.32, the following expression is obtained:

T+ (A/t) 2 = — (ove/70) [F + (a/8) 1) (2.42)

If De < 1, then t; > A, and since A > A,, it follows that t;, > A,. Consequently, the terms
containing the time derivative become negligible, reducing Eq. 2.42 to T = — n,Yy. In this flow
regime, the mixture behaves as a Newtonian fluid with viscosity n, and, as anticipated, normal
stress differences are absent. For De > 1, two scenarios arise. If A,/t;, < 1, a condition that
holds only if ng/ns > 1, T is negligible compared to A 9, T, and 4, 8,7 is negligible compared
to y. In this case, the mixture behaves as a Hookean solid with an elastic modulus G,. On the

other hand, when 4, /t; > 1, the time derivatives dominate, leading to T.~(A;/A)NeVc~NsVe-
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Therefore, the mixture behaves as a Newtonian fluid, but in this case the viscosity coincides

with the viscosity of the solvent, the particle contribution being negligible.

It is important to note that the Jeffreys model is designed for dilute suspensions, where the
interactions among particles are considered negligible. In this case, the total stress can be
determined using the linear superposition of the individual stress contributions. However, for
more concentrated systems, where the particle-particle interactions become significant, the
Jeffreys model may not fully capture the complexities of the system, and more sophisticated

models are often required (Ponce-Torres et al., 2018).

2.2 Rheology of bubble suspensions in Newtonian media

Having provided the necessary context for the rheology of complex fluids, this section
focuses on the rheological properties of bubble suspensions in Newtonian media, reviewing
key studies and their findings. Bubble suspensions, composed of gas bubbles dispersed in a
liquid medium, exhibit rheological properties that differ significantly from those of the
continuous phase alone. The presence of bubbles has been shown to alter the flow properties
of the suspension, introducing non-Newtonian phenomena such as shear-thinning behaviour
and viscoelastic effects (Llewellin et al., 2002a; Rust and Manga, 2002). This complex
rheological behaviour is influenced by several key parameters, including the properties of the
continuous phase, such as viscosity and surface tension, the volume fraction of the bubbles ¢,

their size distribution, and their interactions with the surrounding fluid (Pal, 2003).

To effectively analyse these systems, it is essential to consider dimensionless numbers that
correlate the bubble relaxation time with the characteristic flow time, elucidating the
deformation and relaxation processes that affect the overall rheological response of the
suspension. Similar to the use of the Deborah and Weissenberg numbers in the broader study
of complex fluids, the capillary number Ca and the dynamic capillary number Cd, which are
specific to bubble suspensions, provide critical insights into the behaviour of these systems
across different flow regimes (Llewellin and Manga, 2005). A detailed discussion of these

important dimensionless parameters is presented in the following section.

2.2.1. Capillary and dynamic capillary numbers

In every sheared bubble suspension, two opposite forces act on the dispersed bubbles: shear
stress and surface tension. Shear stress tends to deform and elongate the bubbles, while surface
tension tends to restore the bubbles to their initial spherical shape, preventing deformation.

Under steady shear, bubbles elongate until they reach an equilibrium configuration in which

42



their deformation is constant, and their shape remains stable. Llewellin et al. (2002a), Rust and
Manga (2002) and several subsequent studies have used a dimensionless parameter called
capillary number Ca to describe the ratio between the deforming viscous shear stress and the
restoring surface tension. In terms of characteristic times, Ca is the ratio between two time
scales, namely A and t;. The latter represents the time required by the flow to deform the
bubble significantly, essentially the time required by the deformation process, and is equal to
1/y. The former, as previously mentioned, is the relaxation time, representing the time that the
bubble takes to attain a new equilibrium condition after a change of y. Once a time of order 1
has elapsed, the bubble reaches equilibrium again. Therefore, A can be understood as the time

available to the deformation process, and the capillary number is defined as follows:

Ca=2 (2.43)

tg

The relaxation time of uniform-sized bubbles suspended in a Newtonian solvent is given by

the following equation (Llewellin et al., 2002a):

1= k(@)nsR (244)

g

where 7, is the constant viscosity of the solvent, R is the radius of the relaxed, undeformed
bubbles, o is the surface tension of the ambient fluid, and k(¢) is a parameter, which describes
the bubble interactions and increases with the volume fraction of the dispersed phase. For dilute
suspensions where interactions are considered negligible, k = 1 and Eq. 2.44 reduces to the
expression for the relaxation time of a single bubble, i.e., A = ngR/co. Substituting this
expression for A and the expression for t; in Eq. 2.43, one obtains the following equivalent
expression for Ca, defined as the ratio between the deforming shear stress and the restoring

surface tension:

A IR RY
Ca===-¢="2"F (2.45)
tq }_/ o

Eq. 2.43 shows that for small capillary numbers (Ca «< 1), the time available for
deformation is much shorter than the time required, resulting in negligible bubble deformation.
In this case, the suspended bubbles remain spherical and act as obstacles to the flow, distorting
the fluid streamlines around them. Therefore, the relative viscosity of the suspension (17, =

Nsuspension/Msolvent) INCreases with bubble volume fraction. Conversely, for large capillary

numbers (Ca > 1), the time available for deformation is much longer than the time required.
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Hence, the bubbles deform significantly, introducing larger free-slip surfaces that align with
the fluid streamlines and leading to a decrease in suspension viscosity. In other words, as the
shear rate, and in turn the capillary number, increases, bubbles elongate more, and the flow
resistance decreases, indicating that the suspension behaves as a shear-thinning fluid. For
monodisperse bubble suspensions, the onset of the shear-thinning behaviour occurs at capillary

number values of unit order magnitude (Ca~1), as illustrated in Fig. 2.7.

T spherical bubbles

deformed bubbles

——=25%

I
0.01 1 100
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Figure 2.7: Relative viscosity as a function of the capillary number (Ca) and the bubble volume
fraction (¢) for a monodisperse bubble suspension.

Shear-thinning behaviour is a non-linear effect and is predicted by the capillary number.
Therefore, Ca can be considered the equivalent of the Weissenberg number for bubble
suspensions. For unsteady flows from a Lagrangian standpoint, Llewellin et al. (2002a)
introduced another dimensionless parameter, called dynamic capillary number, Cd, which is
equivalent to the Deborah number. In an unsteady flow, bubble suspensions are subjected to a
varying shear rate, and thus the deforming (viscous) and restoring (surface tension) forces
acting on a bubble are not in equilibrium. As mentioned earlier, A can be regarded as the time
required by the bubbles to attain an equilibrium configuration after a change in y. The bubble
can attain this configuration only if, over a time of order A, the shear rate is constant. If this

condition is not met, the bubble always lags, never being able to reach equilibrium.

Hence, to gauge whether equilibrium is attained, one must compare the relaxation time to
the time scale characterising the rate of change of the shear rate. The latter is the time required
to make the shear rate change significantly, meaning that the order of magnitude of the change
needs to be equal with the order of magnitude of the shear rate. Therefore, the timescale over
which the shear rate changes significantly is given by y /¥, and the dynamic capillary number

1s defined as follows:
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== (2.46)

As shown in Eq. 2.46, for Cd « 1, the time necessary to reach equilibrium is much shorter
than the time over which the shear rate changes significantly, and consequently the bubble
relaxes and reaches equilibrium. On the contrary, for Cd > 1, the bubble is always far from
equilibrium. For an oscillatory, simple shear flow, the timescale over which the shear rate
changes significantly is equal to the inverse of the oscillation frequency w, and Eq. 2.46

becomes:
Cd = lw (2.47)

To gain a deeper understanding of the viscoelasticity of bubble suspensions, the Jeffreys
constitutive equation (Eq. 2.41) can be employed. Since the Jeffreys equation is linear, it holds
only when Ca « 1, a condition that implies that the bubbles are spherical. Eq. 2.41 can be
integrated as a first-order differential equation, using the initial condition that 7 be finite at t =

—oo, and reads:

() = — [, 2 (1-2) e T year -2 (0) (2.48)

where t’ is a past time relative to the configuration of the suspension at the present time t.
Considering a sinusoidal deformation y(t) = y, sin wt = y(t) = yow cos wt, under small

amplitude conditions Eq. 2.48 becomes:

T(t) = G'(w)yysinwt + G" (w)y, cos wt (2.49)

where G and G"' are given by:

' (A-2)w?
G'(w) = % (2.50a)
GII ((A)) — 710(0(/1—12) + ﬂolzw (2.50b)

A(1+(Aw)?) i

For Cd « 1 (i.e., when w~0), Eq. 2.50 yields G'(w)~0 and G"' (w)~nyw. Hence, bubbles
behave as a Newtonian fluid with zero elasticity, and the total deviatoric stress is given by the
sum of the contributions of the liquid and of the bubbles, both of which are significant, so that

the mixture viscosity is equal to ny =ns+mn,. When Cd = Aw~1, Eq. 2.50 gives

G'(w)~ %};2) and G"' (w)~ % In this case, both the viscous and the elastic parts of the
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material’s response are important, but in very dilute systems, the elastic part is not appreciable,
as A = A4,.

For Cd > 1 (i.e., when w~0), two scenarios arise. If Cd > 1 and % K1-Aw<K1, Eq.
Y

2.50 yields G'(w)~G, =1ny/A and G"'(w)~0, respectively. This means that the bubbles
behave like a Hookean solid, their stress contribution being equal to:

1

12(1)

Tc,bubbles"'Gch"’ (%) (}./ct]'/)"' ()inw) (ns)}c)"' ( )Tc,solvent > T¢,solvent (2~51)

In this case, the contribution of the bubbles is dominant, so the mixture behaves like a Hookean
solid. However, it is important to note that this is possible only if A,~0, i.e., when the viscosity
of the dispersed phase diverges. This can only happen in extremely dense conditions, which
are probably not feasible. Therefore, in practise, G'(w)~G, = ny/A, but G"'(w) will not
vanish, meaning the suspension will behave as a viscoelastic fluid.

On the other hand, for Cd > 1 and /:—2 »> 1 - A,w>1, Eq. 2.50 giveo G'(w)~0 and

Y

G'" (w)~nsw, indicating that the mixture behaves like a Newtonian fluid with viscosity equal
to that of the solvent (7),). The stress contribution from the bubbles is negligible compared to
that from the fluid, which dominates the mixture behaviour. This is because the stress coming
from the bubbles is proportional to the deformation, and this is very small, whereas the stress

from the ambient liquid is proportional to the deformation rate, and this is very large.

The viscoelastic behaviour of bubble suspensions was investigated experimentally in the
study of Llewellin et al. (2002a) and the results are shown in Fig. 2.8. As illustrated, for all
tested bubble volume fractions, the phase shift decreases up to a minimum and then increases
again. The minimum in phase shift indicates a maximum in the elastic deformation of the
suspension. The experimental results of Llewellin et al. (2002a) confirm the general
viscoelastic behaviour derived from the scaling analysis of the Jeffreys model. At low
frequencies and, hence, at Cd < 1, the suspension behaves as a Newtonian fluid. As Cd
approaches unity the elasticity of the suspension becomes evident, and the system behaves as

a viscoelastic fluid. Finally, at Cd > 1, the suspension returns to Newtonian behaviour.
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Figure 2.8: Phase shift § as a function of the oscillation frequency for varying bubble volume fraction
(Llewellin et al., 2002a).

2.2.2. Rheological models for bubble suspensions in Newtonian media

After introducing the key dimensionless numbers relevant to the rheology of bubble
suspensions, this section provides an overview of the most fundamental rheological models
developed for bubble suspensions in Newtonian media. These models describe the rheological
properties in both steady and oscillatory shear flows as a function of the bubble volume
fraction, the capillary number and the dynamic capillary number, and are essential for
validating experimental data and understanding the complex behaviour of bubble suspensions,
including shear-thinning and viscoelastic effects. The more intricate rheology of bubble
suspensions in non-Newtonian media, along with the associated main models, will be
addressed in more detail in a subsequent section.

One of the most fundamental studies on the rheology of bubble suspensions is that of
Llewellin et al. (2002a). In this work, the authors prepared bubble suspensions in Newtonian
corn syrup, with bubble volume fraction ranging between 3.6% and 46.1%, and performed
SAOS tests to investigate their viscoelastic behaviour. To model the observed behaviour, they
proposed a semi-empirical rheological model (Eq. 2.52) in the form of the linear Jeffreys
model, based on the analysis of Frankel and Acrivos (1970), on the rheology of dilute

monodisperse emulsions with nearly spherical droplets (Ca < 1):
6 .. . 6 5 Y\
Ty + ATy = 775(1+<P))’ij+775gl(1 —590))/1'1' (2.52)
where 7, is the viscosity of the solvent (i.e., ambient fluid), ¢ is the bubble volume fraction

and 7;; and y;; are the partial time derivative of the shear stress and the shear rate, respectively.
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Although Eq. 2.52 is linear, it is a reduction of the more general and non-linear model
developed by Frankel and Acrivos (1970). Before discussing Llewellin et al.'s constitutive
equation in more detail, it is worth providing context on this foundational work. Frankel and
Acrivos developed a constitutive equation to describe the rheology of a dilute emulsion, where
small droplets suspended in an incompressible Newtonian fluid undergo small deformations
(i.e., Ca K 1) under time-dependent (transient) shear flow. The authors employed a
perturbation approach to describe the stress response of the droplets, and since the equation is
developed under the assumption of small deformations, it allowed for a first-order
approximation. It is important to note that despite assuming small deformations, the proposed
equation is not linear; non-linearities arise due to the way droplet deformation affects the stress
distribution in the surrounding fluid. Specifically, the interaction between the deformed
droplets and the surrounding flow introduces quadratic terms in the strain rate. Furthermore,

° 0A;j

.. 04;; .
the use of the Jaumann derivative (4;; = a—t” + Uy Fr + @y Agj — Aoy j, where A;; is an

arbitrary tensor, u; is the velocity vector, and @;; is the vorticity tensor), which accounts for
rotational effects, adds further non-linear corrections. Thus, even within the small deformation
framework, the model captures a non-linear relationship between stress and strain rate.

Llewellin et al. (2002a) simplified the constitutive equation proposed by Frankel and
Acrivos (1970), considering that in a simple oscillatory shear flow the vorticity is zero. Thus,
they replaced the Jaumann derivative with the material derivative. Additionally, they
considered that bubbles are inviscid, meaning the viscosity ratio between the interior of the
bubble and the surrounding fluid is zero, resulting in Eq. 2.52. Llewellin et al. (2002a) proposed
that this equation holds for Ca < 1, Cd varying up to at least 10, and ¢ < 0.5. However, their
statement regarding the validity of the equation at such high bubble volume fractions deserves
closer examination, as it conflicts with the theoretical framework of Frankel and Acrivos
(1970), which was specifically developed for dilute emulsions and forms the foundation of
Llewellin et al.'s work.

Another aspect of Eq. 2.52 that requires careful consideration regards the predicted
behaviour when Cd > 1. For Cd < 1, Eq. 2.52 simplifies to 7;; = n5(1 + ¢)y;;, indicating
that the suspension behaves as a Newtonian fluid with an effective viscosity ny = (1 + @) =
Ns + Ns@ = ng + 1y (1, being the viscosity contribution coming from the bubbles). This aligns
with the predictions of the Jeffreys model for low Cd values. However, when Cd > 1, the time

derivative terms dominate, leading to:
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. 5 .. 5 .

Tij = Ms (1_§(P)Vij = Tij = 1s (1_§(P)Vij (2.53)
This implies that for Cd > 1 and Ca < 1, the fluid behaves as a Newtonian fluid with viscosity
Noo = N (1 — gfp), i.e., the viscosity of the suspension decreases with bubble volume fraction.

This conclusion contradicts what has been earlier derived from the scaling analysis of the
Jeffreys model, which suggested that for Cd > 1, the viscosity of the suspension coincides
with the viscosity of the solvent.

This discrepancy between the predictions of the Jeffreys model and those of the Llewellin
et al. (2002a) model in the high Cd regime most likely stems from the different theoretical
frameworks underlying the two models. The Jeffreys model is a macroscopic viscoelastic
model that describes the overall stress in a suspension by linearly combining elastic and viscous
components. In contrast, the Frankel and Acrivos model (which forms the basis of the Llewellin
et al. model) accounts for non-linearities in the flow caused by even minimal bubble
deformation, which the linear Jeffreys model does not consider. Determining which model is
more appropriate for describing the behaviour of bubble suspensions in the Ca < 1 and Cd >
1 regime remains an uncertainty and necessitates further experimental data for clarification.

The physical explanation provided by Llewellin et al. (2002a) with regard to the suspension
behaviour in this regime requires further examination. They propose that at very high w, and,
thus, Cd, the flow around the bubbles changes very rapidly and the bubbles do not have enough
time to relax and attain a new equilibrium configuration. As a result, they oscillate around a
fixed shape, which is close to spherical (Ca < 1). While the ambient Newtonian fluid relaxes
instantly, the bubbles are always stressed and this stress leads to internal bubble deformation.
Since the bubbles are essentially inviscid, the dissipation per unit volume and, hence, the
relative viscosity of the suspension decrease as the bubble volume fraction increases. However,
this approach accounts only for the stress inside the bubble and not for what happens on the
surface of the bubble and in the ambient fluid. In other words, this reasoning does not consider
the surface tension and the distortion of the fluid streamlines, both of which are crucial for
shaping the viscoelastic response of the system.

As continuation to their first study, Llewellin et al. (2002b) solved analytically the original
constitutive equation of Frankel and Acrivos (1970), i.e., the one featuring the non-linear terms,
to obtain a constitutive equation for the steady-shear viscosity of monodisperse bubble

suspensions, i.e., for Cd~0 and varying Ca. The equation reads:
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1+ ¢, for CaKk1
= {1 — ggo,for Ca>1 (2.54)
and can be recast in the form of Cross model as follows:
N = Moo + % ,with K = 6/5and m = 2 (2.55a)
No=1+¢ (2.55b)
Moo =1—2¢ (2.55¢)

where 1, = Nsyspension/Msotvent 18 the relative viscosity of the suspension. Eq. 2.55b is

essentially the Taylor equation (Taylor, 1932) for the relative zero-shear viscosity of dilute

bubble suspensions, and it is derived as follows:

2+5b

n=1 +2+2b

(2.56)

where b is the ratio of inclusion material viscosity to matrix liquid viscosity. For solid particles,
b — oo and Eq. 2.56 reduces to the Einstein equation (Einstein, 1911). For bubbles, b — 0 and
Eq. 2.56 becomes equal to 1 + ¢. Eq. 2.55¢ is known as the Mackenzie equation ((Mackenzie,
1950)), proposed for the infinite-shear viscosity of bubble suspensions under steady shear.

Rust & Manga (2002) found good agreement between their steady-shear experimental data
and Eq. 2.55 with K = 0.72 and m = 1.43. In this case, rather than using the Taylor and

Mackenzie equations, they suggested that the zero-shear relative viscosity is given by the

—Bom
Krieger-Dougherty equation for solid particles (7,0 = (1 —(pi) ) with empirically

defined parameters ¢,, = 0.6 and B = 1, while the infinite-shear viscosity follows an
empirical correlation with the volume fraction: 0, = 1+ ¢;¢ + ;9% , with¢; = —1.14 and
¢, = —9.8. Morini et al. (2019) also reported good agreement between their experimental data
and the predictions of Eq. 2.55.

Tasaka et al. (2015) investigated the magnitude of the complex viscosity of dilute bubble
suspensions subjected to oscillatory shear flows using ultrasonic spinning rheometry. This
technique enables measurement of this quantity at different radial positions within a rotating
cylinder by using spatio-temporal velocity data obtained via ultrasonic velocity profiling
(UVP). The oscillatory rotation induces an unsteady shear flow with continuous non-
equilibrium bubble deformations. The authors found that the extent of bubble deformation, and
consequently the magnitude of the complex viscosity of the suspension, varied depending on
the radial position within the cylinder, with bubbles near the wall experiencing significant

deformation due to higher shear stress, while those closer to the centre remained relatively
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undeformed (i.e., Ca < 1). The degree of deformation was also influenced by the imposed
oscillation frequency, with higher frequencies leading to increased deformations.

At the highest tested frequency, the relative viscosity of the suspension (defined as the ratio
of the magnitude of the complex viscosity of the suspension to the viscosity of the Newtonian
ambient fluid) dropped below unity near the wall, where bubbles were most deformed. This
suggests that under conditions where both Cd > 1 and Ca > 1, the presence of bubbles
reduces the suspension viscosity. However, it is important to note that the observed drop in
relative viscosity did not follow the predictions of Eq.2.55¢, which also refers to large bubble
deformations but under steady shear flow. For the same frequency, the relative viscosity at the
centre of the cylinder, where the bubbles remained undeformed, increased above unity. These
findings suggest that under unsteady conditions with large deformations, the presence of
bubbles reduces the suspension viscosity, similarly to steady-state conditions and large
deformations, although the reductions do not follow the same trend. In contrast, for unsteady
flows with minimal deformation (Cd > 1 and Ca < 1), the results show an increase to
viscosity due to bubbles, deviating from the predictions of Llewellin’s et al. (2002a) model for
this regime (Eq.2.53). While these findings offer valuable insights, they are limited to a single
volume fraction and do not cover a wide range of increasing oscillation frequencies, thus
highlighting the need for further experimental studies to clarify how the suspension viscosity
behaves with bubble volume fraction under conditions where both Cd and Ca vary
simultaneously.

In a recent study, Ohie et al. (2024) also employed ultrasonic spinning rheometry to
investigate the viscoelasticity of bubble suspensions under conditions involving bubble
deformation, i.e., when Ca and Cd vary simultaneously and arbitrarily. Their results showed
that for Cd = 1.4 and Ca varying from 0 to 2.2, the mean suspension viscosity (i.e., the average
viscosity across experimental repetitions) was very close to that of the solvent and decreased
as the capillary number increased, agreeing with the findings of Tasaka et al. (2015). However,
their raw data was highly scattered, leading the authors to conclude that further experimental
data over a wider range of Ca and Cd values are necessary to draw reliable conclusions about
the suspension viscosity at Cd > 1 and varying extents of deformation (Ca). Additionally, the
authors concurred with earlier studies (Llewellin et al., 2002b; Llewellin & Manga, 2005;
Mader et al., 2013) that the maximum of viscoelasticity, corresponding to the minimum of the
phase shift § between shear stress and shear rate, occurs at Cd~1 and in the limit of zero Ca,

but also suggested that the transition from viscoelastic behaviour to purely viscous response is
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determined by the condition Cd/Ca = 1, regardless of the values of the dimensionless
parameters. When the ratio of the dynamic capillary to capillary number exceeds the threshold
of unity, the suspension loses its viscoelastic properties and behaves as a Newtonian fluid.
The rheological models discussed thus far describe dilute and monodisperse bubble
suspensions. Although polydispersity is common in industrial applications, it has mostly been
addressed through empirical approaches that have not thoroughly investigated the effect of
different bubble sizes on suspension rheology. This issue is examined in Chapter 3, which also
provides a detailed review of the relevant studies that have addressed polydispersity. In the case
of more concentrated bubble suspensions, Pal (2004) proposed a constitutive equation, based
on the framework of the viscoelastic Oldroyd B model (Oldroyd, 1953), for the steady-shear
rheology of these systems, which are characterised by hydrodynamic interactions among
bubbles. The proposed expressions for the relative viscosity and the reduced first and second

normal stress differences read:

2
1+30. 1-¢ (6, >
1+§(p 1+(1_§¢)(1+%¢)(§Ca)
Ny = 1_g¢[ 1 (2.57a)
1- 6
5 1+(1+§p> (3ca)
1459
(= ) (0 +50?)Ca
Ny =2] Z ] (2.57b)
1— 6
1+<1+§p ) (cea)
3
1+5¢
3, (G5e+50%)ca
Npr =~ ] (2.57¢)

5
2
_ 2
1+ <11+§</; ) (2ca)

where 7, is the relative viscosity of the suspension, and N, and N,, are the reduced first

and second normal stress differences, defined as N; /1,y and N, /1y, respectively.

Upon comparing their viscosity predictions with experimental data (Pal, 1992, 1996; Stein
and Spera, 2002), the authors found good agreement for bubble volume fractions of
approximately 20%. However, the experimental results deviated significantly from the
predictions for bubble volume fractions higher than that. Additionally, the authors highlighted
the need for further experimental data to validate the constitutive equations for the two normal
stress differences. The viscoelastic behaviour of concentrated bubble suspensions and liquid
foams (¢ up to ~90%) is more complex due to the strong bubble interactions and the tight

packing that affect the microstructure and, in turn, the stress relaxation process. Lavergne et al.
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(2022) observed that liquid foams exhibit a non-Maxwellian rheological behaviour with G"
increasing in a non-standard manner at high oscillation frequencies. This behaviour is attributed
to the nonaffine motion of bubbles, which deform irregularly along random slip planes.
Additionally, deviation from the Maxwel behaviour was observed in the low frequency region,
where G' demonstrated a gradual decay. This suggests that the foam's elastic response
diminishes more slowly with decreasing frequency than would be expected for a Maxwell fluid,
indicating more complex viscoelastic behaviour, likely due to the interactions and
rearrangements of the bubbles.

The rheology of concentrated bubble suspensions falls outside the scope of the current
research, and the findings discussed in Chapters 3, 4, and 5 pertain to dilute and semi-dilute

suspensions.

2.3 Rheology of bubble suspensions in non-Newtonian media

Building upon the findings presented in Section 2.2 regarding the rheological behaviour of
bubble suspensions in Newtonian media, this section extends the analysis to non-Newtonian
ambient fluids. These fluids exhibit more complex flow behaviours, such as shear-thinning or
viscoelasticity, which are highly sensitive to the addition of bubbles. In this context, the
presence of bubbles not only influences the flow properties but may also introduce interactions
between the bubbles and the matrix that are absent in simpler systems. Despite the broad
industrial relevance of bubble suspensions with non-Newtonian ambient fluids, the rheology
of these systems has been sparsely studied; hence, fundamental knowledge is still missing. This
section presents key literature findings on their rheology, providing context for understanding
how the interplay between bubbles and non-Newtonian matrices affects the overall rheological

properties of the suspension.

Torres et al. (2013) compared the steady-shear rheology of bubble suspensions in two
different ambient fluids: a shear-thinning guar gum solution and a Newtonian fluid. They also
examined the effect of surfactant, adding varying amounts of Tween 20 in the guar gum
solution to assess its impact on the bubble size distribution and the suspension viscosity.
Bubbles generated in the guar gum solution were twice the size of those generated in the
Newtonian ambient fluid, and paradoxically, the addition of surfactant further increased the
bubble size. The authors generated bubble suspensions with volume fractions ranging from
11% to 24% in both the Newtonian matrix and the guar gum matrix without surfactant, and up

to 39% in the guar gum matrix with surfactant. Instead of using the capillary number, which is

53



commonly employed for bubble suspension with Newtonian matrices, the authors chose to

correlate their viscosity data with the dimensionless shear stress T*:

= (2.58)

a/R

where T denotes the product of the shear-dependent solvent viscosity and the amplitude of the
shear rate (15y). In their subsequent study, Torres et al. (2015) clarified that their use of 7~
instead of the capillary number was a convention intended to reflect the fact that, unlike in
Newtonian fluids, the viscosity of the solvent and the shear rate in their shear-thinning matrix
are not known a priori, meaning they’re not independent quantities. Since T* in this context is
equivalent in nature to Ca, Ca will be used for nomenclature consistency when referring to the

findings of Torres et al. in this thesis.

According to their results, the presence of bubbles enhanced the shear-thinning character of
the ambient fluid, making it more pronounced compared to its unaerated state. Moreover, the
shear-thinning behaviour observed for the bubble suspensions with the guar gum matrix, both
with and without surfactant, began at much lower Ca values, between 0.01 and 0.1- an order
of magnitude lower than the Ca values at which shear-thinning started for the Newtonian
ambient fluid. Although the bubbles in the shear-thinning ambient fluid were larger than those
in the Newtonian matrix, the size difference could not account for the earlier onset of shear-
thinning, as the corresponding capillary numbers were still well below unity—the regime
where bubble deformation typically becomes significant. The authors attributed this behaviour
to the lower shear stresses required to deform bubbles in a shear-thinning viscoelastic medium
compared to a Newtonian fluid. Specifically, the guar gum solution exhibited significant
normal stress differences even in its unaerated state, and the addition of bubbles further
enhanced these effects. The presence of significant normal stress differences likely led to
bubble deformation and shear-thinning behaviour occurring at lower shear rates, and

consequently Ca values, in the guar gum solution compared to the Newtonian matrix.

While this study offers useful insights into the interaction between the rheology of the matrix
and the presence of bubbles, several aspects require more careful consideration. Specifically,
the authors subjected the bubble suspensions to very high shear rates, up to 300 s”!, and images
of the samples taken at the end of the tests revealed significant changes in bubble size
distribution and volume fraction during the measurements. Although polymers can typically
withstand such high shear rates without issue, bubble suspensions are more sensitive and prone

to bubble coalescence and burst under these conditions. These changes in bubble size and

54



volume fraction are expected to influence suspension rheology, a factor the authors did not
fully address. Therefore, the microstructural changes occurring during the shearing of the
samples in the rheometer require further investigation, as they may offer useful insights into
the observed rheological trends. Additionally, the authors acknowledge the need for further
investigation in the role of surfactant, particularly in understanding how it influences bubble
formation and size in shear-thinning fluids, and in turn, how this affects the rheological

properties of the suspension.

In a subsequent study, Torres et al. (2015) generated bubble suspensions in a different shear-
thinning ambient fluid, specifically a x/i-hybrid carrageenan gum solution with varying
polymer concentrations and bubble volume fractions ranging between 5% and 25%. They
observed a similar rheological behaviour to that in the guar gum solution, with significant
normal stress differences and shear-thinning starting at lower shear rates compared to
Newtonian ambient fluids. The authors proposed that the viscoelastic behaviour of both the
ambient fluid and the bubble suspensions could be accurately modelled using a single-mode

Giesekus model:

. (1—ny)
) = s + Mo (2.5%)
1_
N, = 2An, % (2.59b)
_ N1 (A-ny)
N, = —a e (2.59¢)

where 0 < a < 1 is the mobility parameter, representing the anisotropy in the fluid’s response

to shear forces, and the dimensionless parameter n, is given by:

__1-4 . _ [J1+(16a(1-a)A2y2-1
N2 = 1+(2-a)A with 4 = \/ 8a(1-a)A2y2 (2.59d)

where A is the relaxation time.

For dilute bubble suspensions, the experimental zero-shear viscosities exhibited a linear
dependence on bubble volume faction, described by a modified Taylor equation: 1, = 1 +
1.5¢. At higher bubble volume fractions, the dependence of the measured zero-shear
viscosities on ¢ became non-linear, aligning closely with the predictions of the (Choi and

Schowalter, 1975) model for emulsions:

1
Nro =1+ 1) with p = @3 (2.60a)
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I(l/)) _ 2[(5k+2)-5(k—-1)1p7]
T [4(k+1)-5(5k+2)P3+42p5—5(5k—2)pp7 +4(k—1)p10

(2.60b)

where, in the case of droplets, k denotes the ratio of the viscosity of the internal fluid to that of

the continuous phase. For bubbles k equals zero.

The study also provided valuable insights into how the bubble volume fraction influences
the parameters of the Giesekus model, particularly the relaxation time A and the mobility
parameter a. As the bubble volume fraction (¢) increased, A also increased following a linear
dependence on ¢, with 1/A(¢p = 0) = 1 + 2.5¢, which is reminiscent of the Einstein equation
for shear viscosity. This finding aligns with the observed increase in normal stress differences
in the presence of bubbles, confirming that bubbles enhance the suspension’s viscoelastic

response, causing the fluid to take longer to return to equilibrium after deformation.

In terms of the effect of ¢ on the mobility parameter, the authors observed that a increased
linearly with ¢ in the suspensions with a lower concentration of the k/1-hybrid carrageenan
gum, suggesting that the presence of bubbles increases the system's anisotropy as more bubbles
deform under flow. On the contrary, in bubble suspensions with higher polymer concentration
in the matrix, a remained relatively constant as ¢ increased. The authors argued that this may
be because at higher polymer concentrations, the fluid matrix was more structured, which could
limit the ability of the bubbles to deform as easily under flow as in the lower concentration
solution. While the Giesekus model was effective in describing the rheological behaviour of
both aerated and unaerated fluids, the authors noted that the mechanisms by which bubbles
influence the model’s parameters require further investigation in order to understand the
interactions between the bubbles and the rheology of the matrix and refine the model's

applicability to complex multiphase systems.

Several studies (Sikorski et al., 2009; Lopez et al., 2018; Daneshi and Frigaard, 2023) have
also focused on bubbles in yield stress fluids, exploring how the presence of a yield stress
affects bubble formation and rise. In terms of rheology, Kogan et al. (2013) investigated the
effect of bubbles on the elastic behaviour of yield stress fluids, using an O/W emulsion as the
yield stress matrix and incorporating varying amounts of an aqueous foam to generate bubble
suspensions with different bubble volume fractions. SAOS rheological tests revealed that for a
given bubble size, there is a critical bubble volume fraction ¢, below which the dimensionless
elastic modulus, G(¢) (defined as the suspension elastic modulus normalized by the elastic

modulus of the continuous phase), decreases linearly with ¢, indicating that the bubbles deform
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and soften the material. When the bubble volume fraction exceeds this critical value, bubbles
become confined and less deformable, behaving like rigid inclusions in the suspension, which
causes the dimensionless elastic modulus to increase with ¢. This behaviour is illustrated in

Fig. 2.9.

To gain a better understanding of the deformability of bubbles and the behaviour of G (¢),
the authors introduced a dimensionless number called elastic capillary number C a5, Which

compares the elastic modulus of the matrix with the bubble capillary pressure as follows:

!

RGqtri
matrix (2.61)
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where o is the surface tension and R is the bubble radius. When Ca,;,s; > 1, the elastic stresses
in the matrix are significantly larger than the bubble surface tension, thus the bubbles get
deformed, and G () decreases with bubble volume fraction. When Ca,;4s:~1, bubbles start to
become stiffer, transitioning into the undeformed regime, which is reflected as a change in the
trend of G(¢). As mentioned above, the critical volume fraction beyond which the bubbles
behave as rigid inclusions depends on the bubble size. This can be justified as follows: as the
bubble volume fraction increases, the elastic modulus of the matrix decreases due to its dilution
by the surfactant solution brought in by the foam. However, large bubble sizes counteract this

reduction in Gy, 44riy» delaying the point at which Ca, . ~1. Consequently, larger bubble sizes

!
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require a higher bubble volume fraction that will achieve such a drop at G so that

Cagqse~1. This is the critical bubble volume fraction, over which G (¢) increases with ¢.

1.50
> 1,2-
1.25 / o a
¥ v A 1,0- _!_-- B0
100 Rcag o o ® , ] [ T
£ :.:__a ’ A 0,8 bt ® [ ]
n 50a8-—Y, O vy ®
<y 0.751 .A,.l;-‘Ap ¥ 1 [ opl e o
)
0.50+ LT Rl 04] ™ 6=10% v
' ® 6=20%
0.254 e 0.2- 0=30%
' v 6=40%
0.00 r T T T 0,0 ; , ;
0 20 40 60 80 100 0,1 1 10
bubble volume fraction (%) Caerast
(a) (b)

Figure 2.9: (a) Dimensionless elastic modulus as function of the bubble volume fraction for bubble
suspensions with a yield stress ambient fluid and bubble diameter d = 320 um (squares), 260 um
(empty circles), 230 um (filled triangles), 210 um (empty triangles), and 110 um (diamonds) (adapted
from Kogan et al., 2013), (b) Dimensionless elastic modulus as function of the elastic capillary number
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for varying bubble volume fraction. The solid lines correspond to micromechanical computations while
the markers to experimental data (Ducloué et al., 2015).

In terms of the effect of bubbles on the yield stress of the suspension, the authors align with
earlier findings (Larson, 1999), which suggest that the impact depends on whether the bubbles
are deformed. Deformed bubbles tend to decrease the suspension yield stress, acting like soft
inclusions that make it easier for the material to yield under stress. For undeformed bubbles,
the yield stress of the suspension is approximately equal to that of the matrix, unless the bubble
volume fraction is very large (such as in foams). In this case, the suspension behaves as a

packed system of rigid inclusions, and the yield stress increases with the presence of bubbles.

Similar findings have been reported by Ducloué et al. (2015) who also studied the effect of
bubble presence in a simple yield stress fluid. Their experimental results came to a good
agreement with the predictions of a micromechanical model developed for soft, porous
materials (Eq. 2.62) (Thuy Linh et al., 2013), which takes into account both bubble volume
fraction and elastic capillary number. As shown in Fig. 2.9b, at low Ca,;4s¢, the model predicts
an increase of the dimensionless elastic modulus with increasing bubble volume fraction, while

above a Ca,,s threshold of unit order of magnitude, the elastic modulus decreases with ¢.

G (@, Cppase) = 1 — — 2 0ast™D) (2.62)

12 2
1 +?Caelast_§<l’ (1-4Caciqst)

As evidenced, there are limited studies focusing on the rheology of bubble suspensions with
non-Newtonian ambient fluids, with these highlighting the need for further experimental data
to better understand the interaction between bubbles and matrices with more complex
rheological behaviours. The intricacies of non-Newtonian ambient fluids, combined with the
shear-thinning and viscoelastic effects induced by the bubbles, result in suspensions with
rheological properties that vary significantly depending on the matrix composition, its inherent
rheology, and the bubble size and volume fraction. The presence of surfactants further
complicates the prediction of these systems’ rheological behaviour, as the interactions between
the different phases remain largely uncharacterised in the literature. Chapter 5 aims to offer
insights into the rather unexplored rheology of bubble suspensions in non-Newtonian matrices,
in particular shear-thinning Carbopol dispersions, to contribute to a better understanding of the

interplay between bubbles and more complex matrices.
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Chapter 3

Investigation of the steady-shear viscosity of semi-
dilute bubble suspensions in Newtonian media

This chapter explores the steady shear viscosity of semi-dilute polydisperse bubble suspensions
with Newtonian ambient fluids, in the limit of Cd — 0 and for varying Ca. The study involves
a theoretical analysis of how different bubble sizes affect the suspension relative viscosity,
complemented by steady-shear rheological tests to validate these theoretical findings. An
unexpected double power law decay of the suspension relative viscosity was observed at
average capillary numbers between 0.01 and 1. This behaviour was further examined through
novel rheo-optical experiments, which revealed the shear-induced formation of bubble clusters

and threads.

The main aim of this investigation is to characterise the steady-shear viscosity of bubble
suspensions by (i) clarifying the influence of polydispersity without relying on system-
dependent empirical approaches, and (ii) elucidating the effect of shear-induced phenomena,
such as bubble clustering and alignment. The results highlight the complex shear-thinning
nature of bubble suspensions, which is related not only to bubble deformation, but also to the

shear-induced clustering and alignment of bubbles.
The results of this chapter have been published:

Mitrou, S., S. Migliozzi, P. Angeli, and L. Mazzei, “Effect of polydispersity and bubble
clustering on the steady shear viscosity of semi-dilute bubble suspensions in Newtonian

media,” J. Rheol. 67, 635-646 (2023).

3.1 Introduction

Suspensions of bubbles in a liquid are often encountered in nature in the form of magmas

(Manga and Loewenberg, 2001), while they find wide applications in industry, e.g. in aerated
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food products (Campbell and Mougeot, 1999), cement (Ahmed et al., 2009) and personal care
products (Malysa and Lunkenheimer, 2008). The gas volume fraction, ¢, can range from
almost zero for very dilute suspensions to more than 0.9 for foams, with most suspensions of
practical interest lying in the intermediate range (Llewellin et al., 2002a). As also reported in
Chapter 2, the presence of bubbles has been shown to change the viscosity of the suspension,
inducing shear-thinning and other viscoelastic phenomena, even in Newtonian ambient fluids
(Llewellin et al., 2002a, 2002b; Mader et al., 2013; Rust & Manga, 2002). Consequently, it is
important to characterise the rheology of bubble suspensions, providing industry with useful

insight into how aeration affects the viscosity and flowability of various formulations.

For steady-shear flows, the effect of bubble volume fraction on the suspension viscosity has
been unclear for some time. According to Sibree (1934) and Stein and Spera (1992), the relative
viscosity of a suspension increases with ¢, while Sura and Panda (1990), Bagdassarov and
Dingwell (1992, 1993) and Lejeune et al. (1999) claimed the opposite. Subsequent studies (e.g.
Llewellin et al., 2002a, 2002b; Rust & Manga, 2002; Stein & Spera, 2002) resolved this
controversy by identifying two flow regimes, which for simple steady shear flows depend on
the capillary number Ca. For Ca < 1, the bubbles obstruct the flow, leading to an increase in
suspension viscosity with increasing volume fraction, while, for Ca > 1, bubbles deform and
facilitate the flow, causing a decrease in suspension viscosity. Between the two extremes, the
suspension behaves as a shear-thinning fluid, with the onset of this behaviour occurring at

Ca~1 for monodisperse suspensions.

To describe the viscosity of bubble suspensions under steady conditions, researchers have
proposed various models where the viscosity is a function of the bubble volume fraction and
the capillary number. Despite most suspensions of practical significance being polydisperse,
the effect of different bubble sizes on the suspension viscosity remains rather unexplored with
existing studies focusing mostly on monodisperse suspensions or addressing polydispersity
through empirical approaches related to their experimental systems. Given that the bubble size
directly affects the capillary number (Eq. 2.45), understanding the effect of polydispersity is
critical for characterising the viscosity of bubble suspensions, highlighting an aspect that

requires further investigation.

As reported in Chapter 2, Llewellin et al. (2002b) suggested the following equation for the

relative viscosity of dilute, monodisperse bubble suspensions under steady shear:
M = Nroo + % with K = 6/5 and m = 2 (3.1a)
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No=1+¢ (3.1b)

5
Mrow=1=3¢ (3.1¢)

To extend the validity of Eq. 3.1 to polydisperse bubble suspensions above the dilute regime,
the authors modified the Taylor equation for the zero-shear viscosity to include a fitting

parameter:
Nro=1+bp (3.2)

With this modification, they found good agreement of Eq. 3.1 to their experimental data for
polydisperse systems with bubble volume fractions up to 46%, suggesting an optimal value of
b = 9. Their approach was however purely empirical and strictly related to their experimental
system, thus proving to be not conclusive in terms of evaluating how polydispersity affects the

viscosity of bubble suspensions.

According to Mendoza and Santamaria-Holek (2009), for dilute suspensions at low capillary
numbers, polydispersity does not affect the zero-shear viscosity of the suspension strongly.
Mader et al. (2013) confirmed this statement, claiming that the relative zero-shear viscosity of
bubble suspensions obeys the Taylor equation, regardless of polydispersity. They further
suggested that the coefficient b = 9 is most likely related to bubble interactions emerging at
the high bubble volume fractions reported by Llewellin et al. (2002a), rather than
polydispersity. To account for the effect of polydispersity, Mader et al. (2013) suggested
treating the dilute polydisperse suspension as the sum of N monodisperse components with a
characteristic radius R; and bubble volume fraction ¢;. Using Eq. 3.1, one can calculate the
relative viscosity for each size class and then sum the individual viscosity contributions (77,; —
1) to attain the relative viscosity of the polydisperse suspension. The authors provided a worked

example, but without testing it with experimental data.

Rust & Manga (2002) investigated the steady shear viscosity of polydisperse bubble

suspensions, considering a surface-weighted average bubble diameter, defined as follows:

_ M _ Jg d*f(s)ds
daz =37, = Jydz f(s) ds (3.3)

where d is the bubble diameter and f(d) is the number density function (NDF) of the bubbles.
Fitting their rheological data to Eq. 3.1, they found good agreement for K = 0.72 and m =

1.43, using empirically derived expressions for the relative zero-shear and infinite-shear
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viscosities. Even though the authors accounted for the effect of polydispersity, their approach

is not supported by theory and is strongly system dependent.

Joh et al. (2010) addressed the issue of polydispersity following an approach similar to
Mader et al. However, instead of considering a discrete bubble radii distribution, they
generalised the linear superposition approach by treating the bubble radius R as a continuous
variable. Assuming that bubble sizes typically follow a gamma type distribution, they
generalised the model of Seo and Youn (2005) for monodisperse bubble suspensions, by

incorporating the probability distribution function of the gamma distribution as follows:

B* na-1,-BR
foo @R e g
0 k2

1+(Ca(R))?

5 8
nr=1-s0+30 (3:4)
where a and [ are parameters obtained by fitting experimental bubble size data to the gamma
distribution. In this case, the viscosity contribution from bubbles of different sizes is weighted
by the probability density function, which gives higher weight to bubble sizes that are more
likely to occur and lower weight to those that are less likely based on the type of size

distribution.

Typically, gamma-type distributions observed in bubble suspensions consist of a higher
number of smaller bubbles and fewer larger ones, which however contribute significantly to
the total bubble volume fraction. As mentioned earlier, the bubble volume fraction is a key
parameter for determining the suspension viscosity. In this context, the approach of Joh et al.
(2010) introduces a significant limitation as it underweights the contribution of larger bubbles
because of their lower probability density. When comparing their experimental data for
polydisperse bubble suspensions in the semi-dilute regime with the predictions of Eq. 3.4, the
authors observed that the model underestimated the suspension viscosity starting at capillary

number values around unity.

As highlighted above, the effect of polydispersity on the steady shear viscosity of bubble
suspensions has been sparsely studied, with existing studies depending mostly on empirical
approaches that strongly depend on experimental data. This chapter aims to elucidate the role
of polydispersity through theoretical analysis, validated with experimental studies. To this end,
semi-dilute polydisperse bubble suspensions were generated, and their steady shear viscosity
was measured. The rheological measurements revealed an unexpected double power-law decay
of the relative viscosity, a trend that could not be supported by the theoretical analysis on

polydispersity. To investigate this behaviour, the produced bubble suspensions were visualised
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under shear. The rheo-optical experiments revealed the shear induced formation of bubble

threads and clusters, which is considered responsible for the first decay of viscosity.

The chapter is organised as follows. Firstly, theoretical calculations that clarify the effect of
polydispersity on the relative viscosity of semi-dilute bubble suspensions are presented. Next,
the experimental methods for the generation, rheological characterisation, and visualisation of

the produced bubble suspensions are introduced, followed by the discussion of the results.

3.2 Theoretical Calculations on Polydispersity

To investigate theoretically the effect of polydispersity, a bubble suspension in a mixture of
mineral oil and 0.57 mol/L span 80 (surfactant) was considered, with bubble volume fraction
of 10.4% and different bubble sizes. The relative viscosity of the bubble suspension was
calculated following the linear superposition method described by Mader et al. (2013). Eq. 3.1
was used to calculate the relative viscosity for each i-th bubble class, where the capillary
number Ca of the suspension was replaced with the capillary number Ca; of the i-th size class,

and the total volume fraction of bubbles ¢ with that of the i-t4 bubble class, ;.

To determine ¢;, the bubble volume for each size class (V;) was first calculated. Then, the
bubble volumes for all the different size classes were summed to attain the total bubble volume
in the suspension (V;,;), and finally the bubble volume fraction for each class (w;) was

calculated and multiplied with the measured total volume fraction of bubbles in the suspension

(Pror):
V; = N xR} (3.52)
Vi
=5t (3.5b)
Pi = Wi * Qo (3.5¢)

where N; is the number of bubbles in each bubble class. The relative viscosity of the
polydisperse suspension is then obtained by linearly combining the individual viscosities of the

different bubble classes n; with the solvent contribution as follows:
N =Mr—1 (3.6)

T]rpolydisperse
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For each theoretical example, the relative viscosity of the suspension was plotted as a function
of an average capillary number, (Ca). This was defined using the volume-weighted average
radius of the undeformed bubble, (R) , obtained from the De Brouckere average diameter d 5.
(R) is the ratio of the fourth to the third moments of the bubble number density function, n(R);
in terms of volume fraction density function, the same average radius is given by the ratio of
the moments of order one and zero:

(R) = Js? R* n(R) dR _ S RfF(R) dR
T PR3nRAR [ f(R) dR

with f(R) = (21R*)n(R) (3.8)

Note that using a volume-weighted mean radius, as opposed to other types of mean radii, takes
into account the bubble volume fraction, which significantly impacts the rheological properties

of the suspension.

It is important to clarify that the linear superposition approach is primarily valid for dilute
systems, where bubble interactions are considered negligible. However, when its predictions
were compared with the experimental results presented in this chapter, it was found that it can
accurately predict the relative viscosity of semi-dilute suspensions as well. Thus, the Mader et
al. (2013) model is considered suitable for describing the relative viscosity of the bubble

suspensions discussed in this chapter.

3.2.1. Scenario 1 — bimodal distribution (R, = 10 um, R, = 500 um)

The first scenario concerns a bubble suspension consisting of bubbles with only two radii,
10 and 500 um. The total bubble volume fraction is equally divided between the small and
large bubbles, so that the volume-weighted average radius is equal to 255 um. Following the

procedure explained above, the viscosity curve of Fig. 3.1 was obtained.
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Figure 3.1: Relative viscosity versus average capillary number, for ¢ = 10.4% and bubble sizes of
10 and 500 microns with w; = w, = 0.5.

In this example, the shear-thinning behaviour does not occur at (Ca) ~ 1, as it happens for
a monodisperse bubble suspension. Instead, it spans a range of average capillary numbers,
between 0.1 and 100. This behaviour is due to polydispersity and can be explained by

correlating the average capillary number with the capillary number for each size class, as

follows:
— NsRi¥ _ ns(RYV R; _ R
Cai = T = —0_ ®) = (Ca) ®) (39)
which gives:
(Ca) = %Cai (3.10)

Each size class starts deforming when the corresponding capillary number is of order 1, and

the average capillary number will be of order:

(Ca)y~ & (3.11)

1

Based on this, the large bubbles with radius equal to 500 pum start deforming when (Ca) ~ 0.1,
where the first drop of the suspension relative viscosity is observed. Likewise, the small
bubbles with radius 10 um start deforming (Ca) ~ 10, causing the second decay of the relative
viscosity. Between the two relative viscosity drops, there is an intermediate plateau, which
indicates that the larger bubbles have been fully deformed, while the smaller ones remain

almost spherical.
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Even though this example is extreme, it demonstrates that polydispersity can cause an
extended shear-thinning behaviour that spans a range of average capillary number values,
instead of happening at (Ca) ~ 1. This rheological trend is similar to what is observed in
polymer melts, where a polydisperse molecular weight distribution leads to a relaxation time
spectrum (Macosko, 1994). Moreover, the viscosity curve has a more complex behaviour, with
a plateau between the two viscosity decays. The presence of the intermediate plateau poses a
challenge for modelling this behaviour using a constitutive equation for monodisperse
suspensions and an average bubble diameter, as the plateau could not appear. In these cases,
for dilute and semi-dilute suspensions, one must operate as discussed earlier, considering each
bubble class individually, obtaining the viscosity contribution for each class by using the

constitutive equation for monodisperse suspensions, and then adding the contributions.

3.2.2. Scenario 2 — bimodal distribution (R, = 10 um, R, = 200 um)

This scenario concerns another bidisperse bubble suspension, with a smaller difference
between the two bubble sizes, these being 10 and 200 pm. As in the previous scenario, the two
bubble classes contribute equally to the total bubble volume fraction, and the volume-weighted
average radius is equal to 105 pm. Following the same method, the viscosity curve of Fig. 3.2
was obtained. As seen, also in this case the shear-thinning part of the curve spans a wider range
of Ca values than that for a monodisperse suspension. However, unlike the first scenario, this
range is smaller, between 0.1 and 50. The first decay of the relative viscosity again happens at
(Ca) ~ 0.1 and indicates the deformation of the 200 pm bubbles. The second viscosity drop
happens at (Ca) ~ 1 and is correlated with the deformation of the 10 pm bubbles. The
intermediate plateau of viscosity still exists but is less noticeable than in the first example.
Thus, the effect of polydispersity becomes more evident when the difference in bubble size

Increases.
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Figure 3.2: Relative viscosity versus average capillary number, for ¢ = 10.4% and bubble sizes of
10 and 200 microns, with w; = w, = 0.5.

3.2.3. Scenario 3 — Gamma-type distribution (bubble sizes between 10 and 170 um)

The last scenario refers to the experimental data presented in this chapter, with bubble radii
following a gamma distribution between 10 and 170 um (Fig. 3.3a), and (R) = 82.5 pm. The
limits of the size distribution are similar to those in scenario 2; however, in this case the total
bubble volume fraction is not equally divided between the small and large sizes. Instead, each
size class corresponds to a percentage of the total bubble volume fraction. Calculating the
relative viscosity of the polydisperse suspension, the viscosity curve of Fig. 3.3b (green points)

was obtained.

As seen, the shear-thinning behaviour happens in a range of (Ca) across 1 and does not
extend further than this, as it happened in the previous scenarios. There is no intermediate
plateau, and the viscosity curve closely resembles that of a monodisperse suspension. To
validate this, the viscosity curve of a monodisperse suspension with bubble radius equal to 82.5
um was calculated, using Eq. 3.1 (Fig. 3.3b - red curve). As seen, the two viscosity curves
almost coincide. Thus, it can be concluded that polydispersity can significantly affect the
suspension viscosity only if the total bubble volume fraction is divided between very small and
very large bubbles — a condition that is hard to meet experimentally. Under usual experimental
conditions, where the bubble sizes follow the gamma distribution, the effect of polydispersity
is not profound, and the polydisperse suspension can be regarded as monodisperse with a

volume-weighted average bubble diameter.
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Figure 3.3: a) Gamma-type bubble size distribution (10-170 um); b) relative viscosity versus average
Capillary number for ¢ = 10.4% and bubble sizes following a gamma distribution between 10 pm and
170 pm.

3.3 Materials and Methods

3.3.1. Chemicals

RTM32 Mineral Oil Rotational Viscometer Standard (Paragon Scientific, Birkenhead, UK)
is a Newtonian oil, with a viscosity of 9.274 Pa s. Span 80 (Sigma Aldrich, St. Louis, USA) is
a liquid, non-ionic surfactant (molecular weight: 428.61 g/mol; density at 20 °C: 1 g/cm?). A
mixture of the mineral oil and 0.57 mol/L of Span 80 was used to generate the bubble
suspensions. This was chosen as ambient fluid because it is Newtonian and it allows generating
small bubbles and stable suspensions. The properties of the individual chemicals and the final

mixture are summarized in Table 3.1.
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Table 3.1: Physical properties of fluids used to prepare the Newtonian ambient fluid.

Name Viscosity (Pa s)! Density (g/mL)? Surface tension (mN/m)?
RTM32 min. oil 9.2740.09 0.8610.02 32.3610.25
Span 80 1.9540.02 0.99£0.01 29.3440.25
Mixture 4.2340.04 0.891£0.01 29.99+0.25

3.3.2. Generation and rheological characterisation of bubble suspensions

An in-house custom aeration device (Fig. 3.4a), designed in collaboration with the UCL
Mechanical Workshop (Roberts Building, UCL) for simultaneous aeration and mixing, was
used to generate the bubble suspensions. The apparatus consists of a consists of a sealed acrylic
tank (internal dimensions approximately 290 x 290 x 306 mm) supported by an aluminium
frame. The system is driven by a motor—pulley assembly mounted above the tank, providing a
load torque of approximately 0.39 N-m and an acceleration torque of 40 mN-m, transmitted via
a 25-tooth, 5 mm pitch, 10 mm wide belt. Inside the tank, a rotating propeller fitted with
aeration plates distributes bubbles evenly throughout the fluid. Each plate holds eight 25 mm
sintered ceramic discs (2 um pore size) for bubble generation. Air is introduced through fittings
positioned along the propeller shaft, while a waste outlet at the base allows drainage after
experiments. The propeller rotation promotes both aeration and mixing, producing
homogeneous suspensions. The aeration time was varied depending on the target gas volume
fraction: longer aeration times yielded denser suspensions. Detailed design schematics of the

custom aeration device are provided in Sec. Al of Appendix A.

' Values are means + standard deviation (n = 3) measured at 20 °C. The relative standard deviation (RSD
= (standard deviation / mean) X 100) was approximately 1%, consistent with the repeatability
specification of the MCR 302 rheometer used in the experiments.

2 Values represent means =+ standard deviation (n = 2) measured at 20 °C. Densities were determined
gravimetrically by weighing ~60 mL of each sample in a 100 mL Pyrex® beaker using an analytical
balance (sensitivity + 0.001 g). According to the manufacturer, the beaker’s nominal capacity is accurate
to £ 5 %, with approximate graduations. The observed SDs (0.01-0.02 gmL™; 1-2.3 % relative standard
deviation) reflect the repeatability limits imposed by the volume measurement, with the balance
uncertainty negligible in comparison.

% Values represent single measurements obtained using a Kriiss K100C force tensiometer at 20 °C. The
reported uncertainty corresponds to the method sensitivity, which for pendant-drop and force-
tensiometer measurements ranges between = 0.25 and & 0.30 mN m™! under ideal conditions (Farias et
al. (2025)).
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After generation, bubble suspensions were subjected to high-shear mixing using a Silverson,
L5 Series mixer to effectively reduce the bubble size. Subsequently, the suspensions were left
to rest until their temperature reached that of the ambient fluid before the aeration, and the
bubble volume fraction was determined gravimetrically, weighting ~60 mL of a representative

sample from the batch suspension and using the following equation:

9= 1— Psuspension (312)

Pambient fluid

Propeller aerator

Propeller N W _|Rheometer

White Light
l 2 um porousfilters — — 7[

Quartz bottom plate

Camera

Aeration plate
(a) ()

Figure 3.4: (a) Schematic of the aeration device used to generate bubble suspensions; (b) rheo-optical
setup.

Images of all generated bubble suspensions were recorded prior to rheological
measurements using a bright-field optical microscope (Zeiss Axio Observer 5) equipped with
a 10xPlan-Apochromat objective and then analysed with an in-house MATLAB code to
determine the bubble size distribution. The obtained microscope images (2752 % 2208 px)
corresponded to a scale of 0.91 px/um, and brightness and contrast were adjusted uniformly
across samples to improve bubble edge detection. A characteristic microscope image of a

bubble suspension with ¢ = 4.2% is provided in Section A2 of Appendix A.

The rheological tests were carried out in an Anton Paar MCR302 stress-controlled rotational
rheometer, equipped with a Peltier plate to control the operating temperature (20 °C) and a
sandblasted parallel-plate geometry (R=20 mm) to avoid wall-slip effects. For all
measurements, the rheometer gap was set at 1.9 mm to ensure a gap ten times larger than the
average bubble diameter, thus avoiding possible wall effects induced by the plates confinement.
To obtain the viscosity curves for the bubble suspensions, steady shear measurements were

performed in the range 0.05 s to 150 s!, with each test conducted in triplicate to ensure
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reproducibility and reliable viscosity data. The limit of 150 s was chosen to minimize bubble
coalescence and bursting and to keep the bubble volume fraction stable. The samples were
carefully analysed by eye after each measurement to ensure that no material was spurted out of
the geometry during the rheological experiments. The Weissenberg-Rabinowitsch correction
(Macosko, 1994) was applied to account for the non-uniform shear across the parallel plates,

and a detailed description of this correction is provided in Section A3 of Appendix A.

As mentioned in Morini et al. (2019), the radial variation of the shear rate in the parallel-
plate geometry causes a linear change of the capillary number from zero to its maximum value
at the rim of the geometry. Consequently, bubbles deform differently depending on their
position in the measuring plate. The Weissenberg-Rabinowitsch method overcomes the
problem arising from the radial change of the shear rate, because it considers a value of the
shear rate and of the corresponding shear stress in a specific location, namely at the edge of the
plates. This ensures that the rheological trends reported in the following sections are not

influenced by the radial distribution of shear rates, and in turn of capillary numbers.

3.3.3. Visualisation of bubble suspensions under steady shear

To visualise the bubble suspensions under shear, the setup of the rheometer was modified
using a glass bottom plate (Anton Paar Peltier Universal Optical Device - P-PTD 200/GL) to
allow optical access. During the shear tests, images of the suspension were recorded using a
Zyla 5.5 sCMOS camera (acquisition frequency: 15 Hz, image resolution: 2560x2160 pixels),
a Nikon mono zoom lens and a white led light as illumination. To avoid reflections from the
metal, the sandblasted parallel plate was coated with black spray-paint. A schematic of the
visualisation set up is given in Fig. 3.4b. The recorded images were taken at a plane around 0.6
mm within the gap. To calibrate the plane of focus, transparent laminated sheets of 0.3 mm
thickness were sticked together to create a disc of 0.6 mm height. A millimetric scale grid was
then placed on top of this disc and the camera was focused on it. All rheo-optical experiments

were performed with this focus which, for different samples, was only slightly adjusted.

Steady shear rheological tests were performed in the range 0.1 s! to 50 s™! for a fixed time
of 40 s per shear rate and the rheometer gap was set at 1.9 mm, to be consistent with the
previous viscosity measurements. However, with this gap, multiple suspension layers formed,
preventing a detailed image analysis. Thus, experiments with a 0.8 mm gap were also
conducted. Fig. 3.5 shows two representative images, taken with the 1.9 mm and 0.8 mm gaps.

Even if it was difficult to individuate the bubbles accurately in the 1.9 mm images, these still
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offered insight into the shear-induced phenomena happening in the entire volume of the tested
samples, which is relevant to the final viscosity recorded. The 0.8 mm gap images were only
used to investigate the bubble size distributions and identify possible coalescence phenomena
during shearing, even though it must be emphasized that bubble coalescence can be enhanced

due to the more confined flow.

Figure 3.5: Bubble suspension (¢ = 5.6%) under steady shear (1 s™) with (a) 1.9 mm gap and (b) 0.8
mm gap.

While the rheo-optical set up enabled real-time visualisation of the suspension
microstructure during shear, one of its main limitations was slip at the glass plate, which led to
lower torque readings—typically 10—15 % lower than those obtained using the standard
sandblasted plates. This deviation, caused by the smoother surface of the transparent plate,
affected the accuracy of the rheological data. As a result, the torque and viscosity values
obtained under optical conditions were not used quantitatively, and simultaneous bulk
rheological measurements and direct visualisation of the same sample were not possible.
Instead, separate experiments were performed for rheological and optical characterisation.
Despite this limitation, the optical setup proved highly effective for observing microstructural

changes under shear.

3.4 Rheological Measurement

In this section, experimental results for bubble suspensions with volume fractions ¢, =

4.7 % and ¢, = 10.4% are presented.
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3.4.1. Bubble size distributions

The tested samples were found to be polydisperse, with bubble radii following the gamma
distribution between 10 and 170 um (Fig. 3.6). This means that the suspensions consisted
mostly of small bubbles, with radii ranging up to 100 um; even though the larger bubbles were
fewer in number, they contributed importantly to the total bubble volume fraction. As the
suspensions were polydisperse, the De Brouckere average diameter d,; was used to
characterise them. For the reported bubble volume fractions, ¢; = 4.7 % and ¢, = 10.4 %,

d43 was equal to 199 um and 165 um, respectively.
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Figure 3.6: Number-weighted bubble size distribution for (a) ¢; = 4.7% and (c) ¢, = 10.4%;
volume-weighted bubble size distribution for (b) ¢; = 4.7% and (d) ¢, = 10.4%.

3.4.2. Steady shear experiments

As shown in Figure 3.7, all tested suspensions are characterised by a shear-thinning
behaviour with a double power law decay of the suspension relative viscosity. Each curve
represents the average of three replicate measurements, with the standard deviation among
replicates shown as error bars. The measurements were highly repeatable, with the maximum
standard deviation on the order of 0.01. The first decay always happened at shear rates around
1 s, corresponding to (Ca) ~ 0.01, while the second started at shear rates around 20 s,

corresponding to (Ca) ~ 1. This double decay was unexpected, because it is not predicted by
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the rheological models discussed in Section 3.2. As discussed, two decays of the relative
viscosity — with a plateau between them — appear only if the bubble size distribution is bimodal,
with very small and very large bubbles having similar volume fractions. However, this is not
the case in the present experiments, where the bubble sizes follow the gamma distribution. As
shown in the theoretical examples, when the bubble sizes follow the gamma distribution, the
suspension has a viscosity curve that is quite similar to that of a monodisperse suspension, the
only difference being that the viscosity drop spans a larger range of (Ca) values. The
observation of a different trend suggested that polydispersity may not be the sole factor

responsible for this behaviour.
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Figure 3.7: (a) Relative viscosity as a function of shear rate for ¢; = 4.7% and ¢, = 10.4%; (b)
relative viscosity as a function of (Ca) for ¢; = 4.7% and ¢, = 10.4%. Error bars represent the
variation between three experimental repeats.

To validate the above assumption, the experimental results were compared to the theoretical
polydisperse model of Mader et al. (2013). Fig. 3.8 shows the experimental and theoretical
relative viscosities as functions of (Ca) for the two reported polydisperse suspensions. As seen,
there is good agreement between the real and theoretical values in the zero-shear plateau and
in the second decay of viscosity. But the polydisperse model does not predict the first decay of
viscosity. Therefore, it can be argued that the second decrease in viscosity is due to bubble
deformation and polydispersity, but not the first decrease. To eliminate the possibility of elastic
instabilities affecting the viscosity at higher shear rates, the suspensions were checked with the
criteria described by Mckinley et al. (1991, 1996) and Shaqgfeh (1996) for a plate-plate
geometry. It was observed that even for the highest tested shear rate, the suspensions do not
fulfil the criteria for the onset of elastic instabilities, hence confirming that the second decay

of viscosity is not due to this effect.
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To ensure that the first decrease of viscosity is not related to a stress overshoot or any other
time-dependent phenomena, start-up shear experiments were performed, shearing the
suspensions for 40 s aty = 0.5 s, 55! and 50 s™'. The recorded transient data confirmed that
there were no unexpected features in the viscosity trends with time. Further shear tests were
performed, during which the shear rate was consecutively ramped up and down, in order to
investigate the thixotropic character of the dispersions. However, these tests could not give
reliable information about the present samples. This is because the bubble suspensions do not
preserve the initial structure after being sheared at medium/high shear rates, where bubble
deformation and coalescence become dominant. Thus, to investigate the cause of the first decay

of viscosity, the dynamic behaviour of the bubble suspensions was visualised under shear.
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Figure 3.8: Experimental vs theoretical relative viscosity for polydisperse bubble suspensions with (a)
@1 = 4.7% and (b) ¢, = 10.4%. Error bars represent the variation between three experimental repeats.

3.5 Visualisation of bubbles under shear

3.5.1. Shear induced phenomena

To visualise bubbles under shear, three fresh semi-dilute polydisperse bubble suspensions
were prepared. The volume fractions of these new suspensions were ¢, = 5.6 %, ¢, = 7.23 %
and @3 = 8.52 %. Fig. 3.9 presents some representative images for the suspension with bubble
volume fraction ¢,, taken with a 1.9 mm gap, at shear rates 0.1 s and 23 s™!. At shear rates
around 0.1 s! corresponding to < Ca > ~0.01, the bubbles are uniformly dispersed. As the
average capillary number increases, bubbles start aligning to form bubble threads or getting
closer to each other, forming clusters. It was observed that the shear-induced bubble clustering
was three-dimensional and dynamic, with threads and clusters breaking and reforming
continuously throughout the entire samples. The phenomenon became progressively more

evident in the < Ca > range 0.01 to 1, where the first decay of viscosity was also noticed.
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Figure 3.9: Bubble suspension (¢ = 7.23%) under steady shear at 0.1 s and 23 s (1.9 mm gap).
The red rectangles highlight regions showing the formation of bubble clusters and threads.

Feneuil et al. (2023) confirmed the formation of bubble clusters and threads under steady
shear. According to them, the phenomenon is mainly caused due to bubble deformation, and
thus, occurs only when the capillary number is large enough; that is Ca > 0.2 for their
experiments. However, this is not the case in the present suspensions, where the formation of
bubble clusters and threads started at average capillary numbers smaller than 0.2. At this point
it 1s worth clarifying that the model of Mader et al. (2013) does not account for bubble

clustering and alignment, so the deviation between the experimental and the theoretical values
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in the first decay of viscosity is reasonable. The model simply suggests the linear additivity of
the contributions of the different bubble classes in a polydisperse system, whose viscosity is
calculated with the constitutive equation developed by Llewellin et al. (2002b) for a
monodisperse suspension (Eq. 3.1). As discussed, this constitutive equation was derived from
the equation of Frankel and Acrivos (1970), which recovers Taylor’s (Taylor, 1932) equation
for Ca « 1, and does not contain second or higher orders terms of the dispersed-phase volume
fraction, so that it cannot account for complex phenomena arising from bubble interactions,

such as bubble clustering and/or alignment.

In addition to bubble clustering, bubble coalescence and deformation were also observed at
higher < Ca >. Finally, the optical measurements also confirmed the absence of any bubble
rise in the duration of the experiments (whose total time was 11 minutes). The issue of bubble
rise becomes important in long stationary experiments, where the bubbles experience only
buoyancy. However, under steady shear, bubble rise is retarded due to flow in the tangential
direction. Moreover, the use of surfactants, as in the experiments discussed in this chapter, can
reduce the rising velocity of small bubbles by up to 50% (De Kee’ et al., 1990; Tzounakos et
al., 2004). For all these reasons, it can be confidently asserted that bubble rise was negligible

and did not affect the experimental results.

3.5.2. Statistical analysis

3.5.2a. Coverage

To quantify the shear-induced bubble clustering, a statistical image analysis was performed,

defining the following dimensionless parameter, named coverage:

Total bubble surface (in pixels)

C

(3.13)

Image surface (in pixels)

C represents the percentage of the image covered with bubbles. When bubbles are close enough
to form threads and clusters, a greater overlapping of bubbles is expected, resulting in a
decrease in the area of the image occupied by bubbles and a consequent decrease in coverage.
Thus, a reduction in coverage can be used as a measure for bubble clustering. This can be
visually confirmed with the images presented in Fig. 3.9. As seen, for shear rate 23 s!, where
bubble threads and clusters are present, the image seems less covered with bubbles compared
to the case with shear rate 0.1 s™!, where the bubbles are uniformly dispersed. To minimise the
volume of data, the analysis was conducted using 30 representative images out of the almost

600 obtained for each shear rate. The selected images corresponded to the time interval during
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which steady state was accomplished. This happened almost immediately even for the lower
shear rates and, thus, apart from some initial images, the rest were equivalent. The images were

chosen using mostly a step of 20.

Each image was first converted into a black and white matrix, with the bubbles depicted as
white pixels in a black background. Then, all the white pixels were summed and divided by the
total number of pixels in the image, as shown in Fig. 3.10. For each shear rate, a mean coverage,
C, was calculated by averaging over the coverage values of the 30 images. Fig. 3.11 presents
the average coverage as a function of the shear rate for the tested suspensions. The error bars
represent the standard deviation of the coverage values obtained across the analysed images
for each shear rate. As seen, C always increased up to shear rates around 1 s™! corresponding to
(Ca) ~ 0.01, and then decreased continuously in the range of shear rates observed. Here it must
be noted that coverage is a qualitative metric for bubble clustering, meaning that one should
focus on the general trend and not the absolute values. The decrease in C validates the optical
observations, confirming the formation of bubble clusters and threads around 1 s™'. The initial
increase is believed to be due to bubble redistribution in the sample. Similar to particle
suspensions during pre-shearing, bubbles disperse at low shear rates, removing any nonuniform
bubble distribution formed during sample loading in the rheometer. Moreover, the coverage
increased with the bubble volume fraction for all shear rates tested. This behaviour is
reasonable since larger bubble volume fractions lead to an increase in the total bubble surface

and, thus, to larger values of coverage.

sum of white pixels

Coverage = - -
total image pixels

Figure 3.10: Example of an image (left) after black and white conversion (right) and definition of
coverage.
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Figure 3.11: Coverage as a function of (Ca) for ¢, = 5.6%, ¢, = 7.23% and @3 = 8.52%.
3.5.2b. Bubble coalescence

To ensure that the initial bubble size distribution did not change significantly during the
rheological tests, an investigation was conducted to observe how bubble sizes changed with
shear. To this end, the 0.8 mm gap images were used because they allowed identifying the
bubbles more precisely. The bubbles and their respective radii in pixels were identified for each
image using MATLAB. To convert pixels into mm, a 1 mm calibration tape was attached on
the glass bottom plate. The scale was found to be equal to 306 pixels/mm. For each image, the
bubble size distribution was determined and found to consistently follow a gamma type
distribution, and the De Brouckere average diameter d,3 was calculated. Subsequently, for each
shear rate, the mean De Brouckere average diameter (d,3) was evaluated by averaging the d,3
values obtained for 30 images different images. Fig. 3.12 indicatively presents how (d,3)
changed for the suspension with ¢ =7.23%. As seen, the bubble size increased by 16.4%. As
mentioned earlier, this value might have been slightly enhanced due to the smaller gap used for
this analysis. Hence, even with the use of surfactants, there was some bubble coalescence, but

this did not affect the average bubble size significantly.
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Figure 3.12: Mean De Brouckere average diameter (d,3) as a function of (Ca) for ¢ = 7.23%.

3.5.3. Bubble clustering and shear-thinning

As shown by the statistical image analysis, bubbles started aligning/clustering at shear rates
around 1 s ((Ca) ~ 0.01), where the first decay of viscosity was also observed. Therefore, the
formation of bubble threads and clusters appears to be responsible for the first shear-thinning
trend. Specifically, when bubbles align, the total bubble area exposed to the flow decreases;
thus, the distortion of the fluid streamlines due to the presence of the bubbles, and in turn the
suspension viscosity, reduces. Ordering in the direction of the fluid streamlines does not apply
only to single bubbles but also to the 3-D dynamic bubble clusters, observed during the rheo-
optical experiments. Moreover, when bubbles are positioned very close to each other, forming
clusters, there is no flow in the interstitial spaces. The fluid streamlines do not distort within
the clusters, but only around them. Consequently, the flow resistance is smaller for bubble

clusters compared with randomly positioned bubbles.

Microstructure changes and higher order phenomena, such as clustering and alignment, have
been associated with shear-thinning behaviour in multiple occasions. Recent works (Yang et
al., 2012; Yokozeki et al., 2012; Papadopoulou et al., 2020) showed that the formation of solid
particle agglomerations at lower shear rates and their later breakdown and alignment with the
fluid streamlines at increasing applied deformations lead to a decrease in suspension viscosity.
Comparing bubble and particle suspensions, one can identify both similarities and differences

in the mechanism of clustering-induced shear-thinning. The similarity lies in the core of the
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shear-thinning mechanism, which is common for both particle and bubble suspensions, and
regards the ordering of either individual particles/bubbles or particle/bubble clusters in the
direction of the fluid streamlines. However, the way this ordering happens is different for each
case. For particle suspensions, the shear-thinning behaviour is observed when the
agglomerations break down, while for bubble suspensions in the semi-dilute regime, it was
observed that the shear-thinning onset coincided with the formation of bubble clusters and
threads. This contrast can be explained considering the different nature of the two systems.
Particle agglomerations are usually formed in concentrated systems due to attractive forces
between the particles. This results in a highly structured network of clusters with restrained
movement and rotation, which, at lower shear rates, opposes the flow and results in higher
suspension viscosity. As the shear rate increases, the particle agglomerations break down and
start aligning with the fluid streamlines, causing the shear-thinning behaviour. However, for
semi-dilute bubble suspensions, the nature of the shear-induced clusters is different. Since the
bubble suspensions are not concentrated, the generated dynamic bubble clusters are more free
to move and finally align in the direction of the fluid streamlines, causing the first viscosity

drop observed in the present rheological experiments.

3.6 Conclusions

In this chapter, the complex shear-thinning behaviour of semi-dilute polydisperse bubble
suspensions under steady shear was delineated, by explaining the effect of polydispersity and
shear-induced clustering. To this end, semi-dilute polydisperse bubble suspensions were
generated using a mixture of mineral oil and 0.57 mol/L Span80 as ambient fluid, and their
steady shear viscosity was measured. The bubble sizes of the produced polydisperse
suspensions were found to follow the gamma distribution between 10 and 170 um. It was
confirmed that polydispersity can cause an extended shear-thinning behaviour, which spans a
larger range of average capillary number values, instead of happening at (Ca) ~ 1. However,
the effect of polydispersity becomes important only if the total bubble volume fraction is evenly
divided between very small and very large bubbles. Under real experimental conditions, where
the bubble sizes follow the gamma distribution, the polydisperse suspension can be regarded

as monodisperse with a diameter equal to the volume-weighted average diameter.

However, the flow curves obtained from the present experimental investigations showed an
unexpected double power-law decay in the suspension viscosity, the first decrease happening

at (Ca) ~ 0.01and the second at (Ca) ~ 1. Comparison of the experimental results with the
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polydisperse viscosity model of Mader et al. (2013) showed good agreement in the zero-shear
viscosity plateau and in the second decay of viscosity. But the model failed to predict the first
viscosity drop. Thus, unlike the second shear-thinning trend, the first appears to be unrelated

to bubble deformation and polydispersity.

To investigate further the first decrease of viscosity, the bubble suspensions were visualised
under steady shear. Statistical image analysis showed that bubbles started aligning/clustering
at (Ca) ~ 0.01. The image analysis also revealed that at higher shear rates, bubbles deform and
coalesce, with the average bubble diameter increasing by 16.4%, an increase that however
cannot explain the first decay of viscosity observed. Therefore, it is suggested that the first
decrease in viscosity is due to the formation of bubble threads and clusters and their ordering
across the direction of the flow, which, in turn, causes less distortion of the fluid streamlines,

and, hence, a decrease in suspension viscosity.
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Chapter 4

Linear viscoelastic behaviour of semi-dilute
polydisperse bubble suspensions in Newtonian media

In Chapter 3, the steady shear viscosity of dilute polydisperse bubble suspensions was
investigated in the limit of Cd approaching zero and for varying Ca. To fully characterise the
rheology of bubble suspensions in Newtonian ambient fluids, it is essential to also examine the
linear viscoelastic regime under conditions of vanishingly small Ca and varying Cd. This
chapter aims to provide a systematic experimental characterisation of the linear viscoelastic
behaviour of semi-dilute polydisperse bubble suspensions by employing a rheo-optical setup
to visualise the behaviour of the suspensions during SAOS rheological tests. For all tested
suspensions, the measured viscoelastic moduli (G', G') aligned with the theoretical predictions
of the Jeffreys model for average dynamic capillary numbers ({Cd)) greater than unity. But at
lower (Cd) values, experimental G’ values exceeded theoretical predictions. Upon investigating
and ruling out the effects of potential experimental artifacts — such as bubble rise, coalescence,
and changes in suspension microstructure over time — it was determined that the unexpected G’
deviation is linked to bubble fluid dynamic interactions. These interactions complicate the
relaxation process, introducing multiple relaxation modes. The results of this chapter offer
valuable insights on the effect of microstructure on the rheology of bubble suspensions,

addressing a significant gap in reliable experimental data in this area.

The results of this chapter have been published and chosen as featured article in the Journal

of Rheology homepage:

Mitrou, S., S. Migliozzi, L. Mazzei, and P. Angeli, “On the linear viscoelastic behaviour of
semi-dilute polydisperse bubble suspensions in Newtonian media,” J. Rheol. 68, 539-552
(2024).
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4.1 Introduction

As discussed in Chapter 3, the steady-shear rheology of bubble suspensions, in the limit of
Cd — 0 and for varying Ca, has been investigated for monodisperse (Llewellin et al., 2002a;
Lim et al., 2004; Morini et al., 2019) and polydisperse (Llewellin et al., 2002b; Mader at al.,
2013; Mitrou et al., 2023; Joh et al., 2010) systems, with studies showing that bubble
deformation (Llewellin et al., 2002a; Rust & Manga, 2002; Lejeune et al., 1999) and clustering
(Mitrou et al., 2023) are responsible for the characteristic shear-thinning behaviour. Time-
dependent flows (from a Lagrangian point of view) with infinitesimal bubble deformation, that
is, in the limit of Ca — 0 for varying Cd, have also been investigated to characterise the linear
viscoelastic behaviour of bubble suspensions (e.g. Llewellin et al., 2002b; Joh et al., 2010;
Mitrias et al., 2017; Seo and Youn, 2005). These flow conditions can be achieved through small

amplitude oscillatory shear (SAOS) rheological tests, where a sinusoidal deformation y;; is

applied to the system and the resulting shear stress 7;; is measured:
Yij = v sin(wt) (4.1a)
;5 = G'(w) y{j sin(wt) + 6" (w) y{} cos(wt) (4.1b)

where yl-oj is the amplitude of the applied deformation, w is the oscillation frequency, G’ is the
elastic modulus, which describes the elastic character of the suspension, and G is the loss
modulus, which describes the viscous character of the suspension. The main models that
describe the linear viscoelastic behaviour of bubble suspensions as a function of the bubble

volume fraction and dynamic capillary number are presented below.

As reported in Chapter 2, Llewellin et al. (2002a) proposed a constitutive equation (Eq.
2.52) expressed in the form of the linear Jeffreys model (Bird et al., 2002) to characterise the
linear viscoelastic behaviour of dilute monodisperse bubble suspensions. This constitutive
equation holds for Ca «< 1 and varying Cd, and has its theoretical foundation in the analysis
of Frankel and Acrivos (1970) on the time-dependent flow of dilute monodisperse emulsions

with infinitesimal droplet deformation. For convenience, the equation is presented again below:
Tij + al'tij = Zns(ﬁleij +Bzeu) (42)

where 7;; is the deviatoric stress tensor, e;; is the rate-of-strain tensor, 7 is the viscosity of the
Newtonian ambient fluid, and the overdot (in 7;; and é;;) denotes the partial time derivative.

The parameters a4, 8, and 3, are functions of the bubble volume fraction ¢ and the relaxation

84



time of a single bubble A. The expressions of these parameters are presented in Table 4.1.
Solving Eq. 4.2 for a linear oscillatory shear flow, Llewellin et al. (2002a) obtained the

following expressions for G' and G"":

6'(Cdp) _ (Brar—Bw 5 cd
— = 0 (433.)

wns 1+a?w? 1+2—: cd?

1 2 n 124
6"(Cdp) _ frrarfro? _ 4 GleaCde) | o Glea(Cde) E( 1 >§ p-2p (43b)

wns 1+ajw? s wns 1+% cd?

where G4 denotes the loss modulus without the viscous contribution of the solvent (i.e., wny).
In the limit of large Cd, Eq. 4.3b yields a negative value of G" for ¢ > 0.6; however, this is
not a problem, because the model is valid only for dilute suspensions. Mitrias et al. (2017)
simulated the oscillatory shear flow of dilute monodisperse bubble suspensions to determine
their viscoelastic moduli. They then compared their results with the predictions of Eq. 4.3,

finding good agreement for bubble volume fractions lower than 0.5%.

Note that Eq. 4.3 rigorously holds for monodisperse bubble suspensions. To account for the
effect of polydispersity on the viscoelastic behaviour of dilute and semi-dilute bubble
suspensions, the linear superposition method proposed by Mader et al. (2013) is a reasonable
approach. This method, analogous to determining the viscosity of a polydisperse suspension,
involves calculating the material functions for each bubble size class and then summing the
individual contributions. While the authors applied this method to the steady-shear viscosity of
a dilute polydisperse bubble suspension, they did not extend it to the case of linear viscoelastic

material functions.

Seo and Youn (2005) suggested a phenomenological rheological model for dilute
monodisperse bubble suspensions. Their constitutive equation is also expressed in the form of
the linear Jeffreys model (i.e., Eq. 4.2) and was based on the analysis of Maffettone and Minale
(1998) on the deformation of an ellipsoidal droplet in a simple shear flow. Similar to the model
of Doi and Ohta (1991), the model of Seo and Youn (2005) describes the macroscopic stress of
the suspension, accounting for the evolution of the bubble size and shape. The parameters a4,
B1 and B, for their model are shown in Table 4.1. Note that the models of Llewellin et al.
(2002a) and Seo and Youn (2005) represent modified versions of the Jeffreys model (Bird et
al., 2002), the difference in the coefficients @, ; and 5, stemming from the analysis in the

limit of a single droplet of Frankel and Acrivos (1970) and Maffetone & Minale (1998),
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respectively; therefore, these models do not account for fluid dynamic interactions or crowding

effects among bubbles.

Joh et al. (2010) solved the constitutive equation proposed by Seo and Youn (2005) for a

linear oscillatory shear flow, obtaining the following expressions for G’ and G'":

G'(cd, - 2¢d
Cdo) _ [(51 f3)w] £, = < >(,0 (4.42)

wns 1+& w2 1+% caz

" 2 17 Il
Ce) _ (LabeTy g = 4 GealC00) iy GreaCle) <1+ ;Cﬂ)gq) —2¢ (4.4b)
16

wns 1+§F w? s whs

To account for their polydisperse experimental data, they modified Eq. 4.4 by applying the
same method described in Sec. 3.1 for the relative viscosity. Specifically, they incorporated a
probability density fraction f(R) related to the bubble radii distribution. As outlined in Sec.
3.1, this approach is effective only if f(R) is a volume fraction probability density fraction, so
that f (R)dR yields the volume fraction of bubbles with radius in the range dR around R. Under

that assumption, Eq 4.4 can be generalised as follows:

Gz,wlydisperse N G’[Cd(R);(P]

— e = o Tpan T (R)AR (4.52)

Gz’J’olydisperse o G;;d(Cdgp)

——=1 Le—2 f(R)dR 4.5b
wNs + fO Qwns f( ) ( )

Comparing their experimental data with the predictions of Eq. 4.5, Joh et al. (2010) noted a
deviation of G’ at low values of w. They attributed this to bubble fluid dynamic interactions,

without however validating this assumption.

As seen, several studies have focused on the time-dependent flow of suspensions with
infinitesimally deformed bubbles (i.e., Ca « 1), advancing constitutive equations to describe
their viscoelastic behaviour. However, there are sparse experimental data to validate these
equations. This work aims to provide a systematic experimental characterisation of the linear
viscoelastic behaviour of semi-dilute bubble suspensions by employing a rheo-optical setup to
visualise the behaviour of the suspensions during SAOS rheological tests. This coupled
approach offers a higher confidence in the experimental measurements because it allows
investigating the effects of bubble size distribution and various SAOS measurement artifacts,
including bubble rise, coalescence, and changes in bubble spatial organisation over time, which

can influence the rheological measurements of bubble suspensions.
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Table 4.1: Parameters a4, 1 and [, for the different rheological models.

Rheological model aq B1 B2
. g 5
Llewellin et al. (2002a) o 1+¢ (1 2 (p) ay
5 3
3 5
Seo and Youn (2005) Z’l 1+¢ (1 -3 <p)
1+¢ “
Jeffreys A 1+¢ @

4.2 Materials and Methods

4.2.1 Chemicals

Bubble suspensions were generated using a Newtonian mixture of mineral oil (RTM38
Mineral Oil Rotational Viscometer Standard — produced by Paragon Scientific, Birkenhead,
UK) and 5% w/w of the liquid, non-ionic surfactant Span 80 (Sigma Aldrich, St. Louis, USA).
The chosen ambient fluid was viscous enough to ensure time-stable suspensions and minimal
bubble rise during the rheological measurements. The properties of the individual materials
and the final mixture were measured at 12 °C, in compliance with the rheological tests, and are
presented in Table 4.2. Additionally, a detailed rheological characterisation of the used base
matrix is provided in Sec. B1 of Appendix B.

Table 4.2: Viscosity 7, density p and surface tension o, g of the fluids constituting the Newtonian
ambient fluid.

Fluid Viscosity (Pa s) Density (g/mL) Surface tension (mN/m)
RTM38 Mineral Oil 77.54+0.78 0.93+0.01 36.5710.25
Span 80 1.95+0.02 0.9940.01 29.344+0.25
Mixture 53.06£0.53 0.9410.02 36.03+0.25

4.2.2 Generation and rheological characterisation of the bubble suspensions

Bubble suspensions were produced using the aeration device detailed in Sec. 3.3.2. The
bubble volume fraction and size distribution of the generated suspensions were also determined
following the methods described in that section. To retrieve the suspension viscoelastic moduli,
SAOS rheological tests were performed in an Anton Paar MCR302 stress-controlled rotational

rheometer. The tests were carried out with a gap of 1.3 mm at a constant temperature of 12 °C.
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The chosen gap was ten times larger than the average bubble diameter to minimize wall effects
caused by confinement. Moreover, the operating temperature allowed for minimal bubble rise

during the rheological measurements.

To determine the appropriate strain amplitude for the SAOS tests, strain sweep experiments
were conducted on a bubble suspension with ¢ = 9.5%. These experiments covered three
oscillation frequencies: w; = 0.56 rad/s, w, = 1 rad/s and w; = 10 rad/s, and shear strains
ranging from 0.05% to 10%. The results showed that the viscoelastic moduli remained constant
across this strain range, indicating that any strain value within this range is suitable for
assessing the system's linear viscoelastic properties. Therefore, a shear strain of 5% was
selected for the SAOS rheological measurements. The G', G"' curves obtained from the strain

sweep experiments are reported in Sec. B2 of Appendix B.

The SAOS measurements were performed by ramping down the oscillation frequency from
50 rad/s to 0.05 rad/s. Operating from higher to lower frequencies, i.e., from shorter to longer
characteristic flow times, was chosen to minimize the effect of bubble coalescence and rise on
the obtained viscoelastic curves. To validate the accuracy of the experimental data, particularly
in terms of low torque and phase angle resolution issues, a dedicated study was performed,

which is detailed in Sec. B3 of Appendix B.

Prior to the SAOS measurements, the bubble suspensions were pre-sheared for three
minutes at 0.1 s'. This pre-shearing step was selected to remove potential loading effects
without altering the suspension microstructure (as confirmed by the experiments discussed in

Sec. 4.3.1).

4.2.3 Visualisation of the bubble suspensions under oscillatory shear

The bubble suspensions were visualised under oscillatory shear, using the rheo-optical setup
depicted in Fig. 3.4. SAOS tests were conducted as previously described, with images captured
throughout the process using a FLIR GS3-U3-32S4M-C 1/1.8" camera (acquisition frequency:
5 Hz, image resolution: 1536 x 2048 pixels), a Nikon mono zoom lens and a white LED light
as illumination. All visualisation experiments were conducted at a focus plane of 600 um, with
minor adjustments for different samples. The pixel-to-mm conversion scale was found equal

to 306 pixels/mm. The depth of field for the current visualisation setup was 600 um.

Note that, although the camera was focused on a pre-calibrated plane, the large depth of

field allowed for the visualisation of multiple bubble layers. This enabled the visualisation of
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bubbles even when they had risen beyond the calibration plane, effectively covering a

visualisation gap of up to 300 um above the calibration plane.

4.3 Results on bubble size and viscoelastic properties

This section presents experimental results for bubble suspensions with volume fractions ¢, =

4.2 %, ¢, = 13.5% and @; = 19.2%.

4.3.1 Bubble size distributions

All tested samples were polydisperse, with bubble radii following the gamma distribution
between 20 um and 120 um (Fig. 4.1). As in Chapter 3, a volume-weighted average radius,
(R), was determined for each bubble suspension. For the reported bubble volume fractions,
@1 =4.2%,13.5 % and 19.2 %, the respective volume-weighted mean radii were equal to 61

pm, 64 um and 65 pm.

To ensure that the initial bubble size distribution did not change significantly during the pre-
shear stage, bubble sizes computed from the microscope images were compared to those
derived from the visualisation experiments. For each sample, the image taken immediately after
the end of pre-shearing was analysed using MATLAB to identify bubbles and their radii (in
pixels). The radii were then converted to mm using a conversion scale of 306 pixels/mm,
determined through the focus plane calibration. The image analysis revealed that after three

minutes of pre-shearing at 0.1 s™!, the bubble radii distributions remained essentially the same.
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Figure 4.1: Bubble size distribution for (a) ¢; = 4.2%, (b) ¢, = 13.5% and (c) @3 = 19.2% after
three minutes of pre-shearing at 0.1 s,

4.3.2 SAOS results

To characterise the viscoelastic behaviour of the bubble suspensions, the experimental
values of G' and G,.; need to be compared to the predictions of an appropriate theoretical
model. Since the aim is to use the simplest model that can describe the behaviour correctly, the

polydisperse suspension was initially modelled as a monodisperse one, using Eq. 4.2 with the
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parameters @, and [, expressed in terms of the volume-weighted average bubble radius (R)

and of an average dynamic capillary:
(Cd) = Dw (4.6)
where (1) is the average relaxation time of the suspension, defined using (R).

Next, it was necessary to determine which version of Eq. 4.2 is more appropriate: (i) the
original Jeffreys version, (ii) the Llewellin et al. (2002a) modification, or (iii) the Seo and Youn
(2005) modification. By observing Egs. 4.3b and 4.4b, it becomes evident that for large values
of (Cd), the second term in the expressions for G,,; becomes dominant, resulting in negative
G,.q values. This is not physically reasonable. In particular, for the current experimental
system, substituting its physical parameters (i.e., solvent viscosity g, = 53.063 Pa s, bubble
volume fraction of the tested suspensions ¢ = 4.2%, ¢, = 13.5% and @3 = 19.2%, and
respective average relaxation times of the bubbles (1); = 0.88s, (1), = 0.80's and (1); =
0.75 s) into Egs. 4.3b and 4.4b leads to negative G,  values for Cd larger than 0.8.

This issue was not addressed in the works of Llewellin et al. (2002a) and Seo and Youn
(2005), despite their experimental parameters being similar to those of the present study. It
should be noted that both studies accounted for the viscous contribution of the solvent, which
for semi-dilute suspensions is dominant. Thus, even if G,,; was negative, it was not readily
noticeable from the 1" and G" graphs presented in Llewellin et al. (2002a) and Seo and Youn
(2005). Therefore, the original Jeffreys model (Bird et al., 2002) (i.e., Eq. 4.2 with @y = 8, =
(4)) was selected to describe the linear viscoelastic moduli of the suspensions investigated in
this work, because this model does not pose this problem. For an oscillatory shear flow, the
original Jeffreys constitutive equation yields the following expressions for G’ and G,  in a

suspension of identical bubbles:

G'(cd,p) cd

wns <1+Cd2) ¢ (4.72)
Glea(Cd.p) _ (1

wNs - (1+Cd2) ¢ (4.7b)

For each of the reported bubble volume fractions, the theoretical G' and G, ; values were
determined using Eq. 4.7, expressed in terms of (Cd). Fig. 4.2 presents the experimental G’,

G,,q4 curves (black and hollow points), along with the theoretical predictions of the Jeffreys
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model for a monodisperse suspension (red and black dashed lines), as functions of the average

dynamic capillary number.
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Figure 4.2: Experimental values vs theoretical predictions of G’ and G, for polydisperse bubble
suspensions with (a) ¢; = 4.2%, (b) ¢, = 13.5% and (c) ¢35 = 19.2%.

As shown, there is good agreement between the experimental and theoretical values for (Cd)
larger than unity. But at lower (Cd), the experimental values of G are significantly larger than
the theoretical ones. Moreover, the shape of the experimental G’ curves is more complex,
resembling that of a suspension with multiple relaxation modes. As shown in Fig. 4.3, the onset
of the G’ deviation is related to the bubble volume fraction, with denser suspensions deviating
earlier, that is, at higher (Cd) values. Furthermore, within the same low range of (Cd), the
experimental values of G’ deviate more from the theoretical predictions as the bubble volume
fraction increases, with the densest suspension deviating almost twice as much compared to

the most dilute one. For a dedicated discussion on this, please refer to Sec. B4 of Appendix B.
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Figure 4.3: Effect of the bubble volume fraction on the onset of the G’ deviation from the theoretical
predictions of the generalised Jeffreys model.

The observed complex G’ trend was unexpected, because it is not predicted by the model.
This discrepancy indicates that the considered model may not be appropriate for describing the
experimental data. A possible reason for the poor predictions at low (Cd) may be the
polydisperse character of the studied suspensions. To account for this issue more thoroughly,
the linear superposition approach suggested by Mader et al. (2013) was employed. Considering
a polydisperse bubble suspension with N discrete bubble radii classes, Eq. 4.7 can be

generalised as follows:

G! i G-’(Cd-(p-) Cd;
polydisperse N i ¥Pi) _ N i 4 8
—_—2,_—_2,_ Qi .0a

wNg =1 wNg =1 1+Cdl-2 t ( )

n
Gred polydisperse _ N G;Ied,i(CdiKPi) _ %N 1 4.8b
=Xi=1 = Li=1 7 ) Pi (4.8b)

wNg w1 1+Cd;

where Cd; = A;w, with 4; and ¢@; representing the bubble relaxation time and volume fraction

of the i-th bubble class, respectively.

Using Eq. 4.8, the theoretical G’ and G, curves for the tested suspensions were derived.
These curves are also reported in Fig. 4.2 (black and blue solid lines). As seen, these new curves
are almost identical to those derived by modelling the polydisperse suspension as monodisperse
with a bubble radius equal to the volume-weighted average radius of the bubble population.
This is not unexpected, as one can prove that the theoretical predictions of the simpler Jeffreys
model (i.e., Eq. 4.7 expressed in terms of (Cd)) differ from those of the more refined one (i.e.,

that based on the summation of the G', G,.,; contributions of each bubble size class) only if the
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suspension bubble size distribution is bimodal, with equal volume fractions of very small and
very large bubbles. In any other case, the two versions of the Jeffreys model yield nearly the

same predictions. This is discussed in more detail in Sec. BS of Appendix B.

Because the generalised Jeffreys model, which accounts for polydispersity more accurately,
yields almost the same results as its simpler version (that for monodisperse suspensions), it can
be concluded that polydispersity is not the root cause for the observed G’ deviation at low (Cd)
values. To investigate this behaviour further, the influence of artifacts potentially induced by
the rheological measurements was considered. Specifically, due to their extended duration,
SAOS tests can be susceptible to phenomena such as bubble rise, coalescence and, more
broadly, changes in the suspension microstructure over time. These phenomena are examined

in detail in the following sections.

4.3.2 Effect of bubble rise

To investigate the effect of bubble rise on the obtained G’ curves, the bubble rise velocity
was first calculated, using the Hadamard—Rybczynski equation (Hadamard, 1911; Rybczynski,
1911):

_(R¥psg (4.9)

rise
31ns

where (R) is the volume-weighted average bubble radius, pg and 7 are the density and
viscosity of the ambient fluid, respectively, and g is the gravitational acceleration. This
equation is accurate in the limit of a single bubble rising in a clear liquid. However, the presence
of other bubbles and surfactants in a suspension has been shown to retard bubble rise (D. Kee’
et al., 1990; Tzounakos et al., 2004), causing Eq. 4.9 to overestimate the rising velocity. It must
be noted that while this equation provides the most conservative estimation of bubble rise
during the experiments, its use also means that the computed rise velocities may be
exaggerated, so that the actual effect of bubble rise may not be as pronounced as these
predictions suggest for the experimental system under investigation. The calculated bubble rise

velocities for all tested suspensions are presented in Table 4.3.
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Table 4.3: Bubble rise velocity for different bubble volume fractions.

Bubble volume fraction (%) u,;5 (mm/min) mm covered during 5 mm covered during 35
minutes of SAOS minutes of SAOS

4.2 0.013 0.065 0.458

13.5 0.015 0.075 0.525

19.2 0.017 0.084 0.590

Based on the computed bubble rise velocities shown in Table 4.3, bubbles should have risen
appreciably by the end of the SAOS measurements, which last about 35 minutes, covering a
distance equal to nearly 45% of the rheometer gap. Even if these values are overestimated, they
still indicate that the effect of bubble rise may become important towards the end of the SAOS
tests. To investigate whether bubble rise is pronounced from the beginning of the SAOS
measurements, the distance covered by the rising bubbles during the initial five minutes of the
experiment was calculated. This timeframe corresponds to the frequency range 50-10 rad/s,
after which the onset of the G’ deviation was observed. For all the tested suspensions, this
distance was found to be negligible, indicating that bubble rise cannot be responsible for

causing the observed G’ deviation at low (Cd) values.

To validate these calculations, a sample of a suspension with ¢ = 10.4% was placed on the
rheometer plate, and after a 35-minute waiting period to allow the bubbles to rise freely, a
SAOS test was initiated. For comparison, a normal SAOS measurement was also conducted on
the same suspension without any waiting time. As shown in Fig. 4.4, the G’ curves obtained
from the two SAOS experiments almost overlap, with the complex G’ trends being essentially
the same regardless of bubble rise. This indicates that in the present experiments, bubble rise
is not the cause for the characteristic G’ deviation observed at low {(Cd) values. Nevertheless,
it could potentially amplify this deviation towards the end of the experiments by affecting the
mean inter-bubble distance. This observation was confirmed via time sweep experiments and
SAOS measurements performed by increasing and decreasing the oscillation frequency. The

results of these experiments are presented in Sec. B6 of Appendix B.
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Figure 4.4: Effect of bubble rise on G' and G"«q of a polydisperse bubble suspensions with ¢ = 10.4%.

Specifically, Fig. B.13a in Appendix B demonstrates that the G’ deviation at lower (Cd)
values is present even in SAOS measurements performed by ramping up the oscillation
frequency, where the influence from bubble rise is minimal. When the measurements are
performed inversely, more time elapses before recording the low (Cd) viscoelastic data. During
this time, bubbles tend to rise, leading to a decrease in the average inter-bubble distance, which
evidently amplifies the G' deviation. This observation suggests that there is a correlation
between the deviation of G" and the average inter-bubble distance or, more broadly, the overall

bubble spatial organisation in the tested samples.

It is worth noting that in dense colloidal suspensions, the presence of clusters has been
shown to increase the bulk elasticity of the suspension as the particles come into close
proximity and create a network structure (Conrad et al., 2006; Larsen et al., 2010; Whitaker et
al., 2019). This network effectively stores elasticity, leading to increased resistance to
deformation and larger G’ values. Even though the presence of bubble clusters or threads may
not result in a network as organised and robust as that in colloidal suspensions, it certainly
alters the average inter-bubble distance, influencing the microstructure and, in turn, the
rheology of the suspension. From Fig. B.13b in Appendix B, it is evident that bubbles are not
uniformly distributed within the tested samples before the initiation of the SAOS
measurements. This non-uniform bubble spatial distribution is most likely created upon loading
the samples on the rheometer plate and affects the average inter-bubble distance, leading to the

characteristic G’ deviation at lower (Cd) values. This aspect is further investigated in Sec. 4.5.
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4.4 Visualisation of bubbles under oscillatory shear

Having examined the effect of bubble rise during the SAOS measurements, the investigation
then focused on whether the observed G’ trends can be attributed to changes in the suspension
microstructure over time. These changes can be related to the general bubble organisation and
the bubble size. To this end, the bubble suspensions were visualised under oscillatory shear,

and a statistical image analysis was performed. The results are discussed below.

4.4.1 Changes in bubble organisation over time

To examine whether the pre-existing spatial organisation of the bubbles right after the
preshear changed significantly as a result of the SAOS measurement, the coverage parameter
introduced in Sec. 3.5.2a was utilized. This parameter indicates the percentage of image
covered with bubbles, with a reduction in coverage serving as a qualitative metric for bubble
clustering and alignment, or more broadly, for changes in the microstructure of the dispersed

phase.

To this end, an image analysis was conducted to determine the trend of coverage during a
SAOS experiment. To minimize the amount of data, 15 representative images were analysed
for each oscillation frequency. Each image was first converted into a black and white matrix,
with the bubbles portrayed as white pixels on a black background. Then, all the white pixels
were summed and divided by the total number of pixels in the image to obtain a characteristic
value of coverage. For each frequency, a mean coverage value, C, was determined by averaging
the coverage values of the corresponding 15 images. Fig. 4.5a presents the mean coverage as a
function of the average dynamic capillary number for the three reported bubble volume
fractions. As seen, C remains constant for all the tested suspensions, suggesting that the general

bubble organisation does not change significantly throughout the rheological measurements.

4.4.2 Bubble coalescence

To investigate potential bubble coalescence phenomena that would affect the suspension
microstructure, the average bubble radius was evaluated during the rheological tests. To this
end, the same images used to calculate the coverage were analysed to measure the bubble size
distribution and the corresponding mean radius (R) during the oscillatory tests. For each
oscillation frequency, an average value for (R), denoted as (R), was obtained by averaging the
(R) values of the 15 representative images. Fig. 4.5b illustrates how (R) changed for the three
reported bubble suspensions throughout the SAOS tests. As seen, the average bubble size

slightly increases throughout the rheological experiments (these tests start at large (Cd) values
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and then, in time, progress towards lower (Cd) values), reaching a maximum of 7% to 9% of
the initial size. Therefore, based on the observed trend of coverage and the minimal increase in
the average bubble size, it can be concluded that the suspension microstructure remains mostly

stable during the rheological tests.
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Figure 4.5: a) Coverage and b) mean volume-weighted average bubble radius as functions of (Cd)
for o =4.2%, ¢ = 13.5% and ¢ = 19.2%.

The failure of the linear Jeffreys model, and of other models (e.g., Seo and Youn, 2005)
previously used for dilute and semi-dilute bubble suspensions, to predict accurately the G’
trends at low (Cd) values led to the investigation of other nonlinear phenomena, specifically
bubble fluid dynamic interactions, that may affect the experimental data. As suggested by Joh
et al. (2010), such interactions may induce phenomena with longer relaxation times, resulting
in the characteristic G’ deviation at low (Cd) values. Specifically, when bubbles are in close
proximity or interact with each other, the fluid flow induced by the motion of one bubble can
influence the motion and the behaviour of the neighbouring bubbles, leading to groups of

bubbles behaving collectively.

In this context, interactions are influenced by two key factors: (i) the bubble volume fraction
and (ii) the mean inter-bubble distance. In an idealised system, where bubbles can be
considered perfectly distributed, these two parameters are directly related. But in the present
experimental system, technical aspects, such as rheometer loading and subsequent pre-shear
protocol, can change the average inter-bubble distance for a fixed bubble volume fraction. To
investigate this, additional SAOS tests were conducted on the generated suspensions, using
different pre-shearing conditions. Specifically, samples were pre-sheared for 33 minutes at 0.9
s, and the corresponding SAOS results were then compared to those obtained after three

minutes of pre-shearing at 0.1 s”'. The aim was to determine whether a change in the bubble
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spatial distribution, induced by longer pre-shear protocols, could mitigate the deviation from
the theoretical predictions of G'. At this point, it must noted that the second pre-shearing
protocol was found to be the maximum pre-shear that could be applied without causing any
significant changes to the bubble size distribution and the total bubble volume fraction of the

suspensions. The findings from this investigation are discussed below.

4.5 Bubble fluid dynamic interactions and effect of pre-shear

4.5.1 Rheological results

Following the method described in Sec. 4.3.1, the bubble size distribution at the end of the
stronger and more prolonged pre-shearing stage was determined to confirm that the pre-
shearing did not alter significantly the initial distribution. Image analysis showed that after 33
minutes of pre-shearing at 0.9 s’!, the bubble radii shifted to slightly higher values, while still
following a gamma type distribution (Fig. B.14 in the Appendix). Table 4.4 provides the
updated volume-weighted average bubble radii for the reported suspensions. For each of them,
the corresponding (Cd) value was also calculated. Fig. 4.6 compares the G’ and G,.,; curves of
the reported bubble suspensions, obtained after three minutes of pre-shearing at 0.1 s™' and after

33 minutes of pre-shearing at 0.9 s,

Table 4.4: Volume-weighted average bubble radius (R) for different pre-shearing conditions.

Bubble (R) computed through the (R) after 3 minutes of (R) after 33 minutes of % increase
volume microscope images (um) pre-shear at 0.1 s' pre-shear at 0.9 s of(R)
fraction (%) (um) (um)

4.2 61 61 66 8.2

13.5 64 64 69 7.8

19.2 65 65 72 10.8
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Figure 4.6: Effect of the pre-shearing conditions on G’ and G, of polydisperse bubble suspensions
with (a) ¢, = 4.2%, (b) ¢, = 13.5% and (c) 3 = 19.2%.

As shown, pre-shearing affects the resulting G’ curves only for low bubble volume fraction.
For ¢ = 4.2%, stronger and more prolonged pre-shearing leads to G’ values closer to the
theoretical ones, suggesting a more uniform redistribution of the bubbles, and therefore weaker
fluid dynamic interactions among them. There is still a deviation between the experimental and
theoretical values for average dynamic capillary numbers lower than 0.1, likely due to bubble
rise during the SAOS tests, which directly impacts the average inter-bubble distance and, in
turn, the bubble interactions. As the bubble volume fraction increases, the experimental G’
curves are almost insensitive to the applied pre-shearing conditions, suggesting that pre-
shearing affects the mean inter-bubble distance negligibly when the suspensions are denser.
The reported results indicate no significant bubble rise during the longer pre-shearing stage.
This is supported by both the rheological and optical findings, which revealed no significant
differences in the high frequency plateau of G', and in the bubble size distributions obtained

just after the pre-shearing (see Fig. B.14 in Appendix B), respectively.

4.5.2 Local spatial distribution of bubbles

To quantify the fluid dynamic interactions among bubbles due to their local spatial

distribution, a statistical image analysis was performed using the method described by
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(Kudrolli, Wolpert and Gollub, 1997). In brief, for each of the reported bubble suspensions, an
image obtained after the end of the pre-shearing stage was analysed, considering both pre-
shearing conditions. Each image was divided into 64 equal squares, and the number of bubbles
in each square was identified using MATLAB. The distribution function for the local bubble
number (n), i.e., the probability of having a certain number of bubbles in a cell, was then
determined. This method allows evaluating bubble interactions based on the assumption that a
smaller number of bubbles in a given area indicates a larger average inter-bubble distance and
thus weaker fluid dynamic bubble interactions. Fig. 4.7 presents the probability distribution of
the local bubble number for the tested bubble volume fractions and pre-shearing conditions. If
the bubble suspensions were monodisperse and uniformly distributed, each cell would contain
the same number of bubbles, and the probability function would be a narrow peak centered
over this specific value of n. However, in this case where the tested suspensions are
polydisperse and the bubbles are not uniformly distributed, a wider distribution of local bubble

numbers is obtained.
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Comparing between the two different pre-shearing conditions reveals that for the lowest
bubble volume fraction, stronger and more prolonged pre-shearing results in narrower local
bubble number distributions, which are also shifted towards lower values, meaning that the
average inter-bubble distance decreases, resulting in weaker fluid dynamic interactions among
the bubbles. However, as the bubble volume fraction increases, the two distributions almost
overlap, confirming the rheological measurements of Sec. 4.5.1 and suggesting that in denser

suspensions pre-shearing does not reduce the bubble interactions significantly.

It is important to note that for all tested volume fractions, the bubble size distribution, as
opposed to the local bubble spatial distribution, is not altered by pre-shearing (as reported in
Fig. B.14 in Appendix B), thus indicating that the shift observed in Fig. 4.7(a) can be solely

associated to the more effective bubble re-distribution.

4.6 Fitting a multi-mode Jeffreys model

As the rheological measurements indicate, there is an unexpected increase in the suspension
elastic modulus at low (Cd) values. Based on the statistical image analysis, during the SAOS
experiments the microstructure of the suspension remains mostly stable. Therefore, the G’
increase is mainly attributed to bubble fluid dynamic interactions caused by the initial spatial
distribution of the bubbles after the loading of the samples on the rheometer plate. As shown,
these interactions are closely related to the bubble volume fraction and the applied pre-shearing
conditions. When the suspension is subjected to high oscillation frequencies, the characteristic
flow time is very small; thus, the measured viscoelastic moduli capture the response of the
smallest length scale of the suspension microstructure, namely that of an individual bubble.
This explains the good agreement between the real and the theoretical values at higher (Cd),
where the generalised Jeffreys model predicts the viscoelasticity arising solely from the bubble
interfaces accurately. As the oscillation frequency decreases, the characteristic flow time
increases, enabling more complex relaxation phenomena associated with bubble fluid dynamic
interactions. These interactions manifest as an increase in suspension elasticity, with the
measured G’ reflecting the response of bubbles that behave collectively owing to their

proximity and mutual influence.

As previously discussed, the Jeffreys model, as well as the models of Llewellyn et al.
(2002a) and Seo and Youn (2005), does not account for bubble fluid dynamic interactions, thus
failing to predict the G' deviation at low (Cd) values. To address this limitation, a model

developed by (Palierne, 1990) was considered, which is designed to describe the rheology of
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dilute and semi-dilute emulsions consisting of viscoelastic and Newtonian fluids. This model
accounts for droplet fluid dynamic interactions by assuming that the local strain exerted on a
single droplet is modified by the deformation of the surrounding droplets, and that the
interactions between droplets are of a dipole kind. For emulsions formed by two viscoelastic
fluids, the model predicts a G’ profile with a double shoulder. This profile typically exhibits a
relaxation mode associated with the relaxation of the viscoelastic matrix at high oscillation
frequencies and a secondary relaxation mode associated with droplet interface relaxation at low

oscillation frequencies.

While the G’ profiles observed in this study also present multiple relaxation modes, a
fundamental difference must be noted: the suspensions under study consist of two Newtonian
fluids, i.e., air as dispersed phase and a mixture of mineral oil and span 80 as the ambient fluid.
These fluids relax instantly, unlike for emulsions of two viscoelastic fluids. Therefore, in these
systems, the relaxation mode at high oscillation frequencies cannot be attributed to the
relaxation of the ambient fluid. To confirm this, the predictions of the Palierne and Jeffreys
models are compared with the experimental data in Sec. B8 of Appendix B. As shown, the G’
trend predicted by the Palierne model qualitatively resembles that of the Jeffreys model, both
featuring only one characteristic relaxation time. This is not surprising, given that the literature
((Graebling, Muller and Palierne, 1993; Lacroix, Aressy and Carreau, 1997)) widely
acknowledges the similarity between the two models for emulsions of Newtonian fluids.
Similar to the Jeffreys model, the Palierne model fails to predict the second G’ shoulder at low
(Cd) values. In addition, it does not capture the high (Cd) plateau as accurately as the Jeffreys
model. These shortcomings likely stem from the assumptions of the Palierne model about the
type of droplet interactions. Specifically, the model assumes that the interactions are of a fluid
dynamic dipole nature and that, within the interaction range, droplets are uniformly dispersed.
Palierne (1990), along with subsequent relevant studies (Bousmina and Muller, 1993; Carreau
etal., 1994) clearly acknowledges that the model fails to accurately predict experimental results

for systems where the aforementioned assumptions are not met.

The interactions responsible for the observed G’ deviation in the tested suspensions differ
from those considered by the Palierne model. As evidenced by the rheo-optical experiments,
bubbles are locally distributed non-uniformly within the tested samples. Consequently, in some
regions of the sample, bubbles are closer than they would be if they were uniformly distributed,
making their local interactions stronger and causing them to behave and relax collectively.

Similar observations were reported by Bousmina and Muller (1993) and by Carreau et al.
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(1994), who also noted the failure of the Palierne to predict the low frequency G’ shoulder,
which they attributed to interactions caused by the presence of aggregates in their systems.
Despite the absence of a model that well describes the current experimental data at low (Cd)
values, the rheo-optical experiments indicate a non-uniform spatial distribution of bubbles
within the ambient fluid. Drawing from existing literature and having excluded experimental
artifacts related to the performed rheological measurements, it can be inferred that these higher-
order interaction phenomena lead to the longer relaxation times observed in the present
experiments. To validate this argument and quantify the complex relaxation phenomena arising
from the bubble interactions, a multi-mode Jeffreys model was fitted to the experimentally
determined values of G’ and G,.,4. The effect of the bubble volume fraction and the applied pre-

shearing conditions on the suspension relaxation modes was then examined.

The fitting was performed using the Curve Fitting App of MATLAB. Initially, Eq. 4.8a was
fitted to the experimental G’ values, using the relaxation times A; and the volume fractions ¢;
as fitting parameters. In all cases, the fitting process began with a single-mode Jeffreys model,
and modes were progressively added until the best fit was achieved. The maximum number of
relaxation modes was determined through a simple convergence analysis, assessing whether
the addition of an extra relaxation mode resulted in a noticeable reduction is the sum of squared
errors (SSE). The determined A; and ¢; values were then substituted in Eq. 4.8b to obtain the
corresponding G, curve. Table 4.5 presents the values of the fitting parameters for the various
bubble volume fractions and pre-shearing conditions, along with the corresponding R? value

for each fit.
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Table 4.5: Fitting parameters for different bubble volume fractions and pre-shearing conditions.

3 minutes pre-shearing at 0.1 s

33 minutes pre-shearing at 0.9 s™!

Bubble
volume
feaction | M ©® | @i (%) | @ A singe (5 RZ | 4 | @ (%) | @i/ Toi (%) Asingle (5 R?
(%) XA
42 0.093 3.9 55.7 0.103 4.0 89.3
2.222 0.8 11.9 0.090 0.999 | 6.151 0.5 10.7 0.097 0.995
13.270 2.3 324 - - -
2p=7.0 Xpi=4.5
13.5 0.089 13.5 49.1 0.095 12.9 51.4
0.518 3.2 11.5 0.420 3.6 14.3
3.782 2.4 8.7 0.088 0.999 | 2.818 1.0 3.9 0.096 0.999
15.100 8.5 30.7 25.925 7.6 30.4
p=27.6 Tei=25.1
19.2 0.081 17.7 38.4 0.088 16.9 38.5
0.326 9.2 19.9 0.319 10.5 23.8
1.140 1.1 2.5 0.083 0.999 1.200 0.6 1.3 0.092 0.995
7.975 10.5 229 11.975 4.6 10.6
15.950 7.6 16.4 25.750 11.3 25.9
Tpi=46.1 Tp=43.9
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As can be observed, the smallest relaxation time was very similar in all cases, closely
matching the relaxation time of an individual bubble, as given inthe Jeffreys model (Eq. 2.41),
and calculated using the volume-weighted mean bubble radius of each suspension. This finding
supports the argument that at higher oscillation frequencies and, in turn, shorter characteristic
flow times, SAOS experiments effectively capture the relaxation of a single bubble. The
number of relaxation modes increases with the bubble volume fraction, suggesting that bubble
interactions, and consequently complex relaxation phenomena, are more pronounced in denser
suspensions. This complements the rheological measurements, which revealed that the onset

of the G’ deviation starts at higher (Cd) values for larger bubble volume fractions.

It worth mentioning that the relaxation time given by the Jeffreys model (i.e., A = ngR/0)
refers to the case of a solitary bubble relaxing independently. In such a scenario, the bubble
relaxes to its original undeformed state without the influence of neighbouring bubbles. In the
case of emulsions, it has been shown that the presence of neighbouring droplets can influence
the shape relaxation process of a single droplet. To further investigate the effect of bubble shape
relaxation on the obtained G’ trends, the bubble shape relaxation time in the tested suspensions
was calculated using the Palierne expression ((Graebling, Muller and Palierne, 1993)), which
considers the effect of on the shape relaxation of the single droplet. This expression is a
modification of the Jeffreys relaxation time, incorporating a function of the bubble volume
fraction. The equation and the calculated bubble shape relaxation times are reported in Sec. B9
of Appendix B. The bubble shape relaxation times were found to be close to the relaxation
times given by the Jeffreys model. In fact, comparing the shape relaxation times with the fitting
results reported in Table 4.5 shows that they fall between the first and second relaxation times
computed through fitting for all tested suspensions. However, the fitting results revealed the
presence of additional relaxation times which are at least an order of magnitude larger
compared to the computed bubble shape relaxation times. This suggests that even though the
relaxation mode associated with the shape relaxation of the bubbles can be influenced by
crowding effects, it cannot be considered responsible for the characteristic G’ deviation at lower

(Cd) values, which is clearly associated with longer relaxation times.

It is important to note that the sum of the ¢; values obtained from fitting does not always
match the measured total bubble volume fraction of the suspension. This is reasonable
considering that, to study the intricate behaviour of the bubble suspensions, an idealized bubble

suspension was used. Fig. 4.8 provides a schematic of this idealization. As shown in the
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schematic, the tested suspensions are not uniformly distributed the moment the SAOS
measurements begin. Due to their spatial distribution, some bubbles are in close proximity,
behaving collectively as one group. When fitting the predictions of the model to the
experimental results, it was assumed that each group of bubbles behaves like a single bubble
with a radius equivalent to an effective (interaction) radius. In this context, it is expected that
the sum of the ¢; values computed via fitting may exceed the actual bubble volume fraction of
the tested suspension — especially in denser suspensions, where interactions become more

pronounced.

O

~ ©

O

Figure 4.8: Schematic depicting the range of bubble fluid dynamic interactions, as emulated when
fitting our experimental G', G4 data using a multi-mode Jeffreys model.

Nevertheless, in the case of the most dilute suspension (¢, = 4.2%) subjected to stronger
and more prolonged pre-shearing, the sum of the ¢; values aligned closely with the bubble
volume fraction obtained experimentally. This suggests that the applied pre-shear effectively
redistributed the bubbles, causing the range of bubble fluid dynamic interactions to coincide
with the volume-weighted radius of a single bubble. In this case, the interactions among
bubbles were negligible, causing most bubbles to behave individually, without being influenced
by the neighbouring bubbles. This is confirmed by the decrease in the number of relaxation
modes and the increase in the relative bubble volume fraction associated with the shortest
relaxation time. However, as the overall bubble volume fraction increased, the applied pre-
shearing conditions did not alter the number and the characteristics of the relaxation modes
significantly. This aligns with the rheological measurements and image analysis results
reported earlier, suggesting that in denser suspensions pre-shearing impacts negligibly the

bubble fluid dynamic interactions and the associated complex relaxation phenomena.

It is worth mentioning that, in the current study, the effect of bubble fluid dynamic
interactions is noticeable due to the applied flow field. In the steady-shear experiments

presented in Chapter 3, the Taylor (1932) equation for the zero-shear viscosity was successfully
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recovered, a result that indicates that bubble interactions were not appreciable. However, in
SAOS experiments, designed to probe the suspension microstructure, interactions, even if mild,
become relevant, because they affect the relaxation process of the suspension and,
consequently, the observed viscoelastic trends. Additionally, the experiments presented in
Chapter 3 involved bubble volume fractions up to 10.4%, while in this study, the range was
extended to 19.2%. Although both studies examine semi-dilute suspensions, the current work
involves a significantly higher bubble volume fraction, which is expected to cause more

pronounced bubble fluid dynamic interactions.

4.7 Conclusions

This study explored the linear viscoelastic behaviour of semi-dilute polydisperse bubble
suspensions with a Newtonian ambient fluid. To determine the suspensions viscoelastic moduli,
G' and G, 4, SAOS rheological tests were performed with a pre-shear stage of three minutes at
0.1 s!'. The experimental G’ curves were compared with the theoretical predictions of the
original Jeffreys model, showing good agreement for (Cd) values larger than unity. But for
lower (Cd) values, the measured G’ was larger than expected, this deviation occurring earlier
in more concentrated suspensions. To elucidate this behaviour, various potential contributing
factors were systematically investigated, including polydispersity, bubble rise, coalescence and

changes in suspension microstructure over time.

The investigation revealed that, for the suspensions studied, the predictions of the
generalised Jeffreys model accounting for polydispersity and of the simple Jeffreys model for
monodisperse suspensions (used for bubbles with radius equal to the volume-weighted mean
bubble radius of the suspension) yield essentially the same results. This indicates that
polydispersity in itself is not the reason for the observed deviation between the experimental

results and the model predictions.

As the observed trends could not be attributed to polydispersity, the effects of microstructure
were examined to determine whether significant changes occurred over time due to artifacts
related to the performed rheological measurements. To this end, the generated bubble
suspensions were visualised under linear oscillatory shear, and a statistical image analysis was
performed to examine the effects of bubble rise, coalescence and spatial organisation. The
findings indicated that in general the suspension microstructure was preserved during the
SAOS measurements, suggesting that the observed viscoelastic trends were not the result of

experimental artifacts.
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The failure of the Jeffreys model to accurately predict the G’ trends at low (Cd) values led
to further exploration of the impact of bubble fluid dynamic interactions on the experimental
data. These interactions appear to be induced by the initial spatial arrangement of the bubbles
on the plate of the rheometer, present before the initiation of the SAOS measurements, and lead
to complex relaxation phenomena, which become evident at longer characteristic flow times.
To see whether a variation in the bubble spatial distribution, induced by longer pre-shearing
protocols, could mitigate the deviation from the theoretical predictions of G', additional SAOS
experiments were conducted with a pre-shear stage of 33 minutes at 0.9 s™'. The results
indicated that, for dilute bubble suspensions, stronger and more prolonged pre-shearing led to
G’ values closer to the theoretical predictions. But as the bubble volume fraction increased, the

applied pre-shearing conditions had no significant impact on the experimental G’ values.

To validate this, a multi-mode Jeffreys model was fitted to the viscoelastic moduli obtained
experimentally. In line with the rheological measurements and the image analysis results, the
findings demonstrated that bubble interactions cause a complex relaxation process, consisting
of multiple relaxation modes. The number of relaxation modes increased with the bubble
volume fraction, indicating that the effect of bubble interactions amplifies in denser
suspensions. Finally, the results overall suggest that stronger and prolonged pre-shearing can
effectively reduce the fluid dynamic interactions among bubbles when the bubble volume
fraction is low. But as the bubble volume fraction increases and the bubble fluid dynamic
interactions start dominating, pre-shearing does not impact the local bubble spatial distribution
significantly, leading to the same G’ trends independently of the applied pre-shearing

conditions.
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Chapter 5

Steady-shear viscosity of bubble suspensions in shear-
thinning Carbopol matrices: investigating the effects
of bubble-matrix interplay

Building on the findings from Chapters 2 and 3 regarding bubble suspensions in Newtonian
media, the final phase of this research investigated the influence of bubbles in more intricate
matrices typically used in oral care formulations. The study focused on the steady shear
viscosity of bubble suspensions in two shear-thinning matrices with no appreciable normal
stress differences: (i) a Carbopol dispersion, and (ii) a Carbopol dispersion with added
surfactant, Sodium Dodecyl Sulphate (SDS). The composition of the matrices was carefully
designed to allow for an ideal soft colloid system with negligible interactions between Carbopol
microgels. Moreover, the addition of a strong anionic surfactant such as SDS aimed to
systematically increase matrix complexity by altering the extent of microgel swelling and
modifying the system’s interfacial properties, thereby influencing the overall microstructure
and, consequently, the rheological behaviour of the generated bubble suspensions. The steady-
shear rheological results showed that the presence of bubbles enhanced the shear-thinning
behaviour in both matrices. In bubble suspensions with the pure Carbopol matrix, the flow
curves exhibited the characteristic double viscosity decay observed in suspensions with
Newtonian ambient fluids but shifted to lower average Capillary number values (< Ca >).
Additionally, the zero-shear viscosity of these suspensions deviated significantly from the
predictions of the Taylor equation but aligned well with the Mooney equation when considering
the combined volume fraction of Carbopol microgels and bubbles. This suggests that crowding
effects and interactions between the two dispersed phases played a key role in suspension
behaviour. Rheo-optical experiments revealed significant bubble coalescence, followed by the
alignment and clustering of the coalesced bubbles. This clustering was potentially driven by
wall effects arising from the significant increase in bubble size, to the extent that confinement

effects within the rheometer gap became observable.

Bubble suspensions in the SDS-containing Carbopol matrix exhibited distinct rheological
trends. Instead of a double viscosity decay, a single decay was observed over a range of <

Ca > values between 0.01 and 1. Rheo-optical experiments confirmed that SDS effectively
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mitigated bubble coalescence. Additionally, shear-induced bubble clustering and alignment
phenomena were less pronounced compared to those observed in the suspensions with the
Newtonian ambient fluid discussed in Chapter 3, most likely due to electrostatic repulsions

introduced by SDS.

The findings of this chapter highlight how variations in the matrix composition influence
suspension microstructure under shear and, consequently, the rheological behaviour of these
systems. The study provides insights into the complex interplay between bubbles and shear-

thinning matrices, laying the groundwork for further research in this area.

5.1 Introduction

As demonstrated in Chapters 3 and 4, the presence of bubbles can significantly influence
the rheology of the surrounding fluid. Microstructural changes, such as shear-induced bubble
clustering and alignment, as well as bubble-fluid dynamic interactions influenced by the spatial
distribution of bubbles, can lead to shear-thinning and other viscoelastic phenomena even in
Newtonian matrices. These effects are expected to become even more intricate when the matrix
itself exhibits non-Newtonian behaviour. While non-Newtonian fluids are prevalent both in
nature and across different industries, the rheology of bubble suspensions in non-Newtonian
matrices remains relatively unexplored (Torres et al., 2013, 2015; Kogan et al., 2013; Ducloué
et al., 2015). Given the vast diversity of non-Newtonian matrices, this chapter focuses
specifically on the steady-shear rheology of bubble suspensions with shear-thinning inelastic

ambient fluids, specifically Carbopol solutions.

The choice of a Carbopol solution as ambient fluid is based on its widespread industrial use
in various formulations across personal care and pharmaceutical industries (Boulmedarat et al.,
2003; Bonacucina et al., 2004), including oral care formulations such as those detailed in
Chapter 1. Carbomers, commercially known as Carbopol, are high molecular weight polymeric
molecules of polyacrylic acid crosslinked with polyalkenyl ethers or divinyl glycol (Lefrangois
et al., 2015). These molecules swell when dispersed in an appropriate solvent creating a
microgel suspension, i.e., a suspension consisting of soft elastic particles (Migliozzi et al.,
2020). The swelling mechanism of Carbopol depends on the solvent. In aqueous solutions,
swelling is driven by the ionisation of carboxyl groups on the polymer backbone, which induces
electrostatic repulsion between polymer chains and creates an osmotic pressure gradient,
leading to solvent uptake and particle expansion (Carnali and Naser, 1992). In contrast, non-

aqueous solvents promote swelling through solvent-polymer interactions rather than
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electrostatic effects. Here, the solvent molecules penetrate the polymer network based on their
size and affinity with the Carbopol structure, thereby enabling expansion. However, overall
swelling remains significantly lower than in water due to the absence of strong ionic repulsions

(Migliozzi et al., 2020).

The rheology of both aqueous (Piau, 2007, Bhattacharjee et al., 2018) and non-aqueous
(Migliozzi et al., 2020) Carbopol solutions has been extensively studied, mapping their
behaviour from dilute to highly concentrated conditions. In brief, in aqueous media, Carbopol
microgels in the concentrated regime exhibit a typical soft glass behaviour that can be
effectively described by the Herschel-Bulkley model (Piau, 2007; Jofore et al., 2015). For
non-aqueous Carbopol suspensions, swelling behaviour and rheological properties depend
significantly on the solvent. Migliozzi et al. (2020) investigated the effect of polar solvents—
specifically glycerol, polyethylene glycol (PEG), and their combination—on Carbopol
swelling and subsequent rheological behaviour. Their findings indicate that the final swollen
state of Carbopol is solvent-dependent, with PEG leading to a nearly 50% reduction in swelling
compared to glycerol, thereby shifting the jamming transition to higher polymer
concentrations. Despite this variation in swelling, once jamming is reached, elastic and yielding
behaviours scale similarly with particle volume fraction, suggesting that the solvent primarily
affects the final volume of the single Carbopol particles rather than the interactions among
them. At low concentrations (<0.8% wt), Carbopol dispersions exhibit purely shear-thinning,
inelastic behaviour which can be effectively described using the Carreau — Yasuda constitutive
equation. These findings are important to the present work, as they provide a comprehensive
characterisation of the Carbopol matrix rheology, which evidently becomes more complex as
the Carbopol concentration increases. For this study, dilute Carbopol dispersions will be used

aligning with the focus on shear-thinning inelastic matrices.

The interplay between bubbles and shear thinning matrices has been a subject of interest in
the literature, particularly in buoyancy-driven bubbly flows. Several studies have explored the
rise of a single bubble or a swarm of bubbles in shear-thinning matrices (Vélez-Cordero and
Zenit, 2011; Zenit and Feng, 2018; Chen et al., 2022), offering valuable insights into bubble
dynamics in such fluids. Vélez-Cordero and Zenit (2011) investigated the rise of bubbles in
shear-thinning, inelastic solutions of xanthan gum, finding that bubbles in shear-thinning media
tend to form large aggregates as they rise, unlike in Newtonian fluids. This was attributed to
the nature of the fluid, which leads to a decrease in viscosity in the wake region of a leading

bubble, facilitating the acceleration of trailing bubbles and resulting in the formation of
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ascending bubble clusters. Similar clustering phenomena were also reported by Chen et al.
(2022) for bubbles rising in shear-thinning, viscoelastic fluids. According to them, in
viscoelastic fluids, normal stress differences are also pivotal in the formation of bubble clusters
during rising, as they modify the pressure distribution at the bubble surface causing bubbles to
attract and form clusters. Although buoyancy-driven flows differ significantly from the steady-
shear flows studied in this chapter, these findings highlight the strong influence of shear-
thinning ambient fluids on the flow behaviour of bubbles, inducing clustering and

microstructural changes that are known to affect suspension viscosity.

To the best of our knowledge, the steady shear rheology of bubble suspensions with shear-
thinning ambient fluids remains largely unexplored, with the studies of Torres et al. (2013,
2015) being the most relevant. In their first study, the authors examined the steady-shear
rheology of semi-dilute and concentrated bubble suspensions in shear-thinning, elastic guar
gum solutions both with and without surfactant and compared their behaviour to bubble
suspensions with a Newtonian ambient fluid. The study demonstrated that the presence of
bubbles enhanced the shear-thinning behaviour and the normal stress differences of the ambient
fluid, making them more pronounced compared to its unaerated state. Furthermore, when
plotting the relative viscosity of the bubble suspensions with the guar gum matrix (with and
without surfactant) as a function of the Capillary number (Ca), the onset of the shear-thinning
behaviour was observed at Ca values in the range 0.01- 0.1, an order of magnitude lower than
what is typically observed for bubble suspensions in Newtonian ambient fluids. Since the
relative viscosity was calculated by dividing the measured viscosity for the suspension with
that of the shear-thinning ambient fluid at each tested shear rate, the obtained flow curve
reflected solely phenomena associated with the bubbles. Thus, the earlier onset of shear-

thinning could not be attributed to the shear-thinning behaviour of the matrix itself.

Instead, the authors speculated that this behaviour was due to the presence of significant
normal stress differences in the guar gum solutions, which may have led to bubble deformation
and shear-thinning behaviour occurring at lower shear rates and, consequently, lower Ca values
compared to Newtonian matrices. However, this speculation was not further investigated or
proved in their study. At this point, it is important to note that the suspensions examined in this
study were subjected to high shear rates (up to 300 s') and images of the samples taken at the
end of the tests revealed significant changes in bubble volume fraction and size distribution.
Such alterations in microstructure during rheological measurements could influence the

observed trends, an aspect that was not fully addressed in the study.
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In their following study, Torres et al. (2015) extended their observations to other shear-
thinning fluids and aimed to model the behaviour of bubble suspensions within these matrices.
Specifically, they prepared and characterised the steady-shear rheology of bubble suspensions
in a k/1-hybrid carrageenan gum solution with bubble volume fractions ranging between 5%
and 25%. They observed a similar rheological behaviour to that in the guar gum solution, with
bubbles enhancing the non-Newtonian behaviour of the matrix and shear-thinning starting
earlier compared to bubble suspensions with Newtonian ambient fluids. The authors proposed
that the viscoelastic behaviour of both the ambient fluid and the bubble suspensions could be
accurately modelled using a single-mode Giesekus model, as discussed in more detail in

Chapter 2 (Eq. 2.59).

The study also yielded valuable insights into the zero-shear viscosity of bubble suspensions
with shear-thinning matrices. For suspensions with bubble volume fraction up to 15%, the
relative zero-shear viscosities exhibited a linear dependence on bubble volume faction,

described by a modified Taylor equation:
Nro=1+bep with b=15 (5.1)

where b is a fitting parameter derived from experimental data. For suspensions with higher
bubble volume fractions, the authors found good agreement between their experimental zero-
shear viscosity data and the predictions of the Choi and Schowalter (1975) model for
emulsions, adjusted for a viscosity ratio equal to 0 (Eq. 5.2). The Choi and Schowalter model
was developed to describe the zero-shear viscosity of non-dilute emulsions and accounts for
hydrodynamic interactions among droplets, as reflected by the presence of higher-order ¢
terms. In the limit of ¢ — 0, corresponding to vanishingly small droplet volume fractions, the

Choi and Schowalter model reduces to the classic Taylor equation.

Nro=1+1(@)e (5.2a)

24+5¢7/3

I(p) = (5.2b)

5
2-5@+21¢@3+5¢97/3-2¢10/3

Pal (2024) further highlighted the crucial role of matrix rheology in determining the
rheological behaviour of bubble suspensions and emulsions. Specifically, for semi-dilute and
concentrated emulsions with Carbopol matrices, the author suggested that microgels can induce
droplet bridging, leading to higher zero-shear viscosity and shear-thinning behaviour as the

flocculated droplet structure breaks down under shear. Given the rheological similarities
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between bubble suspensions and emulsions, it is worth investigating whether—and what type
of—clustering phenomena occur in bubble suspensions with Carbopol solutions as ambient
fluids, and how these may affect the resulting rheological trends. To this end, this chapter
examines the steady-shear viscosity of dilute bubble suspensions in Carbopol matrices,
investigating how bubble-matrix interplay affects the rheological behaviour of these systems.
Through steady-shear rheological tests and rheo-optical visualisation, this study aims to
provide experimental data to address the gap in the literature regarding bubble suspensions
with shear-thinning matrices, thereby offering insights for the formulation and processing of

complex multiphase systems like toothpaste.

5.2 Experimental Methods

5.2.1. Materials and sample preparation

A shear-thinning polymeric dispersion was prepared using powdered Carbopol 974P NF
(C974P NF, Lubrizol Limited) at a 0.5% wt concentration in a 30/70 wt mixture of polyethylene
glycol (PEG400, MW=400 g/mol, Sigma-Aldrich, UK) and glycerol (MW=92 g/mol, Sigma-
Aldrich, UK). The preparation followed the method described by Migliozzi et al. (2020).
Initially, Carbopol was dispersed in PEG400 at 20 °C using a high-shear mixer (Silverson, L5
Series) and operating at 7000 rpm for approximately five minutes. The resulting concentrated
stock solution was then diluted with glycerol to reach the desired 30/70 wt PEG400/glycerol
composition. After dilution, the solutions were gently mixed with a magnetic stirrer until fully
homogenised and placed in a heated ultrasonic bath (SciQuip Ultrasonic bath, heated, 150 W)
at 50 °C overnight. This Carbopol dispersion served as the base matrix for generating bubble
suspensions, using the aeration device detailed in Section 3.3. The bubble volume fraction and
size distribution of the produced suspensions were then determined following the methodology

outlined in the same section.

The composition of the Carbopol matrix was inspired by the non-aqueous matrix used in the
toothpaste formulations described in Sec. 1.3 but was carefully designed to balance multiple
considerations. The system as a whole—including the selected Carbopol concentration and the
choice of the PEG/glycerol mixture as the ambient fluid for the dispersion—enabled the
formation of an ideal soft colloid system with negligible interactions between Carbopol
microgels. As a result, the macroscopic elastic properties of the suspensions were governed
solely by the elasticity and thermal energy of individual particles. At intermediate Carbopol

volume fractions, this contribution is very small and can hardly be measured, resulting in a
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purely viscous shear-thinning behaviour (Migliozzi et al., 2020). Additionally, the
PEG/glycerol ratio was chosen to provide a matrix viscosity high enough to maintain stable
bubble suspensions throughout rheological tests, while the excess of glycerol also accelerated

Carbopol microgel swelling, facilitating the preparation of the dispersions.

To systematically increase the complexity of the matrix composition and examine the impact
of surfactant on the rheology of the generated bubble suspensions, a second shear-thinning
matrix was prepared. This formulation consisted of a 0.55% wt Carbopol dispersion in a 30/70
wt PEG400/glycerol mixture containing 35mM SDS. For brevity, the pure Carbopol matrix
will be referred to as ST1, and the SDS-containing Carbopol matrix as ST2 throughout this
thesis. For the preparation of the ST2 matrix, SDS was first dissolved in glycerol. Once fully
homogenised, the same preparation process as for ST1 was followed. The SDS concentration
was maintained below the CMC (~43 mM) to prevent physical gelation in glycerol, which
would otherwise alter its Newtonian rheology (Makri et al., 2019). To achieve comparable
viscosities between the two matrices, the Carbopol concentration in the ST2 matrix was slightly
increased from 0.5% wt to 0.55 wt to compensate for the viscosity reduction caused by SDS.
The addition of SDS has been shown to disrupt the hydrophobic interactions between the
solvent and the Carbopol polymer network, leading to molecular deswelling (Milanovi¢ et al.,
2015). This deswelling decreases the effective volume fraction of Carbopol, thereby lowering
the viscosity of the solution. The chosen increase in Carbopol concentration ensured that the
matrix remained outside the yield stress regime while maintaining its viscosity within the

desired experimental range.

Table 5.1 presents the properties of the fluids comprising the two shear-thinning Carbopol
matrices, measured at 20 °C in accordance with the rheological tests. It also includes the
volume fraction of the swollen Carbopol microgels in each solvent mixture (PEG400/glycerol

for the ST1 matrix and PEG400/glycerol/SDS for ST2), determined using the Mooney (1951)

equation:
2.5¢
nr = exp (;;) (53)
where 7, = JCarbopoldispersion 1o yaqents the relative viscosity of ST1 and ST2, calculated by

nsolvent
dividing the zero-shear viscosity of each system (obtained from steady-shear rheological
measurements) by the viscosity of the corresponding solvent mixture. Here, { denotes the

volume fraction of the swollen Carbopol microgels and 4, is a fitting parameter related to the
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maximum packing factor that the system can achieve. Although the Mooney equation was
originally developed for hard spheres, it has been widely used for softer colloidal systems such
as those described here. According to Migliozzi et al. (2020), 4, is equal to 1.3 for any
PEG400/glycerol ratio.

Table 5. 1: Viscosity 7, density p and surface tension g, g of the fluids comprising the shear-thinning

Carbopol matrices. The PEG400/Glycerol mixtures have a 30/70 wt composition and the SDS
concentration in the second mixture is 35mM.

Fluid Viscosity (Pas)  Density  Surface tension Swollen Carbopol
(g/mL) (mN/m) microgel volume
fraction ({)
PEG400 0.1240.01 1.13£0.02  43.61+0.25 -
Glycerol 1.41+0.02 1.2540.01 62.9610.25 -
PEG400/Glycerol 0.8240.01 1.2140.01 50.1540.25 0.30
PEG400/Glycerol/SDS 0.8440.01 1.2240.02  41.0940.25 0.24

5.2.2. Rheological characterisation and visualisation of bubble suspensions under steady

shear

To obtain the viscosity curves of the generated bubble suspensions, steady-shear rheological
tests were performed over a shear rate range of 0.1 s to 50 s™! using an Anton Paar MCR302
stress-controlled rotational rheometer. A mild pre-shear stage of 3 min at 0.2 s™ was applied
prior to the measurements to minimise potential memory effects in the Carbopol matrix induced
by the high-shear mixing during bubble generation. All steady-shear measurements were
carried out at an operating temperature of 20 °C, using a sandblasted parallel-plate geometry
(R=20 mm) to prevent wall-slip effects. The rheometer gap was set at 1.3 mm, ensuring it was
at least ten times larger than the average bubble diameter (as determined from bubble size
measurements) to avoid any wall effects caused by plate confinement. All rheological
measurements were performed in triplicate to ensure reproducibility, and the average viscosity
values of both the suspensions and the Carbopol matrices were used for the rheological

analysis.

To account for the non-uniform shear distribution across the parallel plates, the
Weissenberg-Rabinowitsch correction (Macosko, 1994) was applied to the viscosity data. To
accurately determine the relative viscosity of the suspensions (1, = Nsyspension/

Nambient fluid)» the samples were left to de-aerate overnight after testing, and the viscosity of
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the matrix was measured the following day. This step ensured that the measured viscosity
reflected the true state of the matrix, as the high-shear mixing used during bubble generation
was observed to induce de-swelling of the Carbopol microgels, leading to a reduction in matrix

viscosity compared to its initial pre-aeration state (Sec. C1 in Appendix C).

To investigate potential shear-induced phenomena, the generated bubble suspensions were
visualised under steady shear, using the rheo-optical set up described in Sec. 4.2.3. Images were
captured during steady-shear measurements over a shear rate range of 0.1 s to 50 s™!, with a
fixed acquisition time of 20 s per shear rate. The rheometer gap was maintained at 1.3 mm,
consistent with the viscosity measurements. The images were then analysed to investigate
dynamic changes in the suspension microstructure under shear, including changes in bubble

size due to coalescence and the formation of bubble clusters and threads.

5.3 Experimental results for dilute bubble suspensions prepared using the

ST1 matrix

This section presents the experimental findings for dilute bubble suspensions prepared using
ST1 as the ambient fluid. The section is organised as follows: first, the bubble size distributions
and the corresponding volume-weighted average bubble radii are presented for each tested
bubble volume fraction, followed by the obtained viscosity trends. Next, the results from the
rheo-optical experiments are discussed to elucidate the observed rheological behaviour and

provide further insights into the microstructure of these complex systems.

5.3.1. Bubble size distributions

Similar to the bubble suspensions described in Chapters 3 and 4, which were generated in
Newtonian matrices, the bubble suspensions tested here were also found to be polydisperse,
following a gamma-type distribution between 20 pm and 110 um (Fig. 5.1). Consequently, a
volume-weighted average bubble radius, < R >, was determined for each suspension. For the
reported bubble volume fractions, ¢, = 3.85%, ¢, = 5.12%, ¢3 = 6.4%, and ¢, = 8.7%,
the corresponding volume-weighted mean radii were found to be 54 um, 50 um, 57 ym and

63 um, respectively.
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Figure 5.1: Bubble size distributions for suspensions generated using the ST1 matrix as the ambient
fluid.

5.3.2. Steady shear rheological measurements

Fig. 5.2 presents the flow curves of the tested bubble suspensions and their corresponding
ST1 matrices, plotted as functions of the effective shear rate, which is defined as the shear rate
at the edge of the rheometer plate according to the Weissenberg-Rabinowitsch correction. As
shown, in all cases the presence of bubbles amplified the shear-thinning behaviour of the
matrix. Furthermore, the zero-shear viscosity increased with bubble volume fraction (Fig. 5.3),

similar to the behaviour observed in bubble suspensions with Newtonian ambient fluids.

118



45 4.5
40+ 40+ Fha
$4s tis,
351 H'}% 35} .,
/‘{T ¢ ® /‘-”\ ®
T30k i;g L30t ‘e
~— ~—" [ ]
= *%5a, ® = §§§ ®
25} Tree,, e 2.5 Prieag, ",
®e ° §§§ e
*, ° * °
20} . te, ° 20} , *a,,
€ ST1 matrix LN € ST1 matrix ¢
15 ® Bubble suspension (¢=3.85%) 15 ® Bubble suspension (¢=5.12%)
041 1 10 100 0.1 1 10 100
. : -1
Vet (3_1) Vet (S )
d
4.5 4.5
4OF dipy sop iy
B []
35t e 35} s
» L ' ’(/T ¢ 3
3.0t s 30} :
= T e = [
25l §§§§§§;§§ ¢ 25¢ : ¢
*s, ¢ 2443 ®
20t Tt 20} REEEITIOE:
“[ ® ST1matrix *el [ & ST1matrix e d
15 . Bubble sulspension (<p=|6.4%) . 15 o Bubble suspension ((p=8l.7%) e, .
041 1 10 100 0.1 1 10 100
')./eff (8_1) &eff (3_1)

Figure 5.2: Flow curves for the tested bubble suspensions and the corresponding ST1 matrices.
Viscosity is plotted as a function of the effective shear rate, i.e., the shear rate at the edge of the parallel
plate geometry based on the Weissenberg-Rabinowitsch correction.
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Figure 5.3: Flow curves for ¢; = 3.85%, ¢, = 5.12%, @3 = 6.4%, and ¢, = 8.7%. The zero-shear
viscosity increases with bubble volume fraction.
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To further evaluate the effect of bubbles on the shear-thinning behaviour of the matrix, the
experimentally determined viscosities for both the bubble suspensions and their corresponding
ST1 matrices were fitted to a simplified version of the Carreau-Yasuda equation, considering

the infinite viscosity 7., equal to zero (Macosko, 1994):

n-—1
a

n =no[1+ (Ac¥)°] (5.4)

The fitting was performed using the Curve Fitting App of MATLAB and treating the zero-shear
viscosity 7, the Carreau relaxation time A., the flow index n and the a-parameter as fitting
variables. The simplification of 7, =0 was made because there were no available
experimental data for the infinite-shear region, as bubble suspensions cannot be subjected to
very high shear rates without altering their microstructure (i.e., changes in bubble volume
fraction and size distribution). The fitted Carreau-Yasuda parameters for each tested bubble
volume fraction are presented in Table C.1 (Appendix C). In all cases, the flow index of the
suspensions was lower than that of the matrix, confirming the enhanced shear-thinning

behaviour observed in the flow curves of Fig. 5.2.

Fig. 5.4 presents the relative viscosities for all tested bubble volume fractions as functions
of both the effective shear rate and the average Capillary number, < Ca >, calculated using the
volume-weighted average bubble radius for each suspension. The flow curves exhibit a
characteristic double power—law decay of relative viscosity, a trend previously observed in
bubble suspensions with a Newtonian matrix (see Chapter 3). The trend becomes more evident
as the bubble volume fraction increases. However, as shown in Fig. 5.5, in this case, the double
decay occurs at < Ca > values an order of magnitude lower than the < Ca > values where
this trend was observed in bubble suspensions with Newtonian ambient fluids. Specifically, the
first viscosity drop begins within the (Ca) range of 0.001-0.01, while the second drop occurs
around (Ca) ~ 0.1. In contrast, for bubble suspensions with a Newtonian ambient fluid, the
first decay starts at < Ca > values between 0.01 and 0.1, with the second decay occurring at

< Ca>~1.
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Figure 5.4: Relative viscosity as a function of effective shear rate and average Capillary number for
bubble suspensions with the ST1 matrix and bubble volume fractions ¢; = 3.85%, ¢, = 5.12%, @3 =

6.4%, and ¢4 = 8.7%.
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Figure 5.5: Relative viscosity as a function of average capillary number for a bubble suspension with
the ST1 matrix (¢ = 5.12%) and a bubble suspension with the Newtonian matrix from Chapter 3 (¢ =
10.4%). In the ST1 matrix, the double decay of relative viscosity occurs at < Ca > values an order of

magnitude lower than the values at which the same trend is observed in the Newtonian matrix.

This shift in shear-thinning behaviour to lower capillary numbers was also observed by

Torres et al. (2013). As mentioned earlier, the authors speculated that this behaviour was driven

by significant normal stress differences measured in their shear-thinning solutions, which may

have caused bubble deformation at lower shear rates, and consequently, lower Ca values.

However, since the Carbopol dispersions used in this study are purely shear-thinning without
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appreciable elasticity, this explanation does not apply here, and the observed shift requires

further investigation to elucidate its underlying cause.

Another key difference between bubble suspensions with Newtonian ambient fluids and
those studied here lies in how the zero-shear viscosity scales with bubble volume fraction. As
discussed in Chapter 3, in the case of Newtonian background fluids, the suspension relative
viscosities closely matched the predictions of the classic Taylor equation, i.e., 7,0 = 1 + @.
However, for the bubble suspensions with the shear-thinning Carbopol matrix studied here, the
relative viscosities were found to be significantly higher than the predictions of the Taylor
equation. Previous studies by Torres et al. (2015) and Chesterton et al. (2013) suggested that
for dilute bubble suspensions with shear-thinning matrices, the relative zero-shear viscosity
can instead be described by a modified Taylor equation: n,- = 1 + b¢ (as given in Eq. 5.1). To
evaluate whether this equation could better describe the zero-shear relative viscosities obtained
here, the experimental data for all tested bubble volume fractions were fitted to Eq. 5.1 using

the Curve Fitting App of MATLAB to obtain an appropriate value for the scaling parameter b.

The fitting results indicated that Eq. 5.1 with b = 8.75 effectively described the zero-shear
viscosity data. However, this b value lacks physical meaning, because it exceeds the Einstein
coefficient for hard spheres (b = 2.5). Instead, it closely aligns with the coefficient of the
modified Taylor equation reported by Llewellin et al. (2002b) for the relative zero-shear
viscosity of their polydisperse bubble suspensions in a Newtonian ambient fluid. A subsequent
study by Mader et al. (2013) attributed this higher coefficient to interactions among bubbles,
insofar as the bubble volume fractions in Llewellin’s study extended into the semi-dilute and
concentrated regimes, reaching up to 46%. Although the bubble suspensions examined here
were dilute, so that interactions among bubbles would not typically be expected, it is important
to consider the presence of a second dispersed phase—the Carbopol microgels. These microgel
particles occupy nearly 30% of the suspension volume, meaning that the total system composed
of bubbles and microgels is effectively crowded, potentially causing interactions between the
two dispersed phases. This may explain why the classic Taylor equation, which was developed
for dilute emulsions with negligible interactions, fails to accurately predict the zero-shear

relative viscosities in these suspensions.

To further investigate the hypothesis regarding crowding effects and their impact on the
zero-shear viscosity, the suspensions were treated as having a single dispersed phase with a

volume fraction equal to the sum of the Carbopol microgel volume fraction and the bubble
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volume fraction. The measured zero-shear viscosities were then compared to the predictions of
the Mooney equation, which describes how the zero-shear suspension viscosity varies with the
dispersed phase volume fraction, accounting for crowding effects and hydrodynamic
interactions among the dispersed particles. As shown in Fig. 5.6, the experimentally determined
zero-shear viscosities align well with the predictions of the Mooney equation for both the
suspensions with the ST1 matrix and those with the ST2 matrix. This finding confirms that the
systems effectively behave as crowded suspensions, where interactions between the two

dispersed phases significantly impact the measured zero-shear viscosity.
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Figure 5.6: Zero-shear viscosity as a function of the total dispersed phase volume fraction for bubble
suspensions with the ST1 and ST2 matrices, respectively. The experimentally determined zero-shear
viscosities for the different suspensions are compared to predictions of the Mooney equation. Error bars
represent the standard deviation of the measured zero-shear viscosities.

5.3.3. Visualisation of bubble suspensions under steady shear

To further examine the shift of the double decay in relative viscosity toward lower < Ca >
values and assess potential shear-induced phenomena and microstructural changes influencing
the rheological trends, three fresh bubble suspensions with the ST1 matrix and ¢; = 2.98%,
@, = 5.8%, and @3 = 8.2% were prepared and visualised under steady shear using the rheo-
optical set up. Fig. 5.7 presents three representative images for the suspension with bubble
volume fraction ¢,, taken at shear rates 0.1 s, 9 s and 35 s! (corresponding to < Ca > values

of approximately 0.001, 0.01, and 0.1), along with their respective bubble size distributions.
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Figure 5.7: Bubble suspension with the ST1 matrix and ¢ = 5.8%, visualised under steady shear at 0.1
s, 9 s and 35 s7!. The corresponding bubble size distributions are shown alongside each image.

The images reveal that as the shear rate, and in turn < Ca >, increases, bubbles tend to
coalesce, leading to deviations from the initial gamma-type size distribution and an increase in
the average bubble size. Additionally, as larger bubbles form, they begin to align or move closer

together, resulting in the formation of bubble threads and clusters. This is likely due to wall
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effects, which become more pronounced as bubbles grow larger and experience greater
confinement within the parallel plate gap. These microstructural changes begin to emerge
within the shear rate range of 1-10 s!, coinciding with the first drop in relative viscosity. It is
worth noting that at similar shear rates, shear-induced bubble clustering was also observed in
Newtonian matrices (as described in Chapter 3), suggesting a potential connection between the
two phenomena. As shear brings bubbles into closer proximity, coalescence becomes more
likely, leading to the formation of larger bubbles, which in turn begin to aggregate into

secondary clusters.

The microstructure continues to evolve significantly across the shear rate range of 10-50 s™".
In this range, bubble coalescence becomes more prominent, and the clustering of the resulting
larger bubbles intensifies. These coalesced bubbles form dynamic structures that move
collectively under shear (Fig. 5.8), and this behaviour becomes more evident with increasing
shear rate. At higher shear rates toward the upper end of the tested range, deformation of these
larger bubbles also becomes apparent. Overall, the rheo-optical observations suggest that the
observed rheological behaviour is linked to a sequence of interconnected microstructural
changes. These include bubble coalescence, the formation of dynamic clusters of coalesced
bubbles, and their eventual deformation at higher shear rates. Each of these phenomena
emerges progressively with increasing shear, collectively contributing to the complex flow

response of the suspension.

Figure 5.8: Formation of dynamic structures composed of coalesced bubbles moving collectively under
shear, corresponding to the bubble suspension with the ST1 matrix and ¢ = 5.8% at a shear rate of

12.6 5.

To further understand how the microstructure of the current suspensions evolves under

shear, statistical image analysis was performed to assess how the volume-weighted average
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bubble radius (< R >) and the coverage (C) metric-introduced in Chapter 3 to qualitatively
detect changes in the arrangement of bubbles at the microscale-varied with shear rate. For each
shear rate, 20 representative images were analysed using the methodology described in Sec.

3.5.2. The obtained C and < R > values for these images were then averaged to yield
representative mean values of coverage (€) and volume-weighted average radius ((R)) for each
shear rate. Fig. 5.9 illustrates the trends of € and (R) as functions of the effective shear rate for
the three tested bubble suspensions. The results show a decrease in coverage beginning at shear
rates around 1 s, which coincides with the onset of the first drop in relative viscosity (see Fig.
5.4). At the same shear rate, the average bubble radius also begins to increase. As the shear rate
increases further, coverage continues to decrease, while the volume-weighted average bubble
radius grows by 29%, 34% and 38% for ¢, = 2.98%, ¢, =5.8%, and @3 = 8.2%,
respectively, by the end of measurement. As expected, the increase in average bubble size is

larger at higher bubble volume fractions, where the average inter-bubble distance reduces,

increasing the probability of coalescence.
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Figure 5.9: a) Mean Coverage and b) Mean volume-weighted average bubble radius as functions of the
effective shear rate for ¢; = 2.98%, @, = 5.8% and @3 = 8.2%.

These results highlight that, in this instance, the decreasing coverage trend reflects both
bubble coalescence and microstructural rearrangements under shear. A comparison with the
results from the rheo-optical experiments on bubble suspensions in Newtonian media
(discussed in Sec. 3.5.2) reveals that the decrease in coverage and the increase in bubble size
observed in this first shear-thinning matrix are more pronounced. The greater reduction in
coverage is directly influenced by enhanced bubble coalescence; as bubbles coalesce, the
number of white pixels in the image decreases, leading to a measurable reduction in coverage.

To confirm that coalescence affects the observed coverage trends, the data were normalised by
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the initial plateau value to allow for a direct comparison across the different bubble volume
fractions. As shown in Fig. 5.10, the drop in coverage increases with bubble volume fraction,
indicating that the phenomena captured by the coverage trend are not simply shear-dependent,
but rather scale with bubble volume fraction, aligning with coalescence-driven behaviour. It is
also worth noting that the coverage trends of the current suspensions exhibit a more complex
shape characterised by a two-stage decrease (as seen in Fig. 5.10), whereas the coverage trends
observed in Chapter 3 for bubble suspensions with a Newtonian matrix followed a simpler
linear trend. This may indicate that different microstructural effects, such as the spatial
reorganisation of bubbles into clusters and threads or changes in the local bubble size
distribution due to coalescence, occur at different time scales, potentially leading to the
multistage decay observed. However, since the coverage parameter represents an overall
measure of the microstructural configuration under shear, it inherently lacks the ability to
differentiate between distinct microstructural changes, which more advanced statistical

measures could capture in greater detail.
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Figure 5.10: Normalised mean coverage as function of effective shear rate for bubble suspensions with
the ST1 matrix and ¢, = 2.98%, ¢, = 5.8%, and @3 = 8.2%, respectively. The dashed lines indicate
that the drop in coverage from the initial plateau becomes more pronounced as bubble volume fraction
increases.

As shown, bubble coalescence plays a key factor in shaping the microstructure of the current
suspensions, and consequently, their rheological behaviour. Although the exact mechanism
driving the increased coalescence observed in these systems cannot be elucidated from the

obtained images, two factors likely contribute: the shear-thinning nature of the matrix and the
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absence of surfactants, which would otherwise stabilise the bubbles. In the literature (Fanebust,
Ozan and Jakobsen, 2021; Long, 2024), it is suggested that a shear-thinning matrix enhances
bubble coalescence by accelerating fluid film drainage between bubbles. When two bubbles
come into close proximity, the thin fluid film separating them is compressed and forced
outward. This outward flow creates a velocity gradient, which leads to a localised increase in
shear rate. In shear-thinning fluids, viscosity decreases with shear rate, thereby reducing
resistance to film drainage. As a result, the thin liquid film between colliding bubbles drains
more rapidly than in Newtonian ambient fluids, facilitating bubble coalescence. Although
these findings refer to a simplified system, specifically a pair of bubbles rather than a
suspension, they still provide a qualitative explanation for the phenomena occurring at the
microscale. In addition to the shear-thinning matrix, the absence of surfactant in the present
system leaves the bubble interfaces without an interfacial barrier that would otherwise stabilise
them, thereby lowering the energy required for coalescence and making them more susceptible

to merging.

As previously discussed, bubble coalescence and the associated microstructural changes,
evidenced by the increase in average bubble size and the reduction in coverage, began at shear
rates around 1 s, where shear-induced bubble clustering was also observed in Newtonian
matrices. This suggests a similar shear-induced clustering effect in the present system.
However, unlike in the Newtonian case-where the presence of surfactants and the Newtonian
character of the matrix did not promote coalescence-here, the combined effects of the shear-
thinning matrix and the absence of surfactants allowed bubbles to coalesce more readily as they
came into closer proximity under shear. This, in turn, led to secondary clustering phenomena,
this time involving the larger, coalesced bubbles, which may be driven by wall effects as the
bubble size grows significantly larger, and the coalesced bubbles are more confined within the

rheometer plates.

Given the increase in the volume-weighted average bubble radius during the rheological
measurements, the < Ca > values used to plot the viscosity curves of Fig. 5.4 do not accurately
represent the system, as they were calculated using the initial < R > values obtained from
microscope images taken before the rheological tests. Since < Ca > depends on the average
bubble radius, it is expected to shift to higher values as the bubbles grow larger. Therefore, to
assess whether the observed shift of the shear-thinning trend toward lower capillary numbers

is an artifact of using the initial < R > values in the calculation of < Ca >, updated < Ca >

values were calculated to account for the increase in bubble size. To this end, the trend of (R),
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determined through the statistical image analysis, was used to reconstruct the bubble size
evolution of the suspensions described in Sec. 5.3.2, and the values of < Ca > were

recalculated based on these updated bubble sizes.

Fig. 5.11 indicatively presents the flow curve for the bubble suspension with ¢, = 5.12%,
plotted as a function of both the initial and the updated < Ca > values that account for the
increasing average bubble radius due to coalescence. As shown, the characteristic double decay
in relative viscosity shifts to slightly larger < Ca > values due to the rise in the average bubble
radius. Nevertheless, the overall double decay viscosity trend remains distinct from that
observed in Newtonian matrices and still corresponds to < Ca > values that are approximately
an order of magnitude lower. This shift in < Ca >, particularly in relation to the earlier-than-
expected bubble deformation, warrants further investigation. Rheo-optical observations
confirmed deformation of the coalesced bubbles at < Ca > values around 0.1, instead of <
Ca > ~1, which is typically considered the threshold for noticeable deformation. Even when
estimating the capillary number specifically for the larger, coalesced bubbles (rather than
relying on the volume-weighted average capillary number for the overall population) these
individual bubbles had not reached Ca~1 at the shear rates where their deformation became
visible, based on their radii obtained from image analysis. This suggests that additional factors
may influence bubble deformation and the overall rheological response of bubble suspensions

in shear-thinning matrices.
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Figure 5.11: Relative viscosity of a bubble suspension (¢ = 5.12%) as a function of both the initial
and the updated average capillary number, recalculated to account for the increasing volume-weighted

129



average bubble radius due to coalescence. The vertical lines indicate the shift of the second viscosity
decay to slightly larger < Ca > values as a result of bubble growth.

Although no appreciable normal stresses were measured during the rheological tests, one
must note that the suspensions under investigation are complex crowded systems with
interactions among the two dispersed phases, dynamic changes in the microstructure under
shear, and potential wall effects emerging as bubbles grow larger. Such phenomena possibly
alter the flow field around the bubbles, inducing localised high-stress regions that deform
bubbles sooner than expected. While these effects provide a plausible basis for explaining the
observed behaviour, the exact underlying mechanisms and their relationship remain unclear,
requiring further experimental and theoretical work to fully understand the earlier onset of

bubble deformation in shear-thinning inelastic matrices.

As demonstrated, the interplay between bubbles and the matrix significantly influences the
steady-shear rheological behaviour of the tested bubble suspensions. The presence of Carbopol
microgels led to crowding effects and interactions between the two dispersed phases, directly
impacting the zero-shear viscosity of the suspensions. Moreover, the shear-thinning matrix
combined with the absence of surfactants in the system resulted in substantial bubble
coalescence and subsequent clustering/alignment of the coalesced bubbles, possibly due to wall
effects and bubble confinement within the rheometer gap. To further increase matrix
complexity and evaluate the impact of matrix composition on the rheological behaviour of
bubble suspensions, the following section examines how the addition of SDS as a surfactant in
the Carbopol matrix affects viscosity trends, bubble coalescence, and bubble clustering

phenomena.

5.4 Experimental results for dilute bubble suspensions prepared using the

ST2 matrix

This section presents experimental results from steady-shear rheological tests and rheo-optical
experiments performed on bubble suspensions with the ST2 matrix and volume fractions ¢, =

4.95 %, ¢, = 6.3%, and @3 = 8.6%.

5.4.1. Bubble size distributions

Fig. 5.12 presents the bubble size distributions for the tested bubble suspensions with the
ST2 matrix, calculated from microscope images taken before the rheological measurements.
As shown, the bubble sizes follow a gamma-type distribution ranging from 10 pm to 100 pm.

The volume-weighted average bubble radii for the reported bubble volume fractions ¢, =
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495%, @, =6.30%, and @3 = 8.60% were found to be 40 um, 44 um, and 46 um,
respectively—smaller than those obtained for the ST1 matrix. This is consistent with the lower

surface tension measured in the current system.
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Figure 5.12: Bubble size distributions for suspensions prepared using the ST2 matrix as the ambient
fluid.

5.4.2. Steady shear rheological measurements

Given the presence of surfactant, which typically limits coalescence phenomena and
stabilises suspensions under high shear, the upper shear rate in the rheological tests was
extended from 50 s™! to 200 s! to assess the rheological behaviour over a broader shear rate
range. Fig. 5.13 presents the flow curves of the tested bubble suspensions and their
corresponding ST2 matrices, plotted as functions of the effective shear rate. Similar to what
was observed in the ST1 matrix, the presence of bubbles induced additional shear-thinning
effects. Following the same procedure as in Sec. 4.3.2, the experimental viscosity data for the
bubble suspensions and their corresponding ST2 matrices were fitted to the simplified Carreau-
Yasuda equation (Eq. 5.4) to further evaluate the effect of bubbles on the shear-thinning
behaviour of the matrix. The obtained fitting values for the Carreau-Yasuda parameters are

presented in Table C.2 (Appendix C).

131



3.0 3.0

e ST2 matrix e ST2 matrix
281 e Bubble suspension (9=4.95%) 281 e Bubble suspension (¢=6.3%)
261 26+
¢
24 bos 24 i35,
[7:) ® D) ) [ ¢ .
© 22+ % @ 221 ®
o *s o *s
ESRT 20w .
is %345 ]
18} §§§§§§§§ .., 1.8} Taa,, s,
1.6} e, . 1.6+ “i;,.‘,
1.4} ‘e 14l ™
1 10 100 0.1 1 10 100
: -1
Yerr (87) Yerr (S7)
C
3.0
28l e ST2 matrix
' Bubble suspension (¢=8.6%)
261 $935,
24t s,
» T8
Dd_’ 2.2+ o
20+ i
= g_
181 Pievsqy,
16} Y5, s
LX] 9; ¢
14+ *s,
0.1 1 10 100

Figure 5.13: Flow curves for bubble suspensions with ¢; = 4.95%, ¢, = 6.3%, and @3 = 8.6%, and
the corresponding ST2 matrices. Viscosity is plotted as a function of the effective shear rate.

In all three cases, the flow index of the suspensions was lower than that of the matrix alone
and decreased with increasing bubble volume fraction, indicating that a higher bubble content
enhances shear-thinning effects. However, in this case, the reduction in flow index was smaller
than in suspensions with the ST1 matrix, suggesting that while the bubbles intensified shear-
thinning behaviour, their effect was less pronounced in the SDS-containing system.
Additionally, the zero-shear viscosity increased with bubble volume fraction (Fig. C2 in

Appendix C) consistent with observations in suspensions with the ST1 or Newtonian matrices.

Another noteworthy observation was that the addition of SDS appeared to stabilise the
Carbopol matrix against de-swelling caused by the high-shear mixing used during bubble
generation. This is evidenced by the nearly overlapping matrix flow curves presented in Fig.
C3 (Appendix C) and the very similar Carreau-Yasuda fitting values obtained for the matrices
of the three tested suspensions, regardless of aeration time. In addition to this stabilising effect,
SDS also led to a reduction in the final volume of the swollen Carbopol microgels, as reported

in Table 5.1. This finding is consistent with the results of Milanovic et al. (2015), who reported
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that Carbopol microgels in aqueous solutions tend to swell less in the presence of SDS. The
reduction in the volume occupied by the Carbopol microgels is expected to lessen crowding
effects in the present suspensions compared to those with the ST2 matrix, and consequently,

result in less pronounced interactions between the two dispersed phases.

This hypothesis was assessed by examining the zero-shear viscosity of the suspensions,
given its sensitivity to crowding effects. Similar to what was observed in bubble suspensions
with the ST1 matrix, the experimental zero-shear viscosities here were also higher than the
predictions of the classic Taylor equation, indicating that crowding effects persist. In fact, as
shown in Fig. 5.6, the data can be well described by the Mooney equation, which accounts for
crowding effects and the resulting dispersed-phase interactions. However, applying the same
procedure used for bubble suspensions with the ST1 matrix and fitting the zero-shear viscosity
data for the tested bubble volume fractions to a scaled Taylor equation (Eq. 5.1) yields a b
coefficient of 4.51—nearly half the value obtained for suspensions with the ST1 matrix.
Although b remains well above the Einstein limit of 2.5, confirming that interactions between
the two dispersed phases are still present, the reduction from its previous value likely suggests

that these effects are less intense in the ST2 matrix compared to ST1.

Fig. 5.14 presents the relative viscosities 7, for the tested bubble volume fractions as
functions of both the effective shear rate and the average capillary number. In this case, only a
single drop in relative viscosity was observed across a < Ca > range spanning approximately
0.01 to just below 1. This behaviour contrasts with the double decay trend observed for
suspensions in the ST1 matrix, where two distinct viscosity drops were already evident within
the < Ca > range common to both systems: the first around < Ca > ~0.01 and the second
around < Ca > ~0.1 (Fig. 5.15). This suggests that the evolution of microstructure under
shear, which directly impacts the rheological response, may differ significantly between the

two matrices.
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Figure 5.14: Relative viscosity as a function of the effective shear rate and the average capillary number
for bubble suspensions with the ST2 matrix and bubble volume fractions ¢; = 4.95%, ¢, = 6.30%,
and @3 = 8.60%.
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Figure 5. 15: Comparison of the relative viscosities of a bubble suspension with the ST1 matrix and
@ = 5.1% versus a bubble suspension with the ST2 matrix and ¢ = 4.95%.

A further comparison with bubble suspensions in Newtonian matrices also reveals a
deviation from the double decay trend seen in that case. However, it is important to note that
in the ST2 system, < Ca > values only approached order magnitude unity at the upper end of
the tested shear rate range. In contrast, in the Newtonian system, < Ca > values well exceeded
unity within the same shear rate range. This difference is primarily attributed to the larger
bubble sizes in the bubble suspensions with the Newtonian matrix, which led to higher capillary
numbers at equivalent shear rates. Therefore, the absence of a second viscosity drop in the ST2
system may simply reflect that bubbles had not fully reached < Ca >~ 1, and the onset of
bubble deformation, which in the Newtonian case was associated with the second decay, had

not yet occurred. To further investigate these assumptions and examine how the new matrix
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composition affected bubble coalescence, alignment and clustering phenomena, three fresh
bubble suspensions with ¢, = 2.5%, ¢, = 4.62%, and @3 = 7.25% were prepared and
visualised under steady shear. The results of the rheo-optical experiments are presented in the

following section.

5.4.3. Visualisation of bubble suspensions under steady shear

Fig. 5.16 presents four representative images for the suspension with bubble volume fraction
@, = 4.62%, taken at shear rates 0.5 s, 5571, 50 s!, and 150 s!, which correspond to < Ca >
values of approximately 0.001, 0.01, 0.1, and 1, respectively. A comparison with Fig. 5.7
highlights the differences between bubble suspensions with the ST1 matrix and those with the
ST2 matrix. The most notable distinction is that bubble coalescence is significantly less
pronounced in the ST2 system. Consequently, no secondary clustering of coalesced bubbles
was observed—a key microstructural phenomenon in the ST1 matrix that strongly influenced
its rheological response. Correlating the rheo-optical observations with the flow curves
obtained for the bubble suspensions with the ST2 matrix (Fig. 5.14), one can see that at < Ca >
values in the range 0.01 to 0.1, where the viscosity starts to drop, bubbles tend to align or move
closer together to form clusters. This behaviour resembles the shear-induced clustering
observed in Newtonian media, rather than the coalescence-driven clustering seen in the ST1
matrix within the same < Ca > range. At higher < Ca > values, approaching unity, bubbles
appear slightly larger, indicating some degree of coalescence (Fig. 5.15d). However, the extent
of bubble coalescence remains minimal compared to that observed in the ST1 matrix at
significantly lower < Ca > values. Additionally, no appreciable bubble deformation is
observed throughout the rheo-optical experiments, aside from mild signs in a few larger
bubbles at the upper end of the tested shear rate range, as shown in Fig. 5.15d. This supports
the argument that the observed drop in relative viscosity in the ST2 suspensions is associated
with shear-induced bubble clustering. The absence of a second viscosity drop in these systems
is likely due to the fact that the bubbles had not yet begun to deform, unlike in the suspensions
with the Newtonian matrix in Chapter 3, where the bubbles were larger and therefore reached
and surpassed the threshold of < Ca > = 1 within the same shear rate range, resulting in a

second drop in viscosity.
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Figure 5.16: Bubble suspens1on ((p 4 62%) w1th the ST2 matrix as the amblent ﬂuld v1suahsed
under steady shear at 0.5 s, 57, 50 s7!, and 150 s\

Fig. 5.17 compares the variation in the volume-weighted average bubble radius over the
same effective shear rate range for a bubble suspension with the ST1 matrix (¢ = 4.62%) and
one with the ST2 matrix (¢ = 5.8%). As shown, in the ST2 matrix, bubble size remains
relatively stable with increasing shear rate, confirming that coalescence is minimal, in contrast
to what was observed in the ST1 matrix. This can be attributed to the presence of SDS, which
owing to its strong anionic nature, adsorbs on bubble interfaces forming negatively charged
monolayers. The presence of these like charges on neighbouring bubbles leads to long-range
electrostatic repulsions between them, thereby preventing coalescence phenomena (Sunartio et
al., 2007). Furthermore, at the microscale, evidence suggests that SDS at concentrations below
or near the CMC can slow thin film drainage between colliding bubbles due to Marangoni
stresses arising from surface tension gradients (Bhamla et al., 2017). Specifically, as the fluid
film thins, surfactant redistribution creates a restoring force that immobilises the bubble

interface and resists further thinning, thereby delaying coalescence.
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Figure 5.17: Mean volume-weighted average bubble radius (computed through image analysis) as a
function of the effective shear rate for a bubble suspension with the ST2 matrix (¢ = 4.62%) and a
bubble suspension with the ST1 matrix (¢ = 5.8%).

To further compare bubble clustering and alignment phenomena in the ST2 matrix with
those observed in the ST1 and Newtonian matrices, the average coverage for the current
systems was calculated through image analysis, as described in Sec. 5.3.3. Fig. 5.18 presents
the coverage trend for the three visualised bubble suspensions with the ST2 matrix. As shown,
the coverage trend follows a similar decreasing pattern as in Newtonian ambient fluids and the
ST1 matrix, beginning at effective shear rates around 1 s™'. However, in this case, the decrease
in coverage is less pronounced compared to the other two systems. To better highlight the
differences among the coverage trends obtained across the different matrices, the data were
normalised by the plateau value to remove baseline differences and allow for a direct

comparison of the decreasing trends.
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Figure 5.18: Mean coverage as a function of the effective shear rate for bubble suspensions with the
ST2 matrix and ¢, = 2.5%, ¢, = 4.62% and @3 = 7.25%, respectively.
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Fig. 5.19 presents the normalised coverage trends for the ST1 and ST2 matrices, alongside
the Newtonian matrix of Chapter 3. Unlike in the ST1 matrix, the coverage trends for the ST2
and Newtonian matrices almost overlap across different bubble volume fractions, indicating
that the microstructural changes captured by the coverage trend are driven purely by shear and
are not influenced by volume fraction-dependent phenomena, such as coalescence. Moreover,
the slope of the coverage trend for the ST2 matrix is less steep than that of the Newtonian
matrix, suggesting that while shear-induced bubble clustering occurs in the ST2 matrix, this

phenomenon may be weaker compared to Newtonian media.
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Figure 5.19: Normalised mean coverage trends for (a) the ST1 matrix, (b) the ST2 matrix and (c) the
Newtonian matrix studied in Chapter 3. Unlike in the ST1 matrix, the coverage trends for the ST2 and
Newtonian matrices almost overlap across different bubble volume fractions, suggesting that the
captured microstructural changes are driven purely by shear.

The observed difference in the shear-induced bubble clustering between the ST2 matrix and
the Newtonian matrix used in Chapter 3 requires further investigation. A possible explanation
for the less pronounced shear-induced clustering observed here lies in the presence of SDS. As

mentioned earlier, SDS causes long-range electrostatic repulsions between charged bubbles,
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preventing them from coming closer and coalescing. Therefore, it is reasonable to infer that
shear-induced clustering could have been mitigated to some extent owing to these electrostatic
repulsions. The strong impact of electrostatic repulsions on clustering phenomena has been
investigated by Kurz et al. (2021), who reported that the addition of SDS helped disaggregate

flocculated droplets in oil/water emulsions.

On the other hand, Span 80, which was used in the Newtonian matrix in Chapter 3, is a non-
ionic surfactant that prevents bubble coalescence through steric hindrance and not electrostatic
repulsions. The different nature of the surfactants used might explain why addition of Span 80
did not impact shear-induced clustering as SDS did. While this provides a reasonable
explanation for the differences in the flow curves and coverage trends of the bubble suspensions
with the ST2 matrix, additional mechanisms may also contribute to these trends. It is important
to highlight that the suspensions in this study behave as crowded systems with dispersed-phase
interactions that potentially impact their behaviour under shear, including clustering/alignment
phenomena. Therefore, further experimental work with varying bubble volume fractions and

different concentrations of Carbopol and SDS is needed to validate these arguments.

5.5 Conclusions

This chapter explores the effect of matrix rheology on the rheological behaviour of bubble
suspensions. To this end, two different shear-thinning inelastic matrices were investigated: (i)
a 0.5% wt Carbopol dispersion in a 30/70 wt PEG400/glycerol mixture (ST1 matrix), and (ii)
a 0.55% wt Carbopol dispersion in a 30/70 wt PEG400/glycerol mixture containing 35mM
SDS (ST2 matrix). Dilute bubble suspensions with these matrices and varying bubble volume
fractions were prepared and tested through steady-shear rheological tests and rheo-optical
experiments. The viscosity data obtained for both types of bubble suspensions and their
respective matrices were fitted to a simplified Carreau-Yasuda equation to assess the impact of
bubbles on the shear-thinning behaviour of the matrix. The fitting results indicated that in both
cases, the presence of bubbles amplified the shear-thinning behaviour of the matrix, as
evidenced by the reduced flow index values of the suspensions. Additionally, the steady-shear
rheological tests and rheo-optical experiments provided insights into the effect of matrix

composition on the suspension microstructure and the behaviour of bubbles under shear.

Specifically, for the bubble suspensions with the ST1 matrix, the flow curves exhibited the
characteristic double decay of relative viscosity, a trend also observed in bubble suspensions

with Newtonian ambient fluids. However, in this case, the trend was shifted to average capillary
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numbers (< Ca >) that were an order of magnitude lower than the < Ca > values at which the
double decay was observed in bubble suspensions with Newtonian media. Moreover, the zero-
shear viscosities of these suspensions were significantly higher than the predictions of the
classic Taylor equation. Instead, the data were well described by the Mooney equation, if one
treats the suspensions as having a single dispersed phase with volume fraction equal to the sum
of the volume fractions of the swollen Carbopol microgels and of the bubbles. This alignment
with the Mooney equation, which accounts for crowding effects and their impact on viscosity,
indicates that the suspensions behave as crowded systems with interactions between the two

dispersed phases.

To further investigate the shift of the double viscosity decay to smaller < Ca > values and
explore potential bubble coalescence, clustering and alignment phenomena, the suspensions
were visualised under shear. The visualisation confirmed significant bubble coalescence, which
was followed by alignment and clustering of the coalesced bubbles potentially due to wall
effects and bubble confinement within the parallel plate gap. These microstructural changes
emerged within the shear rate range of approximately 1 s™ to 10 s™! (corresponding to < Ca >
values of order of magnitude 0.01), where the first relative viscosity drop was observed. As the
shear rate and, in turn, the average capillary number increased further, these phenomena
intensified, giving rise to dynamic structures composed of larger, coalesced bubbles that moved
collectively under shear. At higher shear rates, toward the upper end of the tested range,
deformation of the larger bubbles also became evident. This sequence of interconnected
phenomena, including coalescence, the formation of dynamic clusters of coalesced bubbles,
and their eventual deformation, was associated with the second viscosity drop, observed at <
Ca > values of order magnitude 0.1. The pronounced bubble coalescence phenomena likely
stem from the shear-thinning nature of the fluid, which promotes faster drainage of the fluid
film between colliding bubbles, and the absence of surfactants, which could otherwise help
stabilise bubble interfaces. The causes of earlier bubble deformation at lower capillary numbers

(order magnitude 0.1) require further investigation.

The flow curves for the bubble suspensions with the ST2 matrix exhibited distinct
differences from those corresponding to the ST1 matrix. Specifically, instead of a double
relative viscosity decay, a single decay was observed, occurring over a range of average
capillary numbers between approximately 0.01 to 1. This indicates that the addition of SDS
significantly altered the bubble-matrix dynamics. Additionally, Carbopol microgels swelled

less in the presence of SDS, reducing the effective volume they occupy within the suspension.
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Although this reduced swelling likely lessened crowding effects, the zero-shear viscosities of
the suspensions remained in good agreement with the predictions of the Mooney equation,
indicating that crowding effects and interactions between the two dispersed phases were still

present.

To further investigate the absence of the double relative viscosity decay in the bubble
suspensions with the ST2 matrix, the suspensions were also visualised under shear. The rheo-
optical experiments confirmed that the addition of SDS effectively mitigated coalescence
phenomena. As a result, no secondary clustering involving larger, coalesced bubbles were
observed, unlike in the ST1 matrix. This marks a key difference in the microstructural evolution
of the two systems under shear, which is also reflected in their coverage trends. The trends
corresponding to the suspensions with the ST1 matrix exhibited a steeper decrease and a more
complex shape compared to those with the ST2 matrix, influenced by the more intricate and

interrelated microstructural changes occurring in the former.

Furthermore, rheo-optical observations for the ST2 matrix indicated that at < Ca > values
in the range 0.01 to 0.1, where the relative viscosity started to drop, bubbles tended to align or
move closer together to form clusters, resembling the shear-induced clustering observed in
Newtonian media. No appreciable bubble deformation was observed throughout the course of
the rheo-optical experiments, suggesting that this may be the reason why a second drop in
relative viscosity was not observed at < Ca > values closer to 1, as in the case of the bubble
suspensions with the Newtonian ambient fluid studied in Chapter 3. Statistical image analysis
further revealed that shear-induced bubble clustering and alignment in the suspensions with the
ST2 matrix were less pronounced than in bubble suspensions with the Newtonian ambient
fluid. This difference likely arises from the distinct mechanisms of the surfactants used in the
two systems. Specifically, SDS induces electrostatic repulsions that prevent bubbles from
getting closer together, thereby reducing shear-induced clustering to some extent. In contrast,
Span 80, which was used in the Newtonian matrix of Chapter 3, prevents coalescence through

steric hindrance and, therefore, does not affect bubble clustering and alignment.

These findings demonstrate the profound effect of matrix composition on the rheology of
bubble suspensions. The presence of an additional dispersed phase (Carbopol microgels) led to
crowding effects that had a direct influence of the zero-shear viscosity of the suspensions.
Furthermore, the inclusion of a strong anionic surfactant like SDS in the matrix significantly

alters the microstructural phenomena under shear and the resulting rheological trends.
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Although the experimental results obtained in this study provide a foundation for better
understanding the behaviour of bubble suspensions with shear-thinning inelastic matrices, they
also highlight that even small changes to matrix composition, such as the addition of surfactant,
can significantly impact rheological trends. Therefore, further research with varying matrix
compositions is needed to validate the rheological behaviour of these systems and elucidate the

intricate interplay between bubbles and the matrix.
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Chapter 6

Conclusions and future work

The primary objective of this research was to systematically investigate the influence of
bubbles on the rheological properties of matrices with increasing complexity, from simple
Newtonian fluids to non-Newtonian shear-thinning matrices relevant to oral health
formulations. The study was directly motivated by industrial challenges in the manufacturing
of non-aqueous toothpaste formulations, particularly the entrapment of bubbles due to the high-
shear mixing process, which has been shown to alter the flow properties of the formulation.
The presence of bubbles has been associated with stringiness in the product and inconsistencies
in the filling process, ultimately affecting both product quality and manufacturing efficiency.
Despite the clear impact of bubbles on formulation behaviour, their influence on the rheology
of the matrix remained poorly characterised, necessitating a systematic investigation to
quantify their effects and develop a better understanding of the mechanisms governing the
rheological behaviour of aerated formulations. Beyond its industrial significance, this research
also addresses a critical literature gap in the field of complex fluid rheology, providing reliable
experimental data to validate existing rheological models for bubble suspensions. Although
prevalent both in nature and industrial applications, the rheology of bubble suspensions has
been significantly less explored compared to particle suspensions and emulsions. Key aspects
such as the role of polydispersity, the behaviour of suspension microstructure under shear, and
the interplay between bubbles and fluid matrix rheology remain poorly understood, making it

difficult to predict the behaviour of bubble suspensions in practical applications.

The first aspect was addressed in Chapter 3, which examined the steady-shear viscosity of
semi-dilute polydisperse bubble suspensions in a Newtonian ambient fluid consisting of
mineral oil and Span 80 (surfactant). The study systematically explored the role of
polydispersity in determining suspension viscosity. Theoretical calculations demonstrated that
polydispersity has a negligible effect on viscosity unless the bubble size distribution is bimodal,
with very small and very large bubbles having comparable volume fractions. In most practical
conditions, where bubble sizes follow a gamma-type distribution, polydisperse suspensions can
be approximated as monodisperse systems with an equivalent volume-weighted average
diameter. To validate these theoretical predictions, steady-shear rheological experiments were

performed to obtain the flow curves of the tested suspensions. The results revealed an
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unexpected double power-law decay in relative viscosity, spanning a capillary number < Ca >
range between 0.01 and 1, a phenomenon that could not be attributed to polydispersity. This
indicated that mechanisms other than bubble size distribution were influencing the rheological
behaviour of the suspensions. Further investigations using rheo-optical experiments confirmed
that the first viscosity drop was associated with the shear-induced formation of bubble clusters
and threads, while the second drop was linked to bubble deformation at higher shear rates.
These findings highlight the previously unaccounted role of microstructural evolution under
shear in defining the viscosity trends of bubble suspensions, revealing a new shear-thinning
mechanism that had not been validated experimentally before or considered in theoretical

models.

Chapter 4 extended the investigation to the linear viscoelastic properties of semi-dilute
polydisperse bubble suspensions in Newtonian matrices, combining small-amplitude
oscillatory shear (SAOS) tests with rheo-optical visualisation. This approach allowed for a
more reliable assessment of how bubble size distribution and potential measurement artifacts
—such as bubble rise, coalescence, and changes in suspension microstructure over time—
influence viscoelastic properties. SAOS rheological tests with a pre-shear stage of 3 min at 0.1
s'! showed that at high dynamic capillary number (< Cd >) values, the experimental G’ values
were in good agreement with the predictions of the classic Jeffreys model. However, at lower
< Cd > values, deviations emerged, with measured G’ exceeding theoretical predictions,
suggesting the presence of additional relaxation mechanisms beyond those captured by the
model. These discrepancies were more pronounced in denser suspensions, indicating that the
underlying phenomena responsible for the observed deviation become more prominent as
bubble volume fraction increases. SAOS rheo-optical experiments and image analysis further
revealed that the suspension microstructure remained stable during measurements, ruling out
potential measurement artifacts, including bubble rise, coalescence, and microstructural

evolution during testing, as causes for the observed G’ deviations.

Instead, the deviations were linked to bubble fluid dynamic interactions induced by the
initial spatial distribution of the bubbles on the rheometer plate before the initiation of the
SAOS measurements. These interactions led to complex relaxation phenomena that became
evident at longer characteristic flow times. To assess whether stronger and more prolonged pre-
shearing could mitigate these effects, additional SAOS measurements were performed using
an extended pre-shear stage. The results showed that in dilute suspensions, more intense and

prolonged pre-shearing reduced deviations, bringing experimental G’ values closer to
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theoretical predictions. However, at higher bubble concentrations, pre-shearing had no
significant effect on the experimental G’ values. Further validation of the bubble fluid dynamic
interactions and the associated relaxation phenomena was provided by fitting a multi-mode
Jeffreys model to the experimental data. The fitting results confirmed that bubble fluid dynamic
interactions induce a complex relaxation process involving multiple relaxation modes, the
number of which increases as bubble volume fraction rises. Overall, this study bridged a gap
in the literature by providing reliable experimental SAOS data for bubble suspensions in
Newtonian media, investigating the effects of potential measurement artifacts on viscoelastic

trends, and elucidating the complex relaxation behaviour of these systems.

Building on the findings from Chapters 3 and 4 on the rheology of bubble suspensions with
Newtonian matrices, Chapter 5 extended the investigation to non-Newtonian ambient fluids,
specifically examining how shear-thinning inelastic matrices influence the flow behaviour of
bubble suspensions. Two different matrices were studied: a pure Carbopol dispersion (ST1
matrix) and a Carbopol dispersion containing SDS—an anionic surfactant (ST2 matrix).
Steady-shear rheological tests and rheo-optical experiments were conducted to examine how
matrix composition affects suspension microstructure under shear and, in turn, the rheological
behaviour of these systems. The results showed that in both cases, bubbles amplified the shear-
thinning behaviour of the matrix. However, significant differences emerged between the two

matrices in terms of bubble coalescence, clustering, and suspension viscosity trends.

For the bubble suspensions generated with the ST1 matrix, the flow curves exhibited a
double relative viscosity decay, similar to the trend observed in Newtonian ambient fluids but
shifted to an order of magnitude lower capillary numbers (< Ca >). Additionally, the zero-
shear viscosities of the tested suspensions were significantly higher than those predicted by the
classic Taylor equation. Instead, they were well described by the Mooney equation, if one treats
the suspensions as having a single dispersed phase with a volume fraction equal to the sum of
the volume fractions of the swollen Carbopol microgels and the bubbles. This highlights the
influence of crowding effects in the system, suggesting that interactions between the two
dispersed phases contribute to the rheological behaviour of the suspensions. Rheo-optical
visualisation confirmed significant bubble coalescence, followed by alignment and clustering
of the coalesced bubbles, likely due to wall effects arising from the substantial increase in
bubble size, to the extent that larger bubbles began experiencing confinement within the
parallel plate gap. These microstructural changes started becoming evident at shear rates

between 1-10 s7! (< Ca > ~ 0.01), aligning with the first viscosity drop. As shear increased
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further, these phenomena intensified, leading to the formation of dynamic clusters of coalesced
bubbles moving collectively under shear. Toward the upper end of the tested shear rate range,
deformation of these larger bubbles also became apparent. This progressive build-up of bubble
coalescence, clustering, and eventual deformation contributed to the second viscosity drop,
observed at < Ca > values on the order of 0.1. The enhanced bubble coalescence observed in
these systems is likely driven by the shear-thinning nature of the matrix, which has been shown
to contribute to faster fluid drainage between colliding bubbles, and the absence of surfactants,
which could otherwise stabilise bubble interfaces and mitigate such phenomena. Although
crowding effects may be linked to the earlier onset of bubble deformation at < Ca > ~0.1 ,

the precise mechanisms responsible remain unclear and require further investigation.

The flow behaviour of bubble suspensions with the ST2 matrix differed significantly from
that of the ST1 systems. Instead of a double relative viscosity decay, a single decay was
observed, occurring over < Ca > values of approximately 0.01 to 1, indicating that the
presence of SDS significantly altered the microstructural evolution of the suspensions under
shear. Additionally, Carbopol microgels swelled less in the presence of SDS, reducing the
effective volume they occupied. Although this likely lessened crowding effects compared to
the ST1 matrix, zero-shear viscosities remained in good agreement with the Mooney equation,
indicating that interactions between bubbles and the dispersed Carbopol microgels were still
present. Rheo-optical visualisation revealed that the addition of SDS effectively mitigated
bubble coalescence. As a result, no secondary clustering involving larger, coalesced bubbles
was observed, unlike in the ST1 suspensions. In the shear rate range of 1-10 s (< Ca > ~
0.01), where the onset of the relative viscosity drop was observed, bubbles tended to align or
move closer together due to shear, similar to the behaviour observed in the bubble suspensions
with a Newtonian ambient fluid in Chapter 3. No significant bubble deformation was observed
throughout the tested shear rate range, suggesting that the observed drop in relative viscosity
for the ST2 suspensions can be attributed to shear-induced bubble clustering, and explaining
the absence of a second viscosity drop at < Ca >= 0.1, as observed in the Newtonian system.
Further statistical image analysis showed that shear-induced bubble clustering and alignment
were less pronounced in the ST2 matrix compared to the Newtonian ambient fluid of Chapter
3. This was attributed to the distinct stabilisation mechanisms of the surfactants used in the two
systems. SDS induced electrostatic repulsions, preventing to some extent bubbles from coming
closer together and reducing shear-induced clustering, whereas Span 80, used in the Newtonian

matrix, stabilised bubbles via steric hindrance but did not inhibit clustering or alignment.
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The findings of Chapter 5 highlight the profound effect of matrix composition on the
rheology of bubble suspensions. The presence of an additional dispersed phase (Carbopol
microgels) introduced crowding effects that strongly influenced suspension viscosity, while the
addition of SDS significantly altered microstructural effects under shear, reducing shear-
induced bubble clustering and preventing bubble coalescence. This study provides a foundation
for understanding the rheology of bubble suspensions with shear-thinning inelastic matrices,
but it also underscores the sensitivity of rheological trends to even small changes in matrix

composition.

6.1 Future work

While this research has provided valuable insights into the rheological behaviour of bubble
suspensions across different fluid matrices, several open questions remain, paving the way for
further investigation. Future work should focus on expanding the current findings by further
exploring the influence of matrix composition and microstructure on suspension rheology,
investigating the linear viscoelastic behaviour of bubble suspensions with more complex non-
Newtonian matrices, and building a deeper understanding of shear-induced phenomena and
bubble coalescence in flow for both Newtonian and more complex systems through advanced

microscopic and rheo-optical techniques.
Effect of matrix composition and microstructure on suspension rheology

The findings of Chapter 5 demonstrated that even small changes in matrix composition can
have a significant impact on the rheology of bubble suspensions, highlighting the importance
of matrix-specific microstructure. The comparison between two shear-thinning Carbopol
matrices—one containing SDS and one without—revealed substantial differences in bubble
coalescence, shear-induced clustering/alignment, and the resulting relative viscosity trends.
This underscores the need for further investigation into how variations in matrix composition
influence suspension behaviour and whether certain rheological trends can be generalised
across different shear-thinning systems. Building on these findings, a key avenue for future
work would be to systematically investigate the effects of varying Carbopol and SDS
concentrations to assess how these fundamental matrix components influence suspension
rheology. Increasing Carbopol concentration is expected to induce yield stress and elasticity
effects (Migliozzi et al., 2020), introducing behaviours that could fundamentally alter bubble
deformation, clustering, coalescence, and consequently, the resulting suspension flow

properties. Similarly, since SDS was shown to directly influence shear-induced bubble
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clustering and alignment, exploring how the system behaves across different SDS
concentrations would provide critical insight into the interplay between surfactant-induced

interfacial forces and the evolving suspension microstructure.

Beyond variations in Carbopol and SDS concentrations, a broader exploration of different
shear-thinning matrices and surfactant types is also necessary to determine whether the
observed flow phenomena are intrinsic to the specific microstructure of the tested matrices or
whether they represent more general trends in bubble suspensions with shear-thinning ambient
fluids. Understanding how different formulation components influence aerated suspension
rheology would aid in developing more robust design principles for complex formulations,
ensuring consistent rheological properties across product lines. By systematically disentangling
the effects of matrix composition, microstructure, and surfactant properties, future research
could provide a more predictive framework for the flow behaviour of bubble suspensions in

complex fluids.
Viscoelastic behaviour of bubble suspensions in non-Newtonian matrices

A logical extension of this work would be to investigate the linear viscoelastic properties of
bubble suspensions in non-Newtonian matrices, expanding on the steady-shear characterisation
conducted in Chapter 5 and complementing the SAOS experiments performed for Newtonian
systems in Chapter 4. As demonstrated in Chapter 4, bubble fluid dynamic interactions induced
by the spatial distribution of bubbles at the microscale led to complex relaxation phenomena,
even in Newtonian matrices. These interactions resulted in multi-mode relaxation behaviour,
which became more pronounced as bubble volume fraction increased. Given that non-
Newtonian matrices already exhibit intricate relaxation dynamics, the introduction of bubbles
adds another level of complexity, potentially leading to interactions between matrix and
dispersed phase relaxation mechanisms that cannot be easily predicted. This is further
supported by the findings in Chapter 5, where steady-shear rheological experiments revealed
that microscale interactions between bubbles and the Carbopol matrix played a critical role in

shaping the suspension flow behaviour.

It would therefore be of great interest to investigate how these interactions manifest in the
linear viscoelastic regime and whether they give rise to new viscoelastic mechanisms that are
absent in Newtonian systems. A systematic study using small-amplitude oscillatory shear
(SAOS) tests combined with rheo-optical analysis would provide essential experimental data

to address the current gap in the viscoelastic characterisation of bubble suspensions,
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particularly in non-Newtonian matrices. While some non-linear viscoelastic data, such as
normal stress differences, have been reported for bubble suspensions in non-Newtonian
matrices (Torres et al., 2013, 2015), SAOS data remain largely unavailable. However, since
SAOS measurements directly capture microstructural relaxation dynamics, which govern flow
behaviour under shear, obtaining such data would be invaluable for advancing both theoretical

understanding and industrial applications.
Enhancements to the rheo-optical setup for advanced microstructural analysis

Across the different result chapters of this thesis, it became evident that microstructural
evolution under shear plays a fundamental role in determining the rheological behaviour of
bubble suspensions. Rheo-optical experiments provided valuable insights into bubble
coalescence and shear-induced clustering and alignment, revealing complex microstructural
rearrangements that directly influenced suspension flow properties. However, the current
optical setup presents several limitations that hinder a more detailed and quantitative
understanding of these processes. One of the main limitations was slip at the transparent
rheometer plate, which led to lower torque measurements compared to those obtained with
standard rheometric plates. As a result, simultaneous bulk rheological measurements and direct
visualisation of the same sample were not possible, requiring separate experiments for each.
Additionally, the resolution of the acquired images was insufficient for advanced image
analysis, limiting the ability to track individual bubble clusters, quantify cluster sizes, and fully

resolve microstructural evolution in three dimensions.

To overcome these constraints, future work should focus on employing more advanced rheo-
optical techniques to gain a comprehensive understanding of microstructural evolution in flow.
A key improvement in the current setup would be plasma treatment of the transparent
rheometer plate, which could effectively reduce slip phenomena while maintaining optical
transparency. Plasma treatment modifies surface properties by generating highly energetic
ionised gases that alter surface chemistry and roughness without introducing physical damage.
This method has been shown to increase surface roughness, thereby enhancing interfacial
friction and minimising wall slip (Ma et al., 2023), allowing for a more accurate assessment of
bulk rheological properties while still preserving transparency for real-time microstructural
visualisation. Additionally, because plasma treatment is an inert and contamination-free
process, it does not introduce any surface residues or reactive compounds that could interfere

with suspension microstructure or rheological measurements (Ma et al., 2023).
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Beyond transparent plate modifications, the integration of confocal rheometry would
provide a direct correlation between local microstructural evolution and bulk rheological
response. This technique integrates a laser scanning confocal microscope with a stress-
controlled rheometer, enabling high-resolution 3D imaging alongside simultaneous stress and
strain measurements (Dutta et al., 2013). By providing real-time, depth-resolved imaging, it
allows direct observation of microstructural dynamics—such as bubble clustering, alignment,
and coalescence—and their influence on the material’s bulk viscosity and elasticity. Confocal
rheometry has been successfully applied to study colloidal suspensions and complex fluids
(Cheng et al., 2011), and its application here would allow for quantitative microstructural
analysis beyond what was possible in this study, including tracking bubble trajectories,
measuring cluster size distributions, and analysing structural evolution over time. These
enhanced imaging capabilities would provide a more complete picture of the dynamic
processes governing bubble suspension microstructure under shear and their impact on the
system’s rheological response, ultimately improving rheological models for bubble
suspensions and aiding the development of more robust, controlled, and scalable industrial

formulations.
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Appendix A

Supporting Information to Chapter 3

Al. Propeller Aerator Design Schematics

This section presents detailed design schematics of the custom-built aeration device
developed in-house for generating the bubble suspensions used in this thesis. The initial design
incorporated 10 pm porous ceramic filters, which were later replaced with 2 pm filters to

produce smaller bubbles and thereby more stable suspensions.

6 1 2 1 4 &7 1 2 1 1

306,00

Load Torque 19.61N x 0.019898 = 0.39Nm
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Fig A. 1: 3D design and dimensions of the custom aeration device for bubble suspension generation.
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Fig A. 2: Multi-view schematics of the custom aeration system. Front, side, and top views show the
location of key components.
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Fig A. 3: Design schematic of the aeration blade used in the custom aeration device. The part was
designed for 3D printing to allow customisation with different disc configurations for experimental
variations.
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A2. Characteristic Microscope Image

This section presents a representative bright-field microscope image of a generated bubble
suspension, acquired with a Zeiss Axio Observer 5 microscope (10x Plan-Apochromat
objective). The image corresponds to a suspension with a gas volume fraction of ¢ = 4.2 %,
illustrating the typical gamma-type bubble size distribution produced with the custom aeration

device.

250 pm

Fig A. 4: Bright-field image (10x magnification) acquired with a Zeiss Axio Observer 5 microscope.
The sample corresponds to a suspension with ¢ = 4.2 %, showing uniformly dispersed bubbles used for
rheological testing.

A3. Weissenberg — Rabinowitch Correction

This section describes the Weissenberg-Rabinowitsch correction, applied to the raw steady
shear data obtained with a parallel plate rotational rheometer. Let us consider a rotational

parallel plate rheometer with diameter R, gap h, and a constant rotational speed Q.
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Fig A. 5: Schematic of a parallel plate rheometer.

Regardless of the rheological properties of the fluid between the parallel plates, the shear

rate y in the fluid volume is not uniform, but changes radially as follows:

yar) ==r (A1)

The torque M required to move the upper plate is the product of the surface integral of the local
viscous force exerted on a single fluid element, and its distance r from the centre of the plate

(Macosko, 1994).
R R 2 R 5 .
M= [ 2rrdri,y v = [ 2nritedr = [ rPn()ydr (A2),
where 71(r) is the viscosity at any value of'r.

Since both n(r) and y,. are bijective functions of r, the integration variable in Eq. A2 can be

changed from r to y as follows:

r=fmM =210 =2 (A3)

Substituting Eq. A3 into Eq. A2, we obtain:

2nR3 Vg . .
M === [ )5y ndy (A4),
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. OR . .. .
where yp = — 1s the shear rate at the edge of the plate. To eliminate the integral, we

differentiate both sides by y using the Leibnitz rule:

(L) y® = [TEpindy (AS)

27R3

L[( z ))’@-3] = ZE%(W’IMYM(YE)VE (A6)

dyg L\27R3

The first term on the right-hand side of Eq. A6 is equal to zero. After rearranging and deriving
both terms for Y, we obtain Eq. A7 for the steady shear viscosity measured in a parallel-disk

rheometer:

M(3+le‘M)
dyg
2R3y g

n(ye) = (A7)

Therefore, by plotting the curve of M versus the effective shear rate (i.e the shear rate at the
edge) yg, we can evaluate the ratio dInM /dyy, as the local slope (n) of the graph plotted in log-

log scale, and re-construct the true viscosity curve.

In contrast, if this correction is not applied, the apparent viscosity is overestimated by assuming
a uniform shear rate across the plate radius. The fractional error eliminated by the Weissenberg—
Rabinowitsch correction can be expressed as (1 —1yp)/n =5/(3 +s), where s =
dln M/dIn yg represents the local slope of the log—log torque—shear rate relationship. For the
present measurements, the slope ranged from s = 0.77-1.00, corresponding to an error
reduction of approximately 20-25%. Neglecting the correction would therefore lead to a
comparable underestimation of the true viscosity, while applying it ensures accurate evaluation

of the shear-dependent viscosity of the bubble suspensions.
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Appendix B

Supporting Information to Chapter 4

B1. Rheological characterisation of the ambient fluid

To ensure that the rheology of the ambient fluid did not affect the observed viscoelastic
trends, a rheological characterisation of the matrix, i.e., of the mixture of mineral oil and span
80, was conducted. Fig. B.1 presents the flow and viscoelastic curves. As shown, the viscosity
remains constant as the shear rate varies. Observing the G’ curve, the influence of both inertia
effects (at high frequency) and low torque issues (at low frequency) becomes evident.
Nonetheless, within the range of reliable G’ data, the measured values are consistently three
orders of magnitude lower than the corresponding G values. This indicates that, within the
tested frequency range, the response of the ambient fluid is predominantly viscous.
Additionally, Fig. B.2 reports the G’ curves of the suspensions detailed in Sec. 4.3.2 in
comparison to the G’ curve of the matrix. As seen, even for the most dilute bubble suspension,
the measured G’ values are one order of magnitude larger than those of the matrix. This
difference amplifies with increasing bubble volume fraction. Consequently, the elastic
contribution of the matrix appears to be negligible and cannot account for the viscoelastic

trends observed for the bubble suspensions.
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Figure B.6: (a) Viscosity as a function of shear rate. (b) Viscoelastic moduli of the ambient fluid
(mixture of mineral oil and span 80).
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Figure B.7: G’ values of the matrix (mixture of mineral oil and span 80) compared to G’ values of the
tested suspensions.

To determine whether the presence of span 80 in the ambient fluid affected the observed
viscoelastic trends, SAOS measurements were conducted using a bubble suspension with pure
mineral oil (n = 63.571 Pa- s at 20 °C) as the ambient fluid. Note that this is not the same
mineral oil employed in the mixture, but a more viscous one. The viscoelastic response of the
pure mineral oil, depicted in Fig. B.3a, closely resembles that of the mixture of mineral oil and
span 80. The measured G'' values once again exceed the corresponding G’ values by three
orders of magnitude, suggesting that the addition of span 80 does not affect the overall matrix

response.

The rationale behind incorporating span 80 into the ambient fluid lies in its ability to reduce
the exceptionally high viscosity of the pure mineral oil, which presented challenges in
generating bubble suspensions with varying bubble volume fractions. In contrast, the mixture
of mineral oil and span 80 offers a suitable viscosity, facilitating the production of stable

suspensions with minimal bubble rise during the measurements.

Fig. B.3b shows the viscoelastic curves of a bubble suspension with ¢ = 9.2% and pure
mineral oil (n =63.571Pa-s at 20 °C) as ambient fluid, obtained through SAOS
measurements with decreasing oscillation frequency and after 3 min of pre-shear at 0.1 s™'. It
is evident that the characteristic G' shoulder at low (Cd) values is present regardless of the

ambient fluid, indicating that the observed trends are not system-specific.
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Figure B.8: (a) G', G" for pure mineral oil (n=63.571 Pa-s at 20 °C). (b) G', G, 4 for a bubble suspension
with ¢ = 9.2% and pure mineral oil (n=63.571 Pa-s at 20 °C) as ambient fluid.

Finally, to investigate potential degradations and/or reactions during high-shear mixing that
could affect the viscoelastic behaviour of the ambient fluid, the viscoelastic moduli of the
aforementioned pure mineral oil were measured before and after aeration. The results,
presented in Fig. B.4, indicate that the viscoelastic response of the matrix is unaffected by high-
shear mixing. All the findings discussed thus far confirm that the rheology of the matrix is not

responsible for the characteristic G shoulder observed at low (Cd) values.
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Figure B.9: Viscoelastic curves for pure mineral oil (n=63.571 Pa-s at 20 °C) obtained before and after
high-shear mixing.

B2. Strain sweep experiments to determine the limits of the linear viscoelastic
regime
As mentioned in Sec. 4.2.2, strain sweep experiments were performed to determine the

limits of the linear viscoelastic regime. Fig. B.5 presents the G' and G"' curves obtained for a
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bubble suspension with ¢ = 9.5% at w; = 0.56 rad/s, w, = 1 rad/s and w3 = 10 rad/s. As
seen, both viscoelastic moduli are constant over the examined range of applied strain,

suggesting that any strain value within this range is appropriate for the SAOS measurements.
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Figure B.10: Strain sweep tests to determine the limits of the linear viscoelastic behaviour.

B3. Reliability of SAOS data at low oscillation frequencies

This section evaluates the reliability of the SAOS data discussed in Sec. 4.3.2.
B3.1 Minimum torque limit

To ensure reliable G' and G, data in the low oscillation frequency range, it is essential to
verify that the measured torque is above a minimum limit. According to (Ewoldt, Johnston and

Caretta, 2015), the minimum acceptable G’ and G,.,; values for a material tested in a parallel

plate rheometer are given by:

=F‘L'Tmin (Bl)

G
min Yo

14

where G, refers to either G’ or G,,y4, E, = #, with R being the radius of the plate, T, 1S

the minimum torque in oscillation as specified by the instrument manufacturer, and y, is the

strain amplitude.

For the current measurements, which were performed in the Anton Paar MCR302 stress
control rheometer, R is equal to 20 mm, T,y,;, is equal to 0.5 nN m, and y, is equal to 5%.

Substituting these quantities into Eq. 1 yields:

Gmin = 7.96 % 10™* Pa s (B.2)
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The limit of G,,,;, has been included in all graphs presenting experimental values of G’ and

G,,q. As shown in Fig. 4.2, all reported measurements are above the G,;, limit.

B3.2 Phase angle resolution issues at low frequencies

To address potential phase angle resolution issues at low frequencies that could impact the
rheological data, the method presented by (Velankar and Giles, 2007) was implemented. A
bubble suspension with volume fraction ¢ equal to 3.1% was generated, and strain sweep tests
were performed at different frequencies. For each frequency, the measured values of tand were
plotted as a function of the applied strain amplitude. Fig. B.6 presents indicative results of the
strain sweep tests at oscillation frequencies w; = 3 rad/s and w, = 0.302 rad/s. As observed,
at sufficiently high strain amplitudes, tand plateaus. However, for each oscillation frequency,
there is a minimum value of the applied strain amplitude, y,,in, below which tand deviates
from the plateau, indicating the onset of phase angle resolution issues. This aspect should be
investigated, inasmuch as it might lead to inaccuracies during SAOS experiments, where the

applied strain amplitude is usually fixed throughout the whole range of the tested frequencies.

In the SAOS experiments reported in Chapter 4, a fixed strain amplitude y, of 5% was used.
To ensure that this strain amplitude was appropriate for the lower frequencies considered, the
minimum strain amplitude y,,;, at each frequency was identified from the strain sweep tests.
Then, the y,,;, values were plotted versus the values of the respective oscillation frequencies,
generating the diagram reported in Fig. B.7. This graph illustrates the instrumental limitations
related to measuring phase angles. As shown, for w = 0.107 rad/s, Y in 1s 5%, indicating that
the chosen strain amplitude is within the acceptable limits for w > 0.107 rad/s. This suggests
that in this frequency range the SAOS data are not influenced by phase angle resolution issues,

and that the reported viscoelastic trends (Figs. 4.2 and 4.6) can be trusted.
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Figure B.11: Strain sweep measurements at two different frequencies. The horizontal dashed lines
indicate the high-strain plateau of tand at w = 0.302 rad/s, considering +/- 5% error limits. The vertical

dashed line indicates the minimum value of the strain amplitude, y,,;,, required for reliable phase angle
measurements.
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Figure B.12: Minimum strain amplitude, ¥,,i, as a function of the oscillation frequency.

B4. Percent G’ deviation versus bubble volume fraction

The deviation of G’ observed at lower frequencies in the experiments described in Chapter
4 is not the same for all tested samples. As shown in Fig. 4.3, denser suspensions demonstrate
two main effects: (i) a shift of the G’ deviation towards higher values of the dynamic capillary
number (Cd), and (ii) a larger absolute deviation of G’ from the theoretical predictions. To

further clarify this point, Fig. B.8 presents the percent G’ deviation as a function of (Cd) for

the two extreme bubble volume fractions: ¢; = 4.2% and ¢, = 19.2%.
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Figure B.13: Percent G’ deviation at low dynamic capillary number for ¢, = 4.2% and ¢, = 19.2%.

As illustrated, within the same low range of (Cd), the experimental values of G' deviate
more from the theoretical predictions at higher bubble volume fraction, the densest suspension
deviating almost twice as much compared to the most dilute one. Additionally, for the smallest
volume fraction (¢, = 4.2%), the findings indicate that applying stronger and more prolonged
pre-shearing results in a closer similarity with the theoretical predictions, the percent deviation
of G’ being almost five times smaller than that at milder pre-shearing. This suggests that — for
such a dilute suspension — pre-shearing affects the spatial bubble distribution as well as the
average inter-bubble distance, resulting (for stronger/longer pre-shearing) in weaker fluid
dynamic interactions and a smaller deviation between experimental data and theoretical

predictions.

BS. Theoretical analysis on polydispersity

This section provides a theoretical analysis of the effect of polydispersity on the linear
viscoelastic moduli of semi-dilute bubble suspensions. In this analysis, a bubble suspension
composed of a mixture of mineral oil and 5% w/w span 80 was considered, with a bubble
volume fraction of 4.2% and different bubble sizes. The linear viscoelastic moduli of the
suspension were calculated for three different bubble size distributions using the generalised
Jeffreys model (Eq. 4.8). The volume fraction ¢; of the i-th bubble class present in the
suspension was determined using Eq. 3.5. Below, three theoretical scenarios are presented to
examine how different bubble size distributions affect the profiles of the linear viscoelastic
moduli of the corresponding suspensions. For each theoretical example, G' and G,.,; were

plotted as functions of the average dynamic capillary number (Cd).
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B5.1 Scenario 1 - Bimodal distribution (Ry = 10 um, R, = 500 um)

The first scenario examines a bidisperse bubble suspension with bubble radii equal to 10 pm
and 500 pm. In this case, the two bubble classes contribute equally to the total bubble volume
fraction (that is, each class accounts for 50% of the total bubble volume), so that the volume-
weighted average radius is equal to 255 um. Calculating G and G, for this suspension yielded

the curves of Fig. B.9.

This example reveals a complex G’ trend, consisting of two distinct modes, each of them
corresponding to a bubble size class. To better understand the effect of polydispersity on the
G’ curve, the average dynamic capillary number can be correlated with the dynamic capillary

number of each size class, as follows:

R;w R) w R; R;
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Oa,B ogap (R) (R
which results in:
_ (R)
(Cd) = - Cd, (A4)
100 T T
® G (¢=4.2%) | '0.00°°°°°
O Glo(@=4.2%) | 000389700
10 L — - -Cd=1 for 10um | o0 © o® OOO
- - -Cd=1for 500um | 007 o®
o0 O)
| 500° o®® |
1F oooooI ooo®® I
© oo° ®
S o°° * E H
g oaf o S |
== ®
9 °® !
o o : .
0.01f o’ | |
® :
o. I
0.001 ¢ | |
" PR | " ..:....I " il .:.......I
0.01 0.1 1 10 100

<Cd>

Figure B.14: G’ and G,,; versus the average dynamic capillary number, for ¢ = 4.2% and bubble
sizes of 10 and 500 microns with z; = z, = 0.5.

For each bubble size class, the transition from viscous to elastic behaviour occurs when the
corresponding dynamic capillary number has unit order of magnitude; when this happens, the

order of magnitude of the average dynamic capillary number is equal to:

(cdy ~ & (B.5)

R;
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According to this, the large bubbles with 500 um radius will demonstrate their
viscoelasticity at (Cd) ~ 0.51, while for the small bubbles with 10 pm radius, this will happen
at (Cd) ~ 25.5. Examining the G’ curve from high to low values of (Cd), it can be observed
that both bubble size classes behave as elastic inclusions at high (Cd) values. At (Cd) = 25.5,
the 10 um bubbles do begin to relax and, as a result, they start behaving as viscous fluids,
causing a decrease in G'. For (Cd) between 0.51 and 25.5, the curve reflects the combined
effect of the viscous response caused by the relaxed 10 um bubbles and the elastic response
originating from the 500 pm bubbles, which have not started relaxing yet. As (Cd) decreases
below 0.51, the larger bubbles start relaxing as well, leading to a further drop in G’ and, in turn,

a prevalently viscous behaviour of the dispersed phase.

This example demonstrates that polydispersity can lead to a more complex viscoelastic
behaviour that entails different relaxation modes, each associated with a bubble size class (via
the associated relaxation time A;). In this case, the relaxation process spans a range of average
dynamic capillary numbers, instead of happening at (Cd) ~ 1. In this context, one cannot model
the viscoelastic behaviour employing a constitutive equation for monodisperse suspensions and
an average bubble diameter, because the different relaxation modes would not appear. Instead,
for a semi-dilute bidisperse bubble suspension with very large and very small bubbles having
equal bubble volume fractions, one must operate as shown, considering each bubble size class
individually, calculating the corresponding viscoelastic moduli (for each bubble size class) by
using the constitutive equations for monodisperse suspensions, and then summing the different

contributions.

B5.2 Scenario 2 - Bimodal distribution (R, = 10 um, R, = 200 um)

This scenario pertains to another bidisperse bubble suspension, with a smaller difference
between the sizes of the two bubble classes, which are 10 um and 200 pm. Similar to the
previous scenario, the total bubble volume fraction is divided equally between the two bubble
classes, so that the volume-weighted average radius is 105 um. Fig. B.10 shows the theoretical
G' and G,.4 curves for this bidisperse suspension. As seen, also in this case the relaxation
process occurs over a wider range of (Cd) values compared to a monodisperse bubble
suspension. Nevertheless, unlike the first example, the range is smaller, between 10 and 0.5.
The first decay of G' happens at (Cd) = 10.5 and reflects the relaxation of the 10 um bubbles,
while the second decay happens at (Cd) = 0.525, reflecting the relaxation of the 200 um

bubbles. The characteristic shape of the G’ curve indicates the presence of two relaxation
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modes; these, however, are less distinct compared to the previous scenario. This suggests that
the effect of polydispersity on the viscoelasticity of bubble suspensions becomes more

pronounced as the difference in the sizes of the bubble classes increases.
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Figure B.15: G', G"..q versus average dynamic capillary number, for ¢ = 4.2% and bubble
sizes of 10 and 200 microns, with z; = z, = 0.5.

B5.3 Scenario 3 — Gamma-type distribution (bubble radii between 20 and 120 um)

This scenario is based on the experimental data from Sec. 4.3.1, where the bubble radii
follow a gamma distribution between 20 pm and 120 um (Fig. B.11a), and the volume-
weighted average radius is equal to 61 pum. In this case, the total bubble volume fraction is not
equally distributed between small and large sizes, as it was in the first two scenarios. Instead,
each size class is assigned a percentage of the total bubble volume fraction. Following the same
method as before, the G" and G,,; curves of Fig. B.11b (black and hollow points, respectively)
were obtained. In contrast to the suspensions previously analysed (scenarios 1 and 2), the cross-
over of the two viscoelastic moduli and, in turn, the relaxation of the dispersed phase happen
at (Cd) ~ 1, a behaviour that resembles that of a monodisperse bubble suspension. This finding
aligns with what is observed in polymer melts, where a polydisperse molecular weight
distribution results in a relaxation time spectrum that can be described by a weighted average
relaxation time (Macosko, 1994). To confirm this, the viscoelastic moduli of a monodisperse
suspension with bubbles of 61 pum radius and 4.2% volume fraction were calculated employing
Eq. 4.7 (Fig. B.11b — black and red curves). As observed, the G’ and G,.,; curves of the two
suspensions are almost identical. Therefore, it can be concluded that polydispersity
significantly impacts the viscoelastic behaviour of a bubble suspension only if the bubble size

distribution is bimodal, with very small and very large bubbles having similar volume fractions
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— a condition that is infrequently encountered in applications. Under typical experimental
conditions, where bubble sizes follow the gamma distribution, polydispersity has negligible
effect and the polydisperse suspension can be regarded as monodisperse with a volume-
weighted average bubble radius. This conclusion aligns with the findings on the effect of

polydispersity on the steady-shear viscosity of bubble suspensions discussed in Sec. 3.2.
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Figure B.16: a) Gamma-type bubble size distribution (20-120 um). b) G' and G4 versus the average
dynamic capillary number for ¢ = 4.2% and bubble sizes following a gamma distribution between 20
and 120 pm.

B6. Further investigation on bubble rise
To further investigate whether G’ increases with time owing to bubble rise, time sweeps
were conducted at certain oscillation frequencies, along with SAOS measurements with

increasing oscillation frequency. The results are presented below.
B6.1 Time sweep experiments

Fig. B.12 presents the time sweep results for a bubble suspension with ¢ = 11%, tested in
the linear regime over 30 minutes at w; = 0.5 rad/s, w, = 1 rad/s and w3 = 15 rad/s. As
shown, G' is constant over time for w, = 1 rad/s and w5 = 15 rad/s. For w; = 0.5 rad/s, an
increase of G’ was observed over time; however, it was minimal. This suggests that bubble rise
had a negligible effect on the experiments, and so it is not responsible for the observed G’

shoulder.
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Figure B.17: Time-sweeps of a bubble suspension with ¢ = 11%.

B6.2 SAOS measurements performed by increasing the oscillation frequency

Fig. B.13a presents an example of experimental G data obtained by both increasing and
decreasing the oscillation frequency for a bubble suspension with mineral oil (n = 63.571 Pa s
at 20 °C) as ambient fluid and ¢ = 9.2%. As shown, the characteristic G’ deviation is present
even in SAOS measurements conducted by ramping up the oscillation frequency — hence
without significant influence from bubble rise. As explained in Sec. 4.6, this deviation reflects
the collective response of bubbles that are in close proximity due to their spatial distribution
after the loading of the samples on the rheometer plate. Fig. B.13b shows an example of the
nonuniform spatial distribution of bubbles after sample loading. This sample corresponds to

the bubble suspension with ¢ = 4.2% discussed in Chapter 4.

As expected, when the SAOS measurements are performed inversely (that is, by ramping
down the oscillation frequency), more time elapses before recording the low (Cd) viscoelastic
data. During this time, bubbles tend to rise, leading to a decrease in the average inter-bubble
distance. Thus, more bubbles interact with their neighbours, which amplifies the G’ deviation.
This observation confirms the claim that bubble rise enhances the G’ deviation slightly but does

not cause it.
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Figure B.18: (a) Experimental G'data obtained by increasing and decreasing the oscillation frequency.
(b) Spatial distribution of bubbles after the loading of a sample with ¢ = 4.2% on the rheometer plate.

B7. Bubble size distributions for different pre-shearing conditions

Fig. B.14 presents the bubble size distributions of the tested suspensions after three minutes
of pre-shearing at 0.1 s™' and 33 minutes of pre-shearing at 0.9 s'. As shown, with stronger and
more prolonged pre-shearing, the bubble radii shift to higher values, while still following a

gamma type distribution.
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Figure B.19: Bubble size distribution after three minutes of pre-shearing at 0.1 s! for (a) ¢; = 4.2%,
(b) ¢, = 13.5% and (c) @3 = 19.2%; bubble size distribution after 33 minutes of pre-shearing at 0.9
s for (d) 1 = 4.2%, (e) ¢, = 13.5% and (f) ¢5 = 19.2%.
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B8. Comparison of the Palierne model’s predictions to the experimental data

As mentioned in Sec. 4.6, the Palierne model was examined to determine whether it can
accurately describe the experimental data, particularly in capturing the characteristic G’
shoulder at lower (Cd) values. The Palierne model describes the complex modulus of a blend

of immiscible fluids, Gp;.pq(w), as follows:

* s 1+3¢pH(w)
Gprena(w) = Gm(w) 120H(@) (B.6a)
with:
H(w) = 4( i )[ZGm(w)+SG (@)]+[G] (@) =G (@)][16Gin (w)+19G] (w)] (B.6b)

40 iz G (@) +G(@) | +[267 (@) 43675 ()] [16G (0)+1967 ()
(=% ; ; ;

where g, g is the interfacial tension between the two fluids, R is the volume-weighted radius
of the inclusions, Gy, (w) and G (w) are the complex moduli of the matrix and of the inclusions,
respectively, while H (w) is the relaxation spectrum.

For the systems descripted in Chapter 4, which consist of two Newtonian fluids, these being
air as the dispersed phase and a mixture of mineral oil and span 80 as the matrix, the following

simplifications can be made:

a) G/ (w) =G/(w)+G/'(w)i=0, since air is a Newtonian fluid and bubbles can be
considered inviscid.
b) Gn(w) = Gp(w) + Gp(w) i =0+ (n,w) i, since the matrix is a Newtonian fluid

with insignificant elasticity and viscosity 1,;,.

Then, Eq. B.6 becomes:

(Z28)—265(w)
with H(a)) = m

1+3<pH(w)

(B.7)

Substituting the expression for H(w) into 1+ 3¢H(w) and 1 — 2¢H, the following

expressions are obtained:

3"’[(%;33) 2Gm(w)] (5+3<0)( A )+(1 ©)6G5 (W)

”aﬁ‘

1+ 3(pH((1)) =1+ 5(—)+6Gm(0)) 5(L)+6Gm(w)

(B.8)
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(Z2E)- 26m(@)] _ (5~ ~20)(Z%E) 1 (6+49)Gin(w)
%a,B

_ _ 29
1=2¢H(w) =1 (—‘B)+6G,*n(a)) 5(—2£)+665m (@)

(B.9)

Substituting Egs. B.8, B.9 and G;,,(w) = (n,,w) i into Eq. B.7, the following expression for

the complex modulus of the blend is obtained:

(5+30) ("2L) (1m )i~ 6(1-0) (1m)?

Gprena(w) = (6+4<p)(nmw)z+(5—2<p)(T') (B.10)
For brevity, the following quantities are introduced:
x=(5+39) (U‘;'ﬁ) (Mnw) ;¥ = 6(¢ = 1) (1)
w=(6+40)(Muw) ; z=(5-2¢) (%)
and the expression becomes:
Ghiena (@) = Ghiena(®) + Gena ()i
e
Whence, Gpeng> Gpiena are obtained as follows:
Ghrena (@) = (:VM;:Z) 80(p(aaﬁ)(nmw>2 (B.12a)

[(5-20)(Z28)] +{(6+49) a2

(ez—yw) _ (m@)[(5+30)(5- z@("“‘*) +(69=6)(6+49) (1 )?]
Gprena(w) = wiig? o (B.12b)
[(5—2<p)(T)] +[(6+40) (1mew)]?

Fig. B.15 compares the experimental profiles of the storage modulus G’ (the same reported
in Fig. 4.2) with the theoretical predictions obtained from the models of Palierne and Jeffreys

for the three volume fractions investigated.
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Figure B.20: Experimental values vs theoretical predictions of G'using Jeffreys and Palierne models
for polydisperse bubble suspensions with (a) ¢; = 4.2%, (b) ¢, = 13.5% and (c) ¢3 = 19.2%.

As shown, the G’ predicted by the Palierne model qualitatively resembles the trend of the
Jeffreys model, which predicts only one characteristic relaxation time. Similar to the Jeffreys
model, the model of Palierne fails to predict the second G’ shoulder at low (Cd) values.
Furthermore, it does not capture the high (Cd) plateau as accurately as the Jeffreys model. As
detailed in Sec. 4.6, the inability of the Palierne model to accurately predict the experimental

data likely stems from its assumptions regarding the type of droplet interactions.

B9. Effect of bubble shape relaxation

To investigate the effect of bubble shape relaxation on the obtained G trends, the bubble
shape relaxation time in the suspensions reported in Chapter 4 was calculated using the Palierne
expression (Graebling et al., 1993), which considers the effect of ¢ on the shape-relaxation of
a single droplet. For bubble suspensions where the ambient fluid is Newtonian, this expression

is a modification of the relaxation time given in the Jeffreys model and reads:

_ [4B+2¢) JRm
APalierne - [(10—440)] Gap (B.13)
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Table 1 reports the shape-relaxation times calculated using the Palierne expression, along
with the relaxation times derived from the Jeffreys model for the three suspensions reported in
Chapter 4. As shown, the bubble shape-relaxation times predicted by the Palierne model closely
align with the relaxation times given by the Jeffreys model (obtained through fitting).
Comparing the shape-relaxation times with the results reported in Table 4.5, it becomes evident
that, for all tested suspensions, the shape-relaxation times fall between the first and second
relaxation times. However, the fitting results revealed the presence of additional relaxation
times, which are at least one order of magnitude larger compared with the computed bubble
shape-relaxation times. This finding indicates that even if the relaxation mode related to the
shape relaxation of the bubbles can be influenced by crowding effects, it cannot be considered
responsible for the characteristic deviation of G’ at lower (Cd) values, which instead is

associated with longer relaxation times.
Table B.1: Jeffreys and Palierne relaxation times for the tested suspensions.

4 A]effreys )‘Palierne
(%) (s) (s)

4.2 0.089 0.113
13.5  0.094 0.130
19.2  0.096 0.140
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Appendix C

Supporting Information to Chapter 5

C1. Carreau-Yasuda fitting parameters for the bubble suspensions prepared

with the ST1 matrix

This section presents the fitting values obtained for the Carreau-Yasuda parameters for the
generated bubble suspensions and their corresponding ST1 matrices. As shown in Table C.1,
the flow index (n) of the bubble suspensions was consistently lower than that of the matrix,
confirming that the presence of bubbles further amplified the shear-thinning behaviour of the
matrix. Additionally, the zero-shear viscosity of the suspensions increased with bubble volume

fraction as expected.

It’s worth noting that the Carreau-Yasuda parameters of the ST1 matrices varied slightly
between different suspensions, with these differences becoming more pronounced as the
aeration time increased, corresponding to higher bubble volume fractions. As explained in Sec.
5.2.3, the high-shear mixing used during bubble generation likely caused some de-swelling of
the Carbopol microgels, leading to variations in the matrix flow curves depending on the
duration of exposure. Fig. C1 indicatively presents the flow curves of the ST1 matrices
corresponding to the bubble suspensions with ¢; = 3.85% and ¢, = 8.7%, respectively,
confirming this behaviour. To account for this phenomenon, the viscosity of the ST1 matrix
was always measured after the rheological tests of each bubble volume fraction to ensure

accurate calculation of the suspension’s relative viscosity.

Table C.1: Carreau — Yasuda fitting parameters for the bubble suspensions generated with the ST1 as

the ambient fluid.

Carreau — Yasuda parameters

a Mo Ac n R?
@1 = 3.85% 1.183 3.662 0.886 0.869 0.999
ST1 matrix for ¢; = 3.85% 0.965 2.732 0.480 0.883 0.999
@, =5.12% 0.897 3.937 0.522 0.822 0.998
ST1 matrix for ¢, = 5.12% 0.768 2.731 0.259 0.866 0.999
@3 = 6.40% 0.857 4.092 0.540 0.801 0.998
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ST1 matrix for @3 = 6.40% 0.722 2.610 0.127 0.8503 0.998
@, = 8.70% 0.897 4.208 0.469 0.737 0.996
ST1 matrix for ¢, = 8.70% 0.622 2.409 0.144 0.850 0.999
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Figure C.1: Flow curves of the ST1 matrices corresponding to bubble suspensions with ¢; = 3.85%
and ¢, = 8.7%.

C2. Carreau-Yasuda fitting parameters for the bubble suspensions prepared

with the ST2 matrix

Table C.2 presents the fitting values obtained for the Carreau-Yasuda parameters for both
the ST2 matrices and the bubble suspensions generated with them. Similar to above, the
presence of bubbles induced additional shear-thinning effects, as evidenced by the lower flow
index values of the suspensions compared to their corresponding matrices. The zero-shear
viscosity of the suspensions increased with bubble volume fraction (Fig. C.2), consistent with
findings in bubble suspensions with the ST1 and Newtonian matrices. Furthermore, the
addition of SDS, stabilised Carbopol microgels against high-shear mixing, as evidenced by the
almost overlapping matrix flow curves of Fig. C3 and the very similar Carreau-Yasuda fitting

values obtained for the matrices of the three tested suspensions, regardless of aeration time.
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Table C.2: Carreau — Yasuda fitting parameters for the bubble suspensions prepared with the ST2

matrix.

Carreau — Yasuda parameters

a Mo Ac n R?
@1 =4.95% 0.595 2.453 0.155 0.892 0.999
ST2 matrix for ¢; = 4.95% 0.526 1.977 0.126 0914 1.000
@, =6.3% 0.822 2.494 0.147 0.885 0.999
ST2 matrix for ¢, = 6.3% 0.514 1.987 0.109 0912 0.999
@3 = 8.6% 0.662 2.691 0.135 0.859 0.999
ST2 matrix for ¢3; = 8.6% 0.491 1.932 0.112 0.910 0.999
3.0
i = (0=4.95%
28 = 0=6.3%
i o o
26k §§§§ =0 8.6%
| "y "a a
24| E;%ﬁﬁﬁigi
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Figure C.2: Flow curves of bubble suspensions generated with the ST2 matrix at bubble volume
fractions ¢, = 4.95%, @, = 6.30% and @3 = 8.6%. The zero-shear viscosity increases with bubble
volume fraction.
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Figure C.3: Flow curves of the ST2 matrices corresponding to bubble suspensions with ¢, = 4.95%,
@, = 6.3% and @3 = 8.6%. The nearly overlapping curves indicate that high-shear mixing had a
minimal effect on the deswelling of Carbopol microgels in the presence of SDS.
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