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Abstract 
Bubble suspensions are complex systems with applications across various industries. Despite 

their prevalence, experimental data for understanding their rheology and validating existing 

models remain sparse. This thesis aims to provide a detailed experimental characterisation of 

the rheological behaviour of bubble suspensions, particularly to aid the oral care industry in 

understanding how bubbles influence the rheological properties of their formulations. The 

dissertation begins by examining the effect of bubbles on the rheology of a Newtonian matrix, 

progressing to explore their impact on more complex matrices. Alongside conventional 

rheological tests, a novel rheo-optical set up was employed to visualise the suspension 

behaviour under shear. First, the steady shear viscosity of bubble suspensions in Newtonian 

media was investigated. Rheo-optical experiments revealed the shear-induced formation of 

bubble clusters and threads, suggesting that the shear-thinning behaviour of bubble suspensions 

originates from both bubble clustering and deformation, rather than solely deformation. The 

research then delved into the linear viscoelastic properties of bubble suspensions in Newtonian 

media, crucial for various industrial applications. SAOS results showed that bubble fluid 

dynamic interactions affected suspension elasticity by introducing additional relaxation modes 

at low oscillation frequencies. Building on the results obtained in Newtonian media, the final 

part of the research focused on the influence of bubbles on more intricate matrices typically 

used in oral care formulations. This study examined the steady shear viscosity of bubble 

suspensions in a shear thinning Carbopol dispersion, followed by the addition of surfactant to 

increase matrix complexity. Bubbles induced additional shear-thinning effects in both matrices. 

In the pure Carbopol matrix, significant bubble coalescence resulted in the formation of bubble 

clusters and threads as larger bubbles, confined by the flow, aligned with the fluid streamlines. 

Adding surfactant mitigated bubble coalescence, showing less pronounced bubble clustering 

compared to both the pure Carbopol and the Newtonian matrices.   
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Impact Statement 
In today’s landscape, the demand for increasingly sophisticated formulated products, 

combined with the need to maintain unwavering product quality, presents a manufacturing 

challenge in developing novel complex formulations. This challenge is especially significant 

in the development of personal care products like toothpaste, where multiple functional 

ingredients must be combined effectively, while maintaining a reliable manufacturing process 

and key sensory attributes, such as texture, appearance, and mouthfeel, that are critical for 

consumer satisfaction. During the development of a new toothpaste formulation, the 

interactions between individual components are not always clear. Moreover, the already 

intricate and variable rheological properties of such formulations are further complicated by 

the entrapment of air during the mixing process. The presence of air bubbles significantly 

impacts the rheological behaviour of these formulations, leading to inconsistencies in 

subsequent manufacturing steps, such as tube filling, and affecting the final product properties.   

The motivation for this work stemmed from the industrial interest in understanding the effect 

of bubbles on the rheological properties of novel oral non-aqueous formulations, currently 

produced by GlaxoSmithKline to treat dental hypersensitivity. Comprehending the influence 

of bubbles allows the oral care industry to efficiently control the rheological properties of their 

formulations, leading to enhanced manufacturing efficiency and consistently high-quality 

products. Following this interest, the main scope of this research was to provide a systematic 

experimental characterisation of the rheological behaviour of bubble suspensions in matrices 

of increasing complexity. These matrices ranged from simple Newtonian fluids to more 

complex shear-thinning fluids, typically used in the GSK formulations. The key findings of 

this thesis offer insights into two critical areas: (i) the effect of bubbles in Newtonian matrices, 

including their behaviour and interactions under different flow conditions, and the complex 

rheological phenomena they induce, and (ii) the physical interactions between bubbles and 

non-Newtonian matrices and their influence on the suspension rheological properties.  

The experimental data generated and analysed in this thesis are fundamental for 

understanding the interplay between bubbles and fluid matrices in different contexts, 

facilitating the development of novel formulations with consistent rheological properties. 

Moreover, these findings are valuable for validating existing rheological models proposed for 

the rheology of bubble suspensions, and can be of great interest to other industries, such as 

food, oil and gas, and personal care products. In these industries, air is incorporated in the 
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formulations to improve various product properties, including texture and flavour release (e.g., 

chocolate), structural integrity and flow properties (e.g., aerated cement), and spreadability and 

cleansing properties (e.g., foam cleansers).  

Highlights 

1. The steady shear rheology of semi-dilute polydisperse bubble suspensions in a 

Newtonian ambient fluid was investigated to elucidate the role of polydispersity on the 

steady-shear viscosity of such systems. Detailed theoretical calculations revealed that 

the effect of polydispersity on suspension viscosity becomes apparent only if the bubble 

size distribution is bimodal, with very small and very large bubbles having similar 

volume fractions. In any other case, the polydisperse suspension can be considered as 

monodisperse, with a diameter equal to the volume-weighted average diameter. Steady-

shear rheological tests showed an unexpected double power-law decay in suspension 

relative viscosity, while subsequent novel rheo-optical experiments linked the first 

decay to the shear-induced formation of bubble clusters and threads and the second to 

bubble deformation. Despite numerous experimental studies on the steady-shear 

properties of bubble suspensions, this investigation represents the first study to clearly 

reveal the shear-induced formation of bubble clusters and threads, which contribute to 

additional shear-thinning effects, and to clarify the influence of polydispersity without 

relying on system-dependent empirical approaches.  

2. The linear viscoelastic properties of semi-dilute polydisperse bubble suspensions were 

investigated experimentally through small amplitude oscillatory shear (SAOS) tests 

performed in a rheo-optical set up. This coupled approach offered a higher confidence 

in the experimental measurements, because it allowed investigating the effects of 

bubble size distribution and various SAOS measurement artifacts, including bubble 

rise, coalescence, and changes in bubble spatial organisation over time, which can 

influence the rheological measurements of bubble suspensions. The study produced 

reliable experimental results for validating existing models proposed for the linear 

viscoelastic behaviour of bubble suspensions and shed light on the rather unexplored 

effect of bubble fluid dynamic interactions on suspension elasticity. It also clarified the 

conditions under which pre-shearing can effectively mitigate these effects. 

Understanding the linear viscoelastic properties of such systems and the influence of 

pre-shearing conditions is paramount for efficiently designing and controlling 

manufacturing processes to achieve desired final product properties.   
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3. The physical interplay between bubbles and a shear-thinning Carbopol dispersion, both 

with and without the addition of a surfactant (Sodium Dodecyl Sulphate, SDS), was 

studied via steady shear experiments. This study provided valuable insights into the 

influence of bubbles on more complex matrices typically found in oral care 

formulations. The results highlighted how matrix composition affects the interactions 

between individual components in these suspensions, leading to phenomena such as 

bubble coalescence and clustering, which directly impact the rheological behaviour of 

these systems. This study paves the way to further exploration of the intricate interplay 

between bubbles and shear-thinning matrices in complex formulations. 

List of Publications and International Dissemination 
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semi-dilute polydisperse bubble suspensions in Newtonian media. Journal of Rheology 

68, 539–552 (2024). (featured article in Journal of Rheology homepage, May 2024) 

Additionally, I was able to disseminate this work in the following international conferences: 
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USA (oral presentation).  
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unravelling the viscoelastic nature of semi-dilute bubble suspensions in Newtonian 

media, International Conference of Rheology, 29 July – 4 August 2023, Athens, Greece 

(poster).  

• Mitrou, S., Migliozzi, Angeli, P., S., Mazzei, L., Effect of bubble clustering on the 

steady shear viscosity of semi-dilute polydisperse bubble suspensions, International 

Conference on Multiphase Flow, 2 – 8 April 2023, Kobe, Japan (oral presentation).  
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Chapter 1 

 

Introduction 
 

1.1 Scope of the research 

The scope of this work is to provide a comprehensive understanding of how bubbles affect 

the rheological properties of matrices with increasing complexity, ranging from simple 

Newtonian fluids to complex shear-thinning fluids commonly used in oral health formulations. 

The research is part of the EPSRC Future Formulations grant CORAL, a collaboration between 

the Departments of Chemical Engineering, Mechanical Engineering and Mathematics at UCL, 

and is partly sponsored by the industrial partner GlaxoSmithKline. The overall aim is to 

introduce new fundamental insights into complex formulations, contributing to enhanced 

control over their final rheological properties, improved manufacturing efficiency, and 

consistent product quality. 

1.2 Motivation 

In today’s diverse industries, the development of complex formulated products is essential 

to meet the ever-evolving needs of consumers. Products such as personal care items, 

construction materials, food products, and inks rely on the precise combination of multiple 

phases and active ingredients to achieve specific textures, functionalities, and benefits. This 

intricate process presents significant manufacturing challenges, requiring a deep understanding 

of how different components interact and how these interactions influence the overall 

performance and stability of the product. The oral care industry exemplifies this complexity, 

with toothpaste serving as a prime example. Integrating novel functionalities into this daily 

essential while maintaining consistent quality and a reliable manufacturing process is crucial 

not only for manufactures but also for consumer health and well-being (WHO, 2020). Typical 

toothpaste formulations consist of a dense suspension of thickening and abrasive substances, 

flavours, surfactants, and therapeutic agents such as fluoride, all within a liquid matrix of 

humectants and water (Liu et al., 2015).  

The complexity of toothpaste formulations increases when addressing specific oral health 

issues, such as dental hypersensitivity. This led to the development of novel non-aqueous 
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formulations incorporating bioactive glass. In the presence of saliva, this biocompatible 

material reacts rapidly with the surrounding tissue, forming a mineral layer of 

hydroxycarbonate apatite that protects exposed dentin and relieves pain (Petrović et al., 2023). 

The absence of water in these new formulations significantly alters the interplay between 

ingredients, leading to significant changes in the product's microstructure and flow properties. 

The behaviour of these formulations can vary dramatically with slight alterations in process 

conditions, ingredient concentrations, or the sequence in which they are added to the 

formulation.  

The introduction of bubbles during the high shear-mixing of the various components adds 

yet another layer of complexity to an already challenging formulation. Bubbles have been 

shown to significantly influence the rheological properties of a system, with their impact being 

highly dependent on factors such as the bubble volume fraction, the matrix composition, the 

interactions between bubbles and other formulation components, and the applied flow 

conditions. This variability introduces additional manufacturing challenges and complicates 

control over the final product's properties, making it difficult to achieve consistent product 

quality and a reliable manufacturing process. Therefore, comprehensive rheological 

characterisation that clarifies the effect of bubbles on the flow properties of such systems is 

paramount for developing high-quality products with reliable and predictable properties. 

1.3 Research objectives 

This research aims to investigate how bubbles generated during the manufacturing process 

of novel oral non-aqueous formulations developed by GlaxoSmithKline affect their rheological 

properties. Toothpaste formulations are inherently complex materials from a rheological 

perspective, exhibiting distinctive shear-thinning behaviour and often yield stress properties 

that define their sensory qualities and how consumers perceive them (Ahuja et al., 2020). 

Understanding and controlling their intricate rheological behaviour is essential for processes 

such as dispensing, pumping and end usage, as well as for ensuring stable formulations with 

consumer-preferred sensory attributes. From a manufacturing standpoint, this knowledge is 

also critical for optimising processing conditions, minimising downtime, and reducing wasted 

material (Ahuja and Potanin, 2018). 

  Τhe challenge of controlling the rheological properties of these formulations is further 

complicated by the entrapment of air bubbles during the initial manufacturing stage. This stage 

involves the production of a non-aqueous matrix composed of a liquid phase (i.e., glycerol) 
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and a polymer gel phase (formed with a carbomer and polyethylene glycol (PEG)), to which 

the solid phase and various additives are subsequently added. The process is conducted in large 

batch mixers where the polymer gel phase is mixed with the liquid phase. The final properties 

of the toothpaste heavily depend on the homogeneity of the non-aqueous matrix, highlighting 

the crucial role of high-shear mixing during this stage. However, this intense mixing also causes 

air to get entrapped in the mixture, which, due to the mixture’s high viscosity, becomes difficult 

to release, effectively creating a bubble suspension.  

The presence of bubbles has been recognized in the literature for inducing shear-thinning 

and other non-Newtonian phenomena even in Newtonian matrices (Llewellin et al., 2002a; 

Mader et al., 2013; Morini et al., 2019). Hence, the interaction of bubbles with an already 

rheologically complex non-aqueous matrix complicates matters even more. In this specific 

case, the entrapment of bubbles in the toothpaste matrix has been associated with stringiness 

in the formulation, which interferes with consistent filling, slowing down the line operation, 

and ultimately reducing manufacturing efficiency. These significant manufacturing challenges 

coupled with the need to ensure final products with consistent sensory properties underscore 

the need for studying and characterising the effect of bubbles on the rheology of toothpaste 

formulations.  

This study presents significant challenges because bubble suspensions, even in Newtonian 

media, remain relatively unexplored compared to emulsions and particle suspensions. This is 

primarily due to two factors: a) bubble suspensions are inherently less stable systems, making 

it difficult to generate and maintain them for long enough to enable experimental investigation, 

and b) the rheological models generated for emulsions and particle suspensions cannot be 

directly applied to bubble suspensions due to the different nature of the dispersed phase, as 

bubbles are inviscid and incompressible. Therefore, there are still unexplored aspects of the 

rheology of bubble suspensions in Newtonian ambient fluids.  

One such aspect is the effect of polydispersity on the viscosity of bubble suspensions, an 

issue that has been scarcely addressed in the literature and mostly through empirical 

approaches, despite the widespread presence of polydisperse systems in industrial applications. 

To address this gap, the influence of different bubble sizes on the viscosity of bubble 

suspensions is investigated through a combination of theoretical analysis and rheological 

testing with the aim of deriving system-independent insights. Furthermore, this research 

provides a deeper understanding of the shear-thinning behaviour of bubble suspensions, with 
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rheo-optical experiments revealing the role of shear-induced phenomena, such as bubble 

clustering and threading, in this process.   

 Another aspect requiring investigation in bubble suspensions with Newtonian ambient 

fluids regards their linear viscoelastic properties, for which there is a distinct lack of 

experimental data in the literature. Obtaining reliable experimental data to better understand 

these properties is of paramount importance for effectively controlling manufacturing 

processes and achieving products with desired texture and spreadability. Therefore, a 

systematic experimental characterisation of the linear viscoelastic properties of bubble 

suspensions in Newtonian matrices is conducted through SAOS rheological tests performed in 

a rheo-optical setup. This study produces reliable experimental data that elucidate the effect of 

bubbles in suspension elasticity, providing a foundation for similar investigations in more 

complex non-Newtonian matrices.  

Following the study of bubble suspensions in Newtonian media, the steady-shear viscosity 

of bubble suspensions with a shear-thinning ambient fluid is investigated experimentally with 

the aim of evaluating the impact of bubbles on the rheology of more complex matrices. The 

shear-thinning matrix used in this study consists of a Carbopol dispersion in a mixture of PEG 

and glycerol, simulating the composition used in the initial manufacturing stage of the non-

aqueous formulations of interest. To examine how matrix composition influences the way 

bubbles behave and interact with the matrix, surfactant (SDS) was introduced in the mixture to 

increase matrix complexity, and the steady-shear viscosities of bubble suspensions with and 

without surfactant were compared. This study focuses on the interplay between bubbles and 

matrix components in more complex matrices and how these interactions affect the suspension 

flow properties. These findings aim to provide the oral care industry with valuable insights on 

how to control and optimise the rheological properties of their products by fine-tuning the 

matrix composition. Hence, the objectives of this work can be summarized as follows: 

• Investigate the impact of different bubble sizes on the steady-shear viscosity of semi-

dilute bubble suspensions in Newtonian media via theoretical analysis and rheological 

tests; 

• Elucidate the effect of shear-induced phenomena, such as bubble clustering and 

threading, on the steady-shear viscosity of semi-dilute bubble suspensions in 

Newtonian media; 
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• Provide a systematic experimental characterisation of the linear viscoelastic behaviour 

of semi-dilute bubble suspensions in Newtonian media, using a combination of SAOS 

tests and rheo-optical experiments to ensure greater reliability of experimental results; 

• Examine the effect of bubble-fluid dynamic interactions on the elasticity of bubble 

suspension in Newtonian media, and clarify the conditions under which pre-shearing 

can mitigate these effects;   

• Investigate experimentally the steady-shear viscosity of semi-dilute bubble suspensions 

in shear-thinning matrices of increasing complexity, and elucidate the interplay between 

bubbles and matrix components and its impact on the suspension viscosity. 

1.4 Thesis outline 

The dissertation is organised into six chapters. A brief introduction to the motivation and 

background for this research has been given in this chapter, along with the primary objectives 

of the work. Chapter 2 provides a literature review, laying the theoretical groundwork essential 

for interpreting the results presented in the following chapters. First, general concepts on the 

rheology of complex fluids are introduced, followed by a more detailed analysis of the 

rheological properties of bubble suspensions in Newtonian media. Finally, the chapter provides 

some key literature insights on the rheology of bubble suspensions in non-Newtonian media, 

focusing specifically on (i) shear-thinning and (ii) yield stress ambient fluids.  

The results are presented across Chapters 3 to 5, with each chapter including a small 

introduction, its individual methodology, results and conclusion subsections. Chapter 3 

discusses the steady-shear viscosity of semi-dilute polydisperse bubble suspensions in 

Newtonian media. The study combines theoretical analysis, steady-shear rheological tests and 

rheo-optical experiments to elucidate how different bubble sizes and shear-induced 

phenomena, such as the formation of bubble clusters and threads, influence the suspension 

relative viscosity. The findings of this chapter clarify the role of polydispersity without relying 

on system-dependent empirical approaches and highlight the complex shear-thinning nature of 

bubble suspensions, driven not only by bubble deformation, as previously understood, but also 

by the shear-induced clustering and alignment of bubbles. 

Chapter 4 examines the linear viscoelastic behaviour of semi-dilute polydisperse bubble 

suspensions in Newtonian media through SAOS rheological tests. A rheo-optical setup was 

employed to visualise the behaviour of the suspensions during these tests, aiming to investigate 

how bubble size distribution and various SAOS measurement artifacts – such as bubble rise, 
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coalescence, and changes in bubble spatial organisation over time – affect the obtained 

viscoelastic trends. The combination of SAOS rheological data, image analysis, and 

experimental data fitting provided valuable insights into bubble fluid dynamic interactions, 

their impact on the suspension elasticity, and the role of pre-shearing in mitigating these effects.  

Chapter 5 explores the impact of a shear-thinning matrix on the steady-shear viscosity of 

bubble suspensions, focusing on the interactions between the bubbles and matrix components. 

The study examines the steady-shear viscosity of bubble suspensions in two shear-thinning 

matrices: (i) a Carbopol dispersion, and (ii) a Carbopol dispersion with added surfactant, 

Sodium Dodecyl Sulphate (SDS), to increase matrix complexity. Rheo-optical experiments are 

conducted to visualise the phenomena taking place during shearing and to investigate how the 

interplay between bubbles and matrix components drives the rheological response. The results 

highlight the critical role of matrix composition, demonstrating that the rheological behaviour 

of more complex formulations is significantly shaped by the intricate interactions among their 

individual components. 

Finally, Chapter 6 summarises the key findings of this research and outlines future 

perspectives.  
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Chapter 2 

Theoretical Background and Literature Review 
 

This chapter aims to provide a comprehensive overview of the theoretical background required 

to understand the research results. First, general concepts on the rheology of complex fluids 

are introduced, focusing on the material functions that are most pertinent to the subsequent 

results chapters. Next, a detailed analysis of the rheological properties of bubble suspensions 

in Newtonian media is presented, along with a discussion on existing rheological models and 

their limitations. Lastly, the rheology of bubble suspensions with non-Newtonian ambient 

fluids is discussed, particularly in the context of shear-thinning and yield stress matrices.    

2.1 Rheology of complex fluids 

Fluid rheology is a vast field of study, essential for addressing fluid dynamics problems 

involving complex fluids and for gaining insight into the microscopic interactions within new 

complex formulations. Due to the extensive nature of the subject, a wealth of literature has 

been dedicated to examining different types and properties of fluids and materials. This section 

aims to present fundamental concepts pertinent to this research, outlining the primary material 

functions used throughout the thesis to describe the rheological behaviour of the systems under 

investigation. 

Incompressible fluids are generally characterised by their stress response to externally 

applied deformations. The kind and extent of this response are closely tied to the material's 

internal microstructure. Thus, rheological testing is used to correlate the flow behaviour of a 

complex fluid to its underlying microstructure by subjecting the fluid to simple flow fields. The 

two primary types of flow used in rheological measurements are (i) shear flows and (ii) shear-

free flows, each producing unique material functions that offer different insights into the fluid’s 

properties. 

In shear flows, deformation is exerted tangentially to each element of the fluid. A basic way 

to represent this type of flow in a two-dimensional space is through the parallel-plate paradigm, 

depicted in Fig. 2.1.  
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Figure 2.1: Schematic of a shear flow in a parallel plate configuration.  

In this case, a fluid is placed between two parallel plates separated by a small distance, and 

the top plate is moved in the x-direction with a velocity 𝑣𝑥. The resulting strain, or deformation 

𝛾, experienced by a fluid element with a differential thickness 𝑑𝑦 can be described at every 

point within the fluid domain as follows: 

                                                                𝛾 =
𝑑𝑠

𝑑𝑦
                                                              (2.1) 

where 𝑑𝑠 is the differential distance covered by a fixed fluid element over a differential time 

interval 𝑑𝑡. The shear strain 𝛾 is the only non-zero element of the deformation tensor. The 

absolute value of the rate at which this strain changes over time, specifically due to shear forces, 

is known as the shear rate 𝛾̇ and is expressed as:  

                                                               𝛾̇ =
1

𝑑𝑡

𝑑𝑠

𝑑𝑦
=

𝑑𝑣𝑥

𝑑𝑦
                                                 (2.2) 

where 𝑑𝑣𝑥 (m/s) is the velocity of the upper plate. The correlation of the shear deformation 𝛾 

and the shear rate 𝛾̇ with the force per unit area (N/m²), or shear stress 𝜏, applied to induce 

deformation, is strictly fluid-dependent and represents the most common way to classify fluids. 

In shear-free flows, the applied deformation consists only of normal components, with all 

shear components of the velocity gradient being equal to zero (i.e., 𝛾̇𝑖𝑗 = 0, 𝑖 ≠ 𝑗).  A typical 

example of shear-free flow is the extensional flow, which in a three-dimensional space is 

defined by the elongational rate 𝜀̇ as follows: 

                                 𝑣𝑥 = −
1

2
𝜀̇𝑥; 𝑣𝑦 = −

1

2
𝜀̇𝑦; 𝑣𝑧 = 𝜀̇𝑧   where   𝜀̇ =

𝑑𝑣𝑧

𝑑𝑧
                           (2.3) 

In an extensional flow, every fluid element experiences extension in one direction and 

contraction in the other two, due to the fluid being incompressible. Unlike shear flow, where 

surfaces slide relative to each other, here one can observe rigid areas that either approach or 
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move away from each other in the direction of motion. From a dynamic perspective, an 

extensional deformation is possible only when there is a difference in the normal stresses acting 

on two orthogonal surfaces of the material (Macosko, 1994): 

                                                     𝜏 = 𝜏𝛮 − 𝜏𝐿 = −𝜂𝑒(𝜀̇)𝜀̇                                                 (2.4) 

where 𝜏𝛮 and 𝜏𝐿 represent the normal stresses applied to the perpendicular and longitudinal 

surfaces of the fluid element, respectively, and 𝜂𝑒(𝜀̇) is the extensional viscosity, which is 

different from the shear viscosity 𝜂. Note that certain materials, such as polymer blends, exhibit 

normal stress differences also in simple shear flows. This phenomenon is linked with the 

inherent elastic component of these materials. 

In the present work, only shear rheology techniques were employed. Therefore, the 

following sections concentrate solely on the material functions that can be derived from shear 

flow and the corresponding classifications of complex fluids.  

2.1.1. Newtonian fluid behaviour 

Following what was stated in the section above, it is then possible to classify fluids 

depending on their response to an external shear stress. Considering the parallel plate paradigm 

illustrated in Fig. 2.1, for a Newtonian fluid, the velocity gradient induced in the fluid layer 

along the y component (shear rate 𝛾̇𝑥𝑦 (s-1)) is directly proportional to the applied shear stress 

(𝜏𝑥𝑦 (N m-2)). The constant of proportionality is the viscosity of the fluid 𝜂 (Pa s), leading to 

the following equation, commonly known as Newton’s law (Bird et al., 2002): 

                                            
𝐹

𝐴
= 𝜏𝑥𝑦 = −𝜂 (

𝜗𝑣𝑥

𝜗𝑦
) = −𝜂𝛾̇𝑥𝑦                                             (2.5) 

The Newtonian viscosity, as defined in the equation above, does not depend on the shear rate 

and is solely determined by the material’s unique properties, including its temperature and 

pressure (Chhabra and Richardson, 2011). 

To extend Eq. 2.5 to the more complex case of three-dimensional flows, one must consider 

all nine components of the stress tensor acting on a single fluid element (Fig. 2.2). The normal 

components of the stress tensor 𝜎𝑖𝑖 are the sum of two distinct contributions: one related to the 

pressure exerted by the fluid on the external environment, and the other to the flow as shown 

below (Bird et al., 2002): 

                                                  𝜎𝑖𝑖 = 𝑝 + 𝜏𝑖𝑖 with 𝑖 = 𝑥, 𝑦, 𝑧                                               (2.6) 
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where the pressure contribution is defined as follows: 

                                                  𝑝 ≡
1

3
 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧)                         (2.7) 

 

Figure 2.2: Stress components in the three-dimensional flow.  

From Eqs. 2.5 and 2.6, one obtains:  

                                                  𝜏𝑥𝑥 + 𝜏𝑦𝑦 + 𝜏𝑧𝑧 = 0                              (2.8) 

For a Newtonian fluid under simple shear flow, the deviatoric normal stress components are 

all zero: 

                                                  𝜏𝑥𝑥 = 𝜏𝑦𝑦 = 𝜏𝑧𝑧 = 0                      (2.9) 

Thus, a fluid can be classified as Newtonian if it meets two conditions: (i) its viscosity remains 

constant with shear, and (ii) it demonstrates zero normal stresses. Hence, in a three-dimensional 

space, the Newtonian stress tensor can be expressed as follows (Macosko, 1994): 

                                                              𝝈 = 𝑝𝑰 − 𝜇𝜸̇            (2.10) 

where 𝜸̇ ≡  [𝛁𝒗 + (𝛁𝒗)𝑇] is twice the rate of deformation tensor. 

2.1.2. Generalised Newtonian fluid behaviour 

Fluids that do not meet the conditions presented above are commonly known as ‘non-

Newtonian’ fluids. The simplest deviation from Newtonian behaviour is described by the 
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generalised Newtonian fluid model, which treats the fluid viscosity as a function of the shear 

rate rather than a constant:  

                                                  𝝉 = − 𝜂[𝛁𝒗 + (𝛁𝒗)𝑻] = − 𝜂𝜸̇                  (2.11) 

                                                           𝜂 = 𝜂(𝛾̇)                        (2.12) 

where 𝝉 is the stress tensor including only the flow contributions and 𝛾̇ is the shear rate. In a 

three-dimensional space, the shear rate is defined as the magnitude of the rate of deformation 

tensor (Bird et al., 1987):  

                                                       𝛾̇ ≡ √
1

2
(𝜸̇: 𝜸̇)                     (2.13) 

The generalised Newtonian model describes only how viscosity changes with shear rate, 

without accounting for any characteristics related to viscoelasticity. Therefore, it is applicable 

only to purely viscous (inelastic) non-Newtonian fluids. Figure 2.3 depicts the qualitative 

relationship between shear stress and shear rate when the fluid behavior deviates from the 

Newtonian case. Shear-thinning is the most frequently observed non-Newtonian behavior in 

industrial applications and is typically associated with polymer blends.  

 

Figure 2.3: Types of generalised Newtonian fluids (Chhabra and Richardson, 2011).  

Figure 2.4 illustrates the key characteristics of shear-thinning fluids, primarily showing that 

the measured viscosity decreases with increasing shear rate. At very low and very high shear 

rates, shear-thinning materials typically display Newtonian behavior, leading to a zero-shear 

viscosity 𝜂0 plateau at low shear rates and an infinite-shear viscosity 𝜂∞ plateau at high shear 
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rates. The specific features of any flow curve are largely determined by the material's 

microstructure. For instance, in polymer solutions, the extent of the zero-shear plateau grows 

as the polymer’s molecular weight decreases, as their molecular weight distribution becomes 

narrower, and as the polymer concentration in the solution reduces (Bird et al., 1987). 

 

Figure 2.4: Qualitative representation of shear-thinning behaviour.  

Throughout the years, various empirical models have been developed to represent viscosity 

as a function of shear rate, with the power law model being the simplest:  

                                                           𝜂 = K 𝛾̇𝑛−1                        (2.14) 

where 𝐾 and 𝑛 are empirical fitting parameters, known as the fluid consistency and flow index, 

respectively.  

The power law model is applicable to both shear-thinning and shear-thickening fluids. In the 

case of shear-thinning fluids, 𝑛 falls between 0 and 1, while for shear-thickening fluids, 𝑛 

exceeds 1. The further the flow index deviates from 1, which corresponds to the Newtonian 

behaviour, the more pronounced the non-Newtonian effects become. Despite its widespread 

application in process engineering, the power law model has limitations, particularly in 

capturing the zero-shear and infinite-shear Newtonian plateaus. To address these shortcomings, 

more sophisticated models have been developed, based on assumptions about how the 

material’s molecular network evolves under simple shear stress (Cross, 1965). A characteristic 

example is the Carreau-Yasuda constitutive equation, which effectively captures both the zero-

shear and high-shear viscosity plateaus:  
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                                                𝜂 = 𝜂∞ + (𝜂∞ − 𝜂0)[1 + (𝜆𝑐𝛾̇)𝑎]
𝑛−1

𝑎                                 (2.15) 

where 𝜆𝑐 is the Carreau characteristic time which is linked to the inverse of the shear rate at 

which the shear-thinning behaviour begins, 𝑛 is the flow index, and 𝑎 is a fitting parameter 

associated with the smoothness of the transition from zero-shear plateau to the shear-thinning 

region. Other common generalised Newtonian constitutive equations are outlined below:  

Ellis model   𝜂 =
𝜂0

1+(
𝜎

𝜎1/2
)

𝛼−1                                          (2.16a) 

                                         Cross model   
𝜂−𝜂0

𝜂−𝜂∞
=

1

1+𝛫𝛾̇𝑛                                             (2.16b) 

  Carreau model   
𝜂−𝜂0

𝜂−𝜂∞
= [1 + (𝜆𝑐𝛾̇)2]

𝑛−1

2                              (2.16c) 

  Herschel-Bulkley model   𝜎 = 𝜎𝑦 + 𝐾𝛾̇𝑛 𝜎 > 𝜎0                              (2.16d) 

Note that in Eq. 2.16a, 𝛼 and 𝜎1/2 are the two fitting parameters of the Ellis model, with 𝛼 

being the equivalent of the flow index and 𝜎1/2 representing a stress threshold.  For 𝜎1/2 → ∞ 

the model simplifies to the Newtonian case, while for 𝜎/𝜎1/2 ≫ 1, it reduces to the power law 

model (Eq. 2.14). Eq. 2.16d is known as the Herschel-Bulkley model and is presented in a 

different format compared to the rest. This model applies to viscoplastic fluids, which are 

characterised by the presence of a yield stress 𝜎𝑦. Typical examples of viscoplastic materials 

include emulsions, suspensions and polymeric gels (Larson, 1999). Though yield stress is 

theoretically impossible to determine for a real fluid, as by definition it is the stress value at 

shear rate equal to zero, it practically refers to the minimum stress required to break down the 

material’s internal microstructure and cause viscous deformation. Below this threshold, the 

material can be considered as an elastic solid with infinite viscosity.  

All the models presented above can be fitted to rheological data obtained from steady-shear 

tests, where a constant shear rate is applied, and the corresponding stress is measured once 

steady-state conditions are reached. This is repeated across a wide range of shear rates, 

typically between 10-3 and 103 s-1, to obtain the material’s characteristic flow curve.  

2.1.3. Viscoelastic fluid behaviour 

The types of complex fluid behaviour discussed so far have been associated solely with the 

presence of viscous stresses in response to a material’s deformation or flow. However, many 

materials of practical significance, such as gels, pastes, and polymer blends, present also an 

elastic component, forming another important class of complex fluids, known as viscoelastic 
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fluids. The rheological properties of these fluids lie between viscous liquids and elastic solids, 

meaning that part of the applied shear stress is used to generate a velocity gradient (
𝑑𝑢𝑥

𝑑𝑦
) and 

part of it gets stored in the material as shear energy (Ferry, 1980). Thus, suggesting that the 

material may partially recover its original structure once the stress is removed. This response 

depends on both the material’s distinct microstructure and the shear conditions it has undergone 

(Bird et al., 1987). Therefore, by measuring the viscoelastic properties of a material, one can 

gain valuable insights into its specific characteristics and the time needed for its internal 

microstructure to rearrange, which is closely connected to the material’s inherent nature and 

physicochemical properties (Ferry, 1980).  

In the context of this research, the investigation of viscoelasticity becomes particularly 

relevant, as the presence of bubbles has been shown to induce viscoelastic phenomena even in 

Newtonian ambient fluids. Consequently, the viscoelastic properties of bubble suspensions 

have been studied with the aim of gaining insights into their unique microstructure and 

understanding how this influences their macroscopic flow behaviour. This section presents the 

material functions typically used to describe viscoelasticity, along with fundamental models 

proposed in the literature to characterise the behaviour of viscoelastic fluids. The application 

of these models to bubble suspensions is discussed in Section 2.2.  

Viscoelastic material functions 

The material functions used to describe the viscoelastic nature of a material can be 

categorised based on the applied flow field. In simple steady shear flows, elastic effects are 

indicated by the presence of non-zero normal stresses (𝜏𝑖𝑖), which arise from the material’s 

inherent nature rather than the imposed flow conditions. In this context, elastic effects are not 

determined by the specific values of the three normal stress components but by the differences 

between them. Thus, for an incompressible fluid subjected to steady shear flow, the elastic 

behaviour is typically quantified by measuring the first and second normal stress differences: 

𝑁1 = 𝜏𝑥𝑥 − 𝜏𝑦𝑦 = − 𝛹1(𝛾̇) 𝛾̇𝑦𝑥
2                                  (2.17a) 

𝑁2 = 𝜏𝑦𝑦 − 𝜏𝑧𝑧 = − 𝛹2(𝛾̇) 𝛾̇𝑦𝑥
2                                  (2.17b) 

where 𝑥 is the flow direction, 𝑦 is the velocity gradient direction and 𝑧 is the neutral direction. 

Here, 𝑁1, 𝑁2 are the first and second normal stress differences and 𝛹1, 𝛹2 are known as the 

first and second normal stress coefficients, respectively. Eq. 2.17 demonstrates that the normal 

stress differences have a non-linear relationship with the applied shear rate. The behaviour of 
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the normal stress coefficients in response to shear rate varies based on the type of viscoelastic 

fluid.  

The first normal stress coefficient can be experimentally determined via simple steady-shear 

tests in a cone-plate rotational rheometer as follows:  

𝛹1 =
2𝐹

𝜋𝑅𝑐−𝑝
2 𝛾̇2                                                           (2.18) 

where 𝐹 is the measured normal force exerted by the fluid on the rheometer plates, 𝑅𝑐−𝑝 is the 

radius of the cone-plate geometry and 𝛾̇ is the applied shear rate, which remains uniform across 

the gap in this specific setup.  

For polymer solutions, 𝛹1 typically demonstrates a zero-shear plateau, followed by a shear-

thinning behaviour. The second normal stress coefficient is more difficult to measure, as it 

requires the measurement of the local stress distribution across the plate surface. Limited 

experimental studies suggest that 𝛹2 is negative and smaller in magnitude compared to 𝛹1 

(Bird et al., 1987).  

In this work, the viscoelasticity of the tested bubble suspensions was not described through 

normal stress differences and coefficients due to difficulties associated with their experimental 

measurement. Specifically, instead of a cone-plate geometry typically used for measuring 𝛹1, 

a parallel plate geometry was employed to prevent bubble confinement issues that could arise 

from the smaller gap in cone-plate configurations. The viscoelastic properties of the bubble 

suspensions were assessed through material functions obtained in unsteady shear flow, and 

specifically, through small amplitude oscillatory shear (SAOS) tests.   

SAOS tests provide useful insight into the relaxation processes occurring within a material’s 

microstructure after the application of a linear sinusoidal shear deformation, as follows:  

    𝛾𝑦𝑥(𝑡) = 𝛾0 sin 𝜔𝑡 ; 𝛾𝑖𝑗 = 0  𝑖, 𝑗 ≠ 𝑥, 𝑦         (2.21) 

where 𝛾0 represents the infinitesimal amplitude of the sinusoidal deformation and 𝜔 is the 

oscillation frequency. The corresponding shear rate can then be expressed as:  

    𝛾̇𝑦𝑥(𝑡) = 𝜔𝛾0 𝑐𝑜𝑠 𝜔𝑡 ; 𝛾𝑖𝑗 = 0  𝑖, 𝑗 ≠ 𝑥, 𝑦         (2.22) 

According to the Boltzmann superposition principle, the effects of small sequential strain 

changes are additive (Ferry, 1980). Hence, the corresponding shear stress 𝜏𝑦𝑥 is defined as: 
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𝜏𝑦𝑥(𝑡) ≡ ∫ 𝐺(𝑡 − 𝑡′)𝛾̇𝑦𝑥(𝑡′)𝑑𝑡′
𝑡

−∞
                        (2.23) 

Eq. 2.23 can be used to define the relaxation modulus 𝐺(𝑡), which describes how a material 

recovers, or relaxes, from being deformed, essentially by reflecting how much stress remains 

in the material as time passes after deformation. 𝐺(𝑡) is expressed as a decreasing function 

because, as time passes, the material adjusts and reduces the residual stress. Thus, more recent 

deformations have a greater impact on the material’s response than older ones, since the stress 

from earlier deformations has already had time to relax. 𝐺(𝑡) can be expressed as a single or 

multi-mode exponential function as follows:  

𝐺(𝑡) = ∑ 𝐺𝑖
𝑁
𝑖=1 exp (− 𝑡/𝜆𝑖)                                             (2.24) 

where 𝑁 represents the number of relaxation modes, with each relaxation mode corresponding 

to a distinct relaxation process occurring over a specific time scale 𝜆𝑖. For an infinite number 

of relaxation modes, 𝐺(𝑡) can be described using a continuous relaxation spectrum 𝐻(𝜆) (Bird 

et al., 1987), as shown below:  

𝐺(𝑡) ≡ ∫ 𝐻(𝜆) exp(− 𝑡/𝜆) 𝑑 ln 𝜆
∞

0
                        (2.25) 

By substituting Eq. 2.22 into Eq. 2.23 and replacing 𝑡 − 𝑡′ with 𝑠, one obtains the following 

expression for the shear stress:  

𝜏𝑦𝑥(𝑡) =  − ∫ 𝐺(𝑠)
∞

0

𝜔𝛾0 cos[𝜔(𝑡 − 𝑠)] 𝑑𝑠 

   = 𝛾0[𝜔 ∫ 𝐺(𝑠) sin 𝜔𝑠 𝑑𝑠
∞

0
] sin 𝜔𝑡 + 𝛾0[𝜔 ∫ 𝐺(𝑠) cos 𝜔𝑠 𝑑𝑠

∞

0
] cos 𝜔𝑡  (2.26) 

As observed, the two terms in brackets are independent of the elapsed time, with the first term 

being in phase with the deformation and the second being in phase with the shear rate. 

Consequently, Eq. 2.26 can be expressed as follows:  

𝜏𝑦𝑥(𝑡) = − 𝛾0 (𝐺′ sin 𝜔𝑡 + 𝐺′′ cos 𝜔𝑡)                                    (2.27) 

where 𝐺′ is the storage modulus, which describes the material’s elastic character, and 𝐺′′ is 

the loss modulus, which represents its viscous character. Considering the stress amplitude 𝜏0, 

Εq. 2.27 can be rewritten as:   

𝜏𝑦𝑥(𝑡) = − 𝜏0 sin(𝜔𝑡 + 𝛿) = − 𝜏0 cos 𝛿 sin 𝜔𝑡 − 𝜏0 sin 𝛿 cos 𝜔𝑡            (2.28) 
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Thus, the linear viscoelastic material functions can be defined as follows:  

𝐺′ ≡
𝜏0

𝛾0
cos 𝛿                                                       (2.29a) 

𝐺′′ ≡
𝜏0

𝛾0
sin 𝛿                                                       (2.29b) 

𝛿 ≡ 𝐺′′/ 𝐺′                                                       (2.29c) 

The phase angle 𝛿 represents the relative importance of the viscous and elastic components 

of a material. For a purely viscous material, the storage modulus equals zero and 𝛿 equals π/2. 

On the other hand, for a purely elastic material, the loss modulus is equal to zero, leading to a 

zero phase angle as well (Larson, 1999). Like normal stress differences, the trends of the linear 

viscoelastic material functions depend on the specific properties of the fluid. Several 

viscoelastic models of different complexity have been proposed to describe these material 

functions. The simplest, but still the most fundamental, is the Maxwell model.  

Maxwell model 

The Maxwell model considers both the viscous and the elastic character of a material by 

representing its rheological properties with a spring and a dashpot connected in series (Fig. 

2.5). In this configuration, the spring models the elastic component of the material, governed 

by Hooke’s law, while the dashpot represents the viscous component, described by Newton’s 

law. In the Maxwell model the stress contributions from both components are equal, and the 

total strain of the system is the sum of the individual strains, thus yielding the following 

constitutive equation:  

𝝉 + 𝜆
𝜕𝝉

𝜕𝑡
= − 𝜂0𝜸̇                                                  (2.30) 

where 𝝉 is the deviatoric stress tensor, 𝜂0 represents the fluid’s zero-shear viscosity, 𝜆 is the 

fluid’s relaxation time (defined as the ratio of 𝜂0 to the spring’s elastic modulus 𝐺𝑒), and 𝜸̇ is 

the rate of deformation tensor.  

 

Figure 2.5: Schematic of a Maxwell unit. 
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Eq. 2.30 is written in terms of material coordinates; thus, the partial time derivative (𝜕/𝜕𝑡) 

is essentially a material derivative. For a steady-shear flow from a Lagrangian perspective (i.e., 

from the viewpoint of an observer moving along with a fluid element as it flows), 𝜸̇ remains 

constant with time. Consequently, Eq. 2.30 can be treated as a first order differential equation, 

resulting in:  

𝝉 + 𝜂0𝜸̇ = 𝐴 exp(− 𝑡/𝜆);  𝐴 = 𝝉𝑡=0 + 𝜂0𝜸̇𝑡=0                       (2.31) 

From Eq. 2.31, it can be concluded that over a time of order of magnitude 𝜆, 𝝉 ~ 𝜂0𝜸̇, i.e., 

the material behaves like a Newtonian fluid with viscosity 𝜂0. For transient flows, 𝜸̇ varies in 

time, with 𝑡𝛾̇ denoting the timescale of its variation, thus Eq. 2.31 no longer applies. However, 

in this case the fluid behaviour can be interpreted using a scaling approach, for which the 

following dimensionless variables are introduced:  

𝝉̅ ≡
𝝉

𝝉𝑐
 ; 𝜸̇̅ ≡

𝜸̇

𝛾̇𝑐
 ; 𝑡̅ ≡

𝑡

𝑡𝛾̇
                                            (2.32) 

where for each variable, the scalar appearing at the denominator is the scale of that variable. In 

terms of these variables, Eq. 2.30 reads: 

𝝉̅ + (𝜆/𝑡𝛾̇)
𝜕𝝉̅

𝜕𝑡̅
= − (𝜂0𝛾̇𝑐/𝜏𝑐) 𝜸̇̅                                          (2.33) 

The ratio 𝜆/𝑡𝛾̇ is referred to as the Deborah number (𝐷𝑒). It appears in the Maxwell 

constitutive equation for unsteady states and serves as an indicator of whether the material will 

behave as a Newtonian fluid or as a Hookean solid (Larson, 1999). For 𝐷𝑒 ≪ 1, the timescale 

over which the rate of deformation changes significantly is much longer than the material's 

relaxation time.  As a result, the material relaxes before experiencing significant variation in 

𝜸̇̅. In this case, 𝝉̅ ~ − (𝜂0𝛾̇𝑐/𝜏𝑐) 𝜸̇̅, leading 𝜏𝑐 ~ 𝜂0𝛾̇𝑐 . Hence, the material behaves like a 

Newtonian fluid. Conversely, when 𝐷𝑒 ≫ 1, (𝜆/𝑡𝛾̇)
𝜕𝝉̅

𝜕𝑡̅
 dominates over 𝝉̅, and Eq. 2.33 yields 

(𝜆/𝑡𝛾̇)
𝜕𝝉̅

𝜕𝑡̅
 ~ − (𝜂0𝛾̇𝑐/𝜏𝑐) 𝜸̇̅. In this case, the material behaves as a Hookean solid, where 

𝜏𝑐 ~ 𝐺𝑒𝛾𝑐, with 𝐺𝑒 ≡ 𝜂0/𝜆 and 𝛾𝑐 ≡ 𝛾̇𝑐𝑡𝛾̇ (𝛾𝑐 being the deformation scale).  

At this point, it is important to note that the Maxwell equation is linear, and therefore it 

cannot predict non-linear viscoelastic effects, such as normal stress differences. To account for 

such phenomena, one should use the upper-convected Maxwell model, which will be discussed 

in more detail in the following section. However, the classic Maxwell model remains useful 
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for describing the linear viscoelastic material functions derived from SAOS tests. The 

relaxation modulus for a Maxwell fluid can be written in terms of the relaxation time 𝜆 and 

zero-shear viscosity 𝜂0 as follows:  

𝜏𝑦𝑥 ≡ ∫
𝜂0

𝜆
𝑒−(𝑡−𝑡′)/𝜆 𝛾̇𝑦𝑥(𝑡′)𝑑𝑡′

𝑡

−∞
                    (2.34) 

By substituting the expression for 𝜏𝑦𝑥 (Eq. 2.21) into Eq. 2.34, the shape of the 𝐺′, 𝐺′′ curves 

for a Maxwell fluid can be predicted as follows:  

𝐺′ =
𝜂0𝜆𝜔2

1+𝜆2𝜔2
                                                        (2.35a) 

𝐺′′ =
𝜂0𝜔

1+𝜆2𝜔2                                                       (2.35b) 

By normalizing Eq. 2.35 with the Hooke’s elastic modulus 𝐺𝑒 = 𝜂0/𝜆, and considering the 

characteristic timescale for the variation of shear rate in an oscillatory shear flow, which is 

directly linked to the oscillation frequency (𝑡𝛾̇~1/𝜔), Eq. 2.35 can be expressed in terms of 

the Deborah number as follows:  

𝐺′ =
𝐷𝑒2

1+𝐷𝑒2                                                        (2.36a) 

𝐺′′ =
𝐷𝑒

1+𝐷𝑒2                                                       (2.36b) 

Observing Eq. 2.36, it becomes evident that at low oscillation frequencies, i.e., for 𝐷𝑒 ≪ 1, 

𝐺′~𝐷𝑒2 and 𝐺′′~𝐷𝑒. In this regime, known as the terminal viscous regime, both viscoelastic 

moduli increase with 𝐷𝑒 but at different rates. Specifically, 𝐺′ follows a power law with a slope 

of 2, while 𝐺′′ increases linearly with 𝐷𝑒. At higher oscillation frequencies, i.e., for 𝐷𝑒 ≫ 1, 

Eq. 2.36 yields 𝐺′~1 and 𝐺′′~1/𝐷𝑒, indicating that the storage modulus reaches a constant 

value (i.e., 𝐺𝑒), while the loss modulus gradually decreases toward zero. For 𝐷𝑒 = 1, the two 

moduli intersect, marking the transition from a viscous to an elastic regime, where 𝐺′ stabilises 

to a plateau and 𝐺′′ approaches zero. The relaxation time of the material can be determined 

from the inverse of the oscillation frequency at which the two moduli intersect. Fig. 2.6 (black 

lines) illustrates typical 𝐺′, 𝐺′′ curves for a Maxwell fluid.  
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Figure 2.6: Example of 𝐺′ (solid lines) and 𝐺′′ (dashed lines) for a single-mode and a three-mode 

Maxwell fluid. 

For more complex relaxation behaviours, the shapes of 𝐺′(𝜔) and 𝐺′′(𝜔) may differ from 

the patterns previously described. In such cases, a generalised Maxwell model can be used to 

better capture the fluid’s response. This approach models the fluid as consisting of 𝑁 Maxwell 

elements arranged in series. Following the linear superposition principle, the total stress is 

calculated as the sum of the stresses from each individual element. Consequently, Eq. 2.35 can 

be written more generally as follows: 

𝐺′ = ∑
𝜂𝑖𝜆𝑖𝜔2

1+𝜆𝑖
2𝜔2

𝑁
𝑖=1                                                         (2.37a) 

𝐺′′ = ∑
𝜂𝑖𝜔

1+𝜆𝑖
2𝜔2

𝑁
𝑖=1                                                        (2.37b) 

For comparison purposes, Fig. 2.6 also displays an example of 𝐺′ and 𝐺′′ curves corresponding 

to a generalised Maxwell fluid with three relaxation modes (red lines).  

Upper-convected Maxwell model 

As mentioned earlier, the classic Maxwell model is linear and so cannot predict non-linear 

viscoelastic phenomena such as normal stress differences. To address this limitation, non-linear 

models were developed, with the upper-convected Maxwell model being the simplest among 

them. In this model, the material time derivative of the deviatoric stress tensor is replaced by 

the convected time derivative, resulting in a modified form of Eq. 2.30. This version, scaled 

and expressed using dimensionless variables, reads: 
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𝝉̅ + (𝜆/𝑡𝛾̇)
𝜕𝝉̅

𝜕𝑡̅
− (𝜆𝛾̇𝑐)[(

𝜕𝒗̅

𝜕𝒙̅
)

†

∙ 𝝉̅ + 𝝉̅ ∙ (
𝜕𝒗̅

𝜕𝒙̅
)] = − (𝜂0𝛾̇𝑐/𝜏𝑐) 𝜸̇̅                 (2.38) 

where 𝜕/𝜕𝑡 ̅ is the material time derivative, 𝜕𝒗̅/𝜕𝒙̅ is the dimensionless velocity gradient 

tensor, and (𝜕𝒗̅/𝜕𝒙̅)† is its transpose. On the left-hand side of Eq. 2.38, two dimensionless 

numbers are present: one is the Deborah number (𝐷𝑒 ≡ 𝜆/𝑡𝛾̇) and the other is the Weissenberg 

number, defined as 𝑊𝑖 ≡ 𝜆𝛾̇𝑐 (Larson, 1999). This number is associated with the non-linear 

part of Eq. 2.38 – the part that in shear flows results into normal stress differences.  

Analysing the different regimes of the Deborah and Weissenberg numbers provides valuable 

insights into the material behaviour. When 𝐷𝑒 ≪ 1 and 𝑊𝑖 ≪ 1, Eq. 2.38 yields 𝝉̅ ∼ (
𝜂0𝛾̇𝑐

𝜏𝑐
)𝜸̇̅, 

so that 𝜏𝑐 ∼ 𝜂0𝛾̇𝑐, indicating a Newtonian fluid-like behaviour. When 𝐷𝑒 ≪ 1 and 𝑊𝑖 ≫ 1, 

the non-linear term of Eq. 2.38 becomes important, while (𝜆/𝑡𝛾̇)𝜕𝑡𝝉̅ is still negligible 

compared to 𝝉̅. Considering the dimensional variables, Eq. 2.38 can be approximated with: 

𝝉 − 𝜆[(
𝜕𝒖

𝜕𝒙
)

†

∙ 𝝉 + 𝝉 ∙ (
𝜕𝒖

𝜕𝒙
)] = − 𝜂0𝜸̇                                     (2.39)  

For a simple shear flow, this yields 𝜏𝑥𝑥 = −2𝜆𝜂0𝛾̇2, 𝜏𝑥𝑦 = −𝜂0𝛾̇,  𝜏𝑦𝑦 = 0, showing that the 

first normal stress difference is not zero and is related to 𝑊𝑖,  highlighting the influence of 

nonlinear effects. For 𝐷𝑒 ≫ 1 and 𝑊𝑖 ≪ 1, Eq. 2.38 simplifies to (𝜆/𝑡𝛾̇)𝜕𝑡𝝉̅ ∼ (𝜂0𝛾̇𝑐/𝜏𝑐)𝜸̇̅ , 

indicating behaviour similar to that of a Hookean solid with 𝜏𝑐 ∼ 𝐺𝑒𝛾𝑐. In cases where both 

𝐷𝑒 ≫ 1 and 𝑊𝑖 ≫ 1, the material exhibits characteristics of a nonlinear solid. 

In essence, the Deborah number determines whether the material behaves like a Newtonian 

fluid or an elastic Hookean solid, while the Weissenberg number reflects the importance of 

nonlinear effects, such as normal stress differences, relative to viscous stresses (Dealy, 2010; 

Poole, 2012). 

Jeffreys model 

The Maxwell and upper-convected Maxwell models previously discussed provide 

fundamental insights into the viscoelastic behaviour of materials and form the basis for more 

advanced models. While essential for understanding simpler systems, these models cannot 

fully capture the behaviour of more complex, multiphase systems. The Jeffreys model extends 

the Maxwell framework, offering a more comprehensive description of the viscoelastic 

behaviour in dilute suspensions consisting of viscoelastic particles dispersed in a Newtonian 

fluid. These particles can be solid particles, droplets, polymeric molecules or bubbles. The 
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Jeffreys model suggests that the total stress in the suspension is the sum of the stress 

contributions of the solvent and the dispersed phase (Bird et al., 1987). The solvent is a 

Newtonian fluid, and the particles obey the Maxwell equation as follows:  

𝝉 = 𝝉𝑝 + 𝝉𝑠 ; 𝝉𝒔 = − 𝜂𝑠𝜸̇ ; 𝝉𝑝 + 𝜆
𝜕𝝉𝑝

𝜕𝑡
= − 𝜂𝑝𝜸̇                         (2.40)  

where τ is the deviatoric stress tensor of the mixture, subscripts s and p denote the solvent and 

the particles, respectively, 𝜂𝑠 is the Newtonian viscosity of the solvent (constant), and 𝜕/𝜕𝑡 is 

the material time derivative. The Jeffreys constitutive equations is then given by:  

𝝉 + 𝜆
𝜕𝝉

𝜕𝑡
= − 𝜂0(𝜸̇ + 𝜆2

𝜕𝜸̇

𝜕𝑡
)                                               (2.41) 

In Eq. 2.41, 𝜂0 ≡ 𝜂𝑠 + 𝜂𝑝 is the zero-shear viscosity of the suspension, 𝜆 is the relaxation 

time of the viscoelastic particles, and 𝜆2 ≡ 𝜆𝜂𝑠/𝜂0 is known as the retardation time. The 

relaxation time for a single fluid droplet in simple shear is given by the expression 𝜆 ≡

(1 + 𝛽)(𝜂𝑠𝑅)/𝜎, where 𝛽 is the viscosity ratio between the dispersed and continuous phases, 

𝑅 is the radius of the relaxed droplets, assumed to be all identical, and 𝜎 is the interfacial 

tension between the two phases (Loewenberg and Hinch, 1996). In the case of inviscid bubbles, 

where 𝛽 = 0, this expression reduces to 𝜆 ≡ (𝜂𝑠𝑅)/𝜎.  

As seen, Eq. 2.41 is linear and, similarly to the Maxwell equation, cannot predict non-linear 

effects, such as normal stress differences. The Jeffreys constitutive equation features an 

additional term compared to the Maxwell equation, and a scaling analysis can be used to 

understand how this term affects the rheological behaviour of the mixture. Using the scales 

given in Eq. 2.32, the following expression is obtained:  

𝝉̅ + (𝜆/𝑡𝛾̇)
𝜕𝝉̅

𝜕𝑡̅
= − (𝜂0𝛾̇𝑐/𝜏𝑐) [𝜸̇̅ + (𝜆2/𝑡𝛾̇)

𝜕𝜸̇̅

𝜕𝑡̅
]                                    (2.42) 

If 𝐷𝑒 ≪ 1, then 𝑡𝛾̇ ≫ 𝜆, and since 𝜆 > 𝜆2, it follows that 𝑡𝛾̇ ≫ 𝜆2. Consequently, the terms 

containing the time derivative become negligible, reducing Eq. 2.42 to  𝝉 = − 𝜂0𝜸̇. In this flow 

regime, the mixture behaves as a Newtonian fluid with viscosity 𝜂0 and, as anticipated, normal 

stress differences are absent. For 𝐷𝑒 ≫ 1, two scenarios arise. If 𝜆2/𝑡𝛾̇ ≪ 1, a condition that 

holds only if 𝜂0/𝜂𝑠 ≫ 1, 𝝉 is negligible compared to 𝜆 𝜕𝜏𝝉, and 𝜆2 𝜕𝑡𝜸̇ is negligible compared 

to 𝜸̇. In this case, the mixture behaves as a Hookean solid with an elastic modulus 𝐺𝑒. On the 

other hand, when 𝜆2/𝑡𝛾̇ ≫ 1, the time derivatives dominate, leading to 𝜏𝑐~(𝜆2/𝜆)𝜂0𝛾̇𝑐~𝜂𝑠𝛾̇𝑐. 
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Therefore, the mixture behaves as a Newtonian fluid, but in this case the viscosity coincides 

with the viscosity of the solvent, the particle contribution being negligible.  

It is important to note that the Jeffreys model is designed for dilute suspensions, where the 

interactions among particles are considered negligible. In this case, the total stress can be 

determined using the linear superposition of the individual stress contributions. However, for 

more concentrated systems, where the particle-particle interactions become significant, the 

Jeffreys model may not fully capture the complexities of the system, and more sophisticated 

models are often required (Ponce-Torres et al., 2018). 

2.2 Rheology of bubble suspensions in Newtonian media 

Having provided the necessary context for the rheology of complex fluids, this section 

focuses on the rheological properties of bubble suspensions in Newtonian media, reviewing 

key studies and their findings. Bubble suspensions, composed of gas bubbles dispersed in a 

liquid medium, exhibit rheological properties that differ significantly from those of the 

continuous phase alone. The presence of bubbles has been shown to alter the flow properties 

of the suspension, introducing non-Newtonian phenomena such as shear-thinning behaviour 

and viscoelastic effects (Llewellin et al., 2002a; Rust and Manga, 2002). This complex 

rheological behaviour is influenced by several key parameters, including the properties of the 

continuous phase, such as viscosity and surface tension, the volume fraction of the bubbles 𝜑, 

their size distribution, and their interactions with the surrounding fluid (Pal, 2003). 

To effectively analyse these systems, it is essential to consider dimensionless numbers that 

correlate the bubble relaxation time with the characteristic flow time, elucidating the 

deformation and relaxation processes that affect the overall rheological response of the 

suspension. Similar to the use of the Deborah and Weissenberg numbers in the broader study 

of complex fluids, the capillary number 𝐶𝑎 and the dynamic capillary number 𝐶𝑑, which are 

specific to bubble suspensions, provide critical insights into the behaviour of these systems 

across different flow regimes (Llewellin and Manga, 2005). A detailed discussion of these 

important dimensionless parameters is presented in the following section.  

2.2.1. Capillary and dynamic capillary numbers  

In every sheared bubble suspension, two opposite forces act on the dispersed bubbles: shear 

stress and surface tension. Shear stress tends to deform and elongate the bubbles, while surface 

tension tends to restore the bubbles to their initial spherical shape, preventing deformation. 

Under steady shear, bubbles elongate until they reach an equilibrium configuration in which 
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their deformation is constant, and their shape remains stable. Llewellin et al. (2002a), Rust and 

Manga (2002) and several subsequent studies have used a dimensionless parameter called 

capillary number 𝐶𝑎 to describe the ratio between the deforming viscous shear stress and the 

restoring surface tension. In terms of characteristic times, 𝐶𝑎 is the ratio between two time 

scales, namely 𝜆 and  𝑡𝑑. The latter represents the time required by the flow to deform the 

bubble significantly, essentially the time required by the deformation process, and is equal to 

1/𝛾̇. The former, as previously mentioned, is the relaxation time, representing the time that the 

bubble takes to attain a new equilibrium condition after a change of 𝛾̇. Once a time of order 𝜆 

has elapsed, the bubble reaches equilibrium again. Therefore, 𝜆 can be understood as the time 

available to the deformation process, and the capillary number is defined as follows:  

𝐶𝑎 ≡
𝜆

𝑡𝑑
                                                          (2.43) 

The relaxation time of uniform-sized bubbles suspended in a Newtonian solvent is given by 

the following equation (Llewellin et al., 2002a):  

𝜆 ≡
𝑘(𝜑)𝜂𝑠𝑅

𝜎
                                                       (2.44) 

where 𝜂𝑠 is the constant viscosity of the solvent, 𝑅 is the radius of the relaxed, undeformed 

bubbles, 𝜎 is the surface tension of the ambient fluid, and 𝑘(𝜑) is a parameter, which describes 

the bubble interactions and increases with the volume fraction of the dispersed phase. For dilute 

suspensions where interactions are considered negligible, 𝑘 ≈ 1 and Eq. 2.44 reduces to the 

expression for the relaxation time of a single bubble, i.e., 𝜆 ≡ 𝜂𝑠𝑅/𝜎. Substituting this 

expression for 𝜆 and the expression for 𝑡𝑑 in Eq. 2.43, one obtains the following equivalent 

expression for 𝐶𝑎, defined as the ratio between the deforming shear stress and the restoring 

surface tension: 

𝐶𝑎 ≡
𝜆

𝑡𝑑
=

𝜂𝑠𝑅

𝜎
1

𝛾̇

=
𝜂𝑠𝑅𝛾̇

𝜎
                                                (2.45) 

Eq. 2.43 shows that for small capillary numbers (𝐶𝑎 ≪ 1), the time available for 

deformation is much shorter than the time required, resulting in negligible bubble deformation. 

In this case, the suspended bubbles remain spherical and act as obstacles to the flow, distorting 

the fluid streamlines around them. Therefore, the relative viscosity of the suspension (𝜂𝑟 ≡

𝜂𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛/𝜂𝑠𝑜𝑙𝑣𝑒𝑛𝑡) increases with bubble volume fraction. Conversely, for large capillary 

numbers (𝐶𝑎 ≫ 1), the time available for deformation is much longer than the time required. 
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Hence, the bubbles deform significantly, introducing larger free-slip surfaces that align with 

the fluid streamlines and leading to a decrease in suspension viscosity.  In other words, as the 

shear rate, and in turn the capillary number, increases, bubbles elongate more, and the flow 

resistance decreases, indicating that the suspension behaves as a shear-thinning fluid. For 

monodisperse bubble suspensions, the onset of the shear-thinning behaviour occurs at capillary 

number values of unit order magnitude (𝐶𝑎~1), as illustrated in Fig. 2.7. 

 

Figure 2.7: Relative viscosity as a function of the capillary number (𝐶𝑎) and the bubble volume 

fraction (𝜑) for a monodisperse bubble suspension. 

Shear-thinning behaviour is a non-linear effect and is predicted by the capillary number. 

Therefore, 𝐶𝑎 can be considered the equivalent of the Weissenberg number for bubble 

suspensions. For unsteady flows from a Lagrangian standpoint, Llewellin et al. (2002a) 

introduced another dimensionless parameter, called dynamic capillary number, 𝐶𝑑, which is 

equivalent to the Deborah number. In an unsteady flow, bubble suspensions are subjected to a 

varying shear rate, and thus the deforming (viscous) and restoring (surface tension) forces 

acting on a bubble are not in equilibrium. As mentioned earlier, 𝜆 can be regarded as the time 

required by the bubbles to attain an equilibrium configuration after a change in 𝛾̇. The bubble 

can attain this configuration only if, over a time of order 𝜆, the shear rate is constant. If this 

condition is not met, the bubble always lags, never being able to reach equilibrium.  

Hence, to gauge whether equilibrium is attained, one must compare the relaxation time to 

the time scale characterising the rate of change of the shear rate. The latter is the time required 

to make the shear rate change significantly, meaning that the order of magnitude of the change 

needs to be equal with the order of magnitude of the shear rate. Therefore, the timescale over 

which the shear rate changes significantly is given by 𝛾̇/𝛾̈, and the dynamic capillary number 

is defined as follows: 
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𝐶𝑑 ≡
𝜆

𝑡𝛾̇
=

𝜆
𝛾

𝛾̈

̇ =
𝜆𝛾̈

𝛾̇
                                                  (2.46) 

   As shown in Eq. 2.46, for 𝐶𝑑 ≪ 1, the time necessary to reach equilibrium is much shorter 

than the time over which the shear rate changes significantly, and consequently the bubble 

relaxes and reaches equilibrium. On the contrary, for 𝐶𝑑 ≫ 1, the bubble is always far from 

equilibrium. For an oscillatory, simple shear flow, the timescale over which the shear rate 

changes significantly is equal to the inverse of the oscillation frequency 𝜔, and Eq. 2.46 

becomes:  

𝐶𝑑 = 𝜆𝜔                                                         (2.47)  

To gain a deeper understanding of the viscoelasticity of bubble suspensions, the Jeffreys 

constitutive equation (Eq. 2.41) can be employed. Since the Jeffreys equation is linear, it holds 

only when 𝐶𝑎 ≪ 1, a condition that implies that the bubbles are spherical. Eq. 2.41 can be 

integrated as a first-order differential equation, using the initial condition that 𝝉 be finite at 𝑡 =

−∞, and reads:  

𝝉(𝑡) = − ∫
𝜂0

𝜆

𝑡

−∞
(1 −

𝜆2

𝜆
) 𝑒−

𝑡−𝑡′

𝜆 𝜸̇(𝑡′)𝑑𝑡′ −
𝜂0𝜆2

𝜆
𝜸̇(𝑡)                         (2.48)  

where 𝑡′ is a past time relative to the configuration of the suspension at the present time t. 

Considering a sinusoidal deformation 𝛾(𝑡) = 𝛾0 sin 𝜔𝑡 ⟹ 𝛾̇(𝑡) = 𝛾0𝜔 cos 𝜔𝑡, under small 

amplitude conditions Eq. 2.48 becomes: 

 𝝉(𝑡) = 𝐺′(𝜔)𝛾0 sin 𝜔𝑡 + 𝐺′′(𝜔)𝛾0 cos 𝜔𝑡                               (2.49)  

where 𝐺′ and 𝐺′′ are given by:  

𝐺′(𝜔) =
𝜂0(𝜆−𝜆2)𝜔2

1+(𝜆𝜔)2                                                       (2.50a) 

  𝐺′′(𝜔) =
𝜂0𝜔(𝜆−𝜆2)

𝜆(1+(𝜆𝜔)2)
+

𝜂0𝜆2𝜔

𝜆
                                   (2.50b) 

For 𝐶𝑑 ≪ 1 (i.e., when 𝜔~0), Eq. 2.50 yields 𝐺′(𝜔)~0 and 𝐺′′(𝜔)~𝜂0𝜔. Hence, bubbles 

behave as a Newtonian fluid with zero elasticity, and the total deviatoric stress is given by the 

sum of the contributions of the liquid and of the bubbles, both of which are significant, so that 

the mixture viscosity is equal to 𝜂0 ≡ 𝜂𝑠 + 𝜂𝑝. When 𝐶𝑑 = 𝜆𝜔~1, Εq. 2.50 gives 

𝐺′(𝜔)~
𝜂0(𝜆−𝜆2)

2𝜆2  and 𝐺′′(𝜔)~
𝜂0(𝜆+𝜆2)

2𝜆2 . In this case, both the viscous and the elastic parts of the 
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material’s response are important, but in very dilute systems, the elastic part is not appreciable, 

as 𝜆 ≈ 𝜆2. 

For 𝐶𝑑 ≫ 1 (i.e., when 𝜔~∞), two scenarios arise. If 𝐶𝑑 ≫ 1 and 
𝜆2

𝑡𝛾̇
≪ 1 → 𝜆2𝜔 ≪ 1, Eq. 

2.50 yields 𝐺′(𝜔)~𝐺𝑒 = 𝜂0/𝜆 and 𝐺′′(𝜔)~0, respectively. This means that the bubbles 

behave like a Hookean solid, their stress contribution being equal to: 

𝜏𝑐,𝑏𝑢𝑏𝑏𝑙𝑒𝑠~𝐺𝑒𝛾𝑐~ (
𝜂0

𝜆
) (𝛾̇𝑐𝑡𝛾̇)~ (

1

𝜆2𝜔
) (𝜂𝑠𝛾̇𝑐)~ (

1

𝜆2𝜔
) 𝜏𝑐,𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ≫ 𝜏𝑐,𝑠𝑜𝑙𝑣𝑒𝑛𝑡       (2.51) 

In this case, the contribution of the bubbles is dominant, so the mixture behaves like a Hookean 

solid. However, it is important to note that this is possible only if 𝜆2~0, i.e., when the viscosity 

of the dispersed phase diverges. This can only happen in extremely dense conditions, which 

are probably not feasible. Therefore, in practise,  𝐺′(𝜔)~𝐺𝑒 = 𝜂0/𝜆, but 𝐺′′(𝜔) will not 

vanish, meaning the suspension will behave as a viscoelastic fluid. 

On the other hand, for 𝐶𝑑 ≫ 1 and 
𝜆2

𝑡𝛾̇
≫ 1 → 𝜆2𝜔 ≫ 1, Eq. 2.50 giveσ 𝐺′(𝜔)~0 and 

𝐺′′(𝜔)~𝜂𝑠𝜔, indicating that the mixture behaves like a Newtonian fluid with viscosity equal 

to that of the solvent (𝜂𝑠). The stress contribution from the bubbles is negligible compared to 

that from the fluid, which dominates the mixture behaviour. This is because the stress coming 

from the bubbles is proportional to the deformation, and this is very small, whereas the stress 

from the ambient liquid is proportional to the deformation rate, and this is very large.  

The viscoelastic behaviour of bubble suspensions was investigated experimentally in the 

study of Llewellin et al. (2002a) and the results are shown in Fig. 2.8. As illustrated, for all 

tested bubble volume fractions, the phase shift decreases up to a minimum and then increases 

again. The minimum in phase shift indicates a maximum in the elastic deformation of the 

suspension. The experimental results of Llewellin et al. (2002a) confirm the general 

viscoelastic behaviour derived from the scaling analysis of the Jeffreys model. At low 

frequencies and, hence, at 𝐶𝑑 ≪ 1, the suspension behaves as a Newtonian fluid. As 𝐶𝑑 

approaches unity the elasticity of the suspension becomes evident, and the system behaves as 

a viscoelastic fluid. Finally, at 𝐶𝑑 ≫ 1, the suspension returns to Newtonian behaviour. 
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Figure 2.8: Phase shift 𝛿 as a function of the oscillation frequency for varying bubble volume fraction 

(Llewellin et al., 2002a). 

2.2.2. Rheological models for bubble suspensions in Newtonian media 

After introducing the key dimensionless numbers relevant to the rheology of bubble 

suspensions, this section provides an overview of the most fundamental rheological models 

developed for bubble suspensions in Newtonian media. These models describe the rheological 

properties in both steady and oscillatory shear flows as a function of the bubble volume 

fraction, the capillary number and the dynamic capillary number, and are essential for 

validating experimental data and understanding the complex behaviour of bubble suspensions, 

including shear-thinning and viscoelastic effects. The more intricate rheology of bubble 

suspensions in non-Newtonian media, along with the associated main models, will be 

addressed in more detail in a subsequent section.  

One of the most fundamental studies on the rheology of bubble suspensions is that of 

Llewellin et al. (2002a). In this work, the authors prepared bubble suspensions in Newtonian 

corn syrup, with bubble volume fraction ranging between 3.6% and 46.1%, and performed 

SAOS tests to investigate their viscoelastic behaviour. To model the observed behaviour, they 

proposed a semi-empirical rheological model (Eq. 2.52) in the form of the linear Jeffreys 

model, based on the analysis of Frankel and Acrivos (1970), on the rheology of dilute 

monodisperse emulsions with nearly spherical droplets (𝐶𝑎 ≪ 1):  

𝜏𝑖𝑗 +
6

5
𝜆𝜏̇𝑖𝑗 = 𝜂𝑠(1 + 𝜑)𝛾̇𝑖𝑗 + 𝜂𝑠

6

5
𝜆 (1 −

5

3
𝜑) 𝛾̈𝑖𝑗                        (2.52) 

where 𝜂𝑠 is the viscosity of the solvent (i.e., ambient fluid), 𝜑 is the bubble volume fraction 

and 𝜏̇𝑖𝑗 and 𝛾̈𝑖𝑗 are the partial time derivative of the shear stress and the shear rate, respectively.  
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Although Eq. 2.52 is linear, it is a reduction of the more general and non-linear model 

developed by Frankel and Acrivos (1970). Before discussing Llewellin et al.'s constitutive 

equation in more detail, it is worth providing context on this foundational work. Frankel and 

Acrivos developed a constitutive equation to describe the rheology of a dilute emulsion, where 

small droplets suspended in an incompressible Newtonian fluid undergo small deformations 

(i.e., 𝐶𝑎 ≪ 1) under time-dependent (transient) shear flow. The authors employed a 

perturbation approach to describe the stress response of the droplets, and since the equation is 

developed under the assumption of small deformations, it allowed for a first-order 

approximation. It is important to note that despite assuming small deformations, the proposed 

equation is not linear; non-linearities arise due to the way droplet deformation affects the stress 

distribution in the surrounding fluid. Specifically, the interaction between the deformed 

droplets and the surrounding flow introduces quadratic terms in the strain rate. Furthermore, 

the use of the Jaumann derivative (𝐴
∘

𝑖𝑗 =
𝜕𝐴𝑖𝑗

𝜕𝑡
+ 𝑢𝑘

𝜕𝐴𝑖𝑗

𝜕𝑥𝑘
+ 𝜛𝑖𝑘𝐴𝑘𝑗 − 𝐴𝑖𝑘𝜛𝑘𝑗, where 𝐴𝑖𝑗 is an 

arbitrary tensor, 𝑢𝑖 is the velocity vector, and 𝜛𝑖𝑗 is the vorticity tensor), which accounts for 

rotational effects, adds further non-linear corrections. Thus, even within the small deformation 

framework, the model captures a non-linear relationship between stress and strain rate. 

Llewellin et al. (2002a) simplified the constitutive equation proposed by Frankel and 

Acrivos (1970), considering that in a simple oscillatory shear flow the vorticity is zero. Thus, 

they replaced the Jaumann derivative with the material derivative. Additionally, they 

considered that bubbles are inviscid, meaning the viscosity ratio between the interior of the 

bubble and the surrounding fluid is zero, resulting in Eq. 2.52. Llewellin et al. (2002a) proposed 

that this equation holds for 𝐶𝑎 ≪ 1, 𝐶𝑑 varying up to at least 10, and 𝜑 ≤ 0.5. However, their 

statement regarding the validity of the equation at such high bubble volume fractions deserves 

closer examination, as it conflicts with the theoretical framework of Frankel and Acrivos 

(1970), which was specifically developed for dilute emulsions and forms the foundation of 

Llewellin et al.'s work.  

Another aspect of Eq. 2.52 that requires careful consideration regards the predicted 

behaviour when 𝐶𝑑 ≫ 1. For 𝐶𝑑 ≪ 1, Eq. 2.52 simplifies to 𝜏𝑖𝑗 = 𝜂𝑠(1 + 𝜑)𝛾̇𝑖𝑗, indicating 

that the suspension behaves as a Newtonian fluid with an effective viscosity 𝜂0 = 𝜂𝑠(1 + 𝜑) =

𝜂𝑠 + 𝜂𝑠𝜑 = 𝜂𝑠 + 𝜂𝑏 (𝜂𝑏 being the viscosity contribution coming from the bubbles). This aligns 

with the predictions of the Jeffreys model for low 𝐶𝑑 values. However, when 𝐶𝑑 ≫ 1, the time 

derivative terms dominate, leading to: 



49 
 

𝜏̇𝑖𝑗 = 𝜂𝑠 (1 −
5

3
𝜑) 𝛾̈𝑖𝑗 ⟹ 𝜏𝑖𝑗 = 𝜂𝑠 (1 −

5

3
𝜑) 𝛾̇𝑖𝑗                       (2.53) 

This implies that for 𝐶𝑑 ≫ 1 and 𝐶𝑎 ≪ 1, the fluid behaves as a Newtonian fluid with viscosity 

𝜂∞ = 𝜂𝑠 (1 −
5

3
𝜑), i.e., the viscosity of the suspension decreases with bubble volume fraction. 

This conclusion contradicts what has been earlier derived from the scaling analysis of the 

Jeffreys model, which suggested that for 𝐶𝑑 ≫ 1,  the viscosity of the suspension coincides 

with the viscosity of the solvent.  

This discrepancy between the predictions of the Jeffreys model and those of the Llewellin 

et al. (2002a) model in the high 𝐶𝑑 regime most likely stems from the different theoretical 

frameworks underlying the two models. The Jeffreys model is a macroscopic viscoelastic 

model that describes the overall stress in a suspension by linearly combining elastic and viscous 

components. In contrast, the Frankel and Acrivos model (which forms the basis of the Llewellin 

et al. model) accounts for non-linearities in the flow caused by even minimal bubble 

deformation, which the linear Jeffreys model does not consider. Determining which model is 

more appropriate for describing the behaviour of bubble suspensions in the 𝐶𝑎 ≪ 1 and 𝐶𝑑 ≫

1 regime remains an uncertainty and necessitates further experimental data for clarification.  

The physical explanation provided by Llewellin et al. (2002a) with regard to the suspension 

behaviour in this regime requires further examination. They propose that at very high 𝜔, and, 

thus, 𝐶𝑑, the flow around the bubbles changes very rapidly and the bubbles do not have enough 

time to relax and attain a new equilibrium configuration. As a result, they oscillate around a 

fixed shape, which is close to spherical (𝐶𝑎 ≪ 1). While the ambient Newtonian fluid relaxes 

instantly, the bubbles are always stressed and this stress leads to internal bubble deformation. 

Since the bubbles are essentially inviscid, the dissipation per unit volume and, hence, the 

relative viscosity of the suspension decrease as the bubble volume fraction increases. However, 

this approach accounts only for the stress inside the bubble and not for what happens on the 

surface of the bubble and in the ambient fluid. In other words, this reasoning does not consider 

the surface tension and the distortion of the fluid streamlines, both of which are crucial for 

shaping the viscoelastic response of the system.  

As continuation to their first study, Llewellin et al. (2002b) solved analytically the original 

constitutive equation of Frankel and Acrivos (1970), i.e., the one featuring the non-linear terms, 

to obtain a constitutive equation for the steady-shear viscosity of monodisperse bubble 

suspensions, i.e., for 𝐶𝑑~0 and varying 𝐶𝑎. The equation reads:  
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𝜂𝑟 = {
1 + 𝜑, 𝑓𝑜𝑟  𝐶𝑎 ≪ 1 

1 −
5

3
𝜑, 𝑓𝑜𝑟  𝐶𝑎 ≫ 1 

                                              (2.54)  

and can be recast in the form of Cross model as follows:  

𝜂𝑟 = 𝜂𝑟,∞ +
𝜂𝑟,0−𝜂𝑟,∞

1+(𝐾𝐶𝑎)𝑚
 , with 𝐾 = 6/5 and 𝑚 = 2                       (2.55a) 

𝜂𝑟,0 = 1 + 𝜑                                                    (2.55b) 

𝜂𝑟,∞ = 1 −
5

3
𝜑                                                 (2.55c) 

where 𝜂𝑟 ≡ 𝜂𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛/𝜂𝑠𝑜𝑙𝑣𝑒𝑛𝑡 is the relative viscosity of the suspension. Eq. 2.55b is 

essentially the Taylor equation (Taylor, 1932) for the relative zero-shear viscosity of dilute 

bubble suspensions, and it is derived as follows: 

 𝜂𝑟 = 1 +
2+5𝑏

2+2𝑏
𝜑                                                  (2.56)                  

where 𝑏 is the ratio of inclusion material viscosity to matrix liquid viscosity. For solid particles, 

𝑏 → ∞ and Eq. 2.56 reduces to the Einstein equation (Einstein, 1911). For bubbles, 𝑏 → 0 and 

Eq. 2.56 becomes equal to 1 + 𝜑. Eq. 2.55c is known as the Mackenzie equation ((Mackenzie, 

1950)), proposed for the infinite-shear viscosity of bubble suspensions under steady shear.  

 

Rust & Manga (2002) found good agreement between their steady-shear experimental data 

and Eq. 2.55 with 𝛫 = 0.72 and 𝑚 = 1.43. In this case, rather than using the Taylor and 

Mackenzie equations, they suggested that the zero-shear relative viscosity is given by the 

Krieger–Dougherty equation for solid particles (𝜂𝑟,0 = (1 −
𝜑

𝜑𝑚
)

−𝐵𝜑𝑚

) with empirically 

defined parameters 𝜑𝑚 = 0.6 and 𝐵 = 1, while the infinite-shear viscosity follows an 

empirical correlation with the volume fraction: 𝜂𝑟,∞ = 1 + 𝑐1𝜑 + 𝑐2𝜑2 , with 𝑐1 = −1.14 and 

𝑐2 = −9.8.  Morini et al. (2019) also reported good agreement between their experimental data 

and the predictions of Eq. 2.55. 

Tasaka et al. (2015) investigated the magnitude of the complex viscosity of dilute bubble 

suspensions subjected to oscillatory shear flows using ultrasonic spinning rheometry. This 

technique enables measurement of this quantity at different radial positions within a rotating 

cylinder by using spatio-temporal velocity data obtained via ultrasonic velocity profiling 

(UVP). The oscillatory rotation induces an unsteady shear flow with continuous non-

equilibrium bubble deformations. The authors found that the extent of bubble deformation, and 

consequently the magnitude of the complex viscosity of the suspension, varied depending on 

the radial position within the cylinder, with bubbles near the wall experiencing significant 

deformation due to higher shear stress, while those closer to the centre remained relatively 
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undeformed (i.e., 𝐶𝑎 ≪ 1). The degree of deformation was also influenced by the imposed 

oscillation frequency, with higher frequencies leading to increased deformations. 

At the highest tested frequency, the relative viscosity of the suspension (defined as the ratio 

of the magnitude of the complex viscosity of the suspension to the viscosity of the Newtonian 

ambient fluid) dropped below unity near the wall, where bubbles were most deformed. This 

suggests that under conditions where both 𝐶𝑑 ≫ 1 and 𝐶𝑎 ≫ 1, the presence of bubbles 

reduces the suspension viscosity. However, it is important to note that the observed drop in 

relative viscosity did not follow the predictions of Eq.2.55c, which also refers to large bubble 

deformations but under steady shear flow. For the same frequency, the relative viscosity at the 

centre of the cylinder, where the bubbles remained undeformed, increased above unity. These 

findings suggest that under unsteady conditions with large deformations, the presence of 

bubbles reduces the suspension viscosity, similarly to steady-state conditions and large 

deformations, although the reductions do not follow the same trend. In contrast, for unsteady 

flows with minimal deformation (𝐶𝑑 ≫ 1 and 𝐶𝑎 ≪ 1), the results show an increase to 

viscosity due to bubbles, deviating from the predictions of Llewellin’s et al. (2002a) model for 

this regime (Eq.2.53). While these findings offer valuable insights, they are limited to a single 

volume fraction and do not cover a wide range of increasing oscillation frequencies, thus 

highlighting the need for further experimental studies to clarify how the suspension viscosity 

behaves with bubble volume fraction under conditions where both 𝐶𝑑 and 𝐶𝑎 vary 

simultaneously. 

In a recent study, Ohie et al. (2024) also employed ultrasonic spinning rheometry to 

investigate the viscoelasticity of bubble suspensions under conditions involving bubble 

deformation, i.e., when 𝐶𝑎 and 𝐶𝑑 vary simultaneously and arbitrarily. Their results showed 

that for 𝐶𝑑 = 1.4 and 𝐶𝑎 varying from 0 to 2.2, the mean suspension viscosity (i.e., the average 

viscosity across experimental repetitions) was very close to that of the solvent and decreased 

as the capillary number increased, agreeing with the findings of Tasaka et al. (2015). However, 

their raw data was highly scattered, leading the authors to conclude that further experimental 

data over a wider range of 𝐶𝑎 and 𝐶𝑑 values are necessary to draw reliable conclusions about 

the suspension viscosity at 𝐶𝑑 ≫ 1 and varying extents of deformation (𝐶𝑎). Additionally, the 

authors concurred with earlier studies (Llewellin et al., 2002b; Llewellin & Manga, 2005; 

Mader et al., 2013) that the maximum of viscoelasticity, corresponding to the minimum of the 

phase shift 𝛿 between shear stress and shear rate, occurs at 𝐶𝑑~1 and in the limit of zero 𝐶𝑎, 

but also suggested that the transition from viscoelastic behaviour to purely viscous response is 
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determined by the condition 𝐶𝑑/𝐶𝑎 = 1, regardless of the values of the dimensionless 

parameters. When the ratio of the dynamic capillary to capillary number exceeds the threshold 

of unity, the suspension loses its viscoelastic properties and behaves as a Newtonian fluid.  

The rheological models discussed thus far describe dilute and monodisperse bubble 

suspensions. Although polydispersity is common in industrial applications, it has mostly been 

addressed through empirical approaches that have not thoroughly investigated the effect of 

different bubble sizes on suspension rheology. This issue is examined in Chapter 3, which also 

provides a detailed review of the relevant studies that have addressed polydispersity. In the case 

of more concentrated bubble suspensions, Pal (2004) proposed a constitutive equation, based 

on the framework of the viscoelastic Oldroyd B model (Oldroyd, 1953), for the steady-shear 

rheology of these systems, which are characterised by hydrodynamic interactions among 

bubbles. The proposed expressions for the relative viscosity and the reduced first and second 

normal stress differences read:  

𝜂𝑟 =
1+

3

5
𝜑
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2

5
𝜑

[
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)(
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]                                    (2.57a) 

𝑁1𝑟 = 2 [
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]                                        (2.57c) 

where 𝜂𝑟 is the relative viscosity of the suspension, and 𝑁1𝑟 and 𝑁2𝑟 are the reduced first 

and second normal stress differences, defined as 𝑁1/𝜂𝑠𝛾̇ and 𝑁2/𝜂𝑠𝛾̇, respectively.   

 

Upon comparing their viscosity predictions with experimental data (Pal, 1992, 1996; Stein 

and Spera, 2002), the authors found good agreement for bubble volume fractions of 

approximately 20%. However, the experimental results deviated significantly from the 

predictions for bubble volume fractions higher than that. Additionally, the authors highlighted 

the need for further experimental data to validate the constitutive equations for the two normal 

stress differences. The viscoelastic behaviour of concentrated bubble suspensions and liquid 

foams (𝜑 up to ~90%) is more complex due to the strong bubble interactions and the tight 

packing that affect the microstructure and, in turn, the stress relaxation process. Lavergne et al. 
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(2022) observed that liquid foams exhibit a non-Maxwellian rheological behaviour with 𝐺′′ 

increasing in a non-standard manner at high oscillation frequencies. This behaviour is attributed 

to the nonaffine motion of bubbles, which deform irregularly along random slip planes. 

Additionally, deviation from the Maxwel behaviour was observed in the low frequency region, 

where 𝐺′ demonstrated a gradual decay. This suggests that the foam's elastic response 

diminishes more slowly with decreasing frequency than would be expected for a Maxwell fluid, 

indicating more complex viscoelastic behaviour, likely due to the interactions and 

rearrangements of the bubbles.  

The rheology of concentrated bubble suspensions falls outside the scope of the current 

research, and the findings discussed in Chapters 3, 4, and 5 pertain to dilute and semi-dilute 

suspensions.  

2.3 Rheology of bubble suspensions in non-Newtonian media 

Building upon the findings presented in Section 2.2 regarding the rheological behaviour of 

bubble suspensions in Newtonian media, this section extends the analysis to non-Newtonian 

ambient fluids. These fluids exhibit more complex flow behaviours, such as shear-thinning or 

viscoelasticity, which are highly sensitive to the addition of bubbles. In this context, the 

presence of bubbles not only influences the flow properties but may also introduce interactions 

between the bubbles and the matrix that are absent in simpler systems. Despite the broad 

industrial relevance of bubble suspensions with non-Newtonian ambient fluids, the rheology 

of these systems has been sparsely studied; hence, fundamental knowledge is still missing. This 

section presents key literature findings on their rheology, providing context for understanding 

how the interplay between bubbles and non-Newtonian matrices affects the overall rheological 

properties of the suspension. 

Torres et al. (2013) compared the steady-shear rheology of bubble suspensions in two 

different ambient fluids: a shear-thinning guar gum solution and a Newtonian fluid. They also 

examined the effect of surfactant, adding varying amounts of Tween 20 in the guar gum 

solution to assess its impact on the bubble size distribution and the suspension viscosity. 

Bubbles generated in the guar gum solution were twice the size of those generated in the 

Newtonian ambient fluid, and paradoxically, the addition of surfactant further increased the 

bubble size. The authors generated bubble suspensions with volume fractions ranging from 

11% to 24% in both the Newtonian matrix and the guar gum matrix without surfactant, and up 

to 39% in the guar gum matrix with surfactant. Instead of using the capillary number, which is 
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commonly employed for bubble suspension with Newtonian matrices, the authors chose to 

correlate their viscosity data with the dimensionless shear stress 𝜏∗: 

𝜏∗ =
𝜏

𝜎/𝑅
                                                          (2.58) 

where 𝜏 denotes the product of the shear-dependent solvent viscosity and the amplitude of the 

shear rate (𝜂𝑠𝛾̇). In their subsequent study, Torres et al. (2015) clarified that their use of 𝜏∗ 

instead of the capillary number was a convention intended to reflect the fact that, unlike in 

Newtonian fluids, the viscosity of the solvent and the shear rate in their shear-thinning matrix 

are not known a priori, meaning they’re not independent quantities. Since 𝜏∗ in this context is 

equivalent in nature to 𝐶𝑎, 𝐶𝑎 will be used for nomenclature consistency when referring to the 

findings of Torres et al. in this thesis. 

According to their results, the presence of bubbles enhanced the shear-thinning character of 

the ambient fluid, making it more pronounced compared to its unaerated state. Moreover, the 

shear-thinning behaviour observed for the bubble suspensions with the guar gum matrix, both 

with and without surfactant, began at much lower 𝐶𝑎 values, between 0.01 and 0.1- an order 

of magnitude lower than the 𝐶𝑎 values at which shear-thinning started for the Newtonian 

ambient fluid. Although the bubbles in the shear-thinning ambient fluid were larger than those 

in the Newtonian matrix, the size difference could not account for the earlier onset of shear-

thinning, as the corresponding capillary numbers were still well below unity—the regime 

where bubble deformation typically becomes significant. The authors attributed this behaviour 

to the lower shear stresses required to deform bubbles in a shear-thinning viscoelastic medium 

compared to a Newtonian fluid. Specifically, the guar gum solution exhibited significant 

normal stress differences even in its unaerated state, and the addition of bubbles further 

enhanced these effects. The presence of significant normal stress differences likely led to 

bubble deformation and shear-thinning behaviour occurring at lower shear rates, and 

consequently 𝐶𝑎 values, in the guar gum solution compared to the Newtonian matrix.  

While this study offers useful insights into the interaction between the rheology of the matrix 

and the presence of bubbles, several aspects require more careful consideration. Specifically, 

the authors subjected the bubble suspensions to very high shear rates, up to 300 s-1, and images 

of the samples taken at the end of the tests revealed significant changes in bubble size 

distribution and volume fraction during the measurements. Although polymers can typically 

withstand such high shear rates without issue, bubble suspensions are more sensitive and prone 

to bubble coalescence and burst under these conditions. These changes in bubble size and 
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volume fraction are expected to influence suspension rheology, a factor the authors did not 

fully address. Therefore, the microstructural changes occurring during the shearing of the 

samples in the rheometer require further investigation, as they may offer useful insights into 

the observed rheological trends. Additionally, the authors acknowledge the need for further 

investigation in the role of surfactant, particularly in understanding how it influences bubble 

formation and size in shear-thinning fluids, and in turn, how this affects the rheological 

properties of the suspension. 

In a subsequent study, Torres et al. (2015) generated bubble suspensions in a different shear-

thinning ambient fluid, specifically a κ/ι-hybrid carrageenan gum solution with varying 

polymer concentrations and bubble volume fractions ranging between 5% and 25%. They 

observed a similar rheological behaviour to that in the guar gum solution, with significant 

normal stress differences and shear-thinning starting at lower shear rates compared to 

Newtonian ambient fluids. The authors proposed that the viscoelastic behaviour of both the 

ambient fluid and the bubble suspensions could be accurately modelled using a single-mode 

Giesekus model: 

𝜂(𝛾̇) =
𝜂0(1−𝑛2)

1+(2−𝛼)𝑛2
+ 𝜂∞                                              (2.59a) 

𝑁1 = 2𝜆𝜂0
𝑛2(1−𝛼𝑛2)

𝜆2𝛼(1−𝑛2)
                                                  (2.59b) 

𝑁2 = −𝛼
𝑁1

2

(1−𝑛2)

(1−𝛼𝑛2)
                                                    (2.59c) 

where 0 < 𝛼 < 1 is the mobility parameter, representing the anisotropy in the fluid’s response 

to shear forces, and the dimensionless parameter 𝑛2 is given by: 

𝑛2 =
1−𝛬

1+(2−𝛼)𝛬
 with 𝛬 = √

√1+(16𝛼(1−𝛼)𝜆2𝛾̇2−1

8𝛼(1−𝛼)𝜆2𝛾̇2
                           (2.59d) 

where 𝜆 is the relaxation time. 

For dilute bubble suspensions, the experimental zero-shear viscosities exhibited a linear 

dependence on bubble volume faction, described by a modified Taylor equation: 𝜂𝑟,0 = 1 +

1.5𝜑.  At higher bubble volume fractions, the dependence of the measured zero-shear 

viscosities on 𝜑 became non-linear, aligning closely with the predictions of the (Choi and 

Schowalter, 1975) model for emulsions: 

𝜂𝑟,0 = 1 + 𝐼(𝜓)𝜑 with 𝜓 = 𝜑
1

3                             (2.60a) 
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 𝐼(𝜓) =
2[(5𝑘+2)−5(𝑘−1)𝜓7]

[4(𝑘+1)−5(5𝑘+2)𝜓3+42𝜓5−5(5𝑘−2)𝜓7+4(𝑘−1)𝜓10
                 (2.60b) 

where, in the case of droplets, 𝑘 denotes the ratio of the viscosity of the internal fluid to that of 

the continuous phase. For bubbles  𝑘 equals zero.  

The study also provided valuable insights into how the bubble volume fraction influences 

the parameters of the Giesekus model, particularly the relaxation time 𝜆 and the mobility 

parameter 𝛼. As the bubble volume fraction (𝜑) increased, 𝜆 also increased following a linear 

dependence on 𝜑, with 𝜆/𝜆(𝜑 = 0) ≈ 1 + 2.5𝜑, which is reminiscent of the Einstein equation 

for shear viscosity. Τhis finding aligns with the observed increase in normal stress differences 

in the presence of bubbles, confirming that bubbles enhance the suspension’s viscoelastic 

response, causing the fluid to take longer to return to equilibrium after deformation.  

In terms of the effect of 𝜑 on the mobility parameter, the authors observed that 𝛼 increased 

linearly with 𝜑 in the suspensions with a lower concentration of the κ/ι-hybrid carrageenan 

gum, suggesting that the presence of bubbles increases the system's anisotropy as more bubbles 

deform under flow. On the contrary, in bubble suspensions with higher polymer concentration 

in the matrix, 𝛼 remained relatively constant as 𝜑 increased. The authors argued that this may 

be because at higher polymer concentrations, the fluid matrix was more structured, which could 

limit the ability of the bubbles to deform as easily under flow as in the lower concentration 

solution. While the Giesekus model was effective in describing the rheological behaviour of 

both aerated and unaerated fluids, the authors noted that the mechanisms by which bubbles 

influence the model’s parameters require further investigation in order to understand the 

interactions between the bubbles and the rheology of the matrix and refine the model's 

applicability to complex multiphase systems. 

Several studies (Sikorski et al., 2009; Lopez et al., 2018; Daneshi and Frigaard, 2023) have 

also focused on bubbles in yield stress fluids, exploring how the presence of a yield stress 

affects bubble formation and rise. In terms of rheology, Kogan et al. (2013) investigated the 

effect of bubbles on the elastic behaviour of yield stress fluids, using an O/W emulsion as the 

yield stress matrix and incorporating varying amounts of an aqueous foam to generate bubble 

suspensions with different bubble volume fractions. SAOS rheological tests revealed that for a 

given bubble size, there is a critical bubble volume fraction 𝜑𝑐 below which the dimensionless 

elastic modulus, 𝐺̅(𝜑) (defined as the suspension elastic modulus normalized by the elastic 

modulus of the continuous phase), decreases linearly with 𝜑, indicating that the bubbles deform 
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and soften the material. When the bubble volume fraction exceeds this critical value, bubbles 

become confined and less deformable, behaving like rigid inclusions in the suspension, which 

causes the dimensionless elastic modulus to increase with 𝜑. This behaviour is illustrated in 

Fig. 2.9a. 

To gain a better understanding of the deformability of bubbles and the behaviour of 𝐺̅(𝜑), 

the authors introduced a dimensionless number called elastic capillary number 𝐶𝑎𝑒𝑙𝑎𝑠𝑡, which 

compares the elastic modulus of the matrix with the bubble capillary pressure as follows:  

𝐶𝑎𝑒𝑙𝑎𝑠𝑡 ≡
𝐺𝑚𝑎𝑡𝑟𝑖𝑥

′

𝜎

𝑅

=
𝑅𝐺𝑚𝑎𝑡𝑟𝑖𝑥

′

𝜎
                                          (2.61) 

where 𝜎 is the surface tension and 𝑅 is the bubble radius. When 𝐶𝑎𝑒𝑙𝑎𝑠𝑡 ≫ 1, the elastic stresses 

in the matrix are significantly larger than the bubble surface tension, thus the bubbles get 

deformed, and 𝐺̅(𝜑) decreases with bubble volume fraction. When 𝐶𝑎𝑒𝑙𝑎𝑠𝑡~1, bubbles start to 

become stiffer, transitioning into the undeformed regime, which is reflected as a change in the 

trend of 𝐺̅(𝜑). As mentioned above, the critical volume fraction beyond which the bubbles 

behave as rigid inclusions depends on the bubble size. This can be justified as follows: as the 

bubble volume fraction increases, the elastic modulus of the matrix decreases due to its dilution 

by the surfactant solution brought in by the foam. However, large bubble sizes counteract this 

reduction in 𝐺𝑚𝑎𝑡𝑟𝑖𝑥
′ , delaying the point at which 𝐶𝑎𝑒𝑙𝑎𝑠𝑡~1. Consequently, larger bubble sizes 

require a higher bubble volume fraction that will achieve such a drop at 𝐺𝑚𝑎𝑡𝑟𝑖𝑥
′ , so that 

𝐶𝑎𝑒𝑙𝑎𝑠𝑡~1. This is the critical bubble volume fraction, over which 𝐺̅(𝜑) increases with 𝜑.  

 

Figure 2.9: (a) Dimensionless elastic modulus as function of the bubble volume fraction for bubble 

suspensions with a yield stress ambient fluid and bubble diameter 𝑑 = 320 𝜇𝑚 (squares), 260 𝜇𝑚 

(empty circles), 230 𝜇𝑚 (filled triangles), 210 𝜇𝑚 (empty triangles), and  110 𝜇𝑚 (diamonds) (adapted 

from Kogan et al., 2013), (b) Dimensionless elastic modulus as function of the elastic capillary number 
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for varying bubble volume fraction. The solid lines correspond to micromechanical computations while 

the markers to experimental data (Ducloué et al., 2015). 

In terms of the effect of bubbles on the yield stress of the suspension, the authors align with 

earlier findings (Larson, 1999), which suggest that the impact depends on whether the bubbles 

are deformed. Deformed bubbles tend to decrease the suspension yield stress, acting like soft 

inclusions that make it easier for the material to yield under stress. For undeformed bubbles, 

the yield stress of the suspension is approximately equal to that of the matrix, unless the bubble 

volume fraction is very large (such as in foams). In this case, the suspension behaves as a 

packed system of rigid inclusions, and the yield stress increases with the presence of bubbles.  

Similar findings have been reported by Ducloué et al. (2015) who also studied the effect of 

bubble presence in a simple yield stress fluid. Their experimental results came to a good 

agreement with the predictions of a micromechanical model developed for soft, porous 

materials (Eq. 2.62) (Thuy Linh et al., 2013), which takes into account both bubble volume 

fraction and elastic capillary number. As shown in Fig. 2.9b, at low 𝐶𝑎𝑒𝑙𝑎𝑠𝑡, the model predicts 

an increase of the dimensionless elastic modulus with increasing bubble volume fraction, while 

above a 𝐶𝑎𝑒𝑙𝑎𝑠𝑡 threshold of unit order of magnitude, the elastic modulus decreases with 𝜑.  

𝐺′̅̅ ̅(𝜑, 𝐶𝑎𝑒𝑙𝑎𝑠𝑡) = 1 −
𝜑(4𝐶𝑎𝑒𝑙𝑎𝑠𝑡−1)

1+
12

5
𝐶𝑎𝑒𝑙𝑎𝑠𝑡−

2

5
𝜑(1−4𝐶𝑎𝑒𝑙𝑎𝑠𝑡)

                           (2.62) 

As evidenced, there are limited studies focusing on the rheology of bubble suspensions with 

non-Newtonian ambient fluids, with these highlighting the need for further experimental data 

to better understand the interaction between bubbles and matrices with more complex 

rheological behaviours. The intricacies of non-Newtonian ambient fluids, combined with the 

shear-thinning and viscoelastic effects induced by the bubbles, result in suspensions with 

rheological properties that vary significantly depending on the matrix composition, its inherent 

rheology, and the bubble size and volume fraction. The presence of surfactants further 

complicates the prediction of these systems’ rheological behaviour, as the interactions between 

the different phases remain largely uncharacterised in the literature. Chapter 5 aims to offer 

insights into the rather unexplored rheology of bubble suspensions in non-Newtonian matrices, 

in particular shear-thinning Carbopol dispersions, to contribute to a better understanding of the 

interplay between bubbles and more complex matrices.   
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Chapter 3 

Investigation of the steady-shear viscosity of semi-

dilute bubble suspensions in Newtonian media  
 

This chapter explores the steady shear viscosity of semi-dilute polydisperse bubble suspensions 

with Newtonian ambient fluids, in the limit of 𝐶𝑑 → 0 and for varying 𝐶𝑎. The study involves 

a theoretical analysis of how different bubble sizes affect the suspension relative viscosity, 

complemented by steady-shear rheological tests to validate these theoretical findings. An 

unexpected double power law decay of the suspension relative viscosity was observed at 

average capillary numbers between 0.01 and 1. This behaviour was further examined through 

novel rheo-optical experiments, which revealed the shear-induced formation of bubble clusters 

and threads.  

The main aim of this investigation is to characterise the steady-shear viscosity of bubble 

suspensions by (i) clarifying the influence of polydispersity without relying on system-

dependent empirical approaches, and (ii) elucidating the effect of shear-induced phenomena, 

such as bubble clustering and alignment. The results highlight the complex shear-thinning 

nature of bubble suspensions, which is related not only to bubble deformation, but also to the 

shear-induced clustering and alignment of bubbles.  

The results of this chapter have been published: 

Mitrou, S., S. Migliozzi, P. Angeli, and L. Mazzei, “Effect of polydispersity and bubble 

clustering on the steady shear viscosity of semi-dilute bubble suspensions in Newtonian 

media,” J. Rheol. 67, 635–646 (2023). 

 

3.1 Introduction 

Suspensions of bubbles in a liquid are often encountered in nature in the form of magmas 

(Manga and Loewenberg, 2001), while they find wide applications in industry, e.g. in aerated 
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food products (Campbell and Mougeot, 1999), cement (Ahmed et al., 2009) and personal care 

products (Malysa and Lunkenheimer, 2008). The gas volume fraction, 𝜑, can range from 

almost zero for very dilute suspensions to more than 0.9 for foams, with most suspensions of 

practical interest lying in the intermediate range (Llewellin et al., 2002a). As also reported in 

Chapter 2, the presence of bubbles has been shown to change the viscosity of the suspension, 

inducing shear-thinning and other viscoelastic phenomena, even in Newtonian ambient fluids 

(Llewellin et al., 2002a, 2002b; Mader et al., 2013; Rust & Manga, 2002). Consequently, it is 

important to characterise the rheology of bubble suspensions, providing industry with useful 

insight into how aeration affects the viscosity and flowability of various formulations. 

For steady-shear flows, the effect of bubble volume fraction on the suspension viscosity has 

been unclear for some time. According to Sibree (1934) and Stein and Spera (1992), the relative 

viscosity of a suspension increases with 𝜑, while Sura and Panda (1990), Bagdassarov and 

Dingwell (1992, 1993) and Lejeune et al. (1999) claimed the opposite. Subsequent studies (e.g. 

Llewellin et al., 2002a, 2002b; Rust & Manga, 2002; Stein & Spera, 2002) resolved this 

controversy by identifying two flow regimes, which for simple steady shear flows depend on 

the capillary number 𝐶𝑎. For 𝐶𝑎 ≪ 1, the bubbles obstruct the flow, leading to an increase in 

suspension viscosity with increasing volume fraction, while, for 𝐶𝑎 ≫ 1, bubbles deform and 

facilitate the flow, causing a decrease in suspension viscosity. Between the two extremes, the 

suspension behaves as a shear-thinning fluid, with the onset of this behaviour occurring at 

𝐶𝑎~1 for monodisperse suspensions. 

To describe the viscosity of bubble suspensions under steady conditions, researchers have 

proposed various models where the viscosity is a function of the bubble volume fraction and 

the capillary number. Despite most suspensions of practical significance being polydisperse, 

the effect of different bubble sizes on the suspension viscosity remains rather unexplored with 

existing studies focusing mostly on monodisperse suspensions or addressing polydispersity 

through empirical approaches related to their experimental systems. Given that the bubble size 

directly affects the capillary number (Eq. 2.45), understanding the effect of polydispersity is 

critical for characterising the viscosity of bubble suspensions, highlighting an aspect that 

requires further investigation.  

As reported in Chapter 2, Llewellin et al. (2002b) suggested the following equation for the 

relative viscosity of dilute, monodisperse bubble suspensions under steady shear: 

                                    𝜂𝑟 = 𝜂𝑟,∞ +
𝜂𝑟,0 − 𝜂𝑟,∞

1 + (𝐾Ca)𝑚, with 𝐾 = 6/5 and 𝑚 = 2         (3.1a) 
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                                                            𝜂𝑟,0 = 1 + 𝜑                                            (3.1b) 

                                                            𝜂𝑟,∞ = 1 −
5

3
𝜑                                               (3.1c) 

To extend the validity of Eq. 3.1 to polydisperse bubble suspensions above the dilute regime, 

the authors modified the Taylor equation for the zero-shear viscosity to include a fitting 

parameter: 

                                                              𝜂𝑟,0 = 1 + 𝑏𝜑               (3.2) 

With this modification, they found good agreement of Eq. 3.1 to their experimental data for 

polydisperse systems with bubble volume fractions up to 46%, suggesting an optimal value of 

𝑏 = 9. Their approach was however purely empirical and strictly related to their experimental 

system, thus proving to be not conclusive in terms of evaluating how polydispersity affects the 

viscosity of bubble suspensions.  

According to Mendoza and Santamaría-Holek (2009), for dilute suspensions at low capillary 

numbers, polydispersity does not affect the zero-shear viscosity of the suspension strongly. 

Mader et al. (2013) confirmed this statement, claiming that the relative zero-shear viscosity of 

bubble suspensions obeys the Taylor equation, regardless of polydispersity. They further 

suggested that the coefficient 𝑏 = 9 is most likely related to bubble interactions emerging at 

the high bubble volume fractions reported by Llewellin et al. (2002a), rather than 

polydispersity. To account for the effect of polydispersity, Mader et al. (2013) suggested 

treating the dilute polydisperse suspension as the sum of N monodisperse components with a 

characteristic radius 𝑅𝑖 and bubble volume fraction 𝜑𝑖. Using Eq. 3.1, one can calculate the 

relative viscosity for each size class and then sum the individual viscosity contributions (𝜂𝑟𝑖 −

1) to attain the relative viscosity of the polydisperse suspension. The authors provided a worked 

example, but without testing it with experimental data. 

Rust & Manga (2002) investigated the steady shear viscosity of polydisperse bubble 

suspensions, considering a surface-weighted average bubble diameter, defined as follows: 

                                                          𝑑32 ≡
𝑀3

𝑀2
≡

∫ 𝑑3 𝑓(𝑠) 𝑑𝑠
∞

0

∫ 𝑑2 𝑓(𝑠) 𝑑𝑠
∞

0

                                          (3.3) 

where 𝑑 is the bubble diameter and 𝑓(𝑑) is the number density function (NDF) of the bubbles. 

Fitting their rheological data to Eq. 3.1, they found good agreement for 𝛫 = 0.72 and 𝑚 =

1.43, using empirically derived expressions for the relative zero-shear and infinite-shear 
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viscosities. Even though the authors accounted for the effect of polydispersity, their approach 

is not supported by theory and is strongly system dependent.  

Joh et al. (2010) addressed the issue of polydispersity following an approach similar to 

Mader et al. However, instead of considering a discrete bubble radii distribution, they 

generalised the linear superposition approach by treating the bubble radius 𝑅 as a continuous 

variable. Assuming that bubble sizes typically follow a gamma type distribution, they 

generalised the model of Seo and Youn (2005) for monodisperse bubble suspensions, by 

incorporating the probability distribution function of the gamma distribution as follows:  

𝜂𝑟 = 1 −
5

3
𝜑 +

8

3
𝜑 ∫

𝛽𝑎

𝛤(𝑎)
𝑅𝑎−1𝑒−𝛽𝑅

1+
9

16
(𝐶𝑎(𝑅))2

∞

0
𝑑𝑅                                  (3.4) 

where 𝑎 and 𝛽 are parameters obtained by fitting experimental bubble size data to the gamma 

distribution. In this case, the viscosity contribution from bubbles of different sizes is weighted 

by the probability density function, which gives higher weight to bubble sizes that are more 

likely to occur and lower weight to those that are less likely based on the type of size 

distribution.  

Typically, gamma-type distributions observed in bubble suspensions consist of a higher 

number of smaller bubbles and fewer larger ones, which however contribute significantly to 

the total bubble volume fraction. As mentioned earlier, the bubble volume fraction is a key 

parameter for determining the suspension viscosity. In this context, the approach of Joh et al. 

(2010) introduces a significant limitation as it underweights the contribution of larger bubbles 

because of their lower probability density. When comparing their experimental data for 

polydisperse bubble suspensions in the semi-dilute regime with the predictions of Eq. 3.4, the 

authors observed that the model underestimated the suspension viscosity starting at capillary 

number values around unity.  

As highlighted above, the effect of polydispersity on the steady shear viscosity of bubble 

suspensions has been sparsely studied, with existing studies depending mostly on empirical 

approaches that strongly depend on experimental data. This chapter aims to elucidate the role 

of polydispersity through theoretical analysis, validated with experimental studies. To this end, 

semi-dilute polydisperse bubble suspensions were generated, and their steady shear viscosity 

was measured. The rheological measurements revealed an unexpected double power-law decay 

of the relative viscosity, a trend that could not be supported by the theoretical analysis on 

polydispersity. To investigate this behaviour, the produced bubble suspensions were visualised 
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under shear. The rheo-optical experiments revealed the shear induced formation of bubble 

threads and clusters, which is considered responsible for the first decay of viscosity.   

The chapter is organised as follows. Firstly, theoretical calculations that clarify the effect of 

polydispersity on the relative viscosity of semi-dilute bubble suspensions are presented. Next, 

the experimental methods for the generation, rheological characterisation, and visualisation of 

the produced bubble suspensions are introduced, followed by the discussion of the results.  

3.2 Theoretical Calculations on Polydispersity 

To investigate theoretically the effect of polydispersity, a bubble suspension in a mixture of 

mineral oil and 0.57 mol/L span 80 (surfactant) was considered, with bubble volume fraction 

of 10.4% and different bubble sizes. The relative viscosity of the bubble suspension was 

calculated following the linear superposition method described by Mader et al. (2013). Eq. 3.1 

was used to calculate the relative viscosity for each i-th bubble class, where the capillary 

number 𝐶𝑎 of the suspension was replaced with the capillary number 𝐶𝑎𝑖 of the i-th size class, 

and the total volume fraction of bubbles 𝜑 with that of the i-th bubble class, 𝜑𝑖.  

To determine 𝜑𝑖, the bubble volume for each size class (𝑉𝑖) was first calculated. Then, the 

bubble volumes for all the different size classes were summed to attain the total bubble volume 

in the suspension (𝑉𝑡𝑜𝑡), and finally the bubble volume fraction for each class (𝜔𝑖)  was 

calculated and multiplied with the measured total volume fraction of bubbles in the suspension 

(𝜑𝑡𝑜𝑡): 

                                                               𝑉𝑖 = 𝑁𝑖 ∗
4

3
𝜋𝑅𝑖

3                       (3.5a) 

                                                               𝜔𝑖 =
𝑉𝑖

𝑉𝑡𝑜𝑡
                                                         (3.5b) 

                                                               𝜑𝑖 = 𝜔𝑖 ∗ 𝜑𝑡𝑜𝑡                                                     (3.5c) 

where 𝑁𝑖 is the number of bubbles in each bubble class. The relative viscosity of the 

polydisperse suspension is then obtained by linearly combining the individual viscosities of the 

different bubble classes 𝜂𝑖 with the solvent contribution as follows: 

                                                               𝜂𝑖 = 𝜂𝑟𝑖
− 1                                                         (3.6) 

                                                 𝜂𝑟𝑝𝑜𝑙𝑦𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒
= 1 + ∑ 𝜂𝑖

𝑁
𝑖                                                   (3.7) 
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For each theoretical example, the relative viscosity of the suspension was plotted as a function 

of an average capillary number, 〈𝐶𝑎〉. This was defined using the volume-weighted average 

radius of the undeformed bubble, 〈𝑅〉 , obtained from the De Brouckere average diameter 𝑑43. 

〈𝑅〉 is the ratio of the fourth to the third moments of the bubble number density function, 𝑛(𝑅); 

in terms of volume fraction density function, the same average radius is given by the ratio of 

the moments of order one and zero:                                                             

                             〈𝑅〉 ≡
∫ 𝑅4 𝑛(𝑅) 𝑑𝑅

∞
0

∫ 𝑅3 𝑛(𝑅) 𝑑𝑅
∞

0

≡
∫ 𝑅 𝑓(𝑅) 𝑑𝑅

∞
0

∫ 𝑓(𝑅) 𝑑𝑅
∞

0

    with    𝑓(𝑅) ≡ (
4

3
𝜋𝑅3) 𝑛(𝑅)           (3.8) 

Note that using a volume-weighted mean radius, as opposed to other types of mean radii, takes 

into account the bubble volume fraction, which significantly impacts the rheological properties 

of the suspension. 

It is important to clarify that the linear superposition approach is primarily valid for dilute 

systems, where bubble interactions are considered negligible. However, when its predictions 

were compared with the experimental results presented in this chapter, it was found that it can 

accurately predict the relative viscosity of semi-dilute suspensions as well. Thus, the Mader et 

al. (2013) model is considered suitable for describing the relative viscosity of the bubble 

suspensions discussed in this chapter.    

3.2.1. Scenario 1 – bimodal distribution (𝑹𝟏 = 𝟏𝟎 𝝁𝒎, 𝑹𝟐 = 𝟓𝟎𝟎 𝝁𝒎)  

The first scenario concerns a bubble suspension consisting of bubbles with only two radii, 

10 and 500 μm. The total bubble volume fraction is equally divided between the small and 

large bubbles, so that the volume-weighted average radius is equal to 255 μm. Following the 

procedure explained above, the viscosity curve of Fig. 3.1 was obtained.   
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Figure 3.1: Relative viscosity versus average capillary number, for 𝜑 = 10.4% and bubble sizes of 

10 and 500 microns with 𝜔1 = 𝜔2 = 0.5. 

In this example, the shear-thinning behaviour does not occur at 〈𝐶𝑎〉 ~ 1, as it happens for 

a monodisperse bubble suspension. Instead, it spans a range of average capillary numbers, 

between 0.1 and 100. This behaviour is due to polydispersity and can be explained by 

correlating the average capillary number with the capillary number for each size class, as 

follows:  

                                                     𝐶𝑎𝑖 ≡
𝜂𝑠𝑅𝑖𝛾̇

𝜎
=

𝜂𝑠 〈𝑅〉 𝛾̇

𝜎

𝑅𝑖

〈𝑅〉
= 〈𝐶𝑎〉

𝑅𝑖

〈𝑅〉
                                          (3.9) 

which gives:                                         

                                                             〈𝐶𝑎〉 =
〈𝑅〉

𝑅𝑖
𝐶𝑎𝑖                                                                           (3.10) 

Each size class starts deforming when the corresponding capillary number is of order 1, and 

the average capillary number will be of order:  

                                                              〈𝐶𝑎〉 ~ 
〈𝑅〉

𝑅𝑖
                                                                               (3.11) 

Based on this, the large bubbles with radius equal to 500 μm start deforming when 〈𝐶𝑎〉 ~ 0.1, 

where the first drop of the suspension relative viscosity is observed. Likewise, the small 

bubbles with radius 10 μm start deforming 〈𝐶𝑎〉 ~ 10, causing the second decay of the relative 

viscosity. Between the two relative viscosity drops, there is an intermediate plateau, which 

indicates that the larger bubbles have been fully deformed, while the smaller ones remain 

almost spherical.   
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     Even though this example is extreme, it demonstrates that polydispersity can cause an 

extended shear-thinning behaviour that spans a range of average capillary number values, 

instead of happening at 〈𝐶𝑎〉 ~ 1. This rheological trend is similar to what is observed in 

polymer melts, where a polydisperse molecular weight distribution leads to a relaxation time 

spectrum (Macosko, 1994). Moreover, the viscosity curve has a more complex behaviour, with 

a plateau between the two viscosity decays. The presence of the intermediate plateau poses a 

challenge for modelling this behaviour using a constitutive equation for monodisperse 

suspensions and an average bubble diameter, as the plateau could not appear. In these cases, 

for dilute and semi-dilute suspensions, one must operate as discussed earlier, considering each 

bubble class individually, obtaining the viscosity contribution for each class by using the 

constitutive equation for monodisperse suspensions, and then adding the contributions. 

3.2.2. Scenario 2 – bimodal distribution (𝑹𝟏 = 𝟏𝟎 𝝁𝒎, 𝑹𝟐 = 𝟐𝟎𝟎 𝝁𝒎) 

This scenario concerns another bidisperse bubble suspension, with a smaller difference 

between the two bubble sizes, these being 10 and 200 μm. As in the previous scenario, the two 

bubble classes contribute equally to the total bubble volume fraction, and the volume-weighted 

average radius is equal to 105 μm. Following the same method, the viscosity curve of Fig. 3.2 

was obtained. As seen, also in this case the shear-thinning part of the curve spans a wider range 

of 𝐶𝑎 values than that for a monodisperse suspension. However, unlike the first scenario, this 

range is smaller, between 0.1 and 50. The first decay of the relative viscosity again happens at 

〈𝐶𝑎〉 ~ 0.1 and indicates the deformation of the 200 μm bubbles. The second viscosity drop 

happens at 〈𝐶𝑎〉 ~ 1 and is correlated with the deformation of the 10 μm bubbles. The 

intermediate plateau of viscosity still exists but is less noticeable than in the first example. 

Thus, the effect of polydispersity becomes more evident when the difference in bubble size 

increases.  
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Figure 3.2: Relative viscosity versus average capillary number, for 𝜑 = 10.4% and bubble sizes of 

10 and 200 microns, with 𝜔1 = 𝜔2 = 0.5. 

3.2.3. Scenario 3 – Gamma-type distribution (bubble sizes between 10 and 170 μm) 

The last scenario refers to the experimental data presented in this chapter, with bubble radii 

following a gamma distribution between 10 and 170 μm (Fig. 3.3a), and 〈𝑅〉 = 82.5 μm. The 

limits of the size distribution are similar to those in scenario 2; however, in this case the total 

bubble volume fraction is not equally divided between the small and large sizes. Instead, each 

size class corresponds to a percentage of the total bubble volume fraction. Calculating the 

relative viscosity of the polydisperse suspension, the viscosity curve of Fig. 3.3b (green points) 

was obtained.  

As seen, the shear-thinning behaviour happens in a range of  〈𝐶𝑎〉 across 1 and does not 

extend further than this, as it happened in the previous scenarios. Τhere is no intermediate 

plateau, and the viscosity curve closely resembles that of a monodisperse suspension. To 

validate this, the viscosity curve of a monodisperse suspension with bubble radius equal to 82.5 

μm was calculated, using Eq. 3.1 (Fig. 3.3b - red curve). As seen, the two viscosity curves 

almost coincide. Thus, it can be concluded that polydispersity can significantly affect the 

suspension viscosity only if the total bubble volume fraction is divided between very small and 

very large bubbles – a condition that is hard to meet experimentally. Under usual experimental 

conditions, where the bubble sizes follow the gamma distribution, the effect of polydispersity 

is not profound, and the polydisperse suspension can be regarded as monodisperse with a 

volume-weighted average bubble diameter. 
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Figure 3.3: a) Gamma-type bubble size distribution (10-170 µm); b) relative viscosity versus average 

Capillary number for 𝜑 = 10.4% and bubble sizes following a gamma distribution between 10 μm and 

170 µm. 

3.3 Materials and Methods 

3.3.1. Chemicals 

RTM32 Mineral Oil Rotational Viscometer Standard (Paragon Scientific, Birkenhead, UK) 

is a Newtonian oil, with a viscosity of 9.274 Pa s. Span 80 (Sigma Aldrich, St. Louis, USA) is 

a liquid, non-ionic surfactant (molecular weight: 428.61 g/mol; density at 20 °C: 1 g/cm³). A 

mixture of the mineral oil and 0.57 mol/L of Span 80 was used to generate the bubble 

suspensions. This was chosen as ambient fluid because it is Newtonian and it allows generating 

small bubbles and stable suspensions. The properties of the individual chemicals and the final 

mixture are summarized in Table 3.1. 
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Table 3.1: Physical properties of fluids used to prepare the Newtonian ambient fluid. 

Name  Viscosity (Pa s)1       Density   (g/mL)2     Surface tension (mN/m)3 

RTM32 min. oil  

Span 80 

Mixture  

    9.27±0.09                       0.86±0.02 

    1.95±0.02                       0.99±0.01 

    4.23±0.04                       0.89±0.01 

   32.36±0.25 

  29.34±0.25 

  29.99±0.25 

 

3.3.2. Generation and rheological characterisation of bubble suspensions 

An in-house custom aeration device (Fig. 3.4a), designed in collaboration with the UCL 

Mechanical Workshop (Roberts Building, UCL) for simultaneous aeration and mixing, was 

used to generate the bubble suspensions. The apparatus consists of a consists of a sealed acrylic 

tank (internal dimensions approximately 290 × 290 × 306 mm) supported by an aluminium 

frame. The system is driven by a motor–pulley assembly mounted above the tank, providing a 

load torque of approximately 0.39 N∙m and an acceleration torque of 40 mN∙m, transmitted via 

a 25-tooth, 5 mm pitch, 10 mm wide belt. Inside the tank, a rotating propeller fitted with 

aeration plates distributes bubbles evenly throughout the fluid. Each plate holds eight 25 mm 

sintered ceramic discs (2 μm pore size) for bubble generation. Air is introduced through fittings 

positioned along the propeller shaft, while a waste outlet at the base allows drainage after 

experiments. The propeller rotation promotes both aeration and mixing, producing 

homogeneous suspensions. The aeration time was varied depending on the target gas volume 

fraction: longer aeration times yielded denser suspensions. Detailed design schematics of the 

custom aeration device are provided in Sec. A1 of Appendix A.  

 
1 Values are means ± standard deviation (n = 3) measured at 20 °C. The relative standard deviation (RSD 

= (standard deviation / mean) × 100) was approximately 1%, consistent with the repeatability 

specification of the MCR 302 rheometer used in the experiments. 

2 Values represent means ± standard deviation (n = 2) measured at 20 °C. Densities were determined 

gravimetrically by weighing ~60 mL of each sample in a 100 mL Pyrex® beaker using an analytical 

balance (sensitivity ± 0.001 g). According to the manufacturer, the beaker’s nominal capacity is accurate 

to ± 5 %, with approximate graduations. The observed SDs (0.01–0.02 g mL⁻¹; 1–2.3 % relative standard 

deviation) reflect the repeatability limits imposed by the volume measurement, with the balance 

uncertainty negligible in comparison. 
3 Values represent single measurements obtained using a Krüss K100C force tensiometer at 20 °C. The 

reported uncertainty corresponds to the method sensitivity, which for pendant-drop and force-

tensiometer measurements ranges between ± 0.25 and ± 0.30 mN m⁻¹ under ideal conditions (Farias et 

al. (2025)). 
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After generation, bubble suspensions were subjected to high-shear mixing using a Silverson, 

L5 Series mixer to effectively reduce the bubble size. Subsequently, the suspensions were left 

to rest until their temperature reached that of the ambient fluid before the aeration, and the 

bubble volume fraction was determined gravimetrically, weighting ~60 mL of a representative 

sample from the batch suspension and using the following equation:  

                                                               𝜑 = 1 −
𝜌𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛

𝜌𝑎𝑚𝑏𝑖𝑒𝑛𝑡 𝑓𝑙𝑢𝑖𝑑
                      (3.12) 

 

Figure 3.4: (a) Schematic of the aeration device used to generate bubble suspensions; (b) rheo-optical 

setup. 

Images of all generated bubble suspensions were recorded prior to rheological 

measurements using a bright-field optical microscope (Zeiss Axio Observer 5) equipped with 

a 10×Plan-Apochromat objective and then analysed with an in-house MATLAB code to 

determine the bubble size distribution. The obtained microscope images (2752 × 2208 px) 

corresponded to a scale of 0.91 px/µm, and brightness and contrast were adjusted uniformly 

across samples to improve bubble edge detection. A characteristic microscope image of a 

bubble suspension with 𝜑 = 4.2% is provided in Section A2 of Appendix A. 

The rheological tests were carried out in an Anton Paar MCR302 stress-controlled rotational 

rheometer, equipped with a Peltier plate to control the operating temperature (20 ˚C) and a 

sandblasted parallel-plate geometry (R=20 mm) to avoid wall-slip effects. For all 

measurements, the rheometer gap was set at 1.9 mm to ensure a gap ten times larger than the 

average bubble diameter, thus avoiding possible wall effects induced by the plates confinement. 

To obtain the viscosity curves for the bubble suspensions, steady shear measurements were 

performed in the range 0.05 s-1 to 150 s-1, with each test conducted in triplicate to ensure 
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reproducibility and reliable viscosity data. The limit of 150 s-1 was chosen to minimize bubble 

coalescence and bursting and to keep the bubble volume fraction stable. The samples were 

carefully analysed by eye after each measurement to ensure that no material was spurted out of 

the geometry during the rheological experiments. The Weissenberg-Rabinowitsch correction 

(Macosko, 1994) was applied to account for the non-uniform shear across the parallel plates, 

and a detailed description of this correction is provided in Section A3 of Appendix A.  

As mentioned in Morini et al. (2019), the radial variation of the shear rate in the parallel-

plate geometry causes a linear change of the capillary number from zero to its maximum value 

at the rim of the geometry. Consequently, bubbles deform differently depending on their 

position in the measuring plate. The Weissenberg-Rabinowitsch method overcomes the 

problem arising from the radial change of the shear rate, because it considers a value of the 

shear rate and of the corresponding shear stress in a specific location, namely at the edge of the 

plates. This ensures that the rheological trends reported in the following sections are not 

influenced by the radial distribution of shear rates, and in turn of capillary numbers. 

3.3.3. Visualisation of bubble suspensions under steady shear 

To visualise the bubble suspensions under shear, the setup of the rheometer was modified 

using a glass bottom plate (Anton Paar Peltier Universal Optical Device - P-PTD 200/GL) to 

allow optical access. During the shear tests, images of the suspension were recorded using a 

Zyla 5.5 sCMOS camera (acquisition frequency: 15 Hz, image resolution: 2560x2160 pixels), 

a Nikon mono zoom lens and a white led light as illumination. To avoid reflections from the 

metal, the sandblasted parallel plate was coated with black spray-paint. A schematic of the 

visualisation set up is given in Fig. 3.4b. The recorded images were taken at a plane around 0.6 

mm within the gap. To calibrate the plane of focus, transparent laminated sheets of 0.3 mm 

thickness were sticked together to create a disc of 0.6 mm height. A millimetric scale grid was 

then placed on top of this disc and the camera was focused on it. All rheo-optical experiments 

were performed with this focus which, for different samples, was only slightly adjusted. 

Steady shear rheological tests were performed in the range 0.1 s-1 to 50 s-1 for a fixed time 

of 40 s per shear rate and the rheometer gap was set at 1.9 mm, to be consistent with the 

previous viscosity measurements. However, with this gap, multiple suspension layers formed, 

preventing a detailed image analysis. Thus, experiments with a 0.8 mm gap were also 

conducted. Fig. 3.5 shows two representative images, taken with the 1.9 mm and 0.8 mm gaps. 

Even if it was difficult to individuate the bubbles accurately in the 1.9 mm images, these still 
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offered insight into the shear-induced phenomena happening in the entire volume of the tested 

samples, which is relevant to the final viscosity recorded. The 0.8 mm gap images were only 

used to investigate the bubble size distributions and identify possible coalescence phenomena 

during shearing, even though it must be emphasized that bubble coalescence can be enhanced 

due to the more confined flow. 

 

Figure 3.5: Bubble suspension (𝜑 = 5.6%) under steady shear (1 s-1) with (a) 1.9 mm gap and (b) 0.8 

mm gap. 

While the rheo-optical set up enabled real-time visualisation of the suspension 

microstructure during shear, one of its main limitations was slip at the glass plate, which led to 

lower torque readings—typically 10–15 % lower than those obtained using the standard 

sandblasted plates. This deviation, caused by the smoother surface of the transparent plate, 

affected the accuracy of the rheological data. As a result, the torque and viscosity values 

obtained under optical conditions were not used quantitatively, and simultaneous bulk 

rheological measurements and direct visualisation of the same sample were not possible. 

Instead, separate experiments were performed for rheological and optical characterisation. 

Despite this limitation, the optical setup proved highly effective for observing microstructural 

changes under shear. 

3.4 Rheological Measurement 

In this section, experimental results for bubble suspensions with volume fractions 𝜑1 =

4.7 % and 𝜑2 = 10.4% are presented.  
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3.4.1. Bubble size distributions      

The tested samples were found to be polydisperse, with bubble radii following the gamma 

distribution between 10 and 170 μm (Fig. 3.6). This means that the suspensions consisted 

mostly of small bubbles, with radii ranging up to 100 μm; even though the larger bubbles were 

fewer in number, they contributed importantly to the total bubble volume fraction. As the 

suspensions were polydisperse, the De Brouckere average diameter 𝑑43 was used to 

characterise them. For the reported bubble volume fractions, 𝜑1 = 4.7 % and 𝜑2 = 10.4 %, 

𝑑43 was equal to 199 μm and 165 μm, respectively. 
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Figure 3.6: Number-weighted bubble size distribution for (a) 𝜑1 = 4.7% and (c) 𝜑2 = 10.4%; 

volume-weighted bubble size distribution for (b) 𝜑1 = 4.7% and (d) 𝜑1 = 10.4%. 

3.4.2. Steady shear experiments 

As shown in Figure 3.7, all tested suspensions are characterised by a shear-thinning 

behaviour with a double power law decay of the suspension relative viscosity. Each curve 

represents the average of three replicate measurements, with the standard deviation among 

replicates shown as error bars. The measurements were highly repeatable, with the maximum 

standard deviation on the order of 0.01. The first decay always happened at shear rates around 

1 s-1, corresponding to 〈𝐶𝑎〉 ~ 0.01, while the second started at shear rates around 20 s-1, 

corresponding to 〈𝐶𝑎〉 ~ 1. This double decay was unexpected, because it is not predicted by 
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the rheological models discussed in Section 3.2. As discussed, two decays of the relative 

viscosity – with a plateau between them – appear only if the bubble size distribution is bimodal, 

with very small and very large bubbles having similar volume fractions. However, this is not 

the case in the present experiments, where the bubble sizes follow the gamma distribution. As 

shown in the theoretical examples, when the bubble sizes follow the gamma distribution, the 

suspension has a viscosity curve that is quite similar to that of a monodisperse suspension, the 

only difference being that the viscosity drop spans a larger range of 〈𝐶𝑎〉 values. The 

observation of a different trend suggested that polydispersity may not be the sole factor 

responsible for this behaviour. 
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Figure 3.7: (a) Relative viscosity as a function of shear rate for 𝜑1 = 4.7% and 𝜑2 = 10.4%; (b) 

relative viscosity as a function of 〈𝐶𝑎〉 for 𝜑1 = 4.7% and 𝜑2 = 10.4%. Error bars represent the 

variation between three experimental repeats. 

To validate the above assumption, the experimental results were compared to the theoretical 

polydisperse model of Mader et al. (2013). Fig. 3.8 shows the experimental and theoretical 

relative viscosities as functions of 〈𝐶𝑎〉 for the two reported polydisperse suspensions. As seen, 

there is good agreement between the real and theoretical values in the zero-shear plateau and 

in the second decay of viscosity. But the polydisperse model does not predict the first decay of 

viscosity. Therefore, it can be argued that the second decrease in viscosity is due to bubble 

deformation and polydispersity, but not the first decrease. To eliminate the possibility of elastic 

instabilities affecting the viscosity at higher shear rates, the suspensions were checked with the 

criteria described by Mckinley et al. (1991, 1996) and Shaqfeh (1996) for a plate-plate 

geometry. It was observed that even for the highest tested shear rate, the suspensions do not 

fulfil the criteria for the onset of elastic instabilities, hence confirming that the second decay 

of viscosity is not due to this effect. 
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To ensure that the first decrease of viscosity is not related to a stress overshoot or any other 

time-dependent phenomena, start-up shear experiments were performed, shearing the 

suspensions for 40 s at 𝛾̇ = 0.5 s−1, 5 s−1 and 50 s−1. The recorded transient data confirmed that 

there were no unexpected features in the viscosity trends with time. Further shear tests were 

performed, during which the shear rate was consecutively ramped up and down, in order to 

investigate the thixotropic character of the dispersions. However, these tests could not give 

reliable information about the present samples. This is because the bubble suspensions do not 

preserve the initial structure after being sheared at medium/high shear rates, where bubble 

deformation and coalescence become dominant. Thus, to investigate the cause of the first decay 

of viscosity, the dynamic behaviour of the bubble suspensions was visualised under shear. 
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Figure 3.8: Experimental vs theoretical relative viscosity for polydisperse bubble suspensions with (a) 

𝜑1 = 4.7% and (b) 𝜑2 = 10.4%. Error bars represent the variation between three experimental repeats. 

3.5 Visualisation of bubbles under shear 

3.5.1. Shear induced phenomena 

To visualise bubbles under shear, three fresh semi-dilute polydisperse bubble suspensions 

were prepared. The volume fractions of these new suspensions were 𝜑1 = 5.6 %, 𝜑2 = 7.23 % 

and 𝜑3 = 8.52 %. Fig. 3.9 presents some representative images for the suspension with bubble 

volume fraction 𝜑2, taken with a 1.9 mm gap, at shear rates 0.1 s-1 and 23 s-1. At shear rates 

around 0.1 s-1 corresponding to < 𝐶𝑎 > ~0.01, the bubbles are uniformly dispersed. As the 

average capillary number increases, bubbles start aligning to form bubble threads or getting 

closer to each other, forming clusters. It was observed that the shear-induced bubble clustering 

was three-dimensional and dynamic, with threads and clusters breaking and reforming 

continuously throughout the entire samples. The phenomenon became progressively more 

evident in the  < 𝐶𝑎 > range 0.01 to 1, where the first decay of viscosity was also noticed.  
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Figure 3.9: Bubble suspension (𝜑 = 7.23%) under steady shear at 0.1 s-1 and 23 s-1 (1.9 mm gap). 

The red rectangles highlight regions showing the formation of bubble clusters and threads.  

Feneuil et al. (2023) confirmed the formation of bubble clusters and threads under steady 

shear. According to them, the phenomenon is mainly caused due to bubble deformation, and 

thus, occurs only when the capillary number is large enough; that is 𝐶𝑎 > 0.2 for their 

experiments. However, this is not the case in the present suspensions, where the formation of 

bubble clusters and threads started at average capillary numbers smaller than 0.2. At this point 

it is worth clarifying that the model of Mader et al. (2013) does not account for bubble 

clustering and alignment, so the deviation between the experimental and the theoretical values 

100 μm 

100 μm 
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in the first decay of viscosity is reasonable. The model simply suggests the linear additivity of 

the contributions of the different bubble classes in a polydisperse system, whose viscosity is 

calculated with the constitutive equation developed by Llewellin et al. (2002b) for a 

monodisperse suspension (Eq. 3.1). As discussed, this constitutive equation was derived from 

the equation of Frankel and Acrivos (1970), which recovers Taylor’s (Taylor, 1932) equation 

for 𝐶𝑎 ≪ 1, and does not contain second or higher orders terms of the dispersed-phase volume 

fraction, so that it cannot account for complex phenomena arising from bubble interactions, 

such as bubble clustering and/or alignment. 

In addition to bubble clustering, bubble coalescence and deformation were also observed at 

higher < 𝐶𝑎 >. Finally, the optical measurements also confirmed the absence of any bubble 

rise in the duration of the experiments (whose total time was 11 minutes). The issue of bubble 

rise becomes important in long stationary experiments, where the bubbles experience only 

buoyancy. However, under steady shear, bubble rise is retarded due to flow in the tangential 

direction. Moreover, the use of surfactants, as in the experiments discussed in this chapter, can 

reduce the rising velocity of small bubbles by up to 50% (De Kee’ et al., 1990; Tzounakos et 

al., 2004). For all these reasons, it can be confidently asserted that bubble rise was negligible 

and did not affect the experimental results. 

3.5.2. Statistical analysis 

3.5.2a. Coverage 

To quantify the shear-induced bubble clustering, a statistical image analysis was performed, 

defining the following dimensionless parameter, named coverage:  

                                           𝐶 ≡
𝑇𝑜𝑡𝑎𝑙 𝑏𝑢𝑏𝑏𝑙𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠)

𝐼𝑚𝑎𝑔𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠)
                                             (3.13) 

𝐶 represents the percentage of the image covered with bubbles. When bubbles are close enough 

to form threads and clusters, a greater overlapping of bubbles is expected, resulting in a 

decrease in the area of the image occupied by bubbles and a consequent decrease in coverage. 

Thus, a reduction in coverage can be used as a measure for bubble clustering. This can be 

visually confirmed with the images presented in Fig. 3.9. As seen, for shear rate 23 s-1, where 

bubble threads and clusters are present, the image seems less covered with bubbles compared 

to the case with shear rate 0.1 s-1, where the bubbles are uniformly dispersed. To minimise the 

volume of data, the analysis was conducted using 30 representative images out of the almost 

600 obtained for each shear rate. The selected images corresponded to the time interval during 
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which steady state was accomplished. This happened almost immediately even for the lower 

shear rates and, thus, apart from some initial images, the rest were equivalent. The images were 

chosen using mostly a step of 20.  

Each image was first converted into a black and white matrix, with the bubbles depicted as 

white pixels in a black background. Then, all the white pixels were summed and divided by the 

total number of pixels in the image, as shown in Fig. 3.10. For each shear rate, a mean coverage, 

𝐶̅, was calculated by averaging over the coverage values of the 30 images. Fig. 3.11 presents 

the average coverage as a function of the shear rate for the tested suspensions. The error bars 

represent the standard deviation of the coverage values obtained across the analysed images 

for each shear rate. As seen, 𝐶̅ always increased up to shear rates around 1 s-1 corresponding to 

〈𝐶𝑎〉 ~ 0.01, and then decreased continuously in the range of shear rates observed. Here it must 

be noted that coverage is a qualitative metric for bubble clustering, meaning that one should 

focus on the general trend and not the absolute values. The decrease in 𝐶̅ validates the optical 

observations, confirming the formation of bubble clusters and threads around 1 s-1. The initial 

increase is believed to be due to bubble redistribution in the sample. Similar to particle 

suspensions during pre-shearing, bubbles disperse at low shear rates, removing any nonuniform 

bubble distribution formed during sample loading in the rheometer. Moreover, the coverage 

increased with the bubble volume fraction for all shear rates tested. This behaviour is 

reasonable since larger bubble volume fractions lead to an increase in the total bubble surface 

and, thus, to larger values of coverage.  

 

Figure 3.10: Example of an image (left) after black and white conversion (right) and definition of 

coverage. 
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Figure 3.11: Coverage as a function of  〈𝐶𝑎〉 for 𝜑1 = 5.6%, 𝜑2 = 7.23% and 𝜑3 = 8.52%. 

3.5.2b. Bubble coalescence 

To ensure that the initial bubble size distribution did not change significantly during the 

rheological tests, an investigation was conducted to observe how bubble sizes changed with 

shear. To this end, the 0.8 mm gap images were used because they allowed identifying the 

bubbles more precisely. The bubbles and their respective radii in pixels were identified for each 

image using MATLAB. To convert pixels into mm, a 1 mm calibration tape was attached on 

the glass bottom plate. The scale was found to be equal to 306 pixels/mm. For each image, the 

bubble size distribution was determined and found to consistently follow a gamma type 

distribution, and the De Brouckere average diameter 𝑑43 was calculated. Subsequently, for each 

shear rate, the mean De Brouckere average diameter 〈𝑑43〉 was evaluated by averaging the 𝑑43 

values obtained for 30 images different images. Fig. 3.12 indicatively presents how 〈𝑑43〉  

changed for the suspension with 𝜑 =7.23%. As seen, the bubble size increased by 16.4%. As 

mentioned earlier, this value might have been slightly enhanced due to the smaller gap used for 

this analysis. Hence, even with the use of surfactants, there was some bubble coalescence, but 

this did not affect the average bubble size significantly. 
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Figure 3.12: Mean De Brouckere average diameter 〈𝑑43〉 as a function of 〈𝐶𝑎〉 for 𝜑 = 7.23%. 

3.5.3. Bubble clustering and shear-thinning 

As shown by the statistical image analysis, bubbles started aligning/clustering at shear rates 

around 1 s-1 (〈𝐶𝑎〉 ~ 0.01), where the first decay of viscosity was also observed. Therefore, the 

formation of bubble threads and clusters appears to be responsible for the first shear-thinning 

trend. Specifically, when bubbles align, the total bubble area exposed to the flow decreases; 

thus, the distortion of the fluid streamlines due to the presence of the bubbles, and in turn the 

suspension viscosity, reduces. Ordering in the direction of the fluid streamlines does not apply 

only to single bubbles but also to the 3-D dynamic bubble clusters, observed during the rheo-

optical experiments. Moreover, when bubbles are positioned very close to each other, forming 

clusters, there is no flow in the interstitial spaces. The fluid streamlines do not distort within 

the clusters, but only around them. Consequently, the flow resistance is smaller for bubble 

clusters compared with randomly positioned bubbles.  

Microstructure changes and higher order phenomena, such as clustering and alignment, have 

been associated with shear-thinning behaviour in multiple occasions. Recent works (Yang et 

al., 2012; Yokozeki et al., 2012; Papadopoulou et al., 2020) showed that the formation of solid 

particle agglomerations at lower shear rates and their later breakdown and alignment with the 

fluid streamlines at increasing applied deformations lead to a decrease in suspension viscosity. 

Comparing bubble and particle suspensions, one can identify both similarities and differences 

in the mechanism of clustering-induced shear-thinning. The similarity lies in the core of the 
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shear-thinning mechanism, which is common for both particle and bubble suspensions, and 

regards the ordering of either individual particles/bubbles or particle/bubble clusters in the 

direction of the fluid streamlines. However, the way this ordering happens is different for each 

case. For particle suspensions, the shear-thinning behaviour is observed when the 

agglomerations break down, while for bubble suspensions in the semi-dilute regime, it was 

observed that the shear-thinning onset coincided with the formation of bubble clusters and 

threads. This contrast can be explained considering the different nature of the two systems. 

Particle agglomerations are usually formed in concentrated systems due to attractive forces 

between the particles. This results in a highly structured network of clusters with restrained 

movement and rotation, which, at lower shear rates, opposes the flow and results in higher 

suspension viscosity. As the shear rate increases, the particle agglomerations break down and 

start aligning with the fluid streamlines, causing the shear-thinning behaviour. However, for 

semi-dilute bubble suspensions, the nature of the shear-induced clusters is different. Since the 

bubble suspensions are not concentrated, the generated dynamic bubble clusters are more free 

to move and finally align in the direction of the fluid streamlines, causing the first viscosity 

drop observed in the present rheological experiments.    

3.6 Conclusions 

In this chapter, the complex shear-thinning behaviour of semi-dilute polydisperse bubble 

suspensions under steady shear was delineated, by explaining the effect of polydispersity and 

shear-induced clustering. To this end, semi-dilute polydisperse bubble suspensions were 

generated using a mixture of mineral oil and 0.57 mol/L Span80 as ambient fluid, and their 

steady shear viscosity was measured. The bubble sizes of the produced polydisperse 

suspensions were found to follow the gamma distribution between 10 and 170 μm. It was 

confirmed that polydispersity can cause an extended shear-thinning behaviour, which spans a 

larger range of average capillary number values, instead of happening at 〈𝐶𝑎〉 ~ 1. However, 

the effect of polydispersity becomes important only if the total bubble volume fraction is evenly 

divided between very small and very large bubbles. Under real experimental conditions, where 

the bubble sizes follow the gamma distribution, the polydisperse suspension can be regarded 

as monodisperse with a diameter equal to the volume-weighted average diameter.  

However, the flow curves obtained from the present experimental investigations showed an 

unexpected double power-law decay in the suspension viscosity, the first decrease happening 

at 〈𝐶𝑎〉 ~ 0.01and the second at 〈𝐶𝑎〉 ~ 1. Comparison of the experimental results with the 
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polydisperse viscosity model of Mader et al. (2013) showed good agreement in the zero-shear 

viscosity plateau and in the second decay of viscosity. But the model failed to predict the first 

viscosity drop. Thus, unlike the second shear-thinning trend, the first appears to be unrelated 

to bubble deformation and polydispersity. 

To investigate further the first decrease of viscosity, the bubble suspensions were visualised 

under steady shear. Statistical image analysis showed that bubbles started aligning/clustering 

at 〈𝐶𝑎〉 ~ 0.01. The image analysis also revealed that at higher shear rates, bubbles deform and 

coalesce, with the average bubble diameter increasing by 16.4%, an increase that however 

cannot explain the first decay of viscosity observed. Therefore, it is suggested that the first 

decrease in viscosity is due to the formation of bubble threads and clusters and their ordering 

across the direction of the flow, which, in turn, causes less distortion of the fluid streamlines, 

and, hence, a decrease in suspension viscosity.  

 

  



83 
 

Chapter 4 

Linear viscoelastic behaviour of semi-dilute 

polydisperse bubble suspensions in Newtonian media  
 

 

In Chapter 3, the steady shear viscosity of dilute polydisperse bubble suspensions was 

investigated in the limit of 𝐶𝑑 approaching zero and for varying 𝐶𝑎. To fully characterise the 

rheology of bubble suspensions in Newtonian ambient fluids, it is essential to also examine the 

linear viscoelastic regime under conditions of vanishingly small 𝐶𝑎 and varying 𝐶𝑑. This 

chapter aims to provide a systematic experimental characterisation of the linear viscoelastic 

behaviour of semi-dilute polydisperse bubble suspensions by employing a rheo-optical setup 

to visualise the behaviour of the suspensions during SAOS rheological tests. For all tested 

suspensions, the measured viscoelastic moduli (𝐺′, 𝐺′′) aligned with the theoretical predictions 

of the Jeffreys model for average dynamic capillary numbers (〈𝐶𝑑〉) greater than unity. But at 

lower 〈𝐶𝑑〉 values, experimental 𝐺′ values exceeded theoretical predictions. Upon investigating 

and ruling out the effects of potential experimental artifacts – such as bubble rise, coalescence, 

and changes in suspension microstructure over time – it was determined that the unexpected 𝐺′ 

deviation is linked to bubble fluid dynamic interactions. These interactions complicate the 

relaxation process, introducing multiple relaxation modes. The results of this chapter offer 

valuable insights on the effect of microstructure on the rheology of bubble suspensions, 

addressing a significant gap in reliable experimental data in this area.    

 

The results of this chapter have been published and chosen as featured article in the Journal 

of Rheology homepage: 

Mitrou, S., S. Migliozzi, L. Mazzei, and P. Angeli, “On the linear viscoelastic behaviour of 

semi-dilute polydisperse bubble suspensions in Newtonian media,” J. Rheol. 68, 539–552 

(2024). 
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4.1 Introduction 

As discussed in Chapter 3, the steady-shear rheology of bubble suspensions, in the limit of 

𝐶𝑑 → 0 and for varying 𝐶𝑎, has been investigated for monodisperse (Llewellin et al., 2002a; 

Lim et al., 2004; Morini et al., 2019) and polydisperse (Llewellin et al., 2002b; Mader at al., 

2013; Mitrou et al., 2023; Joh et al., 2010) systems, with studies showing that bubble 

deformation (Llewellin et al., 2002a; Rust & Manga, 2002; Lejeune et al., 1999) and clustering 

(Mitrou et al., 2023) are responsible for the characteristic shear-thinning behaviour. Time-

dependent flows (from a Lagrangian point of view) with infinitesimal bubble deformation, that 

is, in the limit of 𝐶𝑎 → 0 for varying 𝐶𝑑, have also been investigated tο characterise the linear 

viscoelastic behaviour of bubble suspensions (e.g. Llewellin et al., 2002b; Joh et al., 2010; 

Mitrias et al., 2017; Seo and Youn, 2005). These flow conditions can be achieved through small 

amplitude oscillatory shear (SAOS) rheological tests, where a sinusoidal deformation 𝛾𝑖𝑗 is 

applied to the system and the resulting shear stress 𝜏𝑖𝑗 is measured:  

                                                              𝛾𝑖𝑗 = 𝛾𝑖𝑗
0  sin(𝜔𝑡)                                                             (4.1a) 

                                        𝜏𝑖𝑗 = 𝐺′(𝜔) 𝛾𝑖𝑗
0 sin(𝜔𝑡) + 𝐺′′(𝜔) 𝛾𝑖𝑗

0 cos(𝜔𝑡)                            (4.1b)  

where 𝛾𝑖𝑗
0  is the amplitude of the applied deformation, 𝜔 is the oscillation frequency, 𝐺′ is the 

elastic modulus, which describes the elastic character of the suspension, and 𝐺′′ is the loss 

modulus, which describes the viscous character of the suspension. The main models that 

describe the linear viscoelastic behaviour of bubble suspensions as a function of the bubble 

volume fraction and dynamic capillary number are presented below.  

As reported in Chapter 2, Llewellin et al. (2002a) proposed a constitutive equation (Eq. 

2.52) expressed in the form of the linear Jeffreys model (Bird et al., 2002) to characterise the 

linear viscoelastic behaviour of dilute monodisperse bubble suspensions. This constitutive 

equation holds for 𝐶𝑎 ≪ 1 and varying 𝐶𝑑, and has its theoretical foundation in the analysis 

of Frankel and Acrivos (1970) on the time-dependent flow of dilute monodisperse emulsions 

with infinitesimal droplet deformation. For convenience, the equation is presented again below:  

                                                      𝜏𝑖𝑗 + 𝛼1𝜏̇𝑖𝑗 = 2𝜂𝑠(𝛽1𝑒𝑖𝑗 + 𝛽2𝑒̇𝑖𝑗)               (4.2) 

where 𝜏𝑖𝑗 is the deviatoric stress tensor, 𝑒𝑖𝑗 is the rate-of-strain tensor, 𝜂𝑠 is the viscosity of the 

Newtonian ambient fluid, and the overdot (in 𝜏̇𝑖𝑗 and 𝑒̇𝑖𝑗) denotes the partial time derivative. 

The parameters 𝛼1, 𝛽1 and 𝛽2 are functions of the bubble volume fraction 𝜑 and the relaxation 
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time of a single bubble 𝜆. The expressions of these parameters are presented in Table 4.1. 

Solving Eq. 4.2 for a linear oscillatory shear flow, Llewellin et al. (2002a) obtained the 

following expressions for 𝐺′ and 𝐺′′:  

                                             
𝐺′(𝐶𝑑,𝜑)

𝜔𝜂𝑠
=

(𝛽1𝛼1−𝛽2)𝜔

1+𝛼1
2𝜔2

= (
16

5
 𝐶𝑑

1+
36

25
 𝐶𝑑2

) 𝜑                                  (4.3a) 

     
𝐺′′(𝐶𝑑,𝜑)

𝜔𝜂𝑠
=

𝛽1+𝛼1𝛽2𝜔2

1+𝛼1
2𝜔2 = 1 +

𝐺𝑟𝑒𝑑
′′ (𝐶𝑑,𝜑)

𝜔𝜂𝑠
  with  

𝐺𝑟𝑒𝑑
′′ (𝐶𝑑,𝜑)

𝜔𝜂𝑠
≡ (

1

1+
36

25
 𝐶𝑑2

)
8

3
𝜑 −

5

3
𝜑      (4.3b)                                              

where 𝐺𝑟𝑒𝑑
′′  denotes the loss modulus without the viscous contribution of the solvent (i.e., 𝜔𝜂𝑠). 

In the limit of large 𝐶𝑑, Eq. 4.3b yields a negative value of 𝐺′′ for 𝜑 > 0.6; however, this is 

not a problem, because the model is valid only for dilute suspensions. Mitrias et al. (2017) 

simulated the oscillatory shear flow of dilute monodisperse bubble suspensions to determine 

their viscoelastic moduli. They then compared their results with the predictions of Eq. 4.3, 

finding good agreement for bubble volume fractions lower than 0.5%.  

Note that Eq. 4.3 rigorously holds for monodisperse bubble suspensions. To account for the 

effect of polydispersity on the viscoelastic behaviour of dilute and semi-dilute bubble 

suspensions, the linear superposition method proposed by Mader et al. (2013) is a reasonable 

approach. This method, analogous to determining the viscosity of a polydisperse suspension, 

involves calculating the material functions for each bubble size class and then summing the 

individual contributions. While the authors applied this method to the steady-shear viscosity of 

a dilute polydisperse bubble suspension, they did not extend it to the case of linear viscoelastic 

material functions. 

Seo and Youn (2005) suggested a phenomenological rheological model for dilute 

monodisperse bubble suspensions. Their constitutive equation is also expressed in the form of 

the linear Jeffreys model (i.e., Eq. 4.2) and was based on the analysis of Maffettone and Minale 

(1998) on the deformation of an ellipsoidal droplet in a simple shear flow. Similar to the model 

of Doi and Ohta (1991), the model of Seo and Youn (2005) describes the macroscopic stress of 

the suspension, accounting for the evolution of the bubble size and shape. The parameters 𝛼1, 

𝛽1 and 𝛽2 for their model are shown in Table 4.1. Note that the models of Llewellin et al. 

(2002a) and Seo and Youn (2005) represent modified versions of the Jeffreys model (Bird et 

al., 2002), the difference in the coefficients 𝛼1, 𝛽1 and 𝛽2 stemming from the analysis in the 

limit of a single droplet of Frankel and Acrivos (1970) and Maffetone & Minale (1998), 
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respectively; therefore, these models do not account for fluid dynamic interactions or crowding 

effects among bubbles.   

Joh et al. (2010) solved the constitutive equation proposed by Seo and Youn (2005) for a 

linear oscillatory shear flow, obtaining the following expressions for 𝐺′ and 𝐺′′:  

                                                    
𝐺′(𝐶𝑑,𝜑)

𝜔𝜂𝑠
= [

(𝜉1−𝜉3)𝜔

1+𝜉1
2𝜔2

] 𝜉2 = (
2𝐶𝑑

1+
9

16
 𝐶𝑑2

) 𝜑                     (4.4a)                                       

       
𝐺′′(𝐶𝑑,𝜑)

𝜔𝜂𝑠
= (

1+𝜉1𝜉3𝜔2

1+𝜉1
2𝜔2 ) 𝜉2 = 1 +

𝐺𝑟𝑒𝑑
′′ (𝐶𝑑,𝜑)

𝜔𝜂𝑠
  with  

𝐺𝑟𝑒𝑑
′′ (𝐶𝑑,𝜑)

𝜔𝜂𝑠
≡ (

1

1+
9

16
 𝐶𝑑2

)
8

3
𝜑 −

5

3
𝜑  (4.4b)                                       

To account for their polydisperse experimental data, they modified Eq. 4.4 by applying the 

same method described in Sec. 3.1 for the relative viscosity. Specifically, they incorporated a 

probability density fraction 𝑓(𝑅) related to the bubble radii distribution. As outlined in Sec. 

3.1, this approach is effective only if 𝑓(𝑅) is a volume fraction probability density fraction, so 

that 𝑓(𝑅)𝑑𝑅 yields the volume fraction of bubbles with radius in the range 𝑑𝑅 around 𝑅. Under 

that assumption, Eq 4.4 can be generalised as follows:  

                                             
𝐺𝑝𝑜𝑙𝑦𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒

′

𝜔𝜂𝑠
= ∫  

𝐺′[𝐶𝑑(𝑅),𝜑]

𝜑𝜔𝜂𝑠

∞

0
𝑓(𝑅)𝑑𝑅                                                 (4.5a)                          

                                             
𝐺𝑝𝑜𝑙𝑦𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒

′′

𝜔𝜂𝑠
= 1 + ∫

𝐺𝑟𝑒𝑑
′′ (𝐶𝑑,𝜑)

𝜑𝜔𝜂𝑠
𝑓(𝑅)𝑑𝑅

∞

0
                                         (4.5b)                                                  

Comparing their experimental data with the predictions of Eq. 4.5, Joh et al. (2010) noted a 

deviation of 𝐺′ at low values of ω. They attributed this to bubble fluid dynamic interactions, 

without however validating this assumption. 

As seen, several studies have focused on the time-dependent flow of suspensions with 

infinitesimally deformed bubbles (i.e., 𝐶𝑎 ≪ 1), advancing constitutive equations to describe 

their viscoelastic behaviour. However, there are sparse experimental data to validate these 

equations. This work aims to provide a systematic experimental characterisation of the linear 

viscoelastic behaviour of semi-dilute bubble suspensions by employing a rheo-optical setup to 

visualise the behaviour of the suspensions during SAOS rheological tests. This coupled 

approach offers a higher confidence in the experimental measurements because it allows 

investigating the effects of bubble size distribution and various SAOS measurement artifacts, 

including bubble rise, coalescence, and changes in bubble spatial organisation over time, which 

can influence the rheological measurements of bubble suspensions.  
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Table 4.1: Parameters 𝛼1, 𝛽1 and 𝛽2 for the different rheological models. 

Rheological model 𝛼1 𝛽1 𝛽2 

Llewellin et al. (2002a) 

 

6

5
𝜆 

1 + 𝜑 
(1 −

5

3
𝜑) 𝛼1 

Seo and Youn (2005) 

 

3

4
𝜆 

1 + 𝜑 (1 −
5
3

𝜑)

1 + 𝜑
𝛼1 

 

Jeffreys  𝜆 1 + 𝜑 𝛼1 

 

4.2 Materials and Methods 

4.2.1 Chemicals 

Bubble suspensions were generated using a Newtonian mixture of mineral oil (RTM38 

Mineral Oil Rotational Viscometer Standard – produced by Paragon Scientific, Birkenhead, 

UK) and 5% w/w of the liquid, non-ionic surfactant Span 80 (Sigma Aldrich, St. Louis, USA). 

The chosen ambient fluid was viscous enough to ensure time-stable suspensions and minimal 

bubble rise during the rheological measurements. The properties of the individual materials 

and the final mixture were measured at 12 °C, in compliance with the rheological tests, and are 

presented in Table 4.2. Additionally, a detailed rheological characterisation of the used base 

matrix is provided in Sec. B1 of Appendix B.  

Table 4.2: Viscosity 𝜂𝑠, density 𝜌 and surface tension 𝜎𝛼,𝛽 of the fluids constituting the Newtonian 

ambient fluid.  

Fluid  Viscosity (Pa s)    Density   (g/mL)     Surface tension (mN/m) 

RTM38 Mineral Oil  

Span 80 

Mixture  

  77.54±0.78                     0.93±0.01 

  1.95±0.02                              0.99±0.01 

  53.06±0.53                        0.94±0.02 

      36.57±0.25 

     29.34±0.25 

     36.03±0.25 

 

4.2.2 Generation and rheological characterisation of the bubble suspensions 

Bubble suspensions were produced using the aeration device detailed in Sec. 3.3.2. The 

bubble volume fraction and size distribution of the generated suspensions were also determined 

following the methods described in that section. To retrieve the suspension viscoelastic moduli, 

SAOS rheological tests were performed in an Anton Paar MCR302 stress-controlled rotational 

rheometer. The tests were carried out with a gap of 1.3 mm at a constant temperature of 12 °C. 
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The chosen gap was ten times larger than the average bubble diameter to minimize wall effects 

caused by confinement. Moreover, the operating temperature allowed for minimal bubble rise 

during the rheological measurements.  

 To determine the appropriate strain amplitude for the SAOS tests, strain sweep experiments 

were conducted on a bubble suspension with 𝜑 = 9.5%. These experiments covered three 

oscillation frequencies: 𝜔1 = 0.56 rad/s, 𝜔2 = 1 rad/s and 𝜔3 = 10 rad/s, and shear strains 

ranging from 0.05% to 10%.  The results showed that the viscoelastic moduli remained constant 

across this strain range, indicating that any strain value within this range is suitable for 

assessing the system's linear viscoelastic properties. Therefore, a shear strain of 5% was 

selected for the SAOS rheological measurements. The 𝐺′, 𝐺′′ curves obtained from the strain 

sweep experiments are reported in Sec. B2 of Appendix B.  

The SAOS measurements were performed by ramping down the oscillation frequency from 

50 rad/s to 0.05 rad/s. Operating from higher to lower frequencies, i.e., from shorter to longer 

characteristic flow times, was chosen to minimize the effect of bubble coalescence and rise on 

the obtained viscoelastic curves. To validate the accuracy of the experimental data, particularly 

in terms of low torque and phase angle resolution issues, a dedicated study was performed, 

which is detailed in Sec. B3 of Appendix B.  

Prior to the SAOS measurements, the bubble suspensions were pre-sheared for three 

minutes at 0.1 s-1. This pre-shearing step was selected to remove potential loading effects 

without altering the suspension microstructure (as confirmed by the experiments discussed in 

Sec. 4.3.1).  

4.2.3 Visualisation of the bubble suspensions under oscillatory shear  

The bubble suspensions were visualised under oscillatory shear, using the rheo-optical setup 

depicted in Fig. 3.4. SAOS tests were conducted as previously described, with images captured 

throughout the process using a FLIR GS3-U3-32S4M-C 1/1.8ꞌꞌ camera (acquisition frequency: 

5 Hz, image resolution: 1536 × 2048 pixels), a Nikon mono zoom lens and a white LED light 

as illumination. All visualisation experiments were conducted at a focus plane of 600 𝜇𝑚, with 

minor adjustments for different samples. The pixel-to-mm conversion scale was found equal 

to 306 pixels/mm. The depth of field for the current visualisation setup was 600 μm.  

Note that, although the camera was focused on a pre-calibrated plane, the large depth of 

field allowed for the visualisation of multiple bubble layers. This enabled the visualisation of 
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bubbles even when they had risen beyond the calibration plane, effectively covering a 

visualisation gap of up to 300 𝜇𝑚 above the calibration plane. 

4.3 Results on bubble size and viscoelastic properties 

This section presents experimental results for bubble suspensions with volume fractions 𝜑1 =

4.2 %, 𝜑2 = 13.5% and 𝜑3 = 19.2%.  

4.3.1 Bubble size distributions 

All tested samples were polydisperse, with bubble radii following the gamma distribution 

between 20 μm and 120 μm (Fig. 4.1). As in Chapter 3, a volume-weighted average radius, 

〈𝑅〉, was determined for each bubble suspension. For the reported bubble volume fractions, 

𝜑1 = 4.2 %, 13.5 % and 19.2 %, the respective volume-weighted mean radii were equal to 61 

μm, 64 μm and 65 μm. 

To ensure that the initial bubble size distribution did not change significantly during the pre-

shear stage, bubble sizes computed from the microscope images were compared to those 

derived from the visualisation experiments. For each sample, the image taken immediately after 

the end of pre-shearing was analysed using MATLAB to identify bubbles and their radii (in 

pixels). The radii were then converted to mm using a conversion scale of 306 pixels/mm, 

determined through the focus plane calibration. The image analysis revealed that after three 

minutes of pre-shearing at 0.1 s-1, the bubble radii distributions remained essentially the same.  

 

Figure 4.1: Bubble size distribution for (a) 𝜑1 = 4.2%, (b) 𝜑2 = 13.5% and (c) 𝜑3 = 19.2% after 

three minutes of pre-shearing at 0.1 s-1. 

 4.3.2 SAOS results 

To characterise the viscoelastic behaviour of the bubble suspensions, the experimental 

values of 𝐺′ and 𝐺𝑟𝑒𝑑
′′  need to be compared to the predictions of an appropriate theoretical 

model. Since the aim is to use the simplest model that can describe the behaviour correctly, the 

polydisperse suspension was initially modelled as a monodisperse one, using Eq. 4.2 with the 
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parameters 𝛼1 and 𝛽2 expressed in terms of the volume-weighted average bubble radius 〈𝑅〉 

and of an average dynamic capillary:  

                                                                 〈𝐶𝑑〉 ≡ 〈𝜆〉𝜔                                                               (4.6) 

where 〈𝜆〉 is the average relaxation time of the suspension, defined using 〈𝑅〉.  

Next, it was necessary to determine which version of Eq. 4.2 is more appropriate: (i) the 

original Jeffreys version, (ii) the Llewellin et al. (2002a) modification, or (iii) the Seo and Youn 

(2005) modification. By observing Eqs. 4.3b and 4.4b, it becomes evident that for large values 

of 〈𝐶𝑑〉, the second term in the expressions for 𝐺𝑟𝑒𝑑
′′  becomes dominant, resulting in negative 

𝐺𝑟𝑒𝑑
′′  values. This is not physically reasonable. In particular, for the current experimental 

system, substituting its physical parameters (i.e., solvent viscosity 𝜂𝑠 = 53.063 Pa s, bubble 

volume fraction of the tested suspensions 𝜑1 = 4.2%,  𝜑2 = 13.5% and  𝜑3 = 19.2%, and 

respective average relaxation times of the bubbles 〈𝜆〉1 = 0.88 s, 〈𝜆〉2 = 0.80 s and 〈𝜆〉3 =

0.75 s) into Eqs. 4.3b and 4.4b leads to negative 𝐺𝑟𝑒𝑑
′′  values for 𝐶𝑑 larger than 0.8.  

This issue was not addressed in the works of Llewellin et al. (2002a) and Seo and Youn 

(2005), despite their experimental parameters being similar to those of the present study. It 

should be noted that both studies accounted for the viscous contribution of the solvent, which 

for semi-dilute suspensions is dominant. Thus, even if 𝐺𝑟𝑒𝑑
′′  was negative, it was not readily 

noticeable from the 𝜂′ and 𝐺′′ graphs presented in Llewellin et al. (2002a) and Seo and Youn 

(2005). Therefore, the original Jeffreys model (Bird et al., 2002) (i.e., Eq. 4.2 with 𝛼1 = 𝛽2 =

〈𝜆〉) was selected to describe the linear viscoelastic moduli of the suspensions investigated in 

this work, because this model does not pose this problem. For an oscillatory shear flow, the 

original Jeffreys constitutive equation yields the following expressions for 𝐺′ and 𝐺𝑟𝑒𝑑
′′  in a 

suspension of identical bubbles:   

                                                          
𝐺′(𝐶𝑑,𝜑)

𝜔𝜂𝑠
= (

𝐶𝑑

1+𝐶𝑑2) 𝜑                                                  (4.7a) 

                                                          
𝐺𝑟𝑒𝑑

′′ (𝐶𝑑,𝜑)

𝜔𝜂𝑠
= (

1

1+𝐶𝑑2) 𝜑                                                 (4.7b) 

For each of the reported bubble volume fractions, the theoretical 𝐺′ and 𝐺𝑟𝑒𝑑
′′  values were 

determined using Eq. 4.7, expressed in terms of 〈𝐶𝑑〉. Fig. 4.2 presents the experimental 𝐺′, 

𝐺𝑟𝑒𝑑
′′  curves (black and hollow points), along with the theoretical predictions of the Jeffreys 
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model for a monodisperse suspension (red and black dashed lines), as functions of the average 

dynamic capillary number.  

 

Figure 4.2: Experimental values vs theoretical predictions of 𝐺′ and 𝐺𝑟𝑒𝑑
′′  for polydisperse bubble 

suspensions with (a) 𝜑1 = 4.2%, (b) 𝜑2 = 13.5% and (c) 𝜑3 = 19.2%. 

As shown, there is good agreement between the experimental and theoretical values for 〈𝐶𝑑〉 

larger than unity. But at lower 〈𝐶𝑑〉, the experimental values of 𝐺′ are significantly larger than 

the theoretical ones. Moreover, the shape of the experimental 𝐺′ curves is more complex, 

resembling that of a suspension with multiple relaxation modes. As shown in Fig. 4.3, the onset 

of the 𝐺′ deviation is related to the bubble volume fraction, with denser suspensions deviating 

earlier, that is, at higher 〈𝐶𝑑〉 values. Furthermore, within the same low range of 〈𝐶𝑑〉, the 

experimental values of 𝐺′ deviate more from the theoretical predictions as the bubble volume 

fraction increases, with the densest suspension deviating almost twice as much compared to 

the most dilute one. For a dedicated discussion on this, please refer to Sec. B4 of Appendix B. 

 

0.001 0.01 0.1 1 10

1E-4

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 1 10

1E-4

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 1 10

1E-4

0.001

0.01

0.1

1

10

100

1000

 G' experimental (3 min preshear)

 G''red experimental (3 min preshear)

 G'theoretical_Mader et al. approach

 G''red,theoretical_Mader et al. approach 

 G'theoretical_monodis. with <R>

 G''red,theoretical_monodis. with <R>

 low torque limit

G
',
G

'' r
e

d
 (

P
a

)

<Cd>

φ=4.2%
(a)

 low torque limit

G
',
G

'' r
e

d
 (

P
a

)

<Cd>

φ=13.5%

(c)

 low torque limit

G
',
G

'' r
e

d
 (

P
a

)

<Cd>

φ=19.2%

(b)

 low torque limit



92 
 

 

Figure 4.3: Effect of the bubble volume fraction on the onset of the 𝐺′ deviation from the theoretical                                                        

predictions of the generalised Jeffreys model. 

The observed complex 𝐺′ trend was unexpected, because it is not predicted by the model. 

This discrepancy indicates that the considered model may not be appropriate for describing the 

experimental data. A possible reason for the poor predictions at low 〈𝐶𝑑〉 may be the 

polydisperse character of the studied suspensions. To account for this issue more thoroughly, 

the linear superposition approach suggested by Mader et al. (2013) was employed. Considering 

a polydisperse bubble suspension with N discrete bubble radii classes, Eq. 4.7 can be 

generalised as follows: 

                                             
𝐺𝑝𝑜𝑙𝑦𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒

′

𝜔𝜂𝑠
= ∑

𝐺𝑖
′(𝐶𝑑𝑖,𝜑𝑖)

𝜔𝜂𝑠
= ∑ (

𝐶𝑑𝑖

1+𝐶𝑑𝑖
2) 𝜑𝑖

𝑁
𝑖=1

𝑁
𝑖=1                        (4.8a) 

                                             
𝐺𝑟𝑒𝑑,𝑝𝑜𝑙𝑦𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒

′′

𝜔𝜂𝑠
= ∑  

𝐺𝑟𝑒𝑑,𝑖
′′ (𝐶𝑑𝑖,𝜑𝑖)

𝜔𝜂𝑠

𝑁
𝑖=1 = ∑ (

1

1+𝐶𝑑𝑖
2) 𝜑𝑖

𝑁
𝑖=1           (4.8b) 

where 𝐶𝑑𝑖 ≡ 𝜆𝑖𝜔, with 𝜆𝑖 and 𝜑𝑖 representing the bubble relaxation time and volume fraction 

of the i-th bubble class, respectively.  

Using Eq. 4.8, the theoretical 𝐺′ and 𝐺𝑟𝑒𝑑
′′  curves for the tested suspensions were derived. 

These curves are also reported in Fig. 4.2 (black and blue solid lines). As seen, these new curves 

are almost identical to those derived by modelling the polydisperse suspension as monodisperse 

with a bubble radius equal to the volume-weighted average radius of the bubble population. 

This is not unexpected, as one can prove that the theoretical predictions of the simpler Jeffreys 

model (i.e., Eq. 4.7 expressed in terms of 〈𝐶𝑑〉) differ from those of the more refined one (i.e., 

that based on the summation of the 𝐺′, 𝐺𝑟𝑒𝑑
′′  contributions of each bubble size class) only if the 
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suspension bubble size distribution is bimodal, with equal volume fractions of very small and 

very large bubbles. In any other case, the two versions of the Jeffreys model yield nearly the 

same predictions. This is discussed in more detail in Sec. B5 of Appendix B.  

Because the generalised Jeffreys model, which accounts for polydispersity more accurately, 

yields almost the same results as its simpler version (that for monodisperse suspensions), it can 

be concluded that polydispersity is not the root cause for the observed 𝐺′ deviation at low 〈𝐶𝑑〉 

values. To investigate this behaviour further, the influence of artifacts potentially induced by 

the rheological measurements was considered. Specifically, due to their extended duration, 

SAOS tests can be susceptible to phenomena such as bubble rise, coalescence and, more 

broadly, changes in the suspension microstructure over time. These phenomena are examined 

in detail in the following sections.  

4.3.2 Effect of bubble rise 

To investigate the effect of bubble rise on the obtained G′ curves, the bubble rise velocity 

was first calculated, using the Hadamard–Rybczynski equation (Hadamard, 1911; Rybczynski, 

1911): 

                                                             𝑢𝑟𝑖𝑠𝑒 =
〈𝑅〉2 𝜌𝑠 𝑔

3𝜂𝑠
                               (4.9) 

where 〈𝑅〉 is the volume-weighted average bubble radius, 𝜌𝑠 and 𝜂𝑠 are the density and 

viscosity of the ambient fluid, respectively, and 𝑔 is the gravitational acceleration. This 

equation is accurate in the limit of a single bubble rising in a clear liquid. However, the presence 

of other bubbles and surfactants in a suspension has been shown to retard bubble rise (D. Kee’ 

et al., 1990; Tzounakos et al., 2004), causing Eq. 4.9 to overestimate the rising velocity. It must 

be noted that while this equation provides the most conservative estimation of bubble rise 

during the experiments, its use also means that the computed rise velocities may be 

exaggerated, so that the actual effect of bubble rise may not be as pronounced as these 

predictions suggest for the experimental system under investigation. The calculated bubble rise 

velocities for all tested suspensions are presented in Table 4.3.   
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Table 4.3: Bubble rise velocity for different bubble volume fractions.  

Bubble volume fraction (%) 𝑢𝑟𝑖𝑠𝑒 (mm/min) mm covered during 5 

minutes of SAOS 

mm covered during 35 

minutes of SAOS 

4.2 

13.5 

19.2 

0.013 

0.015 

0.017 

0.065 

0.075 

0.084 

0.458 

0.525 

0.590 

 

Based on the computed bubble rise velocities shown in Table 4.3, bubbles should have risen 

appreciably by the end of the SAOS measurements, which last about 35 minutes, covering a 

distance equal to nearly 45% of the rheometer gap. Even if these values are overestimated, they 

still indicate that the effect of bubble rise may become important towards the end of the SAOS 

tests. To investigate whether bubble rise is pronounced from the beginning of the SAOS 

measurements, the distance covered by the rising bubbles during the initial five minutes of the 

experiment was calculated. This timeframe corresponds to the frequency range 50-10 rad/s, 

after which the onset of the 𝐺′ deviation was observed. For all the tested suspensions, this 

distance was found to be negligible, indicating that bubble rise cannot be responsible for 

causing the observed 𝐺′ deviation at low 〈𝐶𝑑〉 values.  

To validate these calculations, a sample of a suspension with 𝜑 = 10.4% was placed on the 

rheometer plate, and after a 35-minute waiting period to allow the bubbles to rise freely, a 

SAOS test was initiated. For comparison, a normal SAOS measurement was also conducted on 

the same suspension without any waiting time.  As shown in Fig. 4.4, the 𝐺′ curves obtained 

from the two SAOS experiments almost overlap, with the complex 𝐺′ trends being essentially 

the same regardless of bubble rise. This indicates that in the present experiments, bubble rise 

is not the cause for the characteristic 𝐺′ deviation observed at low 〈𝐶𝑑〉 values. Nevertheless, 

it could potentially amplify this deviation towards the end of the experiments by affecting the 

mean inter-bubble distance. This observation was confirmed via time sweep experiments and 

SAOS measurements performed by increasing and decreasing the oscillation frequency. The 

results of these experiments are presented in Sec. B6 of Appendix B.  
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Figure 4.4: Effect of bubble rise on Gꞌ and Gꞌꞌred of a polydisperse bubble suspensions with 𝜑 = 10.4%. 

Specifically, Fig. B.13a in Appendix B demonstrates that the 𝐺′ deviation at lower 〈𝐶𝑑〉 

values is present even in SAOS measurements performed by ramping up the oscillation 

frequency, where the influence from bubble rise is minimal. When the measurements are 

performed inversely, more time elapses before recording the low 〈𝐶𝑑〉 viscoelastic data. During 

this time, bubbles tend to rise, leading to a decrease in the average inter-bubble distance, which 

evidently amplifies the 𝐺′ deviation. This observation suggests that there is a correlation 

between the deviation of 𝐺′ and the average inter-bubble distance or, more broadly, the overall 

bubble spatial organisation in the tested samples.  

It is worth noting that in dense colloidal suspensions, the presence of clusters has been 

shown to increase the bulk elasticity of the suspension as the particles come into close 

proximity and create a network structure (Conrad et al., 2006; Larsen et al., 2010; Whitaker et 

al., 2019). This network effectively stores elasticity, leading to increased resistance to 

deformation and larger 𝐺′ values. Even though the presence of bubble clusters or threads may 

not result in a network as organised and robust as that in colloidal suspensions, it certainly 

alters the average inter-bubble distance, influencing the microstructure and, in turn, the 

rheology of the suspension. From Fig. B.13b in Appendix B, it is evident that bubbles are not 

uniformly distributed within the tested samples before the initiation of the SAOS 

measurements. This non-uniform bubble spatial distribution is most likely created upon loading 

the samples on the rheometer plate and affects the average inter-bubble distance, leading to the 

characteristic 𝐺′ deviation at lower 〈𝐶𝑑〉 values. This aspect is further investigated in Sec. 4.5.   
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4.4 Visualisation of bubbles under oscillatory shear 

Having examined the effect of bubble rise during the SAOS measurements, the investigation 

then focused on whether the observed 𝐺′ trends can be attributed to changes in the suspension 

microstructure over time. These changes can be related to the general bubble organisation and 

the bubble size. To this end, the bubble suspensions were visualised under oscillatory shear, 

and a statistical image analysis was performed. The results are discussed below.  

4.4.1 Changes in bubble organisation over time 

To examine whether the pre-existing spatial organisation of the bubbles right after the 

preshear changed significantly as a result of the SAOS measurement, the coverage parameter 

introduced in Sec. 3.5.2a was utilized. This parameter indicates the percentage of image 

covered with bubbles, with a reduction in coverage serving as a qualitative metric for bubble 

clustering and alignment, or more broadly, for changes in the microstructure of the dispersed 

phase. 

To this end, an image analysis was conducted to determine the trend of coverage during a 

SAOS experiment. To minimize the amount of data, 15 representative images were analysed 

for each oscillation frequency. Each image was first converted into a black and white matrix, 

with the bubbles portrayed as white pixels on a black background. Then, all the white pixels 

were summed and divided by the total number of pixels in the image to obtain a characteristic 

value of coverage. For each frequency, a mean coverage value, 𝐶̅, was determined by averaging 

the coverage values of the corresponding 15 images. Fig. 4.5a presents the mean coverage as a 

function of the average dynamic capillary number for the three reported bubble volume 

fractions. As seen, 𝐶̅ remains constant for all the tested suspensions, suggesting that the general 

bubble organisation does not change significantly throughout the rheological measurements. 

4.4.2 Bubble coalescence 

To investigate potential bubble coalescence phenomena that would affect the suspension 

microstructure, the average bubble radius was evaluated during the rheological tests. To this 

end, the same images used to calculate the coverage were analysed to measure the bubble size 

distribution and the corresponding mean radius 〈𝑅〉 during the oscillatory tests. For each 

oscillation frequency, an average value for 〈𝑅〉, denoted as 〈𝑅〉̅̅ ̅̅ , was obtained by averaging the 

〈𝑅〉 values of the 15 representative images. Fig. 4.5b illustrates how 〈𝑅〉̅̅ ̅̅  changed for the three 

reported bubble suspensions throughout the SAOS tests. As seen, the average bubble size 

slightly increases throughout the rheological experiments (these tests start at large 〈𝐶𝑑〉 values 
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and then, in time, progress towards lower 〈𝐶𝑑〉 values), reaching a maximum of 7% to 9% of 

the initial size. Therefore, based on the observed trend of coverage and the minimal increase in 

the average bubble size, it can be concluded that the suspension microstructure remains mostly 

stable during the rheological tests.  

 

Figure 4.5: a) Coverage and b) mean volume-weighted average bubble radius as functions of 〈𝐶𝑑〉                                                                       
for 𝜑 = 4.2%, 𝜑 = 13.5% and 𝜑 = 19.2%. 

The failure of the linear Jeffreys model, and of other models (e.g., Seo and Youn, 2005) 

previously used for dilute and semi-dilute bubble suspensions, to predict accurately the 𝐺′ 

trends at low 〈𝐶𝑑〉 values led to the investigation of other nonlinear phenomena, specifically 

bubble fluid dynamic interactions, that may affect the experimental data. As suggested by Joh 

et al. (2010), such interactions may induce phenomena with longer relaxation times, resulting 

in the characteristic 𝐺′ deviation at low 〈𝐶𝑑〉 values. Specifically, when bubbles are in close 

proximity or interact with each other, the fluid flow induced by the motion of one bubble can 

influence the motion and the behaviour of the neighbouring bubbles, leading to groups of 

bubbles behaving collectively.  

In this context, interactions are influenced by two key factors: (i) the bubble volume fraction 

and (ii) the mean inter-bubble distance. In an idealised system, where bubbles can be 

considered perfectly distributed, these two parameters are directly related. But in the present 

experimental system, technical aspects, such as rheometer loading and subsequent pre-shear 

protocol, can change the average inter-bubble distance for a fixed bubble volume fraction. To 

investigate this, additional SAOS tests were conducted on the generated suspensions, using 

different pre-shearing conditions. Specifically, samples were pre-sheared for 33 minutes at 0.9 

s-1, and the corresponding SAOS results were then compared to those obtained after three 

minutes of pre-shearing at 0.1 s-1. The aim was to determine whether a change in the bubble 
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spatial distribution, induced by longer pre-shear protocols, could mitigate the deviation from 

the theoretical predictions of 𝐺′. At this point, it must noted that the second pre-shearing 

protocol was found to be the maximum pre-shear that could be applied without causing any 

significant changes to the bubble size distribution and the total bubble volume fraction of the 

suspensions. The findings from this investigation are discussed below. 

4.5 Bubble fluid dynamic interactions and effect of pre-shear 

4.5.1 Rheological results 

Following the method described in Sec. 4.3.1, the bubble size distribution at the end of the 

stronger and more prolonged pre-shearing stage was determined to confirm that the pre-

shearing did not alter significantly the initial distribution. Image analysis showed that after 33 

minutes of pre-shearing at 0.9 s-1, the bubble radii shifted to slightly higher values, while still 

following a gamma type distribution (Fig. B.14 in the Appendix). Table 4.4 provides the 

updated volume-weighted average bubble radii for the reported suspensions. For each of them, 

the corresponding 〈𝐶𝑑〉 value was also calculated. Fig. 4.6 compares the 𝐺′ and 𝐺𝑟𝑒𝑑
′′  curves of 

the reported bubble suspensions, obtained after three minutes of pre-shearing at 0.1 s-1 and after 

33 minutes of pre-shearing at 0.9 s-1. 

Table 4.4: Volume-weighted average bubble radius 〈𝑅〉 for different pre-shearing conditions. 

Bubble 

volume 

fraction (%) 

〈𝑅〉 computed through the 

microscope images (μm) 

〈𝑅〉 after 3 minutes of 

pre-shear at 0.1 s-1 

(μm) 

〈𝑅〉 after 33 minutes of 

pre-shear at 0.9 s-1 

(μm) 

% increase 

of 〈𝑅〉 

4.2 

13.5 

19.2 

61 

64 

65 

61 

64 

65 

66 

69 

72 

8.2 

7.8 

10.8 
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Figure 4.6: Effect of the pre-shearing conditions on 𝐺′ and 𝐺𝑟𝑒𝑑
′′  of polydisperse bubble suspensions 

with (a) 𝜑1 = 4.2%, (b) 𝜑2 = 13.5% and (c) 𝜑3 = 19.2%. 

As shown, pre-shearing affects the resulting 𝐺′ curves only for low bubble volume fraction. 

For 𝜑 = 4.2%, stronger and more prolonged pre-shearing leads to 𝐺′ values closer to the 

theoretical ones, suggesting a more uniform redistribution of the bubbles, and therefore weaker 

fluid dynamic interactions among them. There is still a deviation between the experimental and 

theoretical values for average dynamic capillary numbers lower than 0.1, likely due to bubble 

rise during the SAOS tests, which directly impacts the average inter-bubble distance and, in 

turn, the bubble interactions. As the bubble volume fraction increases, the experimental 𝐺′ 

curves are almost insensitive to the applied pre-shearing conditions, suggesting that pre-

shearing affects the mean inter-bubble distance negligibly when the suspensions are denser. 

The reported results indicate no significant bubble rise during the longer pre-shearing stage. 

This is supported by both the rheological and optical findings, which revealed no significant 

differences in the high frequency plateau of 𝐺′, and in the bubble size distributions obtained 

just after the pre-shearing (see Fig. B.14 in Appendix B), respectively. 

4.5.2 Local spatial distribution of bubbles 

To quantify the fluid dynamic interactions among bubbles due to their local spatial 

distribution, a statistical image analysis was performed using the method described by 
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(Kudrolli, Wolpert and Gollub, 1997). In brief, for each of the reported bubble suspensions, an 

image obtained after the end of the pre-shearing stage was analysed, considering both pre-

shearing conditions. Each image was divided into 64 equal squares, and the number of bubbles 

in each square was identified using MATLAB. The distribution function for the local bubble 

number (n), i.e., the probability of having a certain number of bubbles in a cell, was then 

determined. This method allows evaluating bubble interactions based on the assumption that a 

smaller number of bubbles in a given area indicates a larger average inter-bubble distance and 

thus weaker fluid dynamic bubble interactions. Fig. 4.7 presents the probability distribution of 

the local bubble number for the tested bubble volume fractions and pre-shearing conditions. If 

the bubble suspensions were monodisperse and uniformly distributed, each cell would contain 

the same number of bubbles, and the probability function would be a narrow peak centered 

over this specific value of n. However, in this case where the tested suspensions are 

polydisperse and the bubbles are not uniformly distributed, a wider distribution of local bubble 

numbers is obtained.  

 

Figure 4.7: Probability distribution of the local bubble number for polydisperse bubble suspensions 

with (a) 𝜑1 = 4.2%, (b) 𝜑2 = 13.5% and (c) 𝜑3 = 19.2%. 
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Comparing between the two different pre-shearing conditions reveals that for the lowest 

bubble volume fraction, stronger and more prolonged pre-shearing results in narrower local 

bubble number distributions, which are also shifted towards lower values, meaning that the 

average inter-bubble distance decreases, resulting in weaker fluid dynamic interactions among 

the bubbles. However, as the bubble volume fraction increases, the two distributions almost 

overlap, confirming the rheological measurements of Sec. 4.5.1 and suggesting that in denser 

suspensions pre-shearing does not reduce the bubble interactions significantly.  

It is important to note that for all tested volume fractions, the bubble size distribution, as 

opposed to the local bubble spatial distribution, is not altered by pre-shearing (as reported in 

Fig. B.14 in Appendix B), thus indicating that the shift observed in Fig. 4.7(a) can be solely 

associated to the more effective bubble re-distribution.      

4.6 Fitting a multi-mode Jeffreys model 

As the rheological measurements indicate, there is an unexpected increase in the suspension 

elastic modulus at low 〈𝐶𝑑〉 values. Based on the statistical image analysis, during the SAOS 

experiments the microstructure of the suspension remains mostly stable. Therefore, the 𝐺′ 

increase is mainly attributed to bubble fluid dynamic interactions caused by the initial spatial 

distribution of the bubbles after the loading of the samples on the rheometer plate. As shown, 

these interactions are closely related to the bubble volume fraction and the applied pre-shearing 

conditions. When the suspension is subjected to high oscillation frequencies, the characteristic 

flow time is very small; thus, the measured viscoelastic moduli capture the response of the 

smallest length scale of the suspension microstructure, namely that of an individual bubble. 

This explains the good agreement between the real and the theoretical values at higher 〈𝐶𝑑〉, 

where the generalised Jeffreys model predicts the viscoelasticity arising solely from the bubble 

interfaces accurately. As the oscillation frequency decreases, the characteristic flow time 

increases, enabling more complex relaxation phenomena associated with bubble fluid dynamic 

interactions. These interactions manifest as an increase in suspension elasticity, with the 

measured 𝐺′ reflecting the response of bubbles that behave collectively owing to their 

proximity and mutual influence.  

As previously discussed, the Jeffreys model, as well as the models of Llewellyn et al. 

(2002a) and Seo and Youn (2005), does not account for bubble fluid dynamic interactions, thus 

failing to predict the 𝐺′ deviation at low 〈𝐶𝑑〉 values. To address this limitation, a model 

developed by (Palierne, 1990) was considered, which is designed to describe the rheology of 
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dilute and semi-dilute emulsions consisting of viscoelastic and Newtonian fluids. This model 

accounts for droplet fluid dynamic interactions by assuming that the local strain exerted on a 

single droplet is modified by the deformation of the surrounding droplets, and that the 

interactions between droplets are of a dipole kind. For emulsions formed by two viscoelastic 

fluids, the model predicts a 𝐺′ profile with a double shoulder. This profile typically exhibits a 

relaxation mode associated with the relaxation of the viscoelastic matrix at high oscillation 

frequencies and a secondary relaxation mode associated with droplet interface relaxation at low 

oscillation frequencies.  

While the 𝐺′ profiles observed in this study also present multiple relaxation modes, a 

fundamental difference must be noted: the suspensions under study consist of two Newtonian 

fluids, i.e., air as dispersed phase and a mixture of mineral oil and span 80 as the ambient fluid. 

These fluids relax instantly, unlike for emulsions of two viscoelastic fluids. Therefore, in these 

systems, the relaxation mode at high oscillation frequencies cannot be attributed to the 

relaxation of the ambient fluid. To confirm this, the predictions of the Palierne and Jeffreys 

models are compared with the experimental data in Sec. B8 of Appendix B. As shown, the 𝐺′ 

trend predicted by the Palierne model qualitatively resembles that of the Jeffreys model, both 

featuring only one characteristic relaxation time. This is not surprising, given that the literature 

((Graebling, Muller and Palierne, 1993; Lacroix, Aressy and Carreau, 1997)) widely 

acknowledges the similarity between the two models for emulsions of Newtonian fluids. 

Similar to the Jeffreys model, the Palierne model fails to predict the second 𝐺′ shoulder at low 

〈𝐶𝑑〉 values. In addition, it does not capture the high 〈𝐶𝑑〉 plateau as accurately as the Jeffreys 

model. These shortcomings likely stem from the assumptions of the Palierne model about the 

type of droplet interactions. Specifically, the model assumes that the interactions are of a fluid 

dynamic dipole nature and that, within the interaction range, droplets are uniformly dispersed. 

Palierne (1990), along with subsequent relevant studies (Bousmina and Muller, 1993; Carreau 

et al., 1994) clearly acknowledges that the model fails to accurately predict experimental results 

for systems where the aforementioned assumptions are not met.  

The interactions responsible for the observed 𝐺′ deviation in the tested suspensions differ 

from those considered by the Palierne model. As evidenced by the rheo-optical experiments, 

bubbles are locally distributed non-uniformly within the tested samples. Consequently, in some 

regions of the sample, bubbles are closer than they would be if they were uniformly distributed, 

making their local interactions stronger and causing them to behave and relax collectively. 

Similar observations were reported by Bousmina and Muller (1993) and by Carreau et al. 
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(1994), who also noted the failure of the Palierne to predict the low frequency 𝐺′ shoulder, 

which they attributed to interactions caused by the presence of aggregates in their systems. 

Despite the absence of a model that well describes the current experimental data at low 〈𝐶𝑑〉 

values, the rheo-optical experiments indicate a non-uniform spatial distribution of bubbles 

within the ambient fluid. Drawing from existing literature and having excluded experimental 

artifacts related to the performed rheological measurements, it can be inferred that these higher-

order interaction phenomena lead to the longer relaxation times observed in the present 

experiments. To validate this argument and quantify the complex relaxation phenomena arising 

from the bubble interactions, a multi-mode Jeffreys model was fitted to the experimentally 

determined values of 𝐺′ and 𝐺𝑟𝑒𝑑
′′ . The effect of the bubble volume fraction and the applied pre-

shearing conditions on the suspension relaxation modes was then examined.   

The fitting was performed using the Curve Fitting App of MATLAB. Initially, Eq. 4.8a was 

fitted to the experimental G′ values, using the relaxation times 𝜆𝑖 and the volume fractions 𝜑𝑖 

as fitting parameters. In all cases, the fitting process began with a single-mode Jeffreys model, 

and modes were progressively added until the best fit was achieved. The maximum number of 

relaxation modes was determined through a simple convergence analysis, assessing whether 

the addition of an extra relaxation mode resulted in a noticeable reduction is the sum of squared 

errors (SSE). The determined 𝜆𝑖 and 𝜑𝑖 values were then substituted in Eq. 4.8b to obtain the 

corresponding 𝐺𝑟𝑒𝑑
′′  curve. Table 4.5 presents the values of the fitting parameters for the various 

bubble volume fractions and pre-shearing conditions, along with the corresponding R2 value 

for each fit.  
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Table 4.5: Fitting parameters for different bubble volume fractions and pre-shearing conditions. 

  3 minutes pre-shearing at 0.1 s-1  33 minutes pre-shearing at 0.9 s-1 

Bubble 

volume 

fraction 

(%) 

 

𝛌𝐢 (s) 

 

𝛗𝐢 (%) 

 

𝛗𝐢

/ ∑ 𝝋𝒊 (%) 

 

𝛌 𝐬𝐢𝐧𝐠𝐥𝐞
𝒃𝒖𝒃𝒃𝒍𝒆

(s) 

 

𝐑𝟐 

 

𝛌𝐢 (s) 

 

𝛗𝐢 (%) 

 

𝛗𝐢/ ∑𝝋𝒊 (%) 

 

𝛌 𝐬𝐢𝐧𝐠𝐥𝐞
𝒃𝒖𝒃𝒃𝒍𝒆

(s) 

 

𝐑𝟐 

4.2 0.093 3.9 55.7   0.103 4.0 89.3   

2.222 0.8 11.9 0.090 0.999 6.151 0.5 10.7 0.097 0.995 

13.270 2.3 32.4   - - -   

  Σφi=7.0     Σφi=4.5    

13.5 0.089 13.5 49.1   0.095 12.9 51.4   

0.518 3.2 11.5   0.420 3.6 14.3   

3.782 2.4 8.7 0.088 0.999 2.818 1.0 3.9 0.096 0.999 

15.100 8.5 30.7   25.925 7.6 30.4   

 Σφi=27.6     Σφi=25.1    

19.2 0.081 17.7 38.4   0.088 16.9 38.5   

0.326 9.2 19.9   0.319 10.5 23.8   

1.140 1.1 2.5 0.083 0.999 1.200 0.6 1.3 0.092 0.995 

7.975 10.5 22.9   11.975 4.6 10.6   

15.950 7.6 16.4   25.750 11.3 25.9   

 Σφi=46.1     Σφi=43.9    
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As can be observed, the smallest relaxation time was very similar in all cases, closely 

matching the relaxation time of an individual bubble, as given inthe Jeffreys model (Eq. 2.41), 

and calculated using the volume-weighted mean bubble radius of each suspension. This finding 

supports the argument that at higher oscillation frequencies and, in turn, shorter characteristic 

flow times, SAOS experiments effectively capture the relaxation of a single bubble. The 

number of relaxation modes increases with the bubble volume fraction, suggesting that bubble 

interactions, and consequently complex relaxation phenomena, are more pronounced in denser 

suspensions. This complements the rheological measurements, which revealed that the onset 

of the 𝐺′ deviation starts at higher 〈𝐶𝑑〉 values for larger bubble volume fractions. 

It worth mentioning that the relaxation time given by the Jeffreys model (i.e., 𝜆 ≡ 𝜂𝑠𝑅/𝜎) 

refers to the case of a solitary bubble relaxing independently. In such a scenario, the bubble 

relaxes to its original undeformed state without the influence of neighbouring bubbles. In the 

case of emulsions, it has been shown that the presence of neighbouring droplets can influence 

the shape relaxation process of a single droplet. To further investigate the effect of bubble shape 

relaxation on the obtained 𝐺′ trends, the bubble shape relaxation time in the tested suspensions 

was calculated using the Palierne expression ((Graebling, Muller and Palierne, 1993)), which 

considers the effect of on the shape relaxation of the single droplet. This expression is a 

modification of the Jeffreys relaxation time, incorporating a function of the bubble volume 

fraction. The equation and the calculated bubble shape relaxation times are reported in Sec. B9 

of Appendix B. The bubble shape relaxation times were found to be close to the relaxation 

times given by the Jeffreys model. In fact, comparing the shape relaxation times with the fitting 

results reported in Table 4.5 shows that they fall between the first and second relaxation times 

computed through fitting for all tested suspensions. However, the fitting results revealed the 

presence of additional relaxation times which are at least an order of magnitude larger 

compared to the computed bubble shape relaxation times. This suggests that even though the 

relaxation mode associated with the shape relaxation of the bubbles can be influenced by 

crowding effects, it cannot be considered responsible for the characteristic 𝐺′ deviation at lower 

〈𝐶𝑑〉 values, which is clearly associated with longer relaxation times. 

It is important to note that the sum of the 𝜑𝑖 values obtained from fitting does not always 

match the measured total bubble volume fraction of the suspension. This is reasonable 

considering that, to study the intricate behaviour of the bubble suspensions, an idealized bubble 

suspension was used. Fig. 4.8 provides a schematic of this idealization. As shown in the 
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schematic, the tested suspensions are not uniformly distributed the moment the SAOS 

measurements begin. Due to their spatial distribution, some bubbles are in close proximity, 

behaving collectively as one group. When fitting the predictions of the model to the 

experimental results, it was assumed that each group of bubbles behaves like a single bubble 

with a radius equivalent to an effective (interaction) radius. In this context, it is expected that 

the sum of the 𝜑𝑖 values computed via fitting may exceed the actual bubble volume fraction of 

the tested suspension – especially in denser suspensions, where interactions become more 

pronounced.  

 

Figure 4.8: Schematic depicting the range of bubble fluid dynamic interactions, as emulated when 

fitting our experimental 𝐺′, 𝐺𝑟𝑒𝑑
′′  data using a multi-mode Jeffreys model. 

Nevertheless, in the case of the most dilute suspension (𝜑1 = 4.2%) subjected to stronger 

and more prolonged pre-shearing, the sum of the 𝜑𝑖 values aligned closely with the bubble 

volume fraction obtained experimentally. This suggests that the applied pre-shear effectively 

redistributed the bubbles, causing the range of bubble fluid dynamic interactions to coincide 

with the volume-weighted radius of a single bubble. In this case, the interactions among 

bubbles were negligible, causing most bubbles to behave individually, without being influenced 

by the neighbouring bubbles. This is confirmed by the decrease in the number of relaxation 

modes and the increase in the relative bubble volume fraction associated with the shortest 

relaxation time. However, as the overall bubble volume fraction increased, the applied pre-

shearing conditions did not alter the number and the characteristics of the relaxation modes 

significantly. This aligns with the rheological measurements and image analysis results 

reported earlier, suggesting that in denser suspensions pre-shearing impacts negligibly the 

bubble fluid dynamic interactions and the associated complex relaxation phenomena. 

It is worth mentioning that, in the current study, the effect of bubble fluid dynamic 

interactions is noticeable due to the applied flow field. In the steady-shear experiments 

presented in Chapter 3, the Taylor (1932) equation for the zero-shear viscosity was successfully 
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recovered, a result that indicates that bubble interactions were not appreciable. However, in 

SAOS experiments, designed to probe the suspension microstructure, interactions, even if mild, 

become relevant, because they affect the relaxation process of the suspension and, 

consequently, the observed viscoelastic trends. Additionally, the experiments presented in 

Chapter 3 involved bubble volume fractions up to 10.4%, while in this study, the range was 

extended to 19.2%. Although both studies examine semi-dilute suspensions, the current work 

involves a significantly higher bubble volume fraction, which is expected to cause more 

pronounced bubble fluid dynamic interactions. 

4.7 Conclusions 

This study explored the linear viscoelastic behaviour of semi-dilute polydisperse bubble 

suspensions with a Newtonian ambient fluid. To determine the suspensions viscoelastic moduli, 

𝐺′ and 𝐺𝑟𝑒𝑑
′′ , SAOS rheological tests were performed with a pre-shear stage of three minutes at 

0.1 s-1. The experimental 𝐺′ curves were compared with the theoretical predictions of the 

original Jeffreys model, showing good agreement for 〈𝐶𝑑〉 values larger than unity. But for 

lower 〈𝐶𝑑〉 values, the measured 𝐺′ was larger than expected, this deviation occurring earlier 

in more concentrated suspensions. To elucidate this behaviour, various potential contributing 

factors were systematically investigated, including polydispersity, bubble rise, coalescence and 

changes in suspension microstructure over time.  

The investigation revealed that, for the suspensions studied, the predictions of the 

generalised Jeffreys model accounting for polydispersity and of the simple Jeffreys model for 

monodisperse suspensions (used for bubbles with radius equal to the volume-weighted mean 

bubble radius of the suspension) yield essentially the same results. This indicates that 

polydispersity in itself is not the reason for the observed deviation between the experimental 

results and the model predictions.  

As the observed trends could not be attributed to polydispersity, the effects of microstructure 

were examined to determine whether significant changes occurred over time due to artifacts 

related to the performed rheological measurements. To this end, the generated bubble 

suspensions were visualised under linear oscillatory shear, and a statistical image analysis was 

performed to examine the effects of bubble rise, coalescence and spatial organisation.  The 

findings indicated that in general the suspension microstructure was preserved during the 

SAOS measurements, suggesting that the observed viscoelastic trends were not the result of 

experimental artifacts. 
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The failure of the Jeffreys model to accurately predict the 𝐺′ trends at low 〈𝐶𝑑〉 values led 

to further exploration of the impact of bubble fluid dynamic interactions on the experimental 

data. These interactions appear to be induced by the initial spatial arrangement of the bubbles 

on the plate of the rheometer, present before the initiation of the SAOS measurements, and lead 

to complex relaxation phenomena, which become evident at longer characteristic flow times. 

To see whether a variation in the bubble spatial distribution, induced by longer pre-shearing 

protocols, could mitigate the deviation from the theoretical predictions of 𝐺′, additional SAOS 

experiments were conducted with a pre-shear stage of 33 minutes at 0.9 s-1. The results 

indicated that, for dilute bubble suspensions, stronger and more prolonged pre-shearing led to 

𝐺′ values closer to the theoretical predictions. But as the bubble volume fraction increased, the 

applied pre-shearing conditions had no significant impact on the experimental 𝐺′ values.  

To validate this, a multi-mode Jeffreys model was fitted to the viscoelastic moduli obtained 

experimentally. In line with the rheological measurements and the image analysis results, the 

findings demonstrated that bubble interactions cause a complex relaxation process, consisting 

of multiple relaxation modes. The number of relaxation modes increased with the bubble 

volume fraction, indicating that the effect of bubble interactions amplifies in denser 

suspensions. Finally, the results overall suggest that stronger and prolonged pre-shearing can 

effectively reduce the fluid dynamic interactions among bubbles when the bubble volume 

fraction is low. But as the bubble volume fraction increases and the bubble fluid dynamic 

interactions start dominating, pre-shearing does not impact the local bubble spatial distribution 

significantly, leading to the same 𝐺′ trends independently of the applied pre-shearing 

conditions.  
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Chapter 5 

Steady-shear viscosity of bubble suspensions in shear-

thinning Carbopol matrices: investigating the effects 

of bubble-matrix interplay 
 

Building on the findings from Chapters 2 and 3 regarding bubble suspensions in Newtonian 

media, the final phase of this research investigated the influence of bubbles in more intricate 

matrices typically used in oral care formulations. The study focused on the steady shear 

viscosity of bubble suspensions in two shear-thinning matrices with no appreciable normal 

stress differences: (i) a Carbopol dispersion, and (ii) a Carbopol dispersion with added 

surfactant, Sodium Dodecyl Sulphate (SDS). The composition of the matrices was carefully 

designed to allow for an ideal soft colloid system with negligible interactions between Carbopol 

microgels. Moreover, the addition of a strong anionic surfactant such as SDS aimed to 

systematically increase matrix complexity by altering the extent of microgel swelling and 

modifying the system’s interfacial properties, thereby influencing the overall microstructure 

and, consequently, the rheological behaviour of the generated bubble suspensions. The steady-

shear rheological results showed that the presence of bubbles enhanced the shear-thinning 

behaviour in both matrices. In bubble suspensions with the pure Carbopol matrix, the flow 

curves exhibited the characteristic double viscosity decay observed in suspensions with 

Newtonian ambient fluids but shifted to lower average Capillary number values (< 𝐶𝑎 >). 

Additionally, the zero-shear viscosity of these suspensions deviated significantly from the 

predictions of the Taylor equation but aligned well with the Mooney equation when considering 

the combined volume fraction of Carbopol microgels and bubbles. This suggests that crowding 

effects and interactions between the two dispersed phases played a key role in suspension 

behaviour. Rheo-optical experiments revealed significant bubble coalescence, followed by the 

alignment and clustering of the coalesced bubbles. This clustering was potentially driven by 

wall effects arising from the significant increase in bubble size, to the extent that confinement 

effects within the rheometer gap became observable.   

Bubble suspensions in the SDS-containing Carbopol matrix exhibited distinct rheological 

trends. Instead of a double viscosity decay, a single decay was observed over a range of <

𝐶𝑎 > values between 0.01 and 1. Rheo-optical experiments confirmed that SDS effectively 
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mitigated bubble coalescence. Additionally, shear-induced bubble clustering and alignment 

phenomena were less pronounced compared to those observed in the suspensions with the 

Newtonian ambient fluid discussed in Chapter 3, most likely due to electrostatic repulsions 

introduced by SDS.   

The findings of this chapter highlight how variations in the matrix composition influence 

suspension microstructure under shear and, consequently, the rheological behaviour of these 

systems. The study provides insights into the complex interplay between bubbles and shear-

thinning matrices, laying the groundwork for further research in this area. 

5.1 Introduction 

As demonstrated in Chapters 3 and 4, the presence of bubbles can significantly influence 

the rheology of the surrounding fluid. Microstructural changes, such as shear-induced bubble 

clustering and alignment, as well as bubble-fluid dynamic interactions influenced by the spatial 

distribution of bubbles, can lead to shear-thinning and other viscoelastic phenomena even in 

Newtonian matrices. These effects are expected to become even more intricate when the matrix 

itself exhibits non-Newtonian behaviour. While non-Newtonian fluids are prevalent both in 

nature and across different industries, the rheology of bubble suspensions in non-Newtonian 

matrices remains relatively unexplored (Torres et al., 2013, 2015; Kogan et al., 2013; Ducloué 

et al., 2015). Given the vast diversity of non-Newtonian matrices, this chapter focuses 

specifically on the steady-shear rheology of bubble suspensions with shear-thinning inelastic 

ambient fluids, specifically Carbopol solutions.  

The choice of a Carbopol solution as ambient fluid is based on its widespread industrial use 

in various formulations across personal care and pharmaceutical industries (Boulmedarat et al., 

2003; Bonacucina et al., 2004), including oral care formulations such as those detailed in 

Chapter 1. Carbomers, commercially known as Carbopol, are high molecular weight polymeric 

molecules of polyacrylic acid crosslinked with polyalkenyl ethers or divinyl glycol (Lefrançois 

et al., 2015). These molecules swell when dispersed in an appropriate solvent creating a 

microgel suspension, i.e., a suspension consisting of soft elastic particles (Migliozzi et al., 

2020). The swelling mechanism of Carbopol depends on the solvent. In aqueous solutions, 

swelling is driven by the ionisation of carboxyl groups on the polymer backbone, which induces 

electrostatic repulsion between polymer chains and creates an osmotic pressure gradient, 

leading to solvent uptake and particle expansion (Carnali and Naser, 1992). In contrast, non-

aqueous solvents promote swelling through solvent-polymer interactions rather than 
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electrostatic effects. Here, the solvent molecules penetrate the polymer network based on their 

size and affinity with the Carbopol structure, thereby enabling expansion. However, overall 

swelling remains significantly lower than in water due to the absence of strong ionic repulsions 

(Migliozzi et al., 2020). 

The rheology of both aqueous (Piau, 2007; Bhattacharjee et al., 2018) and non-aqueous 

(Migliozzi et al., 2020) Carbopol solutions has been extensively studied, mapping their 

behaviour from dilute to highly concentrated conditions. In brief, in aqueous media, Carbopol 

microgels in the concentrated regime exhibit a typical soft glass behaviour that can be 

effectively described by the Herschel–Bulkley model (Piau, 2007; Jofore et al., 2015).  For 

non-aqueous Carbopol suspensions, swelling behaviour and rheological properties depend 

significantly on the solvent. Migliozzi et al. (2020) investigated the effect of polar solvents— 

specifically glycerol, polyethylene glycol (PEG), and their combination—on Carbopol 

swelling and subsequent rheological behaviour. Their findings indicate that the final swollen 

state of Carbopol is solvent-dependent, with PEG leading to a nearly 50% reduction in swelling 

compared to glycerol, thereby shifting the jamming transition to higher polymer 

concentrations. Despite this variation in swelling, once jamming is reached, elastic and yielding 

behaviours scale similarly with particle volume fraction, suggesting that the solvent primarily 

affects the final volume of the single Carbopol particles rather than the interactions among 

them. At low concentrations (<0.8% wt), Carbopol dispersions exhibit purely shear-thinning, 

inelastic behaviour which can be effectively described using the Carreau – Yasuda constitutive 

equation. These findings are important to the present work, as they provide a comprehensive 

characterisation of the Carbopol matrix rheology, which evidently becomes more complex as 

the Carbopol concentration increases. For this study, dilute Carbopol dispersions will be used 

aligning with the focus on shear-thinning inelastic matrices.  

The interplay between bubbles and shear thinning matrices has been a subject of interest in 

the literature, particularly in buoyancy-driven bubbly flows. Several studies have explored the 

rise of a single bubble or a swarm of bubbles in shear-thinning matrices (Vélez-Cordero and 

Zenit, 2011; Zenit and Feng, 2018; Chen et al., 2022), offering valuable insights into bubble 

dynamics in such fluids. Vélez-Cordero and Zenit (2011) investigated the rise of bubbles in 

shear-thinning, inelastic solutions of xanthan gum, finding that bubbles in shear-thinning media 

tend to form large aggregates as they rise, unlike in Newtonian fluids. This was attributed to 

the nature of the fluid, which leads to a decrease in viscosity in the wake region of a leading 

bubble, facilitating the acceleration of trailing bubbles and resulting in the formation of 
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ascending bubble clusters. Similar clustering phenomena were also reported by Chen et al. 

(2022) for bubbles rising in shear-thinning, viscoelastic fluids. According to them, in 

viscoelastic fluids, normal stress differences are also pivotal in the formation of bubble clusters 

during rising, as they modify the pressure distribution at the bubble surface causing bubbles to 

attract and form clusters. Although buoyancy-driven flows differ significantly from the steady-

shear flows studied in this chapter, these findings highlight the strong influence of shear-

thinning ambient fluids on the flow behaviour of bubbles, inducing clustering and 

microstructural changes that are known to affect suspension viscosity.  

To the best of our knowledge, the steady shear rheology of bubble suspensions with shear-

thinning ambient fluids remains largely unexplored, with the studies of Torres et al. (2013, 

2015) being the most relevant. In their first study, the authors examined the steady-shear 

rheology of semi-dilute and concentrated bubble suspensions in shear-thinning, elastic guar 

gum solutions both with and without surfactant and compared their behaviour to bubble 

suspensions with a Newtonian ambient fluid. The study demonstrated that the presence of 

bubbles enhanced the shear-thinning behaviour and the normal stress differences of the ambient 

fluid, making them more pronounced compared to its unaerated state. Furthermore, when 

plotting the relative viscosity of the bubble suspensions with the guar gum matrix (with and 

without surfactant) as a function of the Capillary number (𝐶𝑎), the onset of the shear-thinning 

behaviour was observed at 𝐶𝑎 values in the range 0.01- 0.1, an order of magnitude lower than 

what is typically observed for bubble suspensions in Newtonian ambient fluids. Since the 

relative viscosity was calculated by dividing the measured viscosity for the suspension with 

that of the shear-thinning ambient fluid at each tested shear rate, the obtained flow curve 

reflected solely phenomena associated with the bubbles. Thus, the earlier onset of shear-

thinning could not be attributed to the shear-thinning behaviour of the matrix itself.  

Instead, the authors speculated that this behaviour was due to the presence of significant 

normal stress differences in the guar gum solutions, which may have   led to bubble deformation 

and shear-thinning behaviour occurring at lower shear rates and, consequently, lower  𝐶𝑎 values 

compared to Newtonian matrices. However, this speculation was not further investigated or 

proved in their study. At this point, it is important to note that the suspensions examined in this 

study were subjected to high shear rates (up to 300 s-1) and images of the samples taken at the 

end of the tests revealed significant changes in bubble volume fraction and size distribution. 

Such alterations in microstructure during rheological measurements could influence the 

observed trends, an aspect that was not fully addressed in the study. 
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In their following study, Torres et al. (2015) extended their observations to other shear-

thinning fluids and aimed to model the behaviour of bubble suspensions within these matrices. 

Specifically, they prepared and characterised the steady-shear rheology of bubble suspensions 

in a κ/ι-hybrid carrageenan gum solution with bubble volume fractions ranging between 5% 

and 25%. They observed a similar rheological behaviour to that in the guar gum solution, with 

bubbles enhancing the non-Newtonian behaviour of the matrix and shear-thinning starting 

earlier compared to bubble suspensions with Newtonian ambient fluids. The authors proposed 

that the viscoelastic behaviour of both the ambient fluid and the bubble suspensions could be 

accurately modelled using a single-mode Giesekus model, as discussed in more detail in 

Chapter 2 (Eq. 2.59).  

The study also yielded valuable insights into the zero-shear viscosity of bubble suspensions 

with shear-thinning matrices. For suspensions with bubble volume fraction up to 15%, the 

relative zero-shear viscosities exhibited a linear dependence on bubble volume faction, 

described by a modified Taylor equation: 

 𝜂𝑟,0 = 1 + 𝑏𝜑   with   𝑏 = 1.5                                             (5.1) 

where 𝑏 is a fitting parameter derived from experimental data. For suspensions with higher 

bubble volume fractions, the authors found good agreement between their experimental zero-

shear viscosity data and the predictions of the Choi and Schowalter (1975) model for 

emulsions, adjusted for a viscosity ratio equal to 0 (Eq. 5.2). The Choi and Schowalter model 

was developed to describe the zero-shear viscosity of non-dilute emulsions and accounts for 

hydrodynamic interactions among droplets, as reflected by the presence of higher-order 𝜑 

terms. In the limit of 𝜑 → 0, corresponding to vanishingly small droplet volume fractions, the 

Choi and Schowalter model reduces to the classic Taylor equation.  

𝜂𝑟,0 = 1 + 𝐼(𝜑)𝜑                                    (5.2a) 

 𝐼(𝜑) =
2+5𝜑7/3 

2−5𝜑+21𝜑
5
3+5𝜑7/3−2𝜑10/3

                     (5.2b) 

Pal (2024) further highlighted the crucial role of matrix rheology in determining the 

rheological behaviour of bubble suspensions and emulsions. Specifically, for semi-dilute and 

concentrated emulsions with Carbopol matrices, the author suggested that microgels can induce 

droplet bridging, leading to higher zero-shear viscosity and shear-thinning behaviour as the 

flocculated droplet structure breaks down under shear. Given the rheological similarities 
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between bubble suspensions and emulsions, it is worth investigating whether—and what type 

of—clustering phenomena occur in bubble suspensions with Carbopol solutions as ambient 

fluids, and how these may affect the resulting rheological trends. To this end, this chapter 

examines the steady-shear viscosity of dilute bubble suspensions in Carbopol matrices, 

investigating how bubble-matrix interplay affects the rheological behaviour of these systems. 

Through steady-shear rheological tests and rheo-optical visualisation, this study aims to 

provide experimental data to address the gap in the literature regarding bubble suspensions 

with shear-thinning matrices, thereby offering insights for the formulation and processing of 

complex multiphase systems like toothpaste. 

5.2 Experimental Methods 

5.2.1. Materials and sample preparation 

A shear-thinning polymeric dispersion was prepared using powdered Carbopol 974P NF 

(C974P NF, Lubrizol Limited) at a 0.5% wt concentration in a 30/70 wt mixture of polyethylene 

glycol (PEG400, MW=400 g/mol, Sigma-Aldrich, UK) and glycerol (MW=92 g/mol, Sigma-

Aldrich, UK). The preparation followed the method described by Migliozzi et al. (2020). 

Initially, Carbopol was dispersed in PEG400 at 20 °C using a high-shear mixer (Silverson, L5 

Series) and operating at 7000 rpm for approximately five minutes. The resulting concentrated 

stock solution was then diluted with glycerol to reach the desired 30/70 wt PEG400/glycerol 

composition. After dilution, the solutions were gently mixed with a magnetic stirrer until fully 

homogenised and placed in a heated ultrasonic bath (SciQuip Ultrasonic bath, heated, 150 W) 

at 50 °C overnight. This Carbopol dispersion served as the base matrix for generating bubble 

suspensions, using the aeration device detailed in Section 3.3. The bubble volume fraction and 

size distribution of the produced suspensions were then determined following the methodology 

outlined in the same section. 

The composition of the Carbopol matrix was inspired by the non-aqueous matrix used in the 

toothpaste formulations described in Sec. 1.3 but was carefully designed to balance multiple 

considerations. The system as a whole—including the selected Carbopol concentration and the 

choice of the PEG/glycerol mixture as the ambient fluid for the dispersion—enabled the 

formation of an ideal soft colloid system with negligible interactions between Carbopol 

microgels. As a result, the macroscopic elastic properties of the suspensions were governed 

solely by the elasticity and thermal energy of individual particles. At intermediate Carbopol 

volume fractions, this contribution is very small and can hardly be measured, resulting in a 
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purely viscous shear-thinning behaviour (Migliozzi et al., 2020). Additionally, the 

PEG/glycerol ratio was chosen to provide a matrix viscosity high enough to maintain stable 

bubble suspensions throughout rheological tests, while the excess of glycerol also accelerated 

Carbopol microgel swelling, facilitating the preparation of the dispersions.  

To systematically increase the complexity of the matrix composition and examine the impact 

of surfactant on the rheology of the generated bubble suspensions, a second shear-thinning 

matrix was prepared. This formulation consisted of a 0.55% wt Carbopol dispersion in a 30/70 

wt PEG400/glycerol mixture containing 35mM SDS. For brevity, the pure Carbopol matrix 

will be referred to as ST1, and the SDS-containing Carbopol matrix as ST2 throughout this 

thesis. For the preparation of the ST2 matrix, SDS was first dissolved in glycerol. Once fully 

homogenised, the same preparation process as for ST1 was followed. The SDS concentration 

was maintained below the CMC (~43 mM) to prevent physical gelation in glycerol, which 

would otherwise alter its Newtonian rheology (Makri et al., 2019). To achieve comparable 

viscosities between the two matrices, the Carbopol concentration in the ST2 matrix was slightly 

increased from 0.5% wt to 0.55 wt to compensate for the viscosity reduction caused by SDS. 

The addition of SDS has been shown to disrupt the hydrophobic interactions between the 

solvent and the Carbopol polymer network, leading to molecular deswelling (Milanović et al., 

2015). This deswelling decreases the effective volume fraction of Carbopol, thereby lowering 

the viscosity of the solution. The chosen increase in Carbopol concentration ensured that the 

matrix remained outside the yield stress regime while maintaining its viscosity within the 

desired experimental range. 

Table 5.1 presents the properties of the fluids comprising the two shear-thinning Carbopol 

matrices, measured at 20 °C in accordance with the rheological tests. It also includes the 

volume fraction of the swollen Carbopol microgels in each solvent mixture (PEG400/glycerol 

for the ST1 matrix and PEG400/glycerol/SDS for ST2), determined using the Mooney (1951) 

equation: 

𝜂𝑟 = exp (
2.5𝜁

1−𝜆𝛭𝜁
)                                                   (5.3) 

where 𝜂𝑟 ≡
𝜂𝐶𝑎𝑟𝑏𝑜𝑝𝑜𝑙 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛

𝜂𝑠𝑜𝑙𝑣𝑒𝑛𝑡
 represents the relative viscosity of ST1 and ST2, calculated by 

dividing the zero-shear viscosity of each system (obtained from steady-shear rheological 

measurements) by the viscosity of the corresponding solvent mixture. Here, 𝜁 denotes the 

volume fraction of the swollen Carbopol microgels and 𝜆𝑀 is a fitting parameter related to the 
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maximum packing factor that the system can achieve. Although the Mooney equation was 

originally developed for hard spheres, it has been widely used for softer colloidal systems such 

as those described here. According to Migliozzi et al. (2020), 𝜆𝑀 is equal to 1.3 for any 

PEG400/glycerol ratio. 

Table 5. 1: Viscosity 𝜂𝑠, density 𝜌 and surface tension 𝜎𝛼,𝛽 of the fluids comprising the shear-thinning 

Carbopol matrices. The PEG400/Glycerol mixtures have a 30/70 wt composition and the SDS 

concentration in the second mixture is 35mM. 

Fluid  Viscosity (Pa s) Density   

(g/mL) 

Surface tension 

(mN/m) 

Swollen Carbopol 

microgel volume 

fraction (𝜁) 

PEG400 

  

Glycerol 

 

PEG400/Glycerol 

 

0.12±0.01 

 

1.41±0.02 

 

0.82±0.01 

1.13±0.02 

 

1.25±0.01 

 

1.21±0.01 

43.61±0.25 

 

62.96±0.25 

 

50.15±0.25 

- 

 

- 

 

0.30 

PEG400/Glycerol/SDS 0.84±0.01 

 

1.22±0.02 41.09±0.25 0.24 

 

5.2.2. Rheological characterisation and visualisation of bubble suspensions under steady 

shear 

To obtain the viscosity curves of the generated bubble suspensions, steady-shear rheological 

tests were performed over a shear rate range of 0.1 s-1 to 50 s-1 using an Anton Paar MCR302 

stress-controlled rotational rheometer. A mild pre-shear stage of 3 min at 0.2 s-1 was applied 

prior to the measurements to minimise potential memory effects in the Carbopol matrix induced 

by the high-shear mixing during bubble generation. All steady-shear measurements were 

carried out at an operating temperature of 20 ˚C, using a sandblasted parallel-plate geometry 

(R=20 mm) to prevent wall-slip effects. The rheometer gap was set at 1.3 mm, ensuring it was 

at least ten times larger than the average bubble diameter (as determined from bubble size 

measurements) to avoid any wall effects caused by plate confinement. All rheological 

measurements were performed in triplicate to ensure reproducibility, and the average viscosity 

values of both the suspensions and the Carbopol matrices were used for the rheological 

analysis. 

To account for the non-uniform shear distribution across the parallel plates, the 

Weissenberg-Rabinowitsch correction (Macosko, 1994) was applied to the viscosity data. To 

accurately determine the relative viscosity of the suspensions (𝜂𝑟 ≡ 𝜂𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛/

𝜂𝑎𝑚𝑏𝑖𝑒𝑛𝑡 𝑓𝑙𝑢𝑖𝑑), the samples were left to de-aerate overnight after testing, and the viscosity of 
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the matrix was measured the following day. This step ensured that the measured viscosity 

reflected the true state of the matrix, as the high-shear mixing used during bubble generation 

was observed to induce de-swelling of the Carbopol microgels, leading to a reduction in matrix 

viscosity compared to its initial pre-aeration state (Sec. C1 in Appendix C).  

To investigate potential shear-induced phenomena, the generated bubble suspensions were 

visualised under steady shear, using the rheo-optical set up described in Sec. 4.2.3. Images were 

captured during steady-shear measurements over a shear rate range of 0.1 s-1 to 50 s-1, with a 

fixed acquisition time of 20 s per shear rate. The rheometer gap was maintained at 1.3 mm, 

consistent with the viscosity measurements. The images were then analysed to investigate 

dynamic changes in the suspension microstructure under shear, including changes in bubble 

size due to coalescence and the formation of bubble clusters and threads.  

5.3 Experimental results for dilute bubble suspensions prepared using the 

ST1 matrix 

This section presents the experimental findings for dilute bubble suspensions prepared using 

ST1 as the ambient fluid. The section is organised as follows: first, the bubble size distributions 

and the corresponding volume-weighted average bubble radii are presented for each tested 

bubble volume fraction, followed by the obtained viscosity trends. Next, the results from the 

rheo-optical experiments are discussed to elucidate the observed rheological behaviour and 

provide further insights into the microstructure of these complex systems.     

5.3.1. Bubble size distributions 

Similar to the bubble suspensions described in Chapters 3 and 4, which were generated in 

Newtonian matrices, the bubble suspensions tested here were also found to be polydisperse, 

following a gamma-type distribution between 20 μm and 110 μm (Fig. 5.1). Consequently, a 

volume-weighted average bubble radius, < 𝑅 >, was determined for each suspension. For the 

reported bubble volume fractions, 𝜑1 = 3.85%,  𝜑2 = 5.12%,  𝜑3 = 6.4%,  and 𝜑4 = 8.7%, 

the corresponding volume-weighted mean radii were found to be 54 𝜇𝑚, 50 𝜇𝑚, 57 𝜇𝑚 and 

63 𝜇𝑚, respectively. 
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Figure 5.1: Bubble size distributions for suspensions generated using the ST1 matrix as the ambient 

fluid. 

5.3.2. Steady shear rheological measurements 

Fig. 5.2 presents the flow curves of the tested bubble suspensions and their corresponding 

ST1 matrices, plotted as functions of the effective shear rate, which is defined as the shear rate 

at the edge of the rheometer plate according to the Weissenberg-Rabinowitsch correction. As 

shown, in all cases the presence of bubbles amplified the shear-thinning behaviour of the 

matrix. Furthermore, the zero-shear viscosity increased with bubble volume fraction (Fig. 5.3), 

similar to the behaviour observed in bubble suspensions with Newtonian ambient fluids.  
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Figure 5.2: Flow curves for the tested bubble suspensions and the corresponding ST1 matrices. 

Viscosity is plotted as a function of the effective shear rate, i.e., the shear rate at the edge of the parallel 

plate geometry based on the Weissenberg-Rabinowitsch correction. 

 

Figure 5.3: Flow curves for 𝜑1 = 3.85%, 𝜑2 = 5.12%, 𝜑3 = 6.4%, and 𝜑1 = 8.7%. The zero-shear 

viscosity increases with bubble volume fraction.  
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To further evaluate the effect of bubbles on the shear-thinning behaviour of the matrix, the 

experimentally determined viscosities for both the bubble suspensions and their corresponding 

ST1 matrices were fitted to a simplified version of the Carreau-Yasuda equation, considering 

the infinite viscosity 𝜂∞ equal to zero (Macosko, 1994):  

                                                         𝜂 = 𝜂0[1 + (𝜆𝑐𝛾̇)𝑎]
𝑛−1

𝑎                                                 (5.4) 

 

The fitting was performed using the Curve Fitting App of MATLAB and treating the zero-shear 

viscosity 𝜂0, the Carreau relaxation time 𝜆𝑐, the flow index 𝑛 and the 𝑎-parameter as fitting 

variables. The simplification of 𝜂∞ = 0 was made because there were no available 

experimental data for the infinite-shear region, as bubble suspensions cannot be subjected to 

very high shear rates without altering their microstructure (i.e., changes in bubble volume 

fraction and size distribution). The fitted Carreau-Yasuda parameters for each tested bubble 

volume fraction are presented in Table C.1 (Appendix C). In all cases, the flow index of the 

suspensions was lower than that of the matrix, confirming the enhanced shear-thinning 

behaviour observed in the flow curves of Fig. 5.2. 

Fig. 5.4 presents the relative viscosities for all tested bubble volume fractions as functions 

of both the effective shear rate and the average Capillary number, < 𝐶𝑎 >, calculated using the 

volume-weighted average bubble radius for each suspension. The flow curves exhibit a 

characteristic double power–law decay of relative viscosity, a trend previously observed in 

bubble suspensions with a Newtonian matrix (see Chapter 3). The trend becomes more evident 

as the bubble volume fraction increases. However, as shown in Fig. 5.5, in this case, the double 

decay occurs at < 𝐶𝑎 > values an order of magnitude lower than the < 𝐶𝑎 > values where 

this trend was observed in bubble suspensions with Newtonian ambient fluids. Specifically, the 

first viscosity drop begins within the 〈𝐶𝑎〉 range of 0.001-0.01, while the second drop occurs 

around 〈𝐶𝑎〉 ~ 0.1. In contrast, for bubble suspensions with a Newtonian ambient fluid, the 

first decay starts at < 𝐶𝑎 > values between 0.01 and 0.1, with the second decay occurring at 

< 𝐶𝑎 > ~1.  
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Figure 5.4: Relative viscosity as a function of effective shear rate and average Capillary number for 

bubble suspensions with the ST1 matrix and bubble volume fractions 𝜑1 = 3.85%, 𝜑2 = 5.12%, 𝜑3 =
6.4%, and 𝜑4 = 8.7%. 

 

 

Figure 5.5: Relative viscosity as a function of average capillary number for a bubble suspension with 

the ST1 matrix (𝜑 = 5.12%) and a bubble suspension with the Newtonian matrix from Chapter 3 (𝜑 =
10.4%). In the ST1 matrix, the double decay of relative viscosity occurs at < 𝐶𝑎 > values an order of 

magnitude lower than the values at which the same trend is observed in the Newtonian matrix. 

 

This shift in shear-thinning behaviour to lower capillary numbers was also observed by 

Torres et al. (2013). As mentioned earlier, the authors speculated that this behaviour was driven 

by significant normal stress differences measured in their shear-thinning solutions, which may 

have caused bubble deformation at lower shear rates, and consequently, lower 𝐶𝑎 values. 

However, since the Carbopol dispersions used in this study are purely shear-thinning without 
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appreciable elasticity, this explanation does not apply here, and the observed shift requires 

further investigation to elucidate its underlying cause.  

Another key difference between bubble suspensions with Newtonian ambient fluids and 

those studied here lies in how the zero-shear viscosity scales with bubble volume fraction. As 

discussed in Chapter 3, in the case of Newtonian background fluids, the suspension relative 

viscosities closely matched the predictions of the classic Taylor equation, i.e., 𝜂𝑟,0 = 1 + 𝜑. 

However, for the bubble suspensions with the shear-thinning Carbopol matrix studied here, the 

relative viscosities were found to be significantly higher than the predictions of the Taylor 

equation. Previous studies by Torres et al. (2015) and Chesterton et al. (2013) suggested that 

for dilute bubble suspensions with shear-thinning matrices, the relative zero-shear viscosity 

can instead be described by a modified Taylor equation: 𝜂𝑟 = 1 + 𝑏𝜑 (as given in Eq. 5.1). To 

evaluate whether this equation could better describe the zero-shear relative viscosities obtained 

here, the experimental data for all tested bubble volume fractions were fitted to Eq. 5.1 using 

the Curve Fitting App of MATLAB to obtain an appropriate value for the scaling parameter 𝑏.  

The fitting results indicated that Eq. 5.1 with 𝑏 = 8.75 effectively described the zero-shear 

viscosity data. However, this 𝑏 value lacks physical meaning, because it exceeds the Einstein 

coefficient for hard spheres (𝑏 = 2.5). Instead, it closely aligns with the coefficient of the 

modified Taylor equation reported by Llewellin et al. (2002b) for the relative zero-shear 

viscosity of their polydisperse bubble suspensions in a Newtonian ambient fluid. A subsequent 

study by Mader et al. (2013) attributed this higher coefficient to interactions among bubbles, 

insofar as the bubble volume fractions in Llewellin’s study extended into the semi-dilute and 

concentrated regimes, reaching up to 46%. Although the bubble suspensions examined here 

were dilute, so that interactions among bubbles would not typically be expected, it is important 

to consider the presence of a second dispersed phase—the Carbopol microgels. These microgel 

particles occupy nearly 30% of the suspension volume, meaning that the total system composed 

of bubbles and microgels is effectively crowded, potentially causing interactions between the 

two dispersed phases. This may explain why the classic Taylor equation, which was developed 

for dilute emulsions with negligible interactions, fails to accurately predict the zero-shear 

relative viscosities in these suspensions. 

To further investigate the hypothesis regarding crowding effects and their impact on the 

zero-shear viscosity, the suspensions were treated as having a single dispersed phase with a 

volume fraction equal to the sum of the Carbopol microgel volume fraction and the bubble 
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volume fraction. The measured zero-shear viscosities were then compared to the predictions of 

the Mooney equation, which describes how the zero-shear suspension viscosity varies with the 

dispersed phase volume fraction, accounting for crowding effects and hydrodynamic 

interactions among the dispersed particles. As shown in Fig. 5.6, the experimentally determined 

zero-shear viscosities align well with the predictions of the Mooney equation for both the 

suspensions with the ST1 matrix and those with the ST2 matrix. This finding confirms that the 

systems effectively behave as crowded suspensions, where interactions between the two 

dispersed phases significantly impact the measured zero-shear viscosity.   

 

Figure 5.6: Zero-shear viscosity as a function of the total dispersed phase volume fraction for bubble 

suspensions with the ST1 and ST2 matrices, respectively. The experimentally determined zero-shear 

viscosities for the different suspensions are compared to predictions of the Mooney equation. Error bars 

represent the standard deviation of the measured zero-shear viscosities.  

5.3.3. Visualisation of bubble suspensions under steady shear 

To further examine the shift of the double decay in relative viscosity toward lower < 𝐶𝑎 > 

values and assess potential shear-induced phenomena and microstructural changes influencing 

the rheological trends, three fresh bubble suspensions with the ST1 matrix and 𝜑1 = 2.98%, 

𝜑2 = 5.8%, and 𝜑3 = 8.2% were prepared and visualised under steady shear using the rheo-

optical set up. Fig. 5.7 presents three representative images for the suspension with bubble 

volume fraction 𝜑2, taken at shear rates 0.1 s-1, 9 s-1 and 35 s-1 (corresponding to < 𝐶𝑎 > values 

of approximately 0.001, 0.01, and 0.1), along with their respective bubble size distributions.  
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Figure 5.7: Bubble suspension with the ST1 matrix and 𝜑 = 5.8%, visualised under steady shear at 0.1 

s-1, 9 s-1, and 35 s-1. The corresponding bubble size distributions are shown alongside each image. 

The images reveal that as the shear rate, and in turn < 𝐶𝑎 >, increases, bubbles tend to 

coalesce, leading to deviations from the initial gamma-type size distribution and an increase in 

the average bubble size. Additionally, as larger bubbles form, they begin to align or move closer 

together, resulting in the formation of bubble threads and clusters. This is likely due to wall 
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effects, which become more pronounced as bubbles grow larger and experience greater 

confinement within the parallel plate gap. These microstructural changes begin to emerge   

within the shear rate range of 1-10 s-1, coinciding with the first drop in relative viscosity. It is 

worth noting that at similar shear rates, shear-induced bubble clustering was also observed in 

Newtonian matrices (as described in Chapter 3), suggesting a potential connection between the 

two phenomena. As shear brings bubbles into closer proximity, coalescence becomes more 

likely, leading to the formation of larger bubbles, which in turn begin to aggregate into 

secondary clusters.  

The microstructure continues to evolve significantly across the shear rate range of 10-50 s⁻¹. 

In this range, bubble coalescence becomes more prominent, and the clustering of the resulting 

larger bubbles intensifies. These coalesced bubbles form dynamic structures that move 

collectively under shear (Fig. 5.8), and this behaviour becomes more evident with increasing 

shear rate. At higher shear rates toward the upper end of the tested range, deformation of these 

larger bubbles also becomes apparent. Overall, the rheo-optical observations suggest that the 

observed rheological behaviour is linked to a sequence of interconnected microstructural 

changes. These include bubble coalescence, the formation of dynamic clusters of coalesced 

bubbles, and their eventual deformation at higher shear rates. Each of these phenomena 

emerges progressively with increasing shear, collectively contributing to the complex flow 

response of the suspension. 

 

Figure 5.8: Formation of dynamic structures composed of coalesced bubbles moving collectively under 

shear, corresponding to the bubble suspension with the ST1 matrix and  𝜑 = 5.8% at a shear rate of 

12.6 s-1. 

To further understand how the microstructure of the current suspensions evolves under 

shear, statistical image analysis was performed to assess how the volume-weighted average 
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bubble radius (< 𝑅 >) and the coverage (𝐶) metric-introduced in Chapter 3 to qualitatively 

detect changes in the arrangement of bubbles at the microscale-varied with shear rate. For each 

shear rate, 20 representative images were analysed using the methodology described in Sec. 

3.5.2. The obtained 𝐶 and < 𝑅 > values for these images were then averaged to yield 

representative mean values of coverage (𝐶̅) and volume-weighted average radius (〈𝑅〉̅̅ ̅̅ ) for each 

shear rate. Fig. 5.9 illustrates the trends of 𝐶̅ and 〈𝑅〉̅̅ ̅̅  as functions of the effective shear rate for 

the three tested bubble suspensions. The results show a decrease in coverage beginning at shear 

rates around 1 s-1, which coincides with the onset of the first drop in relative viscosity (see Fig. 

5.4). At the same shear rate, the average bubble radius also begins to increase. As the shear rate 

increases further, coverage continues to decrease, while the volume-weighted average bubble 

radius grows by 29%, 34% and 38% for 𝜑1 = 2.98%, 𝜑2 = 5.8%, and 𝜑3 = 8.2%, 

respectively, by the end of measurement. As expected, the increase in average bubble size is 

larger at higher bubble volume fractions, where the average inter-bubble distance reduces, 

increasing the probability of coalescence.  

 

Figure 5.9: a) Mean Coverage and b) Μean volume-weighted average bubble radius as functions of the 

effective shear rate for 𝜑1 = 2.98%, 𝜑2 = 5.8% and 𝜑3 = 8.2%. 

These results highlight that, in this instance, the decreasing coverage trend reflects both 

bubble coalescence and microstructural rearrangements under shear. A comparison with the 

results from the rheo-optical experiments on bubble suspensions in Newtonian media 

(discussed in Sec. 3.5.2) reveals that the decrease in coverage and the increase in bubble size 

observed in this first shear-thinning matrix are more pronounced. The greater reduction in 

coverage is directly influenced by enhanced bubble coalescence; as bubbles coalesce, the 

number of white pixels in the image decreases, leading to a measurable reduction in coverage. 

To confirm that coalescence affects the observed coverage trends, the data were normalised by 
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the initial plateau value to allow for a direct comparison across the different bubble volume 

fractions. As shown in Fig. 5.10, the drop in coverage increases with bubble volume fraction, 

indicating that the phenomena captured by the coverage trend are not simply shear-dependent, 

but rather scale with bubble volume fraction, aligning with coalescence-driven behaviour. It is 

also worth noting that the coverage trends of the current suspensions exhibit a more complex 

shape characterised by a two-stage decrease (as seen in Fig. 5.10), whereas the coverage trends 

observed in Chapter 3 for bubble suspensions with a Newtonian matrix followed a simpler 

linear trend. This may indicate that different microstructural effects, such as the spatial 

reorganisation of bubbles into clusters and threads or changes in the local bubble size 

distribution due to coalescence, occur at different time scales, potentially leading to the 

multistage decay observed. However, since the coverage parameter represents an overall 

measure of the microstructural configuration under shear, it inherently lacks the ability to 

differentiate between distinct microstructural changes, which more advanced statistical 

measures could capture in greater detail. 

 

Figure 5.10: Normalised mean coverage as function of effective shear rate for bubble suspensions with 

the ST1 matrix and 𝜑1 = 2.98%, 𝜑2 = 5.8%, and 𝜑3 = 8.2%, respectively. The dashed lines indicate 

that the drop in coverage from the initial plateau becomes more pronounced as bubble volume fraction 

increases.  

As shown, bubble coalescence plays a key factor in shaping the microstructure of the current 

suspensions, and consequently, their rheological behaviour. Although the exact mechanism 

driving the increased coalescence observed in these systems cannot be elucidated from the 

obtained images, two factors likely contribute: the shear-thinning nature of the matrix and the 
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absence of surfactants, which would otherwise stabilise the bubbles.  In the literature (Fanebust, 

Ozan and Jakobsen, 2021; Long, 2024), it is suggested that a shear-thinning matrix enhances 

bubble coalescence by accelerating fluid film drainage between bubbles. When two bubbles 

come into close proximity, the thin fluid film separating them is compressed and forced 

outward. This outward flow creates a velocity gradient, which leads to a localised increase in 

shear rate. In shear-thinning fluids, viscosity decreases with shear rate, thereby reducing 

resistance to film drainage. As a result, the thin liquid film between colliding bubbles drains 

more rapidly than in Newtonian ambient fluids, facilitating bubble coalescence.  Although 

these findings refer to a simplified system, specifically a pair of bubbles rather than a 

suspension, they still provide a qualitative explanation for the phenomena occurring at the 

microscale. In addition to the shear-thinning matrix, the absence of surfactant in the present 

system leaves the bubble interfaces without an interfacial barrier that would otherwise stabilise 

them, thereby lowering the energy required for coalescence and making them more susceptible 

to merging.  

As previously discussed, bubble coalescence and the associated microstructural changes, 

evidenced by the increase in average bubble size and the reduction in coverage, began at shear 

rates around 1 s⁻¹, where shear-induced bubble clustering was also observed in Newtonian 

matrices. This suggests a similar shear-induced clustering effect in the present system. 

However, unlike in the Newtonian case-where the presence of surfactants and the Newtonian 

character of the matrix did not promote coalescence-here, the combined effects of the shear-

thinning matrix and the absence of surfactants allowed bubbles to coalesce more readily as they 

came into closer proximity under shear. This, in turn, led to secondary clustering phenomena, 

this time involving the larger, coalesced bubbles, which may be driven by wall effects as the 

bubble size grows significantly larger, and the coalesced bubbles are more confined within the 

rheometer plates.  

Given the increase in the volume-weighted average bubble radius during the rheological 

measurements, the < 𝐶𝑎 > values used to plot the viscosity curves of Fig. 5.4 do not accurately 

represent the system, as they were calculated using the initial < 𝑅 > values obtained from 

microscope images taken before the rheological tests. Since < 𝐶𝑎 > depends on the average 

bubble radius, it is expected to shift to higher values as the bubbles grow larger. Therefore, to 

assess whether the observed shift of the shear-thinning trend toward lower capillary numbers 

is an artifact of using the initial < 𝑅 > values in the calculation of < 𝐶𝑎 >, updated < 𝐶𝑎 >  

values were calculated to account for the increase in bubble size. To this end, the trend of 〈𝑅〉̅̅ ̅̅ , 
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determined through the statistical image analysis, was used to reconstruct the bubble size 

evolution of the suspensions described in Sec. 5.3.2, and the values of < 𝐶𝑎 > were 

recalculated based on these updated bubble sizes. 

Fig. 5.11 indicatively presents the flow curve for the bubble suspension with 𝜑2 = 5.12%, 

plotted as a function of both the initial and the updated < 𝐶𝑎 > values that account for the 

increasing average bubble radius due to coalescence. As shown, the characteristic double decay 

in relative viscosity shifts to slightly larger < 𝐶𝑎 > values due to the rise in the average bubble 

radius. Nevertheless, the overall double decay viscosity trend remains distinct from that 

observed in Newtonian matrices and still corresponds to < 𝐶𝑎 > values that are approximately 

an order of magnitude lower. This shift in < 𝐶𝑎 >, particularly in relation to the earlier-than-

expected bubble deformation, warrants further investigation. Rheo-optical observations 

confirmed deformation of the coalesced bubbles at < 𝐶𝑎 > values around 0.1, instead of <

𝐶𝑎 > ~1, which is typically considered the threshold for noticeable deformation. Even when 

estimating the capillary number specifically for the larger, coalesced bubbles (rather than 

relying on the volume-weighted average capillary number for the overall population) these 

individual bubbles had not reached 𝐶𝑎~1 at the shear rates where their deformation became 

visible, based on their radii obtained from image analysis. This suggests that additional factors 

may influence bubble deformation and the overall rheological response of bubble suspensions 

in shear-thinning matrices. 

 

 

Figure 5.11: Relative viscosity of a bubble suspension (𝜑 = 5.12%) as a function of both the initial 

and the updated average capillary number, recalculated to account for the increasing volume-weighted 
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average bubble radius due to coalescence. The vertical lines indicate the shift of the second viscosity 

decay to slightly larger < 𝐶𝑎 > values as a result of bubble growth.  

Although no appreciable normal stresses were measured during the rheological tests, one 

must note that the suspensions under investigation are complex crowded systems with 

interactions among the two dispersed phases, dynamic changes in the microstructure under 

shear, and potential wall effects emerging as bubbles grow larger. Such phenomena possibly 

alter the flow field around the bubbles, inducing localised high-stress regions that deform 

bubbles sooner than expected. While these effects provide a plausible basis for explaining the 

observed behaviour, the exact underlying mechanisms and their relationship remain unclear, 

requiring further experimental and theoretical work to fully understand the earlier onset of 

bubble deformation in shear-thinning inelastic matrices.   

As demonstrated, the interplay between bubbles and the matrix significantly influences the 

steady-shear rheological behaviour of the tested bubble suspensions. The presence of Carbopol 

microgels led to crowding effects and interactions between the two dispersed phases, directly 

impacting the zero-shear viscosity of the suspensions. Moreover, the shear-thinning matrix 

combined with the absence of surfactants in the system resulted in substantial bubble 

coalescence and subsequent clustering/alignment of the coalesced bubbles, possibly due to wall 

effects and bubble confinement within the rheometer gap. To further increase matrix 

complexity and evaluate the impact of matrix composition on the rheological behaviour of 

bubble suspensions, the following section examines how the addition of SDS as a surfactant in 

the Carbopol matrix affects viscosity trends, bubble coalescence, and bubble clustering 

phenomena.  

5.4 Experimental results for dilute bubble suspensions prepared using the 

ST2 matrix 

This section presents experimental results from steady-shear rheological tests and rheo-optical 

experiments performed on bubble suspensions with the ST2 matrix and volume fractions 𝜑1 =

4.95 %, 𝜑2 = 6.3%, and 𝜑3 = 8.6%.  

5.4.1. Bubble size distributions 

Fig. 5.12 presents the bubble size distributions for the tested bubble suspensions with the 

ST2 matrix, calculated from microscope images taken before the rheological measurements. 

As shown, the bubble sizes follow a gamma-type distribution ranging from 10 μm to 100 μm. 

The volume-weighted average bubble radii for the reported bubble volume fractions 𝜑1 =
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4.95%,  𝜑2 = 6.30%, and 𝜑3 = 8.60% were found to be 40 𝜇𝑚, 44 𝜇𝑚, and 46 𝜇𝑚, 

respectively—smaller than those obtained for the ST1 matrix. This is consistent with the lower 

surface tension measured in the current system.  

 

Figure 5.12: Bubble size distributions for suspensions prepared using the ST2 matrix as the ambient 

fluid. 

5.4.2. Steady shear rheological measurements 

Given the presence of surfactant, which typically limits coalescence phenomena and 

stabilises suspensions under high shear, the upper shear rate in the rheological tests was 

extended from 50 s-1 to 200 s-1 to assess the rheological behaviour over a broader shear rate 

range. Fig. 5.13 presents the flow curves of the tested bubble suspensions and their 

corresponding ST2 matrices, plotted as functions of the effective shear rate. Similar to what 

was observed in the ST1 matrix, the presence of bubbles induced additional shear-thinning 

effects. Following the same procedure as in Sec. 4.3.2, the experimental viscosity data for the 

bubble suspensions and their corresponding ST2 matrices were fitted to the simplified Carreau-

Yasuda equation (Eq. 5.4) to further evaluate the effect of bubbles on the shear-thinning 

behaviour of the matrix. The obtained fitting values for the Carreau-Yasuda parameters are 

presented in Table C.2 (Appendix C). 
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Figure 5.13: Flow curves for bubble suspensions with 𝜑1 = 4.95%, 𝜑2 = 6.3%, and 𝜑3 = 8.6%, and 

the corresponding ST2 matrices. Viscosity is plotted as a function of the effective shear rate.  

In all three cases, the flow index of the suspensions was lower than that of the matrix alone 

and decreased with increasing bubble volume fraction, indicating that a higher bubble content 

enhances shear-thinning effects. However, in this case, the reduction in flow index was smaller 

than in suspensions with the ST1 matrix, suggesting that while the bubbles intensified shear-

thinning behaviour, their effect was less pronounced in the SDS-containing system. 

Additionally, the zero-shear viscosity increased with bubble volume fraction (Fig. C2 in 

Appendix C) consistent with observations in suspensions with the ST1 or Newtonian matrices. 

Another noteworthy observation was that the addition of SDS appeared to stabilise the 

Carbopol matrix against de-swelling caused by the high-shear mixing used during bubble 

generation.  This is evidenced by the nearly overlapping matrix flow curves presented in Fig. 

C3 (Appendix C) and the very similar Carreau-Yasuda fitting values obtained for the matrices 

of the three tested suspensions, regardless of aeration time. In addition to this stabilising effect, 

SDS also led to a reduction in the final volume of the swollen Carbopol microgels, as reported 

in Table 5.1. This finding is consistent with the results of Milanovic et al. (2015), who reported 
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that Carbopol microgels in aqueous solutions tend to swell less in the presence of SDS. The 

reduction in the volume occupied by the Carbopol microgels is expected to lessen crowding 

effects in the present suspensions compared to those with the ST2 matrix, and consequently, 

result in less pronounced interactions between the two dispersed phases.  

This hypothesis was assessed by examining the zero-shear viscosity of the suspensions, 

given its sensitivity to crowding effects. Similar to what was observed in bubble suspensions 

with the ST1 matrix, the experimental zero-shear viscosities here were also higher than the 

predictions of the classic Taylor equation, indicating that crowding effects persist. In fact, as 

shown in Fig. 5.6, the data can be well described by the Mooney equation, which accounts for 

crowding effects and the resulting dispersed-phase interactions. However, applying the same 

procedure used for bubble suspensions with the ST1 matrix and fitting the zero-shear viscosity 

data for the tested bubble volume fractions to a scaled Taylor equation (Eq. 5.1) yields a 𝑏 

coefficient of 4.51—nearly half the value obtained for suspensions with the ST1 matrix. 

Although 𝑏 remains well above the Einstein limit of 2.5, confirming that interactions between 

the two dispersed phases are still present, the reduction from its previous value likely suggests 

that these effects are less intense in the ST2 matrix compared to ST1.  

Fig. 5.14 presents the relative viscosities 𝜂𝑟 for the tested bubble volume fractions as 

functions of both the effective shear rate and the average capillary number. In this case, only a 

single drop in relative viscosity was observed across a < 𝐶𝑎 > range spanning approximately 

0.01 to just below 1. This behaviour contrasts with the double decay trend observed for 

suspensions in the ST1 matrix, where two distinct viscosity drops were already evident within 

the < 𝐶𝑎 >  range common to both systems: the first around < 𝐶𝑎 > ~0.01 and the second 

around < 𝐶𝑎 > ~0.1 (Fig. 5.15). This suggests that the evolution of microstructure under 

shear, which directly impacts the rheological response, may differ significantly between the 

two matrices.  



134 
 

 

Figure 5.14: Relative viscosity as a function of the effective shear rate and the average capillary number 

for bubble suspensions with the ST2 matrix and bubble volume fractions 𝜑1 = 4.95%, 𝜑2 = 6.30%, 

and 𝜑3 = 8.60%. 

 

Figure 5. 15: Comparison of the relative viscosities of a bubble suspension with the ST1 matrix and 

𝜑 = 5.1% versus a bubble suspension with the ST2 matrix and 𝜑 = 4.95%. 

A further comparison with bubble suspensions in Newtonian matrices also reveals a 
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in the ST2 system, < 𝐶𝑎 > values only approached order magnitude unity at the upper end of 

the tested shear rate range. In contrast, in the Newtonian system, < 𝐶𝑎 > values well exceeded 

unity within the same shear rate range. This difference is primarily attributed to the larger 

bubble sizes in the bubble suspensions with the Newtonian matrix, which led to higher capillary 

numbers at equivalent shear rates. Therefore, the absence of a second viscosity drop in the ST2 

system may simply reflect that bubbles had not fully reached < 𝐶𝑎 >≈ 1, and the onset of 

bubble deformation, which in the Newtonian case was associated with the second decay, had 

not yet occurred. To further investigate these assumptions and examine how the new matrix 
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composition affected bubble coalescence, alignment and clustering phenomena, three fresh 

bubble suspensions with 𝜑1 = 2.5%, 𝜑2 = 4.62%, and 𝜑3 = 7.25% were prepared and 

visualised under steady shear. The results of the rheo-optical experiments are presented in the 

following section.  

5.4.3. Visualisation of bubble suspensions under steady shear 

Fig. 5.16 presents four representative images for the suspension with bubble volume fraction 

𝜑2 = 4.62%, taken at shear rates 0.5 s-1, 5 s-1, 50 s-1, and 150 s-1, which correspond to < 𝐶𝑎 > 

values of approximately 0.001, 0.01, 0.1, and 1, respectively. A comparison with Fig. 5.7 

highlights the differences between bubble suspensions with the ST1 matrix and those with the 

ST2 matrix. The most notable distinction is that bubble coalescence is significantly less 

pronounced in the ST2 system. Consequently, no secondary clustering of coalesced bubbles 

was observed—a key microstructural phenomenon in the ST1 matrix that strongly influenced 

its rheological response. Correlating the rheo-optical observations with the flow curves 

obtained for the bubble suspensions with the ST2 matrix (Fig. 5.14), one can see that at < 𝐶𝑎 > 

values in the range 0.01 to 0.1, where the viscosity starts to drop, bubbles tend to align or move 

closer together to form clusters. This behaviour resembles the shear-induced clustering 

observed in Newtonian media, rather than the coalescence-driven clustering seen in the ST1 

matrix within the same < 𝐶𝑎 > range.  At higher < 𝐶𝑎 >  values, approaching unity, bubbles 

appear slightly larger, indicating some degree of coalescence (Fig. 5.15d). However, the extent 

of bubble coalescence remains minimal compared to that observed in the ST1 matrix at 

significantly lower < 𝐶𝑎 >  values. Additionally, no appreciable bubble deformation is 

observed throughout the rheo-optical experiments, aside from mild signs in a few larger 

bubbles at the upper end of the tested shear rate range, as shown in Fig. 5.15d. This supports 

the argument that the observed drop in relative viscosity in the ST2 suspensions is associated 

with shear-induced bubble clustering. The absence of a second viscosity drop in these systems 

is likely due to the fact that the bubbles had not yet begun to deform, unlike in the suspensions 

with the Newtonian matrix in Chapter 3, where the bubbles were larger and therefore reached 

and surpassed the threshold of < 𝐶𝑎 > = 1 within the same shear rate range, resulting in a 

second drop in viscosity. 



136 
 

Figure 5.16: Bubble suspension (𝜑 = 4.62%) with the ST2 matrix as the ambient fluid, visualised 

under steady shear at 0.5 s-1, 5 s-1, 50 s-1, and 150 s-1. 

Fig. 5.17 compares the variation in the volume-weighted average bubble radius over the 

same effective shear rate range for a bubble suspension with the ST1 matrix (𝜑 = 4.62%) and 

one with the ST2 matrix (𝜑 = 5.8%). As shown, in the ST2 matrix, bubble size remains 

relatively stable with increasing shear rate, confirming that coalescence is minimal, in contrast 

to what was observed in the ST1 matrix. This can be attributed to the presence of SDS, which 

owing to its strong anionic nature, adsorbs on bubble interfaces forming negatively charged 

monolayers. The presence of these like charges on neighbouring bubbles leads to long-range 

electrostatic repulsions between them, thereby preventing coalescence phenomena (Sunartio et 

al., 2007). Furthermore, at the microscale, evidence suggests that SDS at concentrations below 

or near the CMC can slow thin film drainage between colliding bubbles due to Marangoni 

stresses arising from surface tension gradients (Bhamla et al., 2017). Specifically, as the fluid 

film thins, surfactant redistribution creates a restoring force that immobilises the bubble 

interface and resists further thinning, thereby delaying coalescence.   
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Figure 5.17: Mean volume-weighted average bubble radius (computed through image analysis) as a 

function of the effective shear rate for a bubble suspension with the ST2 matrix (𝜑 = 4.62%) and a 

bubble suspension with the ST1 matrix (𝜑 = 5.8%). 

To further compare bubble clustering and alignment phenomena in the ST2 matrix with 

those observed in the ST1 and Newtonian matrices, the average coverage for the current 

systems was calculated through image analysis, as described in Sec. 5.3.3. Fig. 5.18 presents 

the coverage trend for the three visualised bubble suspensions with the ST2 matrix. As shown, 

the coverage trend follows a similar decreasing pattern as in Newtonian ambient fluids and the 

ST1 matrix, beginning at effective shear rates around 1 s⁻¹. However, in this case, the decrease 

in coverage is less pronounced compared to the other two systems. To better highlight the 

differences among the coverage trends obtained across the different matrices, the data were 

normalised by the plateau value to remove baseline differences and allow for a direct 

comparison of the decreasing trends.  

 

Figure 5.18: Mean coverage as a function of the effective shear rate for bubble suspensions with the 

ST2 matrix and 𝜑1 = 2.5%, 𝜑2 = 4.62% and 𝜑3 = 7.25%, respectively. 
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Fig. 5.19 presents the normalised coverage trends for the ST1 and ST2 matrices, alongside 

the Newtonian matrix of Chapter 3. Unlike in the ST1 matrix, the coverage trends for the ST2 

and Newtonian matrices almost overlap across different bubble volume fractions, indicating 

that the microstructural changes captured by the coverage trend are driven purely by shear and 

are not influenced by volume fraction-dependent phenomena, such as coalescence. Moreover, 

the slope of the coverage trend for the ST2 matrix is less steep than that of the Newtonian 

matrix, suggesting that while shear-induced bubble clustering occurs in the ST2 matrix, this 

phenomenon may be weaker compared to Newtonian media. 

 

Figure 5.19: Normalised mean coverage trends for (a) the ST1 matrix, (b) the ST2 matrix and (c) the 

Newtonian matrix studied in Chapter 3. Unlike in the ST1 matrix, the coverage trends for the ST2 and 

Newtonian matrices almost overlap across different bubble volume fractions, suggesting that the 

captured microstructural changes are driven purely by shear. 

 

The observed difference in the shear-induced bubble clustering between the ST2 matrix and 

the Newtonian matrix used in Chapter 3 requires further investigation. A possible explanation 

for the less pronounced shear-induced clustering observed here lies in the presence of SDS. As 

mentioned earlier, SDS causes long-range electrostatic repulsions between charged bubbles, 
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preventing them from coming closer and coalescing. Therefore, it is reasonable to infer that 

shear-induced clustering could have been mitigated to some extent owing to these electrostatic 

repulsions. The strong impact of electrostatic repulsions on clustering phenomena has been 

investigated by Kurz et al. (2021), who reported that the addition of SDS helped disaggregate 

flocculated droplets in oil/water emulsions.  

On the other hand, Span 80, which was used in the Newtonian matrix in Chapter 3, is a non-

ionic surfactant that prevents bubble coalescence through steric hindrance and not electrostatic 

repulsions. The different nature of the surfactants used might explain why addition of Span 80 

did not impact shear-induced clustering as SDS did. While this provides a reasonable 

explanation for the differences in the flow curves and coverage trends of the bubble suspensions 

with the ST2 matrix, additional mechanisms may also contribute to these trends. It is important 

to highlight that the suspensions in this study behave as crowded systems with dispersed-phase 

interactions that potentially impact their behaviour under shear, including clustering/alignment 

phenomena. Therefore, further experimental work with varying bubble volume fractions and 

different concentrations of Carbopol and SDS is needed to validate these arguments. 

5.5 Conclusions 

This chapter explores the effect of matrix rheology on the rheological behaviour of bubble 

suspensions. To this end, two different shear-thinning inelastic matrices were investigated: (i) 

a 0.5% wt Carbopol dispersion in a 30/70 wt PEG400/glycerol mixture (ST1 matrix), and (ii) 

a 0.55% wt Carbopol dispersion in a 30/70 wt PEG400/glycerol mixture containing 35mM 

SDS (ST2 matrix). Dilute bubble suspensions with these matrices and varying bubble volume 

fractions were prepared and tested through steady-shear rheological tests and rheo-optical 

experiments. The viscosity data obtained for both types of bubble suspensions and their 

respective matrices were fitted to a simplified Carreau-Yasuda equation to assess the impact of 

bubbles on the shear-thinning behaviour of the matrix. The fitting results indicated that in both 

cases, the presence of bubbles amplified the shear-thinning behaviour of the matrix, as 

evidenced by the reduced flow index values of the suspensions. Additionally, the steady-shear 

rheological tests and rheo-optical experiments provided insights into the effect of matrix 

composition on the suspension microstructure and the behaviour of bubbles under shear. 

Specifically, for the bubble suspensions with the ST1 matrix, the flow curves exhibited the 

characteristic double decay of relative viscosity, a trend also observed in bubble suspensions 

with Newtonian ambient fluids. However, in this case, the trend was shifted to average capillary 
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numbers (< 𝐶𝑎 >) that were an order of magnitude lower than the < 𝐶𝑎 > values at which the 

double decay was observed in bubble suspensions with Newtonian media. Moreover, the zero-

shear viscosities of these suspensions were significantly higher than the predictions of the 

classic Taylor equation. Instead, the data were well described by the Mooney equation, if one 

treats the suspensions as having a single dispersed phase with volume fraction equal to the sum 

of the volume fractions of the swollen Carbopol microgels and of the bubbles. This alignment 

with the Mooney equation, which accounts for crowding effects and their impact on viscosity, 

indicates that the suspensions behave as crowded systems with interactions between the two 

dispersed phases.  

To further investigate the shift of the double viscosity decay to smaller < 𝐶𝑎 > values and 

explore potential bubble coalescence, clustering and alignment phenomena, the suspensions 

were visualised under shear. The visualisation confirmed significant bubble coalescence, which 

was followed by alignment and clustering of the coalesced bubbles potentially due to wall 

effects and bubble confinement within the parallel plate gap. These microstructural changes 

emerged within the shear rate range of approximately 1 s-1 to 10 s-1 (corresponding to < 𝐶𝑎 > 

values of order of magnitude 0.01), where the first relative viscosity drop was observed. As the 

shear rate and, in turn, the average capillary number increased further, these phenomena 

intensified, giving rise to dynamic structures composed of larger, coalesced bubbles that moved 

collectively under shear. At higher shear rates, toward the upper end of the tested range, 

deformation of the larger bubbles also became evident. This sequence of interconnected 

phenomena, including coalescence, the formation of dynamic clusters of coalesced bubbles, 

and their eventual deformation, was associated with the second viscosity drop, observed at <

𝐶𝑎 > values of order magnitude 0.1. The pronounced bubble coalescence phenomena likely 

stem from the shear-thinning nature of the fluid, which promotes faster drainage of the fluid 

film between colliding bubbles, and the absence of surfactants, which could otherwise help 

stabilise bubble interfaces. The causes of earlier bubble deformation at lower capillary numbers 

(order magnitude 0.l) require further investigation. 

The flow curves for the bubble suspensions with the ST2 matrix exhibited distinct 

differences from those corresponding to the ST1 matrix. Specifically, instead of a double 

relative viscosity decay, a single decay was observed, occurring over a range of average 

capillary numbers between approximately 0.01 to 1. This indicates that the addition of SDS 

significantly altered the bubble-matrix dynamics. Additionally, Carbopol microgels swelled 

less in the presence of SDS, reducing the effective volume they occupy within the suspension. 
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Although this reduced swelling likely lessened crowding effects, the zero-shear viscosities of 

the suspensions remained in good agreement with the predictions of the Mooney equation, 

indicating that crowding effects and interactions between the two dispersed phases were still 

present.   

To further investigate the absence of the double relative viscosity decay in the bubble 

suspensions with the ST2 matrix, the suspensions were also visualised under shear. The rheo-

optical experiments confirmed that the addition of SDS effectively mitigated coalescence 

phenomena. As a result, no secondary clustering involving larger, coalesced bubbles were 

observed, unlike in the ST1 matrix. This marks a key difference in the microstructural evolution 

of the two systems under shear, which is also reflected in their coverage trends. The trends 

corresponding to the suspensions with the ST1 matrix exhibited a steeper decrease and a more 

complex shape compared to those with the ST2 matrix, influenced by the more intricate and 

interrelated microstructural changes occurring in the former.  

Furthermore, rheo-optical observations for the ST2 matrix indicated that at < 𝐶𝑎 > values 

in the range 0.01 to 0.1, where the relative viscosity started to drop, bubbles tended to align or 

move closer together to form clusters, resembling the shear-induced clustering observed in 

Newtonian media. No appreciable bubble deformation was observed throughout the course of 

the rheo-optical experiments, suggesting that this may be the reason why a second drop in 

relative viscosity was not observed at < 𝐶𝑎 > values closer to 1, as in the case of the bubble 

suspensions with the Newtonian ambient fluid studied in Chapter 3.  Statistical image analysis 

further revealed that shear-induced bubble clustering and alignment in the suspensions with the 

ST2 matrix were less pronounced than in bubble suspensions with the Newtonian ambient 

fluid. This difference likely arises from the distinct mechanisms of the surfactants used in the 

two systems. Specifically, SDS induces electrostatic repulsions that prevent bubbles from 

getting closer together, thereby reducing shear-induced clustering to some extent. In contrast, 

Span 80, which was used in the Newtonian matrix of Chapter 3, prevents coalescence through 

steric hindrance and, therefore, does not affect bubble clustering and alignment.   

These findings demonstrate the profound effect of matrix composition on the rheology of 

bubble suspensions. The presence of an additional dispersed phase (Carbopol microgels) led to 

crowding effects that had a direct influence of the zero-shear viscosity of the suspensions. 

Furthermore, the inclusion of a strong anionic surfactant like SDS in the matrix significantly 

alters the microstructural phenomena under shear and the resulting rheological trends. 
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Although the experimental results obtained in this study provide a foundation for better 

understanding the behaviour of bubble suspensions with shear-thinning inelastic matrices, they 

also highlight that even small changes to matrix composition, such as the addition of surfactant, 

can significantly impact rheological trends. Therefore, further research with varying matrix 

compositions is needed to validate the rheological behaviour of these systems and elucidate the 

intricate interplay between bubbles and the matrix.  
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Chapter 6 

 

Conclusions and future work 
The primary objective of this research was to systematically investigate the influence of 

bubbles on the rheological properties of matrices with increasing complexity, from simple 

Newtonian fluids to non-Newtonian shear-thinning matrices relevant to oral health 

formulations. The study was directly motivated by industrial challenges in the manufacturing 

of non-aqueous toothpaste formulations, particularly the entrapment of bubbles due to the high-

shear mixing process, which has been shown to alter the flow properties of the formulation. 

The presence of bubbles has been associated with stringiness in the product and inconsistencies 

in the filling process, ultimately affecting both product quality and manufacturing efficiency. 

Despite the clear impact of bubbles on formulation behaviour, their influence on the rheology 

of the matrix remained poorly characterised, necessitating a systematic investigation to 

quantify their effects and develop a better understanding of the mechanisms governing the 

rheological behaviour of aerated formulations. Beyond its industrial significance, this research 

also addresses a critical literature gap in the field of complex fluid rheology, providing reliable 

experimental data to validate existing rheological models for bubble suspensions. Although 

prevalent both in nature and industrial applications, the rheology of bubble suspensions has 

been significantly less explored compared to particle suspensions and emulsions. Key aspects 

such as the role of polydispersity, the behaviour of suspension microstructure under shear, and 

the interplay between bubbles and fluid matrix rheology remain poorly understood, making it 

difficult to predict the behaviour of bubble suspensions in practical applications.  

The first aspect was addressed in Chapter 3, which examined the steady-shear viscosity of 

semi-dilute polydisperse bubble suspensions in a Newtonian ambient fluid consisting of 

mineral oil and Span 80 (surfactant). The study systematically explored the role of 

polydispersity in determining suspension viscosity. Theoretical calculations demonstrated that 

polydispersity has a negligible effect on viscosity unless the bubble size distribution is bimodal, 

with very small and very large bubbles having comparable volume fractions. In most practical 

conditions, where bubble sizes follow a gamma-type distribution, polydisperse suspensions can 

be approximated as monodisperse systems with an equivalent volume-weighted average 

diameter. To validate these theoretical predictions, steady-shear rheological experiments were 

performed to obtain the flow curves of the tested suspensions. The results revealed an 
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unexpected double power-law decay in relative viscosity, spanning a capillary number < 𝐶𝑎 >

 range between 0.01 and 1, a phenomenon that could not be attributed to polydispersity. This 

indicated that mechanisms other than bubble size distribution were influencing the rheological 

behaviour of the suspensions. Further investigations using rheo-optical experiments confirmed 

that the first viscosity drop was associated with the shear-induced formation of bubble clusters 

and threads, while the second drop was linked to bubble deformation at higher shear rates. 

These findings highlight the previously unaccounted role of microstructural evolution under 

shear in defining the viscosity trends of bubble suspensions, revealing a new shear-thinning 

mechanism that had not been validated experimentally before or considered in theoretical 

models. 

Chapter 4 extended the investigation to the linear viscoelastic properties of semi-dilute 

polydisperse bubble suspensions in Newtonian matrices, combining small-amplitude 

oscillatory shear (SAOS) tests with rheo-optical visualisation. This approach allowed for a 

more reliable assessment of how bubble size distribution and potential measurement artifacts 

—such as bubble rise, coalescence, and changes in suspension microstructure over time— 

influence viscoelastic properties. SAOS rheological tests with a pre-shear stage of 3 min at 0.1 

s-1 showed that at high dynamic capillary number (< 𝐶𝑑 >) values, the experimental 𝐺′ values 

were in good agreement with the predictions of the classic Jeffreys model. However, at lower 

< 𝐶𝑑 > values, deviations emerged, with measured 𝐺′ exceeding theoretical predictions, 

suggesting the presence of additional relaxation mechanisms beyond those captured by the 

model. These discrepancies were more pronounced in denser suspensions, indicating that the 

underlying phenomena responsible for the observed deviation become more prominent as 

bubble volume fraction increases. SAOS rheo-optical experiments and image analysis further 

revealed that the suspension microstructure remained stable during measurements, ruling out 

potential measurement artifacts, including bubble rise, coalescence, and microstructural 

evolution during testing, as causes for the observed 𝐺′ deviations.  

Instead, the deviations were linked to bubble fluid dynamic interactions induced by the 

initial spatial distribution of the bubbles on the rheometer plate before the initiation of the 

SAOS measurements. These interactions led to complex relaxation phenomena that became 

evident at longer characteristic flow times. To assess whether stronger and more prolonged pre-

shearing could mitigate these effects, additional SAOS measurements were performed using 

an extended pre-shear stage. The results showed that in dilute suspensions, more intense and 

prolonged pre-shearing reduced deviations, bringing experimental 𝐺′ values closer to 
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theoretical predictions. However, at higher bubble concentrations, pre-shearing had no 

significant effect on the experimental 𝐺′ values. Further validation of the bubble fluid dynamic 

interactions and the associated relaxation phenomena was provided by fitting a multi-mode 

Jeffreys model to the experimental data. The fitting results confirmed that bubble fluid dynamic 

interactions induce a complex relaxation process involving multiple relaxation modes, the 

number of which increases as bubble volume fraction rises. Overall, this study bridged a gap 

in the literature by providing reliable experimental SAOS data for bubble suspensions in 

Newtonian media, investigating the effects of potential measurement artifacts on viscoelastic 

trends, and elucidating the complex relaxation behaviour of these systems.  

Building on the findings from Chapters 3 and 4 on the rheology of bubble suspensions with 

Newtonian matrices, Chapter 5 extended the investigation to non-Newtonian ambient fluids, 

specifically examining how shear-thinning inelastic matrices influence the flow behaviour of 

bubble suspensions. Two different matrices were studied: a pure Carbopol dispersion (ST1 

matrix) and a Carbopol dispersion containing SDS—an anionic surfactant (ST2 matrix). 

Steady-shear rheological tests and rheo-optical experiments were conducted to examine how 

matrix composition affects suspension microstructure under shear and, in turn, the rheological 

behaviour of these systems. The results showed that in both cases, bubbles amplified the shear-

thinning behaviour of the matrix. However, significant differences emerged between the two 

matrices in terms of bubble coalescence, clustering, and suspension viscosity trends. 

For the bubble suspensions generated with the ST1 matrix, the flow curves exhibited a 

double relative viscosity decay, similar to the trend observed in Newtonian ambient fluids but 

shifted to an order of magnitude lower capillary numbers (< 𝐶𝑎 >). Additionally, the zero-

shear viscosities of the tested suspensions were significantly higher than those predicted by the 

classic Taylor equation. Instead, they were well described by the Mooney equation, if one treats 

the suspensions as having a single dispersed phase with a volume fraction equal to the sum of 

the volume fractions of the swollen Carbopol microgels and the bubbles. This highlights the 

influence of crowding effects in the system, suggesting that interactions between the two 

dispersed phases contribute to the rheological behaviour of the suspensions. Rheo-optical 

visualisation confirmed significant bubble coalescence, followed by alignment and clustering 

of the coalesced bubbles, likely due to wall effects arising from the substantial increase in 

bubble size, to the extent that larger bubbles began experiencing confinement within the 

parallel plate gap. These microstructural changes started becoming evident at shear rates 

between 1–10 s⁻¹ (< 𝐶𝑎 > ~ 0.01), aligning with the first viscosity drop. As shear increased 
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further, these phenomena intensified, leading to the formation of dynamic clusters of coalesced 

bubbles moving collectively under shear. Toward the upper end of the tested shear rate range, 

deformation of these larger bubbles also became apparent. This progressive build-up of bubble 

coalescence, clustering, and eventual deformation contributed to the second viscosity drop, 

observed at < 𝐶𝑎 > values on the order of 0.1. The enhanced bubble coalescence observed in 

these systems is likely driven by the shear-thinning nature of the matrix, which has been shown 

to contribute to faster fluid drainage between colliding bubbles, and the absence of surfactants, 

which could otherwise stabilise bubble interfaces and mitigate such phenomena. Although 

crowding effects may be linked to the earlier onset of bubble deformation at < 𝐶𝑎 > ~0.1 , 

the precise mechanisms responsible remain unclear and require further investigation. 

The flow behaviour of bubble suspensions with the ST2 matrix differed significantly from 

that of the ST1 systems. Instead of a double relative viscosity decay, a single decay was 

observed, occurring over < 𝐶𝑎 > values of approximately 0.01 to 1, indicating that the 

presence of SDS significantly altered the microstructural evolution of the suspensions under 

shear. Additionally, Carbopol microgels swelled less in the presence of SDS, reducing the 

effective volume they occupied. Although this likely lessened crowding effects compared to 

the ST1 matrix, zero-shear viscosities remained in good agreement with the Mooney equation, 

indicating that interactions between bubbles and the dispersed Carbopol microgels were still 

present. Rheo-optical visualisation revealed that the addition of SDS effectively mitigated 

bubble coalescence. As a result, no secondary clustering involving larger, coalesced bubbles 

was observed, unlike in the ST1 suspensions. In the shear rate range of 1–10 s⁻¹ (< 𝐶𝑎 > ~ 

0.01), where the onset of the relative viscosity drop was observed, bubbles tended to align or 

move closer together due to shear, similar to the behaviour observed in the bubble suspensions 

with a Newtonian ambient fluid in Chapter 3. No significant bubble deformation was observed 

throughout the tested shear rate range, suggesting that the observed drop in relative viscosity 

for the ST2 suspensions can be attributed to shear-induced bubble clustering, and explaining 

the absence of a second viscosity drop at < 𝐶𝑎 >≈ 0.1, as observed in the Newtonian system. 

Further statistical image analysis showed that shear-induced bubble clustering and alignment 

were less pronounced in the ST2 matrix compared to the Newtonian ambient fluid of Chapter 

3. This was attributed to the distinct stabilisation mechanisms of the surfactants used in the two 

systems. SDS induced electrostatic repulsions, preventing to some extent bubbles from coming 

closer together and reducing shear-induced clustering, whereas Span 80, used in the Newtonian 

matrix, stabilised bubbles via steric hindrance but did not inhibit clustering or alignment.  
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The findings of Chapter 5 highlight the profound effect of matrix composition on the 

rheology of bubble suspensions. The presence of an additional dispersed phase (Carbopol 

microgels) introduced crowding effects that strongly influenced suspension viscosity, while the 

addition of SDS significantly altered microstructural effects under shear, reducing shear-

induced bubble clustering and preventing bubble coalescence. This study provides a foundation 

for understanding the rheology of bubble suspensions with shear-thinning inelastic matrices, 

but it also underscores the sensitivity of rheological trends to even small changes in matrix 

composition. 

6.1 Future work 

While this research has provided valuable insights into the rheological behaviour of bubble 

suspensions across different fluid matrices, several open questions remain, paving the way for 

further investigation. Future work should focus on expanding the current findings by further 

exploring the influence of matrix composition and microstructure on suspension rheology, 

investigating the linear viscoelastic behaviour of bubble suspensions with more complex non-

Newtonian matrices, and building a deeper understanding of shear-induced phenomena and 

bubble coalescence in flow for both Newtonian and more complex systems through advanced 

microscopic and rheo-optical techniques. 

Effect of matrix composition and microstructure on suspension rheology 

The findings of Chapter 5 demonstrated that even small changes in matrix composition can 

have a significant impact on the rheology of bubble suspensions, highlighting the importance 

of matrix-specific microstructure. The comparison between two shear-thinning Carbopol 

matrices—one containing SDS and one without—revealed substantial differences in bubble 

coalescence, shear-induced clustering/alignment, and the resulting relative viscosity trends. 

This underscores the need for further investigation into how variations in matrix composition 

influence suspension behaviour and whether certain rheological trends can be generalised 

across different shear-thinning systems. Building on these findings, a key avenue for future 

work would be to systematically investigate the effects of varying Carbopol and SDS 

concentrations to assess how these fundamental matrix components influence suspension 

rheology. Increasing Carbopol concentration is expected to induce yield stress and elasticity 

effects (Migliozzi et al., 2020), introducing behaviours that could fundamentally alter bubble 

deformation, clustering, coalescence, and consequently, the resulting suspension flow 

properties. Similarly, since SDS was shown to directly influence shear-induced bubble 
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clustering and alignment, exploring how the system behaves across different SDS 

concentrations would provide critical insight into the interplay between surfactant-induced 

interfacial forces and the evolving suspension microstructure. 

Beyond variations in Carbopol and SDS concentrations, a broader exploration of different 

shear-thinning matrices and surfactant types is also necessary to determine whether the 

observed flow phenomena are intrinsic to the specific microstructure of the tested matrices or 

whether they represent more general trends in bubble suspensions with shear-thinning ambient 

fluids. Understanding how different formulation components influence aerated suspension 

rheology would aid in developing more robust design principles for complex formulations, 

ensuring consistent rheological properties across product lines. By systematically disentangling 

the effects of matrix composition, microstructure, and surfactant properties, future research 

could provide a more predictive framework for the flow behaviour of bubble suspensions in 

complex fluids.  

Viscoelastic behaviour of bubble suspensions in non-Newtonian matrices   

A logical extension of this work would be to investigate the linear viscoelastic properties of 

bubble suspensions in non-Newtonian matrices, expanding on the steady-shear characterisation 

conducted in Chapter 5 and complementing the SAOS experiments performed for Newtonian 

systems in Chapter 4. As demonstrated in Chapter 4, bubble fluid dynamic interactions induced 

by the spatial distribution of bubbles at the microscale led to complex relaxation phenomena, 

even in Newtonian matrices. These interactions resulted in multi-mode relaxation behaviour, 

which became more pronounced as bubble volume fraction increased. Given that non-

Newtonian matrices already exhibit intricate relaxation dynamics, the introduction of bubbles 

adds another level of complexity, potentially leading to interactions between matrix and 

dispersed phase relaxation mechanisms that cannot be easily predicted. This is further 

supported by the findings in Chapter 5, where steady-shear rheological experiments revealed 

that microscale interactions between bubbles and the Carbopol matrix played a critical role in 

shaping the suspension flow behaviour.  

It would therefore be of great interest to investigate how these interactions manifest in the 

linear viscoelastic regime and whether they give rise to new viscoelastic mechanisms that are 

absent in Newtonian systems. A systematic study using small-amplitude oscillatory shear 

(SAOS) tests combined with rheo-optical analysis would provide essential experimental data 

to address the current gap in the viscoelastic characterisation of bubble suspensions, 
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particularly in non-Newtonian matrices. While some non-linear viscoelastic data, such as 

normal stress differences, have been reported for bubble suspensions in non-Newtonian 

matrices (Torres et al., 2013, 2015), SAOS data remain largely unavailable. However, since 

SAOS measurements directly capture microstructural relaxation dynamics, which govern flow 

behaviour under shear, obtaining such data would be invaluable for advancing both theoretical 

understanding and industrial applications. 

Enhancements to the rheo-optical setup for advanced microstructural analysis 

 Across the different result chapters of this thesis, it became evident that microstructural 

evolution under shear plays a fundamental role in determining the rheological behaviour of 

bubble suspensions. Rheo-optical experiments provided valuable insights into bubble 

coalescence and shear-induced clustering and alignment, revealing complex microstructural 

rearrangements that directly influenced suspension flow properties. However, the current 

optical setup presents several limitations that hinder a more detailed and quantitative 

understanding of these processes. One of the main limitations was slip at the transparent 

rheometer plate, which led to lower torque measurements compared to those obtained with 

standard rheometric plates. As a result, simultaneous bulk rheological measurements and direct 

visualisation of the same sample were not possible, requiring separate experiments for each. 

Additionally, the resolution of the acquired images was insufficient for advanced image 

analysis, limiting the ability to track individual bubble clusters, quantify cluster sizes, and fully 

resolve microstructural evolution in three dimensions. 

To overcome these constraints, future work should focus on employing more advanced rheo-

optical techniques to gain a comprehensive understanding of microstructural evolution in flow. 

A key improvement in the current setup would be plasma treatment of the transparent 

rheometer plate, which could effectively reduce slip phenomena while maintaining optical 

transparency. Plasma treatment modifies surface properties by generating highly energetic 

ionised gases that alter surface chemistry and roughness without introducing physical damage. 

This method has been shown to increase surface roughness, thereby enhancing interfacial 

friction and minimising wall slip (Ma et al., 2023), allowing for a more accurate assessment of 

bulk rheological properties while still preserving transparency for real-time microstructural 

visualisation. Additionally, because plasma treatment is an inert and contamination-free 

process, it does not introduce any surface residues or reactive compounds that could interfere 

with suspension microstructure or rheological measurements (Ma et al., 2023). 
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Beyond transparent plate modifications, the integration of confocal rheometry would 

provide a direct correlation between local microstructural evolution and bulk rheological 

response. This technique integrates a laser scanning confocal microscope with a stress-

controlled rheometer, enabling high-resolution 3D imaging alongside simultaneous stress and 

strain measurements (Dutta et al., 2013). By providing real-time, depth-resolved imaging, it 

allows direct observation of microstructural dynamics—such as bubble clustering, alignment, 

and coalescence—and their influence on the material’s bulk viscosity and elasticity. Confocal 

rheometry has been successfully applied to study colloidal suspensions and complex fluids 

(Cheng et al., 2011), and its application here would allow for quantitative microstructural 

analysis beyond what was possible in this study, including tracking bubble trajectories, 

measuring cluster size distributions, and analysing structural evolution over time. These 

enhanced imaging capabilities would provide a more complete picture of the dynamic 

processes governing bubble suspension microstructure under shear and their impact on the 

system’s rheological response, ultimately improving rheological models for bubble 

suspensions and aiding the development of more robust, controlled, and scalable industrial 

formulations. 
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Appendix A 

Supporting Information to Chapter 3  
 

A1. Propeller Aerator Design Schematics  

This section presents detailed design schematics of the custom-built aeration device 

developed in-house for generating the bubble suspensions used in this thesis. The initial design 

incorporated 10 µm porous ceramic filters, which were later replaced with 2 µm filters to 

produce smaller bubbles and thereby more stable suspensions. 

 

Fig A. 1: 3D design and dimensions of the custom aeration device for bubble suspension generation. 
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Fig A. 2: Multi-view schematics of the custom aeration system. Front, side, and top views show the 

location of key components. 
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Fig A. 3: Design schematic of the aeration blade used in the custom aeration device. The part was 

designed for 3D printing to allow customisation with different disc configurations for experimental 

variations. 
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A2. Characteristic Microscope Image  

This section presents a representative bright-field microscope image of a generated bubble 

suspension, acquired with a Zeiss Axio Observer 5 microscope (10× Plan-Apochromat 

objective). The image corresponds to a suspension with a gas volume fraction of φ = 4.2 %, 

illustrating the typical gamma-type bubble size distribution produced with the custom aeration 

device. 

 

Fig A. 4: Bright-field image (10× magnification) acquired with a Zeiss Axio Observer 5 microscope. 

The sample corresponds to a suspension with φ = 4.2 %, showing uniformly dispersed bubbles used for 

rheological testing. 

A3. Weissenberg – Rabinowitch Correction   

This section describes the Weissenberg-Rabinowitsch correction, applied to the raw steady 

shear data obtained with a parallel plate rotational rheometer. Let us consider a rotational 

parallel plate rheometer with diameter R, gap h, and a constant rotational speed Ω.  
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Fig A. 5: Schematic of a parallel plate rheometer. 

      Regardless of the rheological properties of the fluid between the parallel plates, the shear 

rate 𝛾̇ in the fluid volume is not uniform, but changes radially as follows: 

 

𝛾̇(𝑟) =
𝛺

ℎ
𝑟                                                            (A1)  

 

The torque M required to move the upper plate is the product of the surface integral of the local 

viscous force exerted on a single fluid element, and its distance r from the centre of the plate 

(Macosko, 1994).  

𝑀 = ∫ 2𝜋𝑟𝑑𝑟𝜏𝑧𝜃 ∙ 𝑟
𝑅

0
= ∫ 2𝜋𝑟2𝜏𝑧𝜃𝑑𝑟 = ∫ 𝑟2𝜂(𝑟)𝛾̇𝑑𝑟

𝑅

0

𝑅

0
          (A2),  

where 𝜂(𝑟) is the viscosity at any value of r.  

Since both 𝜂(𝑟) and 𝛾̇𝑟 are bijective functions of r, the integration variable in Eq. A2 can be 

changed from r to 𝛾̇ as follows:  

 

𝑟 = 𝑓(𝛾̇) =
𝛾̇ℎ

𝛺
 ; 𝑓′(𝛾̇) =

ℎ

𝛺
                                      (Α3) 

Substituting Eq. A3 into Eq. A2, we obtain: 

 

𝑀 =
2𝜋𝑅3

𝛾̇3 ∫ 𝛾̇3𝜂𝑑𝛾̇
𝛾̇𝐸

0
                                         (Α4),  
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where 𝛾̇𝐸 =
𝛺𝑅

ℎ
 is the shear rate at the edge of the plate. To eliminate the integral, we 

differentiate both sides by 𝛾̇𝐸 using the Leibnitz rule: 

 

(
𝑀

2𝜋𝑅3
) 𝛾̇3 = ∫ 𝛾̇3𝜂𝑑𝛾̇

𝛾̇𝐸

0
                                      (Α5) 

𝑑

𝑑𝛾̇𝐸
[(

𝛭

2𝜋𝑅3) 𝛾̇𝐸
3] = ∫

𝜗

𝜗𝛾̇𝐸
(𝛾̇3𝜂)𝑑𝛾̇ + 𝜂(𝛾̇𝐸)𝛾̇𝛦

3𝛾̇𝐸

0
                       (Α6) 

The first term on the right-hand side of Eq. A6 is equal to zero. After rearranging and deriving 

both terms for 𝛾̇𝐸, we obtain Eq. A7 for the steady shear viscosity measured in a parallel-disk 

rheometer: 

𝜂(𝛾̇𝐸) =
𝑀(3+

𝑑𝑙𝑛𝑀

𝑑𝛾̇𝐸
)

2𝜋𝑅3𝛾̇𝐸
                                                (Α7) 

Therefore, by plotting the curve of 𝑀 versus the effective shear rate (i.e the shear rate at the 

edge) 𝛾̇𝛦, we can evaluate the ratio 𝑑𝑙𝑛𝑀/𝑑𝛾̇𝐸 as the local slope (n) of the graph plotted in log- 

log scale, and re-construct the true viscosity curve. 

In contrast, if this correction is not applied, the apparent viscosity is overestimated by assuming 

a uniform shear rate across the plate radius. The fractional error eliminated by the Weissenberg–

Rabinowitsch correction can be expressed as (𝜂 − 𝜂app)/𝜂 = 𝑠/(3 + 𝑠), where 𝑠 =

𝑑ln 𝑀/𝑑ln 𝛾̇𝐸 represents the local slope of the log–log torque–shear rate relationship. For the 

present measurements, the slope ranged from 𝑠 = 0.77–1.00, corresponding to an error 

reduction of approximately 20–25%. Neglecting the correction would therefore lead to a 

comparable underestimation of the true viscosity, while applying it ensures accurate evaluation 

of the shear-dependent viscosity of the bubble suspensions.  
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Appendix B 

Supporting Information to Chapter 4  
 

B1. Rheological characterisation of the ambient fluid 

To ensure that the rheology of the ambient fluid did not affect the observed viscoelastic 

trends, a rheological characterisation of the matrix, i.e., of the mixture of mineral oil and span 

80, was conducted. Fig. B.1 presents the flow and viscoelastic curves. As shown, the viscosity 

remains constant as the shear rate varies. Observing the 𝐺′ curve, the influence of both inertia 

effects (at high frequency) and low torque issues (at low frequency) becomes evident. 

Nonetheless, within the range of reliable 𝐺′ data, the measured values are consistently three 

orders of magnitude lower than the corresponding 𝐺′′ values. This indicates that, within the 

tested frequency range, the response of the ambient fluid is predominantly viscous. 

Additionally, Fig. B.2 reports the 𝐺′ curves of the suspensions detailed in Sec. 4.3.2 in 

comparison to the 𝐺′ curve of the matrix. As seen, even for the most dilute bubble suspension, 

the measured 𝐺′ values are one order of magnitude larger than those of the matrix. This 

difference amplifies with increasing bubble volume fraction. Consequently, the elastic 

contribution of the matrix appears to be negligible and cannot account for the viscoelastic 

trends observed for the bubble suspensions.  

 

Figure B.6: (a) Viscosity as a function of shear rate. (b) Viscoelastic moduli of the ambient fluid                                             

(mixture of mineral oil and span 80). 
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Figure B.7: 𝐺′ values of the matrix (mixture of mineral oil and span 80) compared to 𝐺′ values of the 

tested suspensions. 

To determine whether the presence of span 80 in the ambient fluid affected the observed 

viscoelastic trends, SAOS measurements were conducted using a bubble suspension with pure 

mineral oil (𝜂 = 63.571 Pa ∙ s at 20 C) as the ambient fluid. Note that this is not the same 

mineral oil employed in the mixture, but a more viscous one. The viscoelastic response of the 

pure mineral oil, depicted in Fig. B.3a, closely resembles that of the mixture of mineral oil and 

span 80. The measured 𝐺′′ values once again exceed the corresponding 𝐺′ values by three 

orders of magnitude, suggesting that the addition of span 80 does not affect the overall matrix 

response. 

The rationale behind incorporating span 80 into the ambient fluid lies in its ability to reduce 

the exceptionally high viscosity of the pure mineral oil, which presented challenges in 

generating bubble suspensions with varying bubble volume fractions. In contrast, the mixture 

of mineral oil and span 80 offers a suitable viscosity, facilitating the production of stable 

suspensions with minimal bubble rise during the measurements. 

Fig. B.3b shows the viscoelastic curves of a bubble suspension with 𝜑 = 9.2% and pure 

mineral oil (𝜂 = 63.571 Pa ∙ s at 20 C) as ambient fluid, obtained through SAOS 

measurements with decreasing oscillation frequency and after 3 min of pre-shear at 0.1 s-1. It 

is evident that the characteristic 𝐺′ shoulder at low 〈𝐶𝑑〉 values is present regardless of the 

ambient fluid, indicating that the observed trends are not system-specific.  
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Figure B.8: (a) 𝐺′, 𝐺′′ for pure mineral oil (𝜂=63.571 Pa∙s at 20 ◦C). (b) 𝐺′, 𝐺𝑟𝑒𝑑
′′  for a bubble suspension 

with 𝜑 = 9.2% and pure mineral oil (𝜂=63.571 Pa∙s at 20 ◦C) as ambient fluid. 

Finally, to investigate potential degradations and/or reactions during high-shear mixing that 

could affect the viscoelastic behaviour of the ambient fluid, the viscoelastic moduli of the 

aforementioned pure mineral oil were measured before and after aeration. The results, 

presented in Fig. B.4, indicate that the viscoelastic response of the matrix is unaffected by high-

shear mixing. All the findings discussed thus far confirm that the rheology of the matrix is not 

responsible for the characteristic 𝐺′ shoulder observed at low 〈𝐶𝑑〉 values.  

 

Figure B.9: Viscoelastic curves for pure mineral oil (𝜂=63.571 Pa∙s at 20 ◦C) obtained before and after 

high-shear mixing.  
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bubble suspension with 𝜑 = 9.5% at 𝜔1 = 0.56 rad/s,  𝜔2 = 1 rad/s and 𝜔3 = 10 rad/s. As 

seen, both viscoelastic moduli are constant over the examined range of applied strain, 

suggesting that any strain value within this range is appropriate for the SAOS measurements.  

 

Figure B.10: Strain sweep tests to determine the limits of the linear viscoelastic behaviour. 

B3. Reliability of SAOS data at low oscillation frequencies 

This section evaluates the reliability of the SAOS data discussed in Sec. 4.3.2. 

B3.1 Minimum torque limit 

To ensure reliable 𝐺′ and 𝐺𝑟𝑒𝑑
′′  data in the low oscillation frequency range, it is essential to 

verify that the measured torque is above a minimum limit. According to (Ewoldt, Johnston and 

Caretta, 2015), the minimum acceptable 𝐺′ and 𝐺𝑟𝑒𝑑
′′  values for a material tested in a parallel 

plate rheometer are given by:  

𝐺𝑚𝑖𝑛 =
𝐹𝜏 𝑇𝑚𝑖𝑛

𝛾0
      (B.1) 

where 𝐺𝑚𝑖𝑛 refers to either 𝐺′ or 𝐺𝑟𝑒𝑑
′′ , 𝐹𝜏 ≡

2

𝜋𝑅3, with 𝑅 being the radius of the plate, 𝑇𝑚𝑖𝑛 is 

the minimum torque in oscillation as specified by the instrument manufacturer, and 𝛾0 is the 

strain amplitude.  

For the current measurements, which were performed in the Anton Paar MCR302 stress 

control rheometer, 𝑅 is equal to 20 mm, 𝑇𝑚𝑖𝑛 is equal to 0.5 nN m, and 𝛾0 is equal to 5%. 

Substituting these quantities into Eq. 1 yields: 

𝐺𝑚𝑖𝑛 = 7.96 ∗ 10−4 Pa s     (B.2) 
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The limit of 𝐺𝑚𝑖𝑛 has been included in all graphs presenting experimental values of 𝐺′ and 

𝐺𝑟𝑒𝑑
′′ . As shown in Fig. 4.2, all reported measurements are above the 𝐺𝑚𝑖𝑛 limit.  

B3.2 Phase angle resolution issues at low frequencies 

To address potential phase angle resolution issues at low frequencies that could impact the 

rheological data, the method presented by (Velankar and Giles, 2007) was implemented. A 

bubble suspension with volume fraction 𝜑 equal to 3.1% was generated, and strain sweep tests 

were performed at different frequencies. For each frequency, the measured values of tan𝛿 were 

plotted as a function of the applied strain amplitude. Fig. B.6 presents indicative results of the 

strain sweep tests at oscillation frequencies 𝜔1 = 3 rad/s and 𝜔2 = 0.302 rad/s. As observed, 

at sufficiently high strain amplitudes, tan𝛿 plateaus. However, for each oscillation frequency, 

there is a minimum value of the applied strain amplitude, 𝛾𝑚𝑖𝑛, below which tan𝛿 deviates 

from the plateau, indicating the onset of phase angle resolution issues. This aspect should be 

investigated, inasmuch as it might lead to inaccuracies during SAOS experiments, where the 

applied strain amplitude is usually fixed throughout the whole range of the tested frequencies. 

In the SAOS experiments reported in Chapter 4, a fixed strain amplitude 𝛾0 of 5% was used. 

To ensure that this strain amplitude was appropriate for the lower frequencies considered, the 

minimum strain amplitude 𝛾𝑚𝑖𝑛 at each frequency was identified from the strain sweep tests. 

Then, the 𝛾𝑚𝑖𝑛 values were plotted versus the values of the respective oscillation frequencies, 

generating the diagram reported in Fig. B.7. This graph illustrates the instrumental limitations 

related to measuring phase angles. As shown, for 𝜔 = 0.107 rad/s, 𝛾𝑚𝑖𝑛 is 5%, indicating that 

the chosen strain amplitude is within the acceptable limits for 𝜔 ≥ 0.107 rad/s. This suggests 

that in this frequency range the SAOS data are not influenced by phase angle resolution issues, 

and that the reported viscoelastic trends (Figs. 4.2 and 4.6) can be trusted.  
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Figure B.11: Strain sweep measurements at two different frequencies. The horizontal dashed lines 

indicate the high-strain plateau of tanδ at 𝜔 = 0.302 rad/s, considering +/- 5% error limits. The vertical 

dashed line indicates the minimum value of the strain amplitude, 𝛾𝑚𝑖𝑛, required for reliable phase angle 

measurements. 

 

Figure B.12: Minimum strain amplitude, 𝛾𝑚𝑖𝑛, as a function of the oscillation frequency.    

B4. Percent 𝑮′ deviation versus bubble volume fraction  

The deviation of 𝐺′ observed at lower frequencies in the experiments described in Chapter 

4 is not the same for all tested samples. As shown in Fig. 4.3, denser suspensions demonstrate 

two main effects: (i) a shift of the 𝐺′ deviation towards higher values of the dynamic capillary 

number 〈𝐶𝑑〉, and (ii) a larger absolute deviation of 𝐺′ from the theoretical predictions. To 

further clarify this point, Fig. B.8 presents the percent 𝐺′ deviation as a function of 〈𝐶𝑑〉 for 

the two extreme bubble volume fractions: 𝜑1 = 4.2% and 𝜑2 = 19.2%. 
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Figure B.13: Percent 𝐺′ deviation at low dynamic capillary number for 𝜑1 = 4.2% and 𝜑2 = 19.2%. 

As illustrated, within the same low range of 〈𝐶𝑑〉, the experimental values of 𝐺′ deviate 

more from the theoretical predictions at higher bubble volume fraction, the densest suspension 

deviating almost twice as much compared to the most dilute one. Additionally, for the smallest 

volume fraction (𝜑1 = 4.2%), the findings indicate that applying stronger and more prolonged 

pre-shearing results in a closer similarity with the theoretical predictions, the percent deviation 

of 𝐺′ being almost five times smaller than that at milder pre-shearing. This suggests that – for 

such a dilute suspension – pre-shearing affects the spatial bubble distribution as well as the 

average inter-bubble distance, resulting (for stronger/longer pre-shearing) in weaker fluid 

dynamic interactions and a smaller deviation between experimental data and theoretical 

predictions. 

B5. Theoretical analysis on polydispersity 

This section provides a theoretical analysis of the effect of polydispersity on the linear 

viscoelastic moduli of semi-dilute bubble suspensions. In this analysis, a bubble suspension 

composed of a mixture of mineral oil and 5% w/w span 80 was considered, with a bubble 

volume fraction of 4.2% and different bubble sizes. The linear viscoelastic moduli of the 

suspension were calculated for three different bubble size distributions using the generalised 

Jeffreys model (Eq. 4.8). The volume fraction 𝜑𝑖 of the i-th bubble class present in the 

suspension was determined using Eq. 3.5. Below, three theoretical scenarios are presented to 

examine how different bubble size distributions affect the profiles of the linear viscoelastic 

moduli of the corresponding suspensions. For each theoretical example, 𝐺′ and 𝐺𝑟𝑒𝑑
′′  were 

plotted as functions of the average dynamic capillary number 〈𝐶𝑑〉. 
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B5.1 Scenario 1 - Bimodal distribution (𝑹𝟏 = 𝟏𝟎 𝝁𝒎, 𝑹𝟐 = 𝟓𝟎𝟎 𝝁𝒎) 

The first scenario examines a bidisperse bubble suspension with bubble radii equal to 10 μm 

and 500 μm. In this case, the two bubble classes contribute equally to the total bubble volume 

fraction (that is, each class accounts for 50% of the total bubble volume), so that the volume-

weighted average radius is equal to 255 μm. Calculating 𝐺′ and 𝐺𝑟𝑒𝑑
′′  for this suspension yielded 

the curves of Fig. B.9.   

This example reveals a complex 𝐺′ trend, consisting of two distinct modes, each of them 

corresponding to a bubble size class. To better understand the effect of polydispersity on the 

𝐺′ curve, the average dynamic capillary number can be correlated with the dynamic capillary 

number of each size class, as follows: 

𝐶𝑑𝑖 ≡
𝜂𝑠 𝑅𝑖 𝜔

𝜎𝛼,𝛽
=

𝜂𝑠 〈𝑅〉 𝜔

𝜎𝛼,𝛽

𝑅𝑖

〈𝑅〉
≡ 〈𝐶𝑑〉

𝑅𝑖

〈𝑅〉
    (B.3) 

which results in:  

〈𝐶𝑑〉 =
〈𝑅〉

𝑅𝑖
𝐶𝑑𝑖      (A.4) 

 

Figure B.14: 𝐺′ and 𝐺𝑟𝑒𝑑
′′  versus the average dynamic capillary number, for 𝜑 = 4.2% and bubble                                          

sizes of 10 and 500 microns with 𝑧1 = 𝑧2 = 0.5. 

For each bubble size class, the transition from viscous to elastic behaviour occurs when the 

corresponding dynamic capillary number has unit order of magnitude; when this happens, the 

order of magnitude of the average dynamic capillary number is equal to:  

                                                             〈𝐶𝑑〉 ~ 
〈𝑅〉

𝑅𝑖
              (B.5) 
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According to this, the large bubbles with 500 μm radius will demonstrate their 

viscoelasticity at 〈𝐶𝑑〉 ≈ 0.51, while for the small bubbles with 10 μm radius, this will happen 

at 〈𝐶𝑑〉 ≈ 25.5. Examining the 𝐺′ curve from high to low values of 〈𝐶𝑑〉, it can be observed 

that both bubble size classes behave as elastic inclusions at high 〈𝐶𝑑〉 values. At 〈𝐶𝑑〉 ≈ 25.5, 

the 10 μm bubbles do begin to relax and, as a result, they start behaving as viscous fluids, 

causing a decrease in 𝐺′. For 〈𝐶𝑑〉 between 0.51 and 25.5, the curve reflects the combined 

effect of the viscous response caused by the relaxed 10 μm bubbles and the elastic response 

originating from the 500 μm bubbles, which have not started relaxing yet. As 〈𝐶𝑑〉 decreases 

below 0.51, the larger bubbles start relaxing as well, leading to a further drop in 𝐺′ and, in turn, 

a prevalently viscous behaviour of the dispersed phase.    

This example demonstrates that polydispersity can lead to a more complex viscoelastic 

behaviour that entails different relaxation modes, each associated with a bubble size class (via 

the associated relaxation time 𝜆𝑖). In this case, the relaxation process spans a range of average 

dynamic capillary numbers, instead of happening at 〈𝐶𝑑〉 ~ 1. In this context, one cannot model 

the viscoelastic behaviour employing a constitutive equation for monodisperse suspensions and 

an average bubble diameter, because the different relaxation modes would not appear. Instead, 

for a semi-dilute bidisperse bubble suspension with very large and very small bubbles having 

equal bubble volume fractions, one must operate as shown, considering each bubble size class 

individually, calculating the corresponding viscoelastic moduli (for each bubble size class) by 

using the constitutive equations for monodisperse suspensions, and then summing the different 

contributions. 

B5.2 Scenario 2 - Bimodal distribution (𝑹𝟏 = 𝟏𝟎 𝝁𝒎, 𝑹𝟐 = 𝟐𝟎𝟎 𝝁𝒎) 

This scenario pertains to another bidisperse bubble suspension, with a smaller difference 

between the sizes of the two bubble classes, which are 10 μm and 200 μm. Similar to the 

previous scenario, the total bubble volume fraction is divided equally between the two bubble 

classes, so that the volume-weighted average radius is 105 μm. Fig. B.10 shows the theoretical 

𝐺′ and 𝐺𝑟𝑒𝑑
′′  curves for this bidisperse suspension. As seen, also in this case the relaxation 

process occurs over a wider range of 〈𝐶𝑑〉 values compared to a monodisperse bubble 

suspension. Nevertheless, unlike the first example, the range is smaller, between 10 and 0.5. 

The first decay of 𝐺′ happens at 〈𝐶𝑑〉 ≈ 10.5 and reflects the relaxation of the 10 μm bubbles, 

while the second decay happens at 〈𝐶𝑑〉 ≈ 0.525, reflecting the relaxation of the 200 μm 

bubbles. The characteristic shape of the 𝐺′ curve indicates the presence of two relaxation 
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modes; these, however, are less distinct compared to the previous scenario. This suggests that 

the effect of polydispersity on the viscoelasticity of bubble suspensions becomes more 

pronounced as the difference in the sizes of the bubble classes increases. 

 

Figure B.15: Gꞌ, Gꞌꞌred versus average dynamic capillary number, for 𝜑 = 4.2% and bubble                                                             

sizes of 10 and 200 microns, with 𝑧1 = 𝑧2 = 0.5.  

B5.3 Scenario 3 – Gamma-type distribution (bubble radii between 20 and 120 μm) 

This scenario is based on the experimental data from Sec. 4.3.1, where the bubble radii 

follow a gamma distribution between 20 μm and 120 μm (Fig. B.11a), and the volume-

weighted average radius is equal to 61 μm. In this case, the total bubble volume fraction is not 

equally distributed between small and large sizes, as it was in the first two scenarios. Instead, 

each size class is assigned a percentage of the total bubble volume fraction. Following the same 

method as before, the 𝐺′ and 𝐺𝑟𝑒𝑑
′′  curves of Fig. B.11b (black and hollow points, respectively) 

were obtained. In contrast to the suspensions previously analysed (scenarios 1 and 2), the cross-

over of the two viscoelastic moduli and, in turn, the relaxation of the dispersed phase happen 

at 〈𝐶𝑑〉 ~ 1, a behaviour that resembles that of a monodisperse bubble suspension. This finding 

aligns with what is observed in polymer melts, where a polydisperse molecular weight 

distribution results in a relaxation time spectrum that can be described by a weighted average 

relaxation time (Macosko, 1994). To confirm this, the viscoelastic moduli of a monodisperse 

suspension with bubbles of 61 μm radius and 4.2% volume fraction were calculated employing 

Eq. 4.7 (Fig. B.11b – black and red curves). As observed, the 𝐺′ and 𝐺𝑟𝑒𝑑
′′  curves of the two 

suspensions are almost identical. Therefore, it can be concluded that polydispersity 

significantly impacts the viscoelastic behaviour of a bubble suspension only if the bubble size 

distribution is bimodal, with very small and very large bubbles having similar volume fractions 
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– a condition that is infrequently encountered in applications. Under typical experimental 

conditions, where bubble sizes follow the gamma distribution, polydispersity has negligible 

effect and the polydisperse suspension can be regarded as monodisperse with a volume-

weighted average bubble radius. This conclusion aligns with the findings on the effect of 

polydispersity on the steady-shear viscosity of bubble suspensions discussed in Sec. 3.2.  

 

Figure B.16: a) Gamma-type bubble size distribution (20-120 µm). b) 𝐺′ and 𝐺𝑟𝑒𝑑
′′  versus the average 

dynamic capillary number for 𝜑 = 4.2% and bubble sizes following a gamma distribution between 20 

and 120 µm. 

B6. Further investigation on bubble rise 

To further investigate whether 𝐺′ increases with time owing to bubble rise, time sweeps 

were conducted at certain oscillation frequencies, along with SAOS measurements with 

increasing oscillation frequency. The results are presented below. 

B6.1 Time sweep experiments 

Fig. B.12 presents the time sweep results for a bubble suspension with 𝜑 = 11%, tested in 

the linear regime over 30 minutes at 𝜔1 = 0.5 rad/s, 𝜔2 = 1 rad/s and 𝜔3 = 15 rad/s. As 

shown, 𝐺′ is constant over time for 𝜔2 = 1 rad/s and 𝜔3 = 15 rad/s. For 𝜔1 = 0.5 rad/s, an 

increase of 𝐺′ was observed over time; however, it was minimal. This suggests that bubble rise 

had a negligible effect on the experiments, and so it is not responsible for the observed  𝐺′ 

shoulder.   
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Figure B.17: Time-sweeps of a bubble suspension with 𝜑 = 11%. 

B6.2 SAOS measurements performed by increasing the oscillation frequency 

Fig. B.13a presents an example of experimental 𝐺′ data obtained by both increasing and 

decreasing the oscillation frequency for a bubble suspension with mineral oil (𝜂 = 63.571 Pa s 

at 20 C) as ambient fluid and  𝜑 = 9.2%. As shown, the characteristic 𝐺′ deviation is present 

even in SAOS measurements conducted by ramping up the oscillation frequency – hence 

without significant influence from bubble rise. As explained in Sec. 4.6, this deviation reflects 

the collective response of bubbles that are in close proximity due to their spatial distribution 

after the loading of the samples on the rheometer plate. Fig. B.13b shows an example of the 

nonuniform spatial distribution of bubbles after sample loading. This sample corresponds to 

the bubble suspension with 𝜑 = 4.2% discussed in Chapter 4.   

As expected, when the SAOS measurements are performed inversely (that is, by ramping 

down the oscillation frequency), more time elapses before recording the low 〈𝐶𝑑〉 viscoelastic 

data. During this time, bubbles tend to rise, leading to a decrease in the average inter-bubble 

distance. Thus, more bubbles interact with their neighbours, which amplifies the 𝐺′ deviation. 

This observation confirms the claim that bubble rise enhances the 𝐺′ deviation slightly but does 

not cause it. 
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Figure B.18: (a) Experimental 𝐺′data obtained by increasing and decreasing the oscillation frequency. 

(b) Spatial distribution of bubbles after the loading of a sample with 𝜑 = 4.2% on the rheometer plate. 

B7. Bubble size distributions for different pre-shearing conditions 

Fig. B.14 presents the bubble size distributions of the tested suspensions after three minutes 

of pre-shearing at 0.1 s-1 and 33 minutes of pre-shearing at 0.9 s-1. As shown, with stronger and 

more prolonged pre-shearing, the bubble radii shift to higher values, while still following a 

gamma type distribution. 

 

 

Figure B.19: Bubble size distribution after three minutes of pre-shearing at 0.1 s-1 for (a) 𝜑1 = 4.2%,                                          

(b) 𝜑2 = 13.5% and (c) 𝜑3 = 19.2%; bubble size distribution after 33 minutes of pre-shearing at 0.9 

s-1 for (d) 𝜑1 = 4.2%, (e) 𝜑2 = 13.5% and (f) 𝜑3 = 19.2%. 
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B8. Comparison of the Palierne model’s predictions to the experimental data 

As mentioned in Sec. 4.6, the Palierne model was examined to determine whether it can 

accurately describe the experimental data, particularly in capturing the characteristic 𝐺′ 

shoulder at lower 〈𝐶𝑑〉 values. The Palierne model describes the complex modulus of a blend 

of immiscible fluids, 𝐺𝑏𝑙𝑒𝑛𝑑
∗ (𝜔), as follows:  

                 𝐺𝑏𝑙𝑒𝑛𝑑
∗ (𝜔) = 𝐺𝑚

∗ (𝜔)
1+3𝜑𝐻(𝜔)

1−2𝜑𝐻(𝜔)
                                        (B.6a) 

with: 

𝐻(𝜔) =
4(

𝜎𝛼,𝛽

𝑅
)[2𝐺𝑚

∗ (𝜔)+5𝐺𝑖
∗(𝜔)]+[𝐺𝑖

∗(𝜔)−𝐺𝑚
∗ (𝜔)][16𝐺𝑚

∗ (𝜔)+19𝐺𝑖
∗(𝜔)]

40(
𝜎𝛼,𝛽

𝑅
)[𝐺𝑚

∗ (𝜔)+𝐺𝑖
∗(𝜔)]+[2𝐺𝑖

∗(𝜔)+3𝐺𝑚
∗ (𝜔)][16𝐺𝑚

∗ (𝜔)+19𝐺𝑖
∗(𝜔)]

               (B.6b) 

where 𝜎𝛼,𝛽 is the interfacial tension between the two fluids, 𝑅 is the volume-weighted radius 

of the inclusions, 𝐺𝑚
∗ (𝜔) and 𝐺𝑖

∗(𝜔) are the complex moduli of the matrix and of the inclusions, 

respectively, while 𝐻(𝜔) is the relaxation spectrum. 

For the systems descripted in Chapter 4, which consist of two Newtonian fluids, these being 

air as the dispersed phase and a mixture of mineral oil and span 80 as the matrix, the following 

simplifications can be made:  

a) 𝐺𝑖
∗(𝜔) = 𝐺𝑖

′(𝜔) + 𝐺𝑖
′′(𝜔) 𝑖 = 0, since air is a Newtonian fluid and bubbles can be 

considered inviscid.  

b) 𝐺𝑚
∗ (𝜔) = 𝐺𝑚

′ (𝜔) + 𝐺𝑚
′′ (𝜔) 𝑖 = 0 + (𝜂𝑚𝜔) 𝑖, since the matrix is a Newtonian fluid 

with insignificant elasticity and viscosity 𝜂𝑚. 

Then, Eq. B.6 becomes:  

           𝐺𝑏𝑙𝑒𝑛𝑑
∗ (𝜔) = 𝐺𝑚

∗ (𝜔)
1+3𝜑𝐻(𝜔)

1−2𝜑𝐻(𝜔)
     with    𝐻(𝜔) =

(
𝜎𝛼,𝛽

𝑅
)−2𝐺𝑚

∗ (𝜔)

5(
𝜎𝛼,𝛽

𝑅
)+6𝐺𝑚

∗ (𝜔)
  

 (B.7) 

Substituting the expression for 𝐻(𝜔) into 1 + 3𝜑𝐻(𝜔) and 1 − 2𝜑𝐻, the following 

expressions are obtained:  

1 + 3𝜑𝐻(𝜔) = 1 +
3𝜑[(

𝜎𝛼,𝛽

𝑅
)−2𝐺𝑚

∗ (𝜔)]

5(
𝜎𝛼,𝛽

𝑅
)+6𝐺𝑚

∗ (𝜔)
=

(5+3𝜑)(
𝜎𝛼,𝛽

𝑅
)+(1−𝜑)6𝐺𝑚

∗ (𝜔)

5(
𝜎𝛼,𝛽

𝑅
)+6𝐺𝑚

∗ (𝜔)
  (B.8) 
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1 − 2𝜑𝐻(𝜔) = 1 −
2𝜑[(

𝜎𝛼,𝛽

𝑅
)−2𝐺𝑚

∗ (𝜔)]

5(
𝜎𝛼,𝛽

𝑅
)+6𝐺𝑚

∗ (𝜔)
=

(5−2𝜑)(
𝜎𝛼,𝛽

𝑅
)+(6+4𝜑)𝐺𝑚

∗ (𝜔)

5(
𝜎𝛼,𝛽

𝑅
)+6𝐺𝑚

∗ (𝜔)
   (B.9) 

Substituting Eqs. B.8, B.9 and 𝐺𝑚
∗ (𝜔) = (𝜂𝑚𝜔) 𝑖 into Eq. B.7, the following expression for 

the complex modulus of the blend is obtained: 

𝐺𝑏𝑙𝑒𝑛𝑑
∗ (𝜔) =

(5+3𝜑)(
𝜎𝛼,𝛽

𝑅
)(𝜂𝑚𝜔)𝑖−6(1−𝜑)(𝜂𝑚𝜔)2

(6+4𝜑)(𝜂𝑚𝜔)𝑖+(5−2𝜑)(
𝜎𝛼,𝛽

𝑅
)

  (B.10) 

For brevity, the following quantities are introduced: 

                          𝑥 ≡ (5 + 3𝜑) (
𝜎𝛼,𝛽

𝑅
) (𝜂𝑚𝜔) ; 𝑦 ≡ 6(𝜑 − 1)(𝜂𝑚𝜔)2   

                                       𝑤 ≡ (6 + 4𝜑)(𝜂𝑚𝜔)  ;  𝑧 ≡ (5 − 2𝜑) (
𝜎𝛼,𝛽

𝑅
)  

and the expression becomes:  

                                                 𝐺𝑏𝑙𝑒𝑛𝑑
∗ (𝜔) = 𝐺𝑏𝑙𝑒𝑛𝑑

′ (𝜔) + 𝐺𝑏𝑙𝑒𝑛𝑑
′′ (𝜔)𝑖       

                    =
𝑥𝑖+𝑦

𝑤𝑖+𝑧
=

(𝑥𝑖+𝑦)(−𝑤𝑖+𝑧)

(𝑤𝑖+𝑧)(−𝑤𝑖+𝑧)
=

(𝑥𝑤+𝑧𝑦)+(𝑥𝑧−𝑦𝑤)𝑖

𝑤2+𝑧2 =
(𝑥𝑤+𝑧𝑦)

𝑤2+𝑧2 +
(𝑥𝑧−𝑦𝑤)

𝑤2+𝑧2 𝑖              (B.11) 

Whence, 𝐺𝑏𝑙𝑒𝑛𝑑
′ , 𝐺𝑏𝑙𝑒𝑛𝑑

′′  are obtained as follows: 

𝐺𝑏𝑙𝑒𝑛𝑑
′ (𝜔) =

(𝑥𝑤+𝑧𝑦)

𝑤2+𝑧2
=

80𝜑(
𝜎𝛼,𝛽

𝑅
)(𝜂𝑚𝜔)2

[(5−2𝜑)(
𝜎𝛼,𝛽

𝑅
)]

2

+[(6+4𝜑)(𝜂𝑚𝜔)]2
   (B.12a) 

𝐺𝑏𝑙𝑒𝑛𝑑
′′ (𝜔) =

(𝑥𝑧−𝑦𝑤)

𝑤2+𝑧2 =
(𝜂𝑚𝜔)[(5+3𝜑)(5−2𝜑)(

𝜎𝛼,𝛽

𝑅
)

2

+(6𝜑−6)(6+4𝜑)(𝜂𝑚𝜔)2]

[(5−2𝜑)(
𝜎𝛼,𝛽

𝑅
)]

2

+[(6+4𝜑)(𝜂𝑚𝜔)]2
  (B.12b) 

Fig. B.15 compares the experimental profiles of the storage modulus 𝐺′ (the same reported 

in Fig. 4.2) with the theoretical predictions obtained from the models of Palierne and Jeffreys 

for the three volume fractions investigated. 
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Figure B.20: Experimental values vs theoretical predictions of 𝐺′using Jeffreys and Palierne models 

for polydisperse bubble suspensions with (a) 𝜑1 = 4.2%, (b) 𝜑2 = 13.5% and (c) 𝜑3 = 19.2%. 

As shown, the 𝐺′ predicted by the Palierne model qualitatively resembles the trend of the 

Jeffreys model, which predicts only one characteristic relaxation time. Similar to the Jeffreys 

model, the model of Palierne fails to predict the second 𝐺′ shoulder at low 〈𝐶𝑑〉 values. 

Furthermore, it does not capture the high 〈𝐶𝑑〉 plateau as accurately as the Jeffreys model. As 

detailed in Sec. 4.6, the inability of the Palierne model to accurately predict the experimental 

data likely stems from its assumptions regarding the type of droplet interactions. 

B9. Effect of bubble shape relaxation 

To investigate the effect of bubble shape relaxation on the obtained 𝐺′ trends, the bubble 

shape relaxation time in the suspensions reported in Chapter 4 was calculated using the Palierne 

expression (Graebling et al., 1993), which considers the effect of 𝜑 on the shape-relaxation of 

a single droplet. For bubble suspensions where the ambient fluid is Newtonian, this expression 

is a modification of the relaxation time given in the Jeffreys model and reads:  

     𝜆𝑃𝑎𝑙𝑖𝑒𝑟𝑛𝑒 = [
4(3+2𝜑) 

(10−4𝜑)
]

𝑅𝜂𝑚

𝜎𝛼,𝛽
     (B.13) 
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Table 1 reports the shape-relaxation times calculated using the Palierne expression, along 

with the relaxation times derived from the Jeffreys model for the three suspensions reported in 

Chapter 4. As shown, the bubble shape-relaxation times predicted by the Palierne model closely 

align with the relaxation times given by the Jeffreys model (obtained through fitting). 

Comparing the shape-relaxation times with the results reported in Table 4.5, it becomes evident 

that, for all tested suspensions, the shape-relaxation times fall between the first and second 

relaxation times. However, the fitting results revealed the presence of additional relaxation 

times, which are at least one order of magnitude larger compared with the computed bubble 

shape-relaxation times. This finding indicates that even if the relaxation mode related to the 

shape relaxation of the bubbles can be influenced by crowding effects, it cannot be considered 

responsible for the characteristic deviation of 𝐺′ at lower 〈𝐶𝑑〉 values, which instead is 

associated with longer relaxation times. 

Table B.1: Jeffreys and Palierne relaxation times for the tested suspensions. 

𝝋 

(%) 

𝝀𝑱𝒆𝒇𝒇𝒓𝒆𝒚𝒔 

(s) 

𝝀𝑷𝒂𝒍𝒊𝒆𝒓𝒏𝒆 

(s) 

4.2 0.089 0.113 

13.5 0.094 0.130 

19.2 0.096 0.140 
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Appendix C 

Supporting Information to Chapter 5  

C1. Carreau-Yasuda fitting parameters for the bubble suspensions prepared 

with the ST1 matrix 

This section presents the fitting values obtained for the Carreau-Yasuda parameters for the 

generated bubble suspensions and their corresponding ST1 matrices. As shown in Table C.1, 

the flow index (𝑛) of the bubble suspensions was consistently lower than that of the matrix, 

confirming that the presence of bubbles further amplified the shear-thinning behaviour of the 

matrix. Additionally, the zero-shear viscosity of the suspensions increased with bubble volume 

fraction as expected.  

It’s worth noting that the Carreau-Yasuda parameters of the ST1 matrices varied slightly 

between different suspensions, with these differences becoming more pronounced as the 

aeration time increased, corresponding to higher bubble volume fractions. As explained in Sec. 

5.2.3, the high-shear mixing used during bubble generation likely caused some de-swelling of 

the Carbopol microgels, leading to variations in the matrix flow curves depending on the 

duration of exposure. Fig. C1 indicatively presents the flow curves of the ST1 matrices 

corresponding to the bubble suspensions with 𝜑1 = 3.85% and 𝜑4 = 8.7%, respectively, 

confirming this behaviour. To account for this phenomenon, the viscosity of the ST1 matrix 

was always measured after the rheological tests of each bubble volume fraction to ensure 

accurate calculation of the suspension’s relative viscosity.  

Table C.1: Carreau – Yasuda fitting parameters for the bubble suspensions generated with the ST1 as 

the ambient fluid.  

 
 Carreau – Yasuda parameters  

𝒂 𝜼𝟎 𝝀𝒄 𝒏 𝑹𝟐 

𝜑1 = 3.85% 1.183 3.662 0.886 0.869 0.999 

ST1 matrix for 𝜑1 = 3.85% 0.965 2.732 0.480 0.883 0.999 

𝜑2 = 5.12% 0.897 3.937 0.522 0.822 0.998 

ST1 matrix for 𝜑2 = 5.12% 0.768 2.731 0.259 0.866 0.999 

𝜑3 = 6.40% 0.857 4.092 0.540 0.801 0.998 
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ST1 matrix for 𝜑3 = 6.40% 0.722 2.610 0.127 0.8503 0.998 

𝜑4 = 8.70% 0.897 4.208 0.469 0.737 0.996 

ST1 matrix for 𝜑4 = 8.70% 0.622 2.409 0.144 0.850 0.999 

 

 

Figure C.1: Flow curves of the ST1 matrices corresponding to bubble suspensions with 𝜑1 = 3.85% 

and 𝜑4 = 8.7%.  

C2. Carreau-Yasuda fitting parameters for the bubble suspensions prepared 

with the ST2 matrix 

Table C.2 presents the fitting values obtained for the Carreau-Yasuda parameters for both 

the ST2 matrices and the bubble suspensions generated with them. Similar to above, the 

presence of bubbles induced additional shear-thinning effects, as evidenced by the lower flow 

index values of the suspensions compared to their corresponding matrices. The zero-shear 

viscosity of the suspensions increased with bubble volume fraction (Fig. C.2), consistent with 

findings in bubble suspensions with the ST1 and Newtonian matrices. Furthermore, the 

addition of SDS, stabilised Carbopol microgels against high-shear mixing, as evidenced by the 

almost overlapping matrix flow curves of Fig. C3 and the very similar Carreau-Yasuda fitting 

values obtained for the matrices of the three tested suspensions, regardless of aeration time. 
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Table C.2: Carreau – Yasuda fitting parameters for the bubble suspensions prepared with the ST2 

matrix. 

 
 Carreau – Yasuda parameters  

𝒂 𝜼𝟎 𝝀𝒄 𝒏 𝑹𝟐 

𝜑1 = 4.95% 0.595 2.453 0.155 0.892 0.999 

ST2 matrix for 𝜑1 = 4.95% 0.526 1.977 0.126 0.914 1.000 

𝜑2 = 6.3% 0.822 2.494 0.147 0.885 0.999 

ST2 matrix for 𝜑2 = 6.3% 0.514 1.987 0.109 0.912 0.999 

𝜑3 = 8.6% 0.662 2.691 0.135 0.859 0.999 

ST2 matrix for 𝜑3 = 8.6% 0.491 1.932 0.112 0.910 0.999 

 

 

Figure C.2: Flow curves of bubble suspensions generated with the ST2 matrix at bubble volume 

fractions 𝜑1 = 4.95%, 𝜑2 = 6.30% and 𝜑3 = 8.6%. The zero-shear viscosity increases with bubble 

volume fraction.  
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Figure C.3: Flow curves of the ST2 matrices corresponding to bubble suspensions with 𝜑1 = 4.95%,  

𝜑2 = 6.3% and 𝜑3 = 8.6%. The nearly overlapping curves indicate that high-shear mixing had a 

minimal effect on the deswelling of Carbopol microgels in the presence of SDS. 
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