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Abstract—Autonomous surface vehicles (ASVs) operating in
busy and constrained maritime environments (e.g., inland wa-
terways, harbors, ports, and marinas) require robust perception
modules for real-time boat detection, with LiDAR serving as one of
the practical sensors for environmental perception. However, these
environments present challenges, such as large variations in boat
sizes, sparse point cloud data at longer distances, and occlusions
from the restricted field of view of onboard LiDAR and surrounding
obstacles, leading to high predictive uncertainty. Small boats rely
on local features (e.g., fine-grained geometric details), while large
boats require global features (e.g., overall shape and structural
continuity) for accurate detection. To address these challenges,
we propose the maritime point cloud detector (MPCD), which
integrates an attention-based point feature net for pillar-level local
feature extraction and a hybrid 2-D backbone combining multiscale
MobileViT with a 2-D convolutional neural network for enhanced
global feature learning, achieving a 12.8% improvement in detec-
tion accuracy over the baseline. To further enhance reliability, we
extend MPCD with the multi-input multi-output method, forming
uncertainty-aware MPCD (U-MPCD). U-MPCD estimates both
epistemic and aleatoric uncertainties, improves detection accuracy
by 2%, and maintains an inference speed of 15 Hz, providing critical
insights into prediction confidence for safer ASV navigation. Our
model was tested on real-world data sets collected under normal
hydrographic survey conditions (6 h per day over four days, cov-
ering about 11.4 km) along the River Thames in central London,
which features high maritime traffic and diverse boat types and
sizes.

Index Terms—3-D point cloud, autonomous surface vehicle
(ASV), environmental perception, object detection, predictive
uncertainty.

I. INTRODUCTION

ENVIRONMENTAL perception is essential for au-
tonomous surface vehicles (ASVs) to operate in busy
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and constrained maritime environments (e.g., inland waterways,
harbors, ports, marinas, etc.) with higher levels of autonomy.
By detecting and tracking both moving and stationary objects
in real time, ASVs obtain the critical information needed for
mission planning and decision making. To achieve this, they
often rely on sensors, such as cameras, LiDAR, and radar.
Cameras offer rich semantic information but face significant
challenges in maritime environments, including water reflec-
tions, dazzling light, and sea fog [1]. Maritime radar is robust
in various weather conditions and has a greater detection range
than cameras; however, its low update frequency and limited
semantic information restrict real-time object detection in busy
maritime settings. LiDAR bridges these gaps by providing high-
frequency updates, more reliable performance than cameras in
many weather conditions (though it can be affected by foggy or
rainy conditions due to scattering effects), and rich point cloud
data, making it particularly suitable for maritime perception [2].
LiDAR generates 3-D point cloud scans that contain each point’s
distance and reflection intensity, offering a detailed representa-
tion of the surrounding environment. Nevertheless, the sparsity,
unstructured nature, and unordered format of 3-D point cloud
data pose unique challenges for processing tasks, such as feature
extraction and object detection.

In recent years, intensive research and the deployment of
deep learning methods have significantly advanced 3-D point
cloud-based object detection. Point cloud detection models
are generally categorized into three types based on their data
processing strategies: point-based, voxel-based, and projection-
based methods [3]. Point-based methods directly process raw
point cloud data, preserving geometric details and achieving
high accuracy, but their considerable computational demands
make them less suitable for real-time applications [4]. Voxel-
based methods convert point clouds into structured 3D voxels,
enabling the use of sparse 3D convolutional neural networks
(CNNs) for efficient feature extraction. Although these methods
are computationally more efficient and can handle larger scenes,
fixed voxel resolutions can result in the loss of fine-grained infor-
mation, particularly for smaller objects [5], [6]. Projection-based
methods project 3-D point clouds onto 2-D planes—such as a
bird’s-eye view (BEV)—and apply 2-D CNNs. This approach
leverages well-established 2-D CNN architectures to achieve
faster inference times than the other approaches, but it often
compromises spatial and geometric fidelity [7].

Maritime environments present unique challenges due to the
wide range of target sizes, from small buoys (less than 1 m)
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Fig. 1. Illustration of challenges in maritime point cloud detection. (a) Distinct local and global features for a small boat (red oval) and a large boat (yellow oval).
(b) Occlusion splitting the global structure of a large boat. (c) Fragmented detection of a large boat due to CNN backbone limitations (white oriented bounding boxes
show the visualized detection results). (d) Sparse point cloud features caused by distance (yellow oval) and incomplete point cloud features caused by occlusions
(red oval).

to large ships (spanning hundreds of meters). Achieving robust
performance in such settings requires point cloud detectors to
effectively capture both local and global features. In voxel-based
methods, local features refer to the point cloud characteristics
within individual voxels or across a small group of neighboring
voxels, whereas global features represent aggregated informa-
tion linking numerous voxel features to capture broader spa-
tial context. As shown in Fig. 1(a), the point cloud features
of a small boat (highlighted in the red oval) form a distinct
geometric shape but occupy only a small region. This distinct
shape can be considered a local feature, and detecting small
boats requires precise local feature extraction to identify their
unique geometry. In contrast, the point cloud features of a large
boat (highlighted in the yellow oval) span a much larger region,
necessitating strong global feature extraction to understand the
overall structure and spatial layout of the boat in the scene.
Furthermore, as shown in Fig. 1(b), the point cloud features
of a large boat are split into two parts due to occlusion. In
such cases, robust global feature extraction is critical to link
these discrete parts, enabling a comprehensive understanding
of the boat’s overall hull structure. This challenge underscores
the need for models that can effectively bridge the gap between
local precision and global comprehension. However, to meet
real-time performance constraints, most point cloud detectors
primarily rely on CNN-based architectures. While CNNs can
effectively extract local features, such as edges, corners, and
fine-grained structure, their ability to capture global features,
which are crucial for broader spatial understanding, remains
limited [8].

To address this limitation, various techniques, such as mul-
tiscale feature fusion [3], have been proposed. These methods
combine feature maps extracted at different resolutions or lay-
ers of CNNs, thereby enhancing CNNs’ ability to represent
global features. Despite these improvements, they only partially
mitigate the limitations of CNN-based approaches and remain
insufficient for the diversity of objects in maritime environments.

As shown in Fig. 1(c), the detection results generated by Point-
Pillar, which uses a CNN backbone, incorrectly identify the
large boat in the red oval as two smaller boats due to missing
features in the middle. This outcome highlights the model’s
limitation in capturing global features to connect the fragmented
parts of the object. Beyond CNN-based architectures, numer-
ous studies have explored transformer-based methods for point
cloud processing. Transformers leverage attention mechanisms
to capture global features effectively, as illustrated by models
like Point Transformer [9] and VoxSet [10]. However, they are
computationally more demanding than CNNs, making them less
practical for real-time applications.

In addition to the wide range of target sizes, point cloud data
captured in maritime environments often suffer from sparse
features due to long-distance targets and incomplete features
caused by occlusions from the restricted field of view of the
LiDAR and the presence of other objects, as shown in Fig. 1(d).
These challenges lead to higher detection uncertainty in the
model’s predictions. Most existing detectors produce determin-
istic predictions and therefore cannot estimate the probability
of perception errors. However, capturing these errors or un-
certainties is critical for ensuring safe ASV operations. Such
uncertainties, arising from perception inaccuracies or sensor
noise, provide valuable insights into perception performance
and enable autonomous systems to adapt accordingly. Moreover,
reliable uncertainty estimation enhances human interpretability
of autonomous systems’ decisions, fostering trust in this rapidly
evolving technology [11]. Bayesian neural networks (BNNs)
offer a principled approach to generating accurate uncertainty
estimates, making them a promising solution for safety-critical
applications. The key concept of a BNN is to assign a prior
probability distribution to network parameters and use Bayesian
inference to estimate the posterior distribution [12]. However,
because Bayesian inference for large-scale networks is com-
putationally expensive and often impractical, much research
focuses on approximation methods that provide uncertainty
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estimates while keeping computational overhead manageable.
Examples of such practical methods include Monte Carlo
Dropout (MC-Dropout) [13], deep ensembles [14], and multi-
input multi-output (MIMO) [15].

In this article, we propose uncertainty-aware maritime point
cloud detector (U-MPCD), a novel point cloud detection net-
work specifically designed for maritime environments, with a
focus on boat detection. U-MPCD improves detection accuracy
by effectively capturing both local and global features. Local
features—such as the fine-grained geometric details of a boat’s
hull, edges, or superstructure—are particularly important for
small boat detection, while global features—such as the over-
all shape and structural continuity—are crucial for accurately
detecting large boats. In addition, U-MPCD provides predictive
uncertainty estimates to enhance model reliability in real-time
maritime scenarios. We adopt PointPillar as our baseline due
to its fast inference speed and competitive detection accuracy.
To address the unique challenges of maritime environments, our
key contributions are as follows.

1) Considering the sparse, large-scale, and complex distri-
bution of maritime targets, we first propose maritime
point cloud detector (MPCD), a novel deterministic point
cloud detection model. MPCD incorporates a multihead
attention mechanism within the pillar feature network to
enhance local feature encoding in sparse point clouds,
allowing the model to capture finer geometric details
of target objects. In addition, the global context model-
ing capability of a Transformer architecture—specifically
MobileViT—is integrated into the 2-D CNN backbone.
This combination effectively merges local and global in-
formation, significantly improving detection of large-scale
and distant targets while adding only a slight increase in
computational cost.

2) To enable predictive uncertainty estimation, we integrate
the MIMO uncertainty estimation approach into MPCD,
forming our final model, U-MPCD. This method generates
multiple prediction outcomes within a single forward pass,
offering efficient uncertainty estimation while preserv-
ing the computational efficiency required for real-time
applications.

3) We expanded an existing real-world maritime LiDAR data
set [2] by deploying LiDAR on a survey boat to collect
additional data, particularly focusing on large boat targets
in motion. This effort enriched the data set with more
diverse targets and scenarios. We collected nearly 150 000
frames in total, of which 1000 were labeled.

4) We validate our model on a real-world LiDAR data set
containing various types of boats and conduct extensive
ablation studies to evaluate the impact of specific design
choices. Experimental results show that our proposed
model outperforms the baseline in detection accuracy,
effectively estimates predictive uncertainty, and maintains
high inference speed, making it suitable for real-time
applications.

The rest of this article is organized as follows. Section II
reviews related work, while Section III details the methods
employed in our approach. Section IV evaluates and discusses
the results of the proposed method, and Section V presents a

detailed ablation study to support our design choices. Finally,
Section VI concludes this article.

II. RELATED WORK

A. Deep Learning on Point Cloud

The pipeline structure of point cloud detection models com-
prises three stages: data representation, feature extraction, and
the dense head [3]. In the data representation stage, high-
dimensional and unstructured point clouds are transformed into
a structured format that can be processed in subsequent stages.
A variety of strategies have been explored in the literature
for this representation, including point-based [4], [25], [26],
voxel-based [5], [6], [7], [21], [22], projection-based [18], [19],
[20], and hybrid approaches [23], [24].

Point-based methods directly process raw point clouds, re-
sulting in a sparse structure where each point is associated with
a feature vector derived from its neighbors [4], [25]. Voxel-based
methods divide the point cloud into a grid of uniformly spaced
voxels. Each voxel contains a subset of points, allowing the
network to learn local and global features on a per-voxel basis,
thus reducing overall dimensionality and computational load [5],
[6]. A variant of voxel-based frameworks is the pillar-based
method, illustrated by PointPillar [7], which organizes points
into pillars in the x–y plane, disregarding the z dimension. This
simplification further reduces computational complexity during
feature extraction while preserving sufficient spatial information
in the horizontal plane. Projection-based approaches convert the
3-D point cloud into 2-D images, aiming to reduce the cost of
direct 3-D processing. This approach can leverage mature 2-D
CNN frameworks and often yields faster inference, but risks
losing certain 3-D spatial cues and can introduce distortions or
occlusion issues in the projected views [3].

Feature extraction is a critical stage in 3-D object detection
and directly influences both accuracy and efficiency in tasks,
such as bounding-box estimation and classification (CLS). Re-
search in this area has introduced various strategies that can
be broadly grouped into point-wise, segment-based, and con-
volutional (2-D or 3-D) approaches. In point-wise methods,
such as PointNet [4] and PointNet++ [25], low-dimensional
features are derived from each point independently and then
aggregated to form higher dimensional descriptors. While these
techniques effectively capture fine-grained details, they tend to
increase runtime by operating on every point in the cloud. In
contrast, segment-based approaches partition the point cloud
into volumetric segments (either voxels or pillars), thereby
reducing the overall number of points to be processed. One
prominent example is the voxel feature extractor (VFE) [6],
[27], which extends PointNet concepts to volumetric data by
stacking multiple set abstraction layers that expand the receptive
field and incorporate richer contextual information [5], [6]. This
coarse subdivision often yields faster inference times while
maintaining sufficient spatial resolution. Although segment-
based feature extraction is crucial for encoding fine-grained local
features within individual voxels, it requires an additional CNN
to capture spatial relationships and integrate local and global
information.
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TABLE I
OVERVIEW OF POINT CLOUD-BASED DETECTION NETWORKS DEVELOPED FOR OUTDOOR AUTONOMOUS DRIVING SCENARIOS

Convolutional approaches adapt established 2-D or 3-D CNNs
to learn features from point clouds represented in structured
formats, such as voxel grids or 2-D projections. 2-D CNN
backbones, such as visual geometry group (VGG) network [28],
residual network (ResNet) [29], or densely connected convolu-
tional network (DenseNet) [30], were originally developed for
image-based tasks but also perform effectively when the point
cloud is collapsed into a 2-D pseudoimage. This collapse can
occur in projection-based methods (e.g., HDNet) or within voxel
and pillar frameworks (e.g., VoxelNet, SECOND, and Point-
Pillars) by collapsing the data along one axis into a 2-D grid.
These networks employ 2-D convolution for feature extraction
and utilize a dense head for the final detection stage. On the
other hand, 3-D convolutions provide a more comprehensive
understanding of spatial relationships by preserving the 3-D
voxel structure instead of collapsing it into a 2-D grid, but they
are computationally demanding, particularly for sparse LiDAR
scans. Consequently, sparse convolution methods [31] have been
introduced to focus computational effort on active regions and
avoid redundant operations in empty space. This choice signifi-
cantly reduces runtime and makes CNN-based feature extraction
more practical for large-scale, sparse point-cloud data.

Table I provides an overview of several point cloud detection
networks developed for autonomous vehicles in recent years,
highlighting their respective data representations and feature
extraction strategies. This survey places emphasis on networks
that rely solely on multilayer perceptron (MLP)- and CNN-based
feature extraction. By examining these foundational works, one
can identify suitable candidates to serve as baseline models. For
outdoor point cloud detection, the speed of inference is a key pri-
ority. Consequently, point-based and hybrid (two-stage) meth-
ods were excluded from the outset. Projection-based approaches
were also set aside due to the distortion and occlusion they can
introduce when transforming 3-D data into 2-D views. While
voxel-based methods ultimately compress 3-D point clouds into
2-D pseudoimages in their final processing steps, they first learn
features from each point within a voxel. This intermediate step
preserves spatial and geometric details more effectively than
projection-based techniques.

Among voxel-based methods, PointPillars stands out for its
efficiency. Unlike other voxel-based networks that heavily rely
on computationally intensive 3-D CNNs, PointPillars does not
use 3-D convolutions, substantially reducing computational re-
quirements. Nevertheless, it still utilizes PointNet to capture
point-level features within each pillar, balancing detection accu-
racy with inference speed. Consequently, PointPillars is selected
here as the baseline model. Building on this foundation, our
goal is to develop a maritime-specific point cloud detector
that addresses the unique challenges of maritime conditions
while maintaining real-time performance and reliable detection
accuracy.

B. Self-Attention and Transformer

In recent years, the Transformer architecture [32], which
relies on self-attention mechanisms, has achieved significant
success in various vision tasks. Vision transformer (ViT) was
the first to extensively apply the Transformer framework to
image processing and quickly became a strong alternative to
CNNs [33]. The key idea of ViT lies in leveraging multihead
self-attention to capture long-range dependencies, thereby ex-
tracting more global visual features. Building on this foundation,
many ViT variants have been proposed. For example, Swin
Transformer [34] adopts a hierarchical strategy with shifted win-
dow attention to progressively process feature maps, effectively
reducing computational overhead while maintaining local and
global information across multiple scales. DeiT [35] addresses
ViT’s dependence on large-scale data sets by incorporating
knowledge distillation and efficient data augmentation, enabling
it to achieve strong results even on smaller data sets. Meanwhile,
MobileViT [36] is optimized for lightweight scenarios, retaining
the Transformer’s ability to model long-range dependencies
while reducing network depth and parameter size for mobile
or resource-constrained devices.

Inspired by these developments, recent researches began
adapting the Transformer architecture to 3-D point clouds. Since
point clouds are unordered and sparse, applying a standard
Transformer directly poses significant challenges in terms of
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both computational cost and data sparsity [37]. In the 3-D
point cloud scenario, Transformer applications broadly split into
two directions: those based on voxel representations, and those
based on raw point-wise representations. A notable point-based
approach is Point Transformer [9], [38], [39], which applies an
enhanced multihead self-attention mechanism directly to points,
thereby capturing both local and global geometric information.
In contrast, voxel-based methods include VoTr [40], which uses
local and dilated attention on sparse voxels, along with custom
voxel queries to efficiently model sparse voxel grids. Extending
this line of work, VoxSeT [10] introduces a voxel-based set
attention module that divides a single global self-attention step
into two cross-attention operations, modeling features in a latent
code-induced hidden space and thus preserving global depen-
dencies. DSVT [41] further evolves the “Voxel + Transformer”
paradigm with dynamic sparse window attention and a rotated
set partitioning strategy to improve efficiency. Pyramid vision
transformer (PVT) [42] demonstrates a hybrid voxel-based ap-
proach. It processes 3-D voxels using sparse window attention
and relative-attention modules, integrating efficient sparse com-
putations with fine-grained point-level modeling within a purely
Transformer-driven framework. Rather than applying Trans-
formers directly to 3-D point clouds or voxel representations,
some research projects the point cloud onto a 2-D pseudoimage
and then employs standard Transformers, such as ViT. For in-
stance, RangeViT [43] uses LiDAR range-view representations
in conjunction with the ViT framework, enabling comprehensive
modeling of extensive scenes and thereby enhancing the accu-
racy of 3-D semantic segmentation. By combining the efficiency
of range-view projection with the long-range attention capabil-
ities of Transformers, this method offers superior fine-grained
recognition for autonomous driving scenarios.

In general, Transformers offer stronger global context mod-
eling than CNNs, whether applied at the 3-D voxel or point
level, or after projecting the point cloud into a 2-D pseudoim-
age for ViT-based feature extraction. However, implementing
Transformers directly on raw 3-D voxels or points typically
leads to higher computational costs, prompting some methods
to convert point clouds into 2-D representations to mitigate
sparsity and leverage established ViT frameworks. Our approach
follows this strategy by integrating a well-established ViT into
the 2-D CNN backbone to enhance global feature extraction.
Meanwhile, we incorporate a multihead attention layer at the
pillar-level feature extraction stage, enabling a more refined local
feature representation within each pillar.

C. Bayesian Reasoning

Uncertainty in model predictions can be decomposed into
epistemic uncertainty and aleatoric uncertainty. Epistemic un-
certainty arises from the model’s capacity to explain the
observed data sets, whereas aleatoric uncertainty comes from
inherent noise within the data itself [11]. Many researches in
deep learning have focused on methods to estimate predictive
uncertainties. Among these, BNNs [12], which infer posterior
distributions of network weights from data sets and combine
them with observed data to form a predictive distribution, have

long been regarded as the gold standard for probabilistic in-
ference in neural networks. While the posterior distribution
can be analytically computed in simple cases, large-scale and
deep network architectures typically exhibit high-dimensional,
multimodal posteriors that make exact solutions impractical.
Consequently, various approximate inference techniques have
been proposed, including Variational Inference [44], Markov
Chain Monte Carlo [45], Stochastic Gradient Descent approxi-
mations [46], and Laplace approximations [47]. However, these
methods are often highly sensitive to hyperparameters and strug-
gle to scale effectively with large data sets or complex network
architectures [48]. As a result, selecting appropriate model priors
and inference techniques remains a significant challenge.

In response to these challenges, several practical approaches
have been proposed in recent years, commonly involving some
form of model ensemble. Such techniques draw multiple model
instances from an approximate posterior and aggregate their
outputs to estimate the predictive distribution. For example,
MC-Dropout [13] leverages dropout at inference as an ap-
proximation of Bayesian variational inference: by maintaining
dropout during multiple forward passes, one can approximate the
predictive distribution. Deep ensembles [14] similarly estimate
predictive probabilities by viewing each model’s output as an
independent sample from a mixture distribution. However, these
methods experience increased computational overhead due to
the repeated forward passes required. To address this overhead,
the multiple-input multiple-output (MIMO) framework was in-
troduced [49], enabling the integration of several subnetworks
within a single model and thus producing multiple predictions
through a single forward pass. Building on this idea, LiDAR-
MIMO [15] was developed for LiDAR-based 3-D detection.
This method improves computational efficiency by duplicating
2-D pseudoimages rather than replicating raw point clouds,
and by incorporating multiple dense heads to generate several
predictions concurrently. Consequently, uncertainty estimation
can be performed within a single forward pass.

Drawing on these techniques, we integrate MIMO methods
into the proposed deterministic detection networks, enabling
them to capture inherent uncertainties in their predictions. This
integration promises more robust and interpretable solutions for
3-D object detection in ASVs, ultimately enhancing safety while
supporting real-time applications.

III. METHODOLOGY

In this section, we introduce U-MPCD for 3D object detection
in maritime applications. The first subsection describes how
an attention mechanism and a Transformer-based backbone are
integrated to produce deterministic detection results, referred
to as MPCD. The subsequent subsection presents the Bayesian
inference design for MPCD, enabling the model to capture
predictive uncertainty, thereby yielding U-MPCD.

A. Maritime Point Cloud Detector

Most existing 3-D point cloud detectors for outdoor environ-
ments are specifically developed for autonomous driving scenar-
ios, targeting objects, such as cars, cyclists, and pedestrians [50].
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Fig. 2. (a) Overall architecture of U-MPCD. White blocks represent the modules for MPCD, and red blocks indicate the additional modules for MIMO integration.
(b) Detailed design of the attention-based pillar feature net. (c) Detailed design of the hybrid 2-D backbone, which integrates the modified MobileViT with the
original 2-D CNN backbone. The yellow blocks highlight the changes.

However, in maritime contexts, objects are often larger, vary sig-
nificantly in size, and are located at longer distances, resulting in
extremely sparse point cloud captures. Consequently, to improve
the performance of these detectors in maritime environments,
they must possess enhanced capability to extract fine-grained
local details for smaller objects and robust global features for
larger targets.

Following the principle of improving detection accuracy
while maintaining efficiency, we adapt the PointPillar archi-
tecture [7]. Two main modifications are introduced to capture
detailed local features from sparse LiDAR points while also
leveraging global context in the 2-D backbone: 1) a multihead
attention module within the pillar feature net (PFN) for enhanced
local feature encoding, and 2) a Parallel transformer module
integrated with the original 2-D CNN backbone to strengthen
large-scale contextual reasoning. Fig. 2(a) illustrates the overall
architecture of the proposed U-MPCD model. It comprises the
MPCD network together with a multi-input and multi-output
(MIMO) framework for uncertainty estimation, where the white
blocks indicate the deterministic (MPCD) prediction networks
and the red blocks are additional modules introduced by the
MIMO framework to effectively infer predictive uncertainty.
This section focuses on the design of the deterministic prediction
network, while the integration of the MIMO-based method,
built on MPCD, to achieve efficient uncertainty estimation is
described in Section III-B.

The MPCD deterministic detection network comprises three
main stages: the attention-based pillar feature net, a hybrid 2-D
backbone, and a dense head. First, the raw point cloud data are
processed by the pillar feature net, converting the 3D point cloud
into a 2D Bird’s BEV pseudoimage. This pseudoimage is then
fed into the hybrid 2-D backbone to generate a feature map.
Finally, the dense head produces the prediction results. Design
details for each module are provided below.

1) Attention-Based Pillar Feature Net: The pillar feature net
(PFN) is the primary innovation in the PointPillars framework
and begins with a process termed pillarization, in which the
3-D point cloud is partitioned into pillars in the XY-plane. Each
pillar spans the full Z-axis but occupies only one grid cell in
the XY-plane, so all points whose (x, y) coordinates fall within
that cell are grouped together. Once these pillars are formed,
each point is augmented with both a mean offset (the differ-
ence between a point’s coordinates and the mean of all points
in that pillar) and a center offset (the distance between each
point and the pillar’s geometric center). These offsets are then
concatenated with the original (x, y, z) coordinates and intensity.
As a result, the channel dimension increases from the original
three features to nine, enriching each point’s representation by
providing both local (relative) and global (pillar-level) spatial
context. This enhancement enables the network to better inter-
pret the spatial structure and relationships within each pillar. The
resulting data is represented as a tensor of shape (P, N, C), where
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P denotes the total number of pillars, N is the maximum number
of points per pillar, and C captures both the original and offset
features.

After the pillarization and feature augmentation steps, the
pillar feature net (PFN) processes each pillar through multiple
layers of linear transformations (linear, batch normalization, and
rectified linear unit (ReLU)), followed by max pooling to extract
a global pillar-level feature, as illustrated in Fig. 2(b). This is
a recursive step, where in intermediate PFN layers, the global
feature is concatenated with the original point features along
the channel dimension. This concatenation allows each point to
perceive both its local characteristics and the broader context
of the pillar as a whole. However, relying solely on a single
max pooling step can lead to the loss of fine-grained details. For
example, when detecting a boat, features like the slight curve of
its hull near the water or the tall, narrow shape of its mast can
provide important clues about its orientation and identity. Be-
cause max pooling selects only the strongest activations across
all points, these features may be overshadowed. By introducing
a self-attention mechanism before pooling, the network allows
each point to dynamically weigh critical local features (e.g.,
a curved edge or a distinctive reflection rate) and assign them
higher importance. This attention mechanism ensures that even
minor but meaningful attributes of the object are preserved. As
a result, the network’s capacity to recognize and classify objects
with complex shapes and varying scales is enhanced, mitigating
the limitations of max pooling.

Self-attention is a mechanism that enables each element in
an input sequence (set of points within a pillar) to weigh the
importance of all other elements, thereby capturing relation-
ships across the entire input. The crucial step is to define
three sets of learnable parameter matrices, WQ ∈ R

din×dk ,
WK ∈ R

din×dk , and WV ∈ R
din×dout , where din, dk, and dout

are the dimensionalities of the input features, the query/key
vectors, and the output features, respectively. These parameter
matrices project the input X into queries Q = XWQ, keys
K = XWK , and values V = XWV . Each element in X uses
Q to determine how strongly it “attends” to the keysK, and then
aggregates information from V accordingly. Mathematically,
self-attention is computed as [32]

Attention(Q,K,V) = softmax

(
QK�
√
dk

)
V (1)

where QK� produces pairwise similarity scores (dot product)
between the n elements of X. Dividing by

√
dk keeps these

values from growing too large, while the softmax distribution
determines the degree to which each query element attends to
each key. The weighted sum of V then aggregates the most
relevant features from across the sequence.

When extended to multihead attention [32], this process is
replicated across a number of different heads, Nh. Each head
learns its own set of parameter matrices: WQ(i), WK(i), and
WV (i), which can be expressed as

MultiHead(X) =

Concat
i∈[Nh]

[
Attention

(
XWQ(i), XWK(i), XWV (i)

)]
WO

(2)

where distinct parameter matrices WQ(i),WK(i) ∈ R
din×dk ,

and WV (i) ∈ R
din×dout are learned for each head i ∈ Nh. An

additional parameter matrix WO ∈ R
Nh dout×Dout projects the

concatenation of theNh head outputs (each inRdout ) to the output
space R

Dout .
In a multihead setup, multiple parallel attention heads each

compute separate sets of Q, K, and V, allowing the network
to focus on various aspects of local structure within the same
pillar. By generating multiple attention weight matrices, the
network can simultaneously emphasis diverse features, thereby
preserving subtle local details—such as slight hull deformations
or specialized material reflections—and incorporating them into
a robust pillar representation. The multihead attention-based
PFN is shown in Fig. 2(b). We set the number of heads to
four, and an ablation study in Section V supports this design
choice.

2) Hybrid 2-D Backbone: In PointPillars, the CNN-based
backbone performs multilevel feature extraction by applying
downsampling to progressively capture high-level spatial fea-
tures. It then combines this with feature fusion through up-
sampling and concatenating multiscale features, enabling the
network to incorporate broader contextual information effec-
tively [3]. Despite these improvements, the inherent locality
of convolutional operations still limits the ability of CNNs to
fully capture long-range dependencies or truly global context.
For sparse point clouds, especially those involving large-scale
targets, relying on local convolutional features often fails to
establish effective links between distant pillars. For instance,
when a network needs to integrate features from both the bow
and stern of a ship to infer its overall contour (e.g., a long curved
outline), conventional CNNs cannot adequately handle these
distant dependencies.

The introduction of the ViT has made it feasible to cap-
ture global context more effectively. By leveraging multihead
self-attention, ViT can bridge spatial distances and directly
assess correlations between distant features. This characteristic
is particularly advantageous for maritime scenarios, where point
clouds are sparse and large ships span extensive areas [33]. Thus,
the global modeling capability of ViT can significantly enhance
detection or CLS. Motivated by this potential, we replace the
original CNN backbone with ViT, thereby enabling a more
comprehensive capture of global context.

In practice, we experimented with two ViTs: Swin ViT [34]
and MobileViT [36]. However, Swin ViT proved overly complex
for our relatively small-scale data set, as it strongly depends on
large-scale data and pretrained models. Even when we reduced
Swin ViT by retaining only a few Transformer blocks, the results
remained suboptimal. Consequently, we selected MobileViT,
a lightweight variant tailored to real-time scenarios. Mobile-
ViT was originally tailored for image CLS. Accordingly, we
modified it by removing the final convolution layer, the global
pooling layer, and the linear CLS layer. We also omitted the last
MobileViT block, retaining only two blocks to better match our
input–output requirements and reduce computational overhead.
Although MobileViT surpassed Swin ViT in performance, it
remained less than ideal, possibly due to its greater emphasis on
global information at the expense of local detail. In this situation,
critical local features in the point cloud, such as subtle edges or
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textures, may not be adequately captured, ultimately affecting
overall accuracy.

In response, we adopted a multiscale feature fusion approach
inspired by “Fusion on Fusion” [51]. The main strategy uses an
encoder–decoder feature pyramid structure to aggregate mul-
tiscale outputs by applying a uniform spatial transformation
(for example, deconvolution) and then concatenating them. This
design compensates for the detailed information lost when rely-
ing on a single path output. Nevertheless, even with MobileViT
plus multiscale fusion, performance remained marginally below
that of the original CNN backbone. One likely explanation is
that MobileViT, which emphasizes a lightweight design and
global context, produces lower resolution feature maps in each
layer, making it harder to retain the spatial details required for
local feature extraction, an area where CNNs have traditionally
excelled.

Hence, we propose a hybrid approach that integrates modified
MobileViT with the original CNN, aiming to benefit from both
local feature extraction and global modeling. Our experiments
confirm that this hybrid model delivers a notable performance
improvement while only modestly raising computational over-
head, which is much less than initially expected. Fig. 2(c)
shows our final hybrid CNN and MobileViT backbone. We
retain the existing CNN-based backbone and add a modified
MobileViT-based backbone, treating MobileViT as an encoder
whose outputs at each stage feed into a deconvolution-based
decoder for spatial alignment and concatenation. Ultimately, the
MobileViT outputs are merged with those of the CNN before
being passed to the dense head. Detailed design choices, such as
the number of output channels in each MobileViT stage, which
intermediate layers to concatenate, and whether to incorporate
additional modules (for example, a squeeze and excitation block,
which recalibrates channel-wise feature responses by model-
ing interdependencies between channels), will be discussed in
Sections V along with our experimental evaluations.

B. Bayesian Inference

BNNs [12] implement a probabilistic approach to model the
network’s weights, thereby producing a predictive distribution
that reflects the network’s uncertainty about the target y given an
input x and a training data set D. The key formulation is often
expressed as [11]

p
(
y | x,D) =

∫
p
(
y | x,W)

p
(
W | D) dW (3)

where p
(
y | x,W)

denotes the observation likelihood, and
p
(
W | D) is the posterior distribution over weights derived from

a training data set D.
In conventional supervised learning, the network parameters

W are treated as point estimates, resulting in deterministic
predictions ŷ = f

(
x,W

)
. In a BNN, however, one attempts

to perform approximate inference on the posterior p
(
W | D),

so that the resulting model outputs explicitly capture the net-
work’s perceived uncertainty at inference time. However, high-
dimensional and multimodal tasks often make it computationally
intractable to directly solve p

(
W | D). Practical applications

often depend on approximate inference or sampling strategies
to achieve a tractable approximation of the posterior distribution.
In the following sections, we introduce three feasible meth-
ods, MC-dropout, deep ensemble, and MIMO for incorporating
Bayesian inference into our deterministic MPCD networks.
We employ MIMO to construct our final uncertainty-capturing
model, termed U-MPCD, which achieves real-time perfor-
mance. Meanwhile, MC-Dropout and deep ensemble serve as
baselines to evaluate the uncertainty estimation performance of
the MIMO model. At the end of this section, we discuss the
evaluation metrics used to quantitatively assess performance.

1) Monte Carlo Dropout: MC-Dropout is a sampling-based
approximate Bayesian inference method. In standard network
training, dropout is typically employed as a regularizer only dur-
ing the training phase. However, MC-Dropout maintains dropout
during inference, causing the network to sample a different,
partially zeroed-out set of weights on each forward pass and
thereby generating multiple distinct network instances. Suppose
the inference phase conducts T forward passes, and let Wt

denote the network weights during the tth pass. A conceptual
illustration of MC-Dropout is shown in Fig. 3(a). The model’s
predictive distribution can then be approximated by [13]

p
(
y | x,D) ≈ 1

T

T∑
t=1

p
(
y | x,Wt

)
. (4)

For CLS tasks, the predictive distribution is a probability mass
function. In each forward pass, the network outputs a predicted
softmax score vector ŝt ∈ R

C , whereC is the number of classes.
Consequently, the observation likelihood for a specific class c
can be written as p

(
y = c | x,Wt

)
. Combining with (4), the

predictive distribution of class c is approximated by averaging
the predicted softmax scores across all forward passes, which
can be expressed as

p
(
y = c | x,D) ≈ 1

T

T∑
t=1

ŝc,t (5)

where ŝc,t is the softmax probability of class c in the tth forward
pass.

For regression (REG) tasks, which in the context of point
cloud detection involve predicting the length, location, and
orientation of a bounding box (represented as a vector of con-
tinuous values), the observation likelihood can be expressed
as a probability density function under a Gaussian likelihood
assumption [11], which can be expressed as

(y | x,Wt) = N
(
y
∣∣ fWt

(x), β−1I
)

(6)

where fWt
(x) denotes the predicted mean under the tth dropout

sample, while β−1I represents the covariance matrix, with
β−1 indicating the variance for each output dimension. Con-
sequently, the predictive distribution can be determined by the
sample mean and variance.

However, in standard deterministic networks, variance is not
estimated. The model only produces a single best prediction, rep-
resenting the predicted mean. Consequently, to capture variance,
we introduce an additional output layer to predict it alongside the
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Fig. 3. (a) Conceptual illustration of MC dropout and deep ensemble, where activated neurons are shown in blue. (b) Conceptual illustration of the multi-input
multi-output architecture workflow.

mean, adapting a direct modeling approach. The loss function
must be designed to learn the variance, σ2, for both linear REG
(covering the length and centroid position of the bounding box)
and angular REG (for heading estimation). Consequently, we
adopt a variance loss function for linear REG [52], which can
be expressed as

Lvar,linear =
1

2
exp(−λT )

∥∥ygt − fW(x))
∥∥ +

1

2
λT1 (7)

where λ = log σ2 denotes the log variance for numerical sta-
bility, and ygt as well as fW (x) represent the ground truth and
predicted values, respectively. Unless otherwise stated, log(·)
denotes the natural logarithm (base e). The (1/2)λT1 term
penalizes the model if the training data exhibit high aleatoric
uncertainty.

For angular variance REG, we employ the von Mises loss,
whose mathematical form is presented as

Lvar,θ = log I0
(
exp(−λ)

)− exp(−λ) cos
(
θ − θgt

)
+ λV ELU

(
λ − λ0

)
(8)

where λV is the regularization coefficient, and λ0 controls the
position of the ELU. I0 is the zeroth-order modified Bessel
function. θ and θgt represent the predicted and ground truth
headings, respectively. For further details on the von Mises
angular variance loss, please refer to [53].

2) Deep Ensemble: Deep ensemble [14] trains multiple net-
works with the same architecture, each starting from distinct
initial parameters, whereas MC-Dropout draws multiple weight
samples from a single network by enabling dropout. Suppose
there are M such networks, each with weights {W(m)}Mm=1. At
inference time, given an input x, one evaluates p(y | x,W(m))
across the M independently trained networks and then aggre-
gates their outputs to estimate uncertainty. Conceptually, this
procedure approximates weight-space sampling by indepen-
dently training multiple models, each potentially converging to a
distinct local minimum and thus producing different predictions
that indicate model uncertainty. In general, MC-Dropout and
deep ensemble employ similar principles, since MC-Dropout
can be viewed as an ensemble of networks. Their primary
difference lies in the method used to sample weights. The con-
ceptual architecture of deep ensemble is illustrated in Fig. 3(a).
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3) Multi-Input Multi-Output: MIMO [15] obtains multiple
predictive samples in a single forward pass by configuring
multiple dense heads within one network, with each head receiv-
ing either a copy of the same input or a slightly perturbed version.
The conceptual architecture of MIMO is shown in Fig. 3(b). To
preserve efficiency, rather than directly feeding multiple raw
point clouds, the additional inputs are generated after collapsing
the raw point cloud data into a 2-D pseudoimage. During train-
ing, each head may process an individually pillarized and feature
extracted representation, such as separate 2-D pseudoimages
created from different frames for point cloud detection, to ensure
enough diversity and enable the dense head to learn distinct
representations. At inference, the approach can be simplified by
extracting features only once from the raw point cloud input at
the pillar level, creating a single 2-D pseudoimage that is then
duplicated. Each duplicated pseudoimage is passed through the
2-D backbone to extract features that are forwarded to different
dense heads. This setup allows the network to produce multiple
outputs in a single pass, facilitating uncertainty estimation with-
out repeated inferences or multiple networks. Since all heads
share the same backbone and vary only in head-specific param-
eters, MIMO requires only a single backbone computation, with
negligible additional cost from the multiple dense heads. By
contrast, MC Dropout requires repeated forward passes through
the backbone, even if dropout is applied only to the dense layers.
As a result, MIMO achieves greater efficiency at test time while
still producing diversified predictions comparable to those of
MC-Dropout or deep ensembles. The architecture of the final
U-MPCD model, integrating MIMO with MPCD, is shown in
Fig. 2(a).

4) Uncertainty Evaluation: In our experiments, we employ
different methods to quantify both epistemic and aleatoric uncer-
tainty in CLS and REG tasks, respectively [54]. For CLS, we use
Shannon Entropy (SE), which is a widely recognized measure of
the uncertainty in a variable’s possible outcomes. It effectively
captures both epistemic and aleatoric uncertainty because the
entropy is computed directly from the predictive distribution
p
(
y = c | x,D). The predictive distribution is obtained by av-

eraging the predicted softmax scores across all forward passes,
as demonstrated in (5). The SE [55] is defined as

H(y | x,D) = −
C∑

c=1

p(y = c | x,D) log p(y = c | x,D).

(9)
However, SE quantifies only the overall predictive uncer-

tainty and does not distinguish between epistemic and aleatoric
components. To address this limitation, we introduce Aleatoric
Entropy (AE), sometimes referred to as conditional SE, to
specifically capture aleatoric uncertainty arising from data noise.
In a Bayesian context, AE is computed as the expectation of
conditional SE over the model’s weights. The expression for
AE is given by

AE(x) = Ep(W|D)[H(y | x,W )] (10)

where H(y | x,W ) represents the conditional SE of the class
predictions y for a given input x and a specific model configu-
ration defined by weights W.

Mutual information (MI) is also used to capture epistemic
uncertainty in CLS. It measures the mutual dependence be-
tween two random variables by quantifying the information
gained about one variable through observing the other. It can
be expressed simply as the difference between SE and AE.
Mathematically, we have [55]

MI(x) = H(y | x,D)− Ep(W|D)

[H(y | x,W)]
. (11)

For the REG task, we use epistemic total variance (ETV) and
Aleatoric total variance (ATV) to capture epistemic and aleatoric
uncertainty, respectively [52]. The ETV quantifies model uncer-
tainty by evaluating the variability of REG predictions across
multiple forward passes or ensemble models. Specifically, the
covariance matrix CETV(x) is constructed using the REG values
from a bounding box cluster as [52]

CETV(x) =
1

N

N∑
i=1

(
yi − ȳ

)(
yi − ȳ

)�
(12)

where N is the number of forward passes or ensemble models,
yi represents the REG prediction from the ith model, and ȳ is
the mean of the predictions. The ETV is then calculated as the
trace of the covariance matrix, trace

(
CETV(x)

)
.

To capture aleatoric uncertainty, the ATV is calculated using
the predicted variances from the models for a bounding box
cluster. The covariance matrix CATV(x) is created by averag-
ing the predicted variance matrices across all forward passes,
(1/N)

∑N
i=1 σ

2
i . Then, the ATV is obtained as the trace of the

covariance matrix, trace
(
CATV(x)

)
.

Beyond quantifying uncertainty itself, we also employ several
metrics to evaluate the quality of predictive distributions, which
can be divided into two aspects: calibration and sharpness.
Calibration evaluates whether the predicted probabilities are
statistically consistent with the actual outcomes. For example,
in a well-calibrated model, predictions with a 70% likelihood
should correspond to the event occurring approximately 70%
of the time. A well calibrated model therefore provides reliable
probability estimates, which is crucial for safety-critical ASV
operations.

Sharpness, on the other hand, measures how concentrated or
narrow the predictive distribution is around the ground truth.
A sharper distribution indicates that the model makes confident
predictions, whereas a flatter distribution reflects greater uncer-
tainty. Unlike calibration, sharpness is an intrinsic property of
the predictive distribution and does not depend on the actual
outcomes. Ideally, a model should achieve both good cali-
bration (accurate probabilities) and high sharpness (confident
predictions).

To evaluate the calibration of predictive uncertainty, we use
average calibration error (ACE) for REG tasks and marginal
calibration error (MCE) for CLS tasks [56]. ACE quantifies
the average absolute error between the predicted scores and
the empirical ground truth values across all equally divided
score intervals, focusing specifically on the calibration quality
for the ground truth class. In contrast, MCE extends ACE by
assessing the calibration of the full predicted distribution across
all possible classes.
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In adition, we measure the sharpness of uncertainty in CLS
by examining the softmax distribution for each prediction. Two
proper scoring rules are employed for this purpose: negative
log-likelihood (NLL) and the Brier Score (BS). NLL is a local
and strictly proper scoring rule that evaluates the softmax dis-
tribution at the ground truth label. A lower NLL value implies
a better fit for that specific ground truth label. Suppose we have
N prediction samples and C classes, with ŝc,n as the softmax
probability for the cth class and ygt as the corresponding one-hot
encoded ground truth label. The NLL for CLS is defined by [14]

NLLCLS = − 1

N

N∑
n=1

C∑
c=1

ygt log
(
ŝc,n

)
. (13)

The BS is a nonlocal and strictly proper scoring rule that
evaluates the entire softmax distribution by taking the squared
error between the predicted probability and the one-hot ground
truth label. The BS is computed as [57]

BS =
1

N

N∑
n=1

C∑
c=1

(
ŝc,n − ygt

)2
. (14)

Finally, in REG tasks, we evaluate uncertainty sharpness by
comparing the predicted means and variances for each prediction
sample to the corresponding ground truth object. Two scoring
rules are employed here: the NLL and the energy score (ES).
The formulation for the REG NLL is presented as [53]

NLLREG=
1

2N

N∑
n=1

(
(ygt−μn)

� Σ−1
n (ygt−μn)+log detΣn

)
(15)

where μ and Σ represent the predictive mean and covariance
matrix, respectively. The first term penalizes any discrepancy
between the predicted mean and the ground truth, while the
second term acts as a regularization mechanism to prevent the
model from assigning unbounded variance.

The ES is a strictly proper, nonlocal metric for REG. Derived
from the energy distance, it can be approximated using Monte
Carlo sampling for multivariate Gaussians. Let N be the total
number of objects in the test set and M the number of ensemble
members. For each ground truth ygt, we draw ith samples yn,i
from N (μn, Σn

)
. The ES minimizes in a similar fashion to

the NLL but also penalizes distributions with high entropy,
promoting tighter, better-calibrated predictions [58]

ES =
1

N

N∑
n=1

(
1

M

M∑
i=1

‖yn,i − ygt‖

− 1

2(M − 1)

M−1∑
i=1

‖yn,i − yn,i+1‖
)
. (16)

IV. EXPERIMENTS

This section presents experimental evaluations of the pro-
posed 3-D point cloud detector tailored for maritime envi-
ronments. The experiments proceed in two stages. In the first
stage, we examine the performance of the proposed determin-
istic detection networks, MPCD. Specifically, we evaluate the

impact of the multihead attention based pillar feature net, the
modified 2-D backbone (consisting of the original 2-D CNN
and a modified MobileViT backbone), and the combination of
these two components. In the second stage, we assess how the
proposed MPCD architecture performs when integrated with
three practical BNN methods for uncertainty estimation. Using
MC-Dropout and deep ensemble as baselines, we then evaluate
the reliability of the MIMO approach in capturing predictive
uncertainties, leading to our final U-MPCD.

A. Experiment Setup

All experiments were conducted on a server equipped with
an AMD EPYC 7T83 CPU and an NVIDIA RTX 4090 graphics
processing unit (GPU), using the PyTorch environment for both
training and evaluation.

1) Data Sets: We use the maritime LiDAR data set intro-
duced in [2], which was originally obtained by placing a Velo-
dyne 16-line LiDAR on a tripod along the River Thames and in
nearby marinas. This data set classifies vessels into three length-
based categories: small boat (length less than 7 m), medium boat
(length ranging from 7 to 13 m), and large boat (length greater
than 13 m). Because both the LiDAR and most boats remained
stationary, either moored in marinas or near the riverbank, con-
secutive frames exhibit only minor differences, reducing data
diversity and potentially causing overfitting. As a result, this
limitation might restrict the evaluation of the actual performance
of the proposed model. To address this limitation, we enhanced
the original data set by installing the same Velodyne 16-line
LiDAR on a survey boat and collecting additional data in busier
areas of the River Thames, where many boats were in motion.
These new data incorporate factors, such as target boat motion
and a moving LiDAR coordinate frame, thereby introducing
greater variation between consecutive frames. Fig. 4 depicts the
onboard LiDAR setup and provides samples of data captured
between Embankment Pier and Westminster Pier. Altogether,
we recorded nearly 150 000 frames, each capturing reasonably
clear point cloud features of the target boats.

However, labeling the entire data set would be highly labor-
intensive. Our primary objective here is simply to augment the
original data set with varied scenarios and additional large-boat
samples, thereby broadening its diversity and allowing a more
effective evaluation of our methods’ capacity for target detection
and uncertainty capture. Consequently, we labeled only 1000
frames from the new data and combined them with the original
data set, yielding approximately 10,000 frames in total. Of these,
90% are used for training and 10% for evaluation. Following [15]
for uncertainty evaluation, we further split the evaluation data in
half, using the first half to recalibrate the predictive uncertainty,
and the second half to measure the final performance of the
calibrated models.

It should be noted that although the data set is sufficient for
validating the proposed framework, it was collected in a limited
area, which restricts the diversity of samples and scenarios.
This limited diversity means that detection performance may
vary when applied to different water bodies, sea states, or
weather conditions. For example, wave dynamics, sensor noise
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Fig. 4. (a) LiDAR and camera setup on board. (b) Survey conducted for data set collection; four surveys were performed in the River Thames near Central
London. (c) Example frames from the collected data set.

from rain or fog, background clutter in new environments, or
the presence of previously unseen vessel types could reduce
detection accuracy. Such issues are common to deep learning
methods, where generalization improves with larger and more
diverse training data but cannot be fully guaranteed. In such
cases, the uncertainty estimation provided by our approach may
serve as a useful indicator of reduced reliability. Future work will
therefore focus on expanding the data set to include more varied
environments, which will enable a more thorough evaluation of
generalization.

2) Model Variants and Hyperparameter Setup: For eval-
uating the deterministic point cloud detector, the PointPil-
lars framework is selected as the baseline model. The base-
line is first modified by enabling an attention-based pillar
feature net, referred to as PointPillar+ATT. A hybrid 2-D
backbone is then introduced, which combines the modified
MobileViT and the original CNN backbone, resulting in Point-
Pillar+Hybrid Backbone. Finally, both modifications are merged
into the baseline, producing the final proposed determinis-
tic model, MPCD. To estimate predictive uncertainty from
MPCD, three practical BNN approaches are examined: MC
Dropout, deep ensemble, and MIMO. Accordingly, the derived
models are MPCD+MC Dropout, MPCD+deep ensemble, and
MPCD+MIMO. The final proposed uncertainty aware model
is U-MPCD (MPCD+MIMO). The MC-Dropout and deep
ensemble implementations serve as baselines to measure the

effectiveness of the MIMO approach in capturing predictive
uncertainty.

We set the LiDAR range to ±70.4m in the x-direction,
±40m in the y-direction, and ±10m in the z-direction. The
corresponding pillar grid size is (0.2m, 0.2m, 20m). Table II
lists the predefined anchors used to initialize bounding boxes for
matching with ground truth vessels during the training phase,
where the specific dimensions are derived from statistical anal-
ysis of the entire data set for each class.

Except for U-MPCD (MPCD+MIMO), a batch size of 3 is
used due to computational constraints. All other models employ
a batch size of 6. Training is conducted for 120 epochs. For mod-
els that include the 2-D hybrid backbone (PointPillar+Hybrid
Backbone, MPCD, and their Bayesian variations), we set the
learning rate to 5 × 10−4. Empirical observations indicated
that Transformer-like components require a smaller learning
rate than conventional CNN layers. Consequently, for purely
CNN-based models, those without any Transformer elements,
the learning rate is 3 × 10−3.

When implementing MC-Dropout, dropout remains active
during inference, and four forward passes are performed. The
dropout rate is set to 0.4. In deep ensemble, four independent
networks are trained by using different random seeds for frame
shuffling. The reasoning behind these design choices is elabo-
rated in the ablation study in Section V. With MIMO, two inputs
and two outputs are configured within a single forward pass. In
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TABLE II
PREDEFINED ANCHORS

TABLE III
DETECTION PERFORMANCE AND INFERENCE SPEED FOR EACH MODEL

other words, during the testing phase, the 2-D pseudoimages
generated after pillarization are duplicated once, and two dense
heads are employed. This setup is primarily dictated by hardware
constraints, which preclude the use of more inputs or outputs.

B. Experiment Results

1) MPCD — Deterministic Networks: In this section, the
experimental results for deterministic model are presented. The
original PointPillar architecture serves as the baseline. First, the
effect of enabling an attention-based pillar feature net (PFN)
within this baseline is investigated. Next, a hybrid 2-D back-
bone, combining the original CNN backbone and a modified
MobileViT in parallel, is evaluated as a replacement for the
baseline’s 2-D backbone. Finally, the proposed model, MPCD,
which integrates both the attention-based PFN and the hybrid
2-D backbone, is examined.

Table III presents the overall detection performance for each
model in terms of mean average precision (mAP) and per-class
average precision (AP) for small, medium, and large boats, along
with the average inference time per frame. The proposed MPCD
model achieves highest performance across all classes than the
baseline, including notable improvements of 17.1% and 16.7%
on medium and large boats, respectively. The overall mAP
increases from 64.83% for the baseline to 73.1%, representing
an improvement of approximately 12.8%. Although the average
inference speed reduces from 24.32 to 19.14 HZ, this inference
speed remains sufficient for real-time applications, given that a
Velodyne VLP-16 typically operates in the range of 5–20 Hz.

It should be noted that PointPillar was selected as the main
baseline due to its efficiency and suitability for real-time de-
ployment. Other state-of-the-art detectors, such as SECOND
and point-voxel region-based convolutional neural network

(PV-RCNN), can achieve higher accuracy but at the cost of
significantly greater computational complexity. In our previ-
ous work on the same data set [2], we found that SECOND
and PV-RCNN outperformed PointPillar in terms of mAP, but
their inference times were substantially slower, limiting their
practicality for real-time ASV operations. By contrast, the pro-
posed MPCD achieves a favorable balance: it improves accuracy
over PointPillar and SECOND (68.7% mAP) while maintaining
real-time inference speed, making it more suitable for maritime
scenarios.

Although these findings show that MPCD outperforms the
baseline, they do not clearly reveal the primary drivers behind
this improvement. For instance, replacing the baseline 2-D back-
bone with a MobileViT-based hybrid backbone does not nec-
essarily guarantee stronger global feature capture for medium
and large boats, nor does adding an attention mechanism alone
ensure better local feature extraction in pillars for small boat de-
tection. Indeed, Table III indicates that modifying only the PFN
with attention or only the 2-D backbone with the hybrid design
actually reduces performance below the baseline. For PointPillar
with the attention-based PFN, the overall performance drops to
58.64% ; although medium boat AP rises, small and large boat
AP both decrease sharply. For PointPillar with the hybrid 2-D
backbone, the overall performance falls to 61.2% ; small boat
AP increases, but medium and large boat AP suffer significant
declines. These results conflict with the initial expectation that
attention in the PFN would yield finer grained local features
(pillar-level), particularly for small boats that occupy fewer
pillars, and that a MobileViT-based hybrid backbone would
offer an expanded field of view and contextual information for
capturing the overall shape of larger vessels.

A more detailed examination is needed to account for the
behavior outlined above, rather than relying solely on each
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TABLE IV
AVERAGE PRECISION FOR EACH CLASS ACROSS VARIOUS DISTANCE INTERVALS IN EACH DETERMINISTIC MODEL

category’s average precision for evaluation. Since point clouds
become increasingly sparse at longer distances, this sparsity
significantly affects detection performance. Therefore, detection
performance is broken down by distance range for each class,
as shown in Table IV. The sample counts indicate the number
of targets within each distance interval in the evaluation set, and
the corresponding distribution in the training set is generally
comparable.

From Table IV, it can be observed that when multihead atten-
tion is added to the PFN in PointPillar, the detection performance
for small boat unexpectedly declines at closer distance ranges
(10 m < Dist ≤ 20 m). A possible explanation is that small
boats at close distances have rich point cloud within each pillar
but occupy fewer pillars overall. This increases the sensitivity
of the attention mechanism to noise and minor variations in
the point distribution within pillar-level features. Furthermore,
the limited number of small boat samples at this range in the
training data set worsens the problem. At mid-range distances
(20 m < Dist ≤ 30 m), performance improves modestly, likely
because there is a better balance between the number of points
in each pillar and the number of pillars spans, enabling the
model to learn stable feature representations. In other words,
the attention-based PFN effectively extracts pillar-level fea-
tures, and the moderate number of points in each pillar reduces
the sensitivity of the attention mechanism to noise and minor
variations. In addition, since small boats span fewer pillars at this
range, extensive cross-pillar correlation is not required, making
the model’s capacity sufficient for accurate detection. However,
at longer ranges (Dist > 30 m), performance drops again as
the point clouds for small boats become excessively sparse,
making it difficult for the attention module to robustly extract key
features. Meanwhile, large boats display performance declines
across all distance intervals. Although attention may refine local
features at the pillar level, if it focuses too heavily on localized

features without effectively aggregating information across the
entire extent of the boats, it may fail to represent the boat’s
overall shape cohesively, resulting in fragmented detection or
underestimation of its true boundaries. The performance for
medium boats at all distance intervals exceeds that of the
baseline. A likely reason is that medium boats are more abun-
dantly represented in the training samples, enabling the attention
module to learn optimal representations for targets of moderate
scale. In addition, medium boats distribute a balanced number of
points across pillars—more points per pillar than small boats but
fewer than large boats—and span a moderate number of pillars.
This balance enables the attention module to effectively capture
contextual information within each pillar, resulting in improved
performance.

In short, multihead attention in the pillar feature net im-
proves detection performance only when the target object has
a moderate number of pillar spans and a balanced number
of points in each pillar; otherwise, it may negatively impact
detection performance. If an object has many points per pillar
but spans fewer pillars, the attention mechanism becomes more
sensitive to noise and minor variations in point distribution,
which can degrade performance. Conversely, if there are too
few points in each pillar, the sparsity of point clouds, especially
at longer distances, makes feature extraction by the attention
module less effective. In addition, if an object spans too many
pillars, the attention mechanism may focus excessively on lo-
cal features without aggregating cross-pillar information, lead-
ing to fragmented detection or underestimation of the object’s
true boundaries. Therefore, to achieve an overall performance
improvement with attention-based PFN, it is essential to in-
corporate additional global feature extraction capabilities to
effectively link pillar-level features.

When PointPillar is equipped with a hybrid backbone com-
posed of both original CNN backbone and modified MobileViT,
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the detection performance for medium and large boats at longer
distances (Dist > 30 m) shows improvement. In these far-range
scenarios, the point cloud becomes increasingly sparse and
noisy, making convolutional operations vulnerable to overlook-
ing scattered key points. By integrating MobileViT’s global
self-attention mechanism into the BEV feature map, distant
regions of interest can be interconnected (merge these dispersed
pillar features), enabling the network to capture the overall
outline of distant targets more effectively. However, per-
formance for medium and large boats at shorter distances
(Dist ≤ 30 m) decreases. Although the hybrid backbone empha-
sizes global information, its integration with the original CNN
layers may lead to conflict with the local feature extraction
of the 2-D CNN. In other words, the network might fail to
achieve the optimal balance between global modeling and local
feature extraction because the fine local features extracted by the
CNN are weakened by the influence of MobileViT. Therefore,
to improve overall performance when incorporating the hybrid
backbone, enhancing the network’s ability to effectively extract
fine local details is required.

Interestingly, small boat detection improves in the interval
of (10 m < Dist ≤ 30 m). This outcome likely stems from the
fact that, at this range, the point cloud feature captures for small
boats remain sparse relative to medium or large vessels. Instead
of detailed local features, broader global characteristics appear
more decisive here. Consequently, incorporating the MobileViT
into the backbone enhances detection in a similar manner to how
it benefits medium and large boats beyond 30 m.

Nevertheless, based on the analysis above, the detection of
small boats remains particularly challenging at both close and far
distances. At closer ranges, small boats often occupy only a few
pillars despite having many points per pillar, which makes the at-
tention mechanism overly sensitive to noise and local variations.
At longer ranges, by contrast, point clouds become excessively
sparse, limiting the model’s ability to extract reliable features.
These factors, combined with the relatively small number of
training samples for small boats, contribute to their reduced
detection performance. Several remediation strategies may help
mitigate these issues. First, augmenting the training data set with
additional small-boat samples across different distance intervals
could improve generalization and address data imbalance. Sec-
ond, leveraging temporal information from sequential LiDAR
frames may stabilize predictions for targets with very few pillar
spans. Third, multimodal fusion (e.g., incorporating camera
data) could complement LiDAR sparsity by providing richer
appearance cues. Finally, higher resolution LiDAR sensors or
adaptive pillarization strategies may enhance point density for
small objects, thereby reducing sensitivity to both noise and
sparsity. While these directions lie beyond the scope of the
present study, they represent promising avenues for future work
to further improve small-boat detection.

In summary, PointPillar integrated only with the attention-
based PFN fails to achieve consistent improvements. This out-
come likely arises because the local attention mechanism, al-
though helpful in specific scenarios, lacks broader contextual
insights and can be hindered by sparse or large targets. Similarly,
employing only the hybrid backbone improves global feature

modeling but does not adequately preserve detailed local fea-
tures for particular classes or distance ranges. Once the attention-
based PFN and the hybrid backbone are integrated, however,
local geometric cues in each pillar are refined and reinforced by
more effective global feature fusion in the 2-D backbone. This
joint arrangement compensates for each module’s individual
weaknesses, explaining why the combined approach outper-
forms either single-module extension of the baseline.

2) U-MPCD — Probabilistic Networks: In this section,
the proposed MPCD network is combined with three prac-
tical Bayesian methods—MC-Dropout, deep ensemble, and
MIMO—to quantify predictive uncertainty. For each method,
we evaluate the prediction accuracy, uncertainty quality, and
inference speed. The uncertainty quality is assessed based on
two key aspects: sharpness (the concentration of the predicted
probability distribution) and calibration (the alignment between
predicted probabilities and actual outcomes). Table V presents
the detailed evaluation results, where the MPCD baseline does
not explicitly output uncertainty, leaving all six uncertainty
quality-related metrics listed as NA.

From the perspective of mAP, deep ensemble achieves the
highest detection accuracy at 86.57%, significantly higher than
the baseline’s 73.1%. MIMO follows at 74.58%, still outper-
forming the baseline, whereas MC-Dropout attains only 71.4%,
which is below baseline performance. This variance arises from
how each method manages weights and produces different
sets of predictions. MC-Dropout discards a portion of network
weights at inference (with a dropout rate of 0.4 here), intending
to approximate the predictive distribution via multiple random
samples. However, with a relatively high dropout rate of 0.4, cho-
sen to ensure sufficient stochasticity in the predictive distribu-
tion, randomly zeroing out “critical” weights can result in larger
performance fluctuations for the entire network, which partly
explains the weaker mAP. This limitation is further compounded
by the inherent reliance of MC-Dropout on random weight
masking rather than maintaining full model capacity as in deep
ensembles. Deep ensemble, on the other hand, combines the
outputs of four fully trained networks (identical architecture but
different initializations and random shuffles). Each individual
network retains its complete capacity and converges to a distinct
local minimum during training, so integrating their predictions
merges multiple perspectives, resulting in excellent accuracy and
robust uncertainty estimates. MIMO duplicates the pseudoimage
within the same network and assigns two independently learned
dense heads, merging their predictions to obtain multiple outputs
from a single forward pass. Although this does not match the
comprehensive weight diversity of a “multinetwork aggrega-
tion” as in deep ensemble, it still considerably improves mAP
and able to provides predictive distribution.

Further evaluation explores predictive uncertainty in terms
of sharpness. For CLS, the NLL and BS are employed, while
for REG, NLL and the ES are used. Deep ensemble attains
the lowest values among all models for both CLS and REG,
indicating a more concentrated predictive distribution that places
higher probabilities near the true target, resulting in strong
confidence regarding detected objects. Although MIMO and
MC-Dropout do not achieve the same level of sharpness as
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TABLE V
EVALUATION OF DETECTION ACCURACY AND PREDICTIVE UNCERTAINTY FOR EACH PRACTICAL BNN IMPLEMENTATION APPLIED TO THE MPCD, WHERE BS

DENOTES THE BS, ES IS THE ES, AND MCE AND ACE REFER TO MARGINAL AND ACE, RESPECTIVELY

TABLE VI
DETECTION ACCURACY AND UNCERTAINTY METRICS ACROSS DISTANCE RANGES FOR EACH BOAT CLASS

CLS REG

deep ensemble, their predictive outputs remain adequately con-
centrated. MIMO’s predictive distribution, although it scores
slightly higher than deep ensemble, remains sufficiently concen-
trated to inspire a reasonable degree of confidence in real-world
scenarios. By contrast, MC-Dropout exhibits higher CLS and
REG NLL values relative to MIMO, implying that randomly
discarding weights during inference increases distribution vari-
ability and undermines predictive consistency. Turning to
calibration metrics, the MCE assesses how closely CLS proba-
bilities align with actual occurrences, and the ACE gauges how
well REG outputs match ground truth. Deep ensemble achieves
the lowest MCE and relatively low ACE values, reflecting su-
perior calibration of its predictive distribution for both CLS
and REG tasks. MC-Dropout, in contrast, records the lowest
ACE but the highest MCE, implying a slight mismatch between
CLS probabilities and ground truth relative to deep ensemble,
yet better alignment in REG outputs. This could be attributed
to the regularization capacity of dropout. MIMO obtains an
MCE of 0.0364 which, while not as low as deep ensemble,
still outperforms MC-Dropout in CLS calibration. However,
MIMO’s REG calibration appears weaker, possibly because the

shared PFN and backbone modules restrict the model’s capacity
to capture diverse perspectives on uncertainty, leading to less
reliable variance estimates.

Regarding inference speed, the baseline model achieves
19.13 Hz, whereas deep ensemble and MC-Dropout, which both
require four forward passes, operate at only about 4.55 and
4.72 HZ, respectively. Although these methods impose a high
computational cost, they deliver the most robust performance
and uncertainty estimates. MIMO, on the other hand, produces
multiple outputs in a single forward pass, achieves 15.03 Hz,
indicating far greater efficiency than deep ensemble or MC-
Dropout. Considering the earlier findings, although MIMO does
not match deep ensemble in detection accuracy and uncertainty
quality, it still provides an effective balance among accuracy,
reliable uncertainty, and near-real-time speed, making it a prac-
tical choice for real-world applications that require both efficient
inference and robust uncertainty estimates.

Table VI presents the detection accuracy (AP), sample sizes,
and multiple uncertainty indicators (SE, AE, MI, ETV, and
ATV) for the U-MPCD (MPCD+MIMO) model across three
boat categories (small, medium, and large) at various distance
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intervals. The results show that across all classes and distance
intervals, aleatoric uncertainty (measured by AE and ATV)
contributes the most to the total uncertainty for both CLS and
REG tasks, compared to epistemic uncertainty (measured by MI
and ETV). This indicates that observational noise are the primary
drivers of uncertainty in this case, while the model’s knowledge
(epistemic uncertainty) plays a minimal role. Furthermore, as
distance increases and point clouds become sparser, the CLS task
remains relatively unaffected in terms of epistemic uncertainty,
as MI values stay consistently low across all distances and
classes. This suggests that the model is sufficiently trained and
confident in its ability to classify objects, even under challenging
sparse point cloud conditions. However, for REG tasks, the
increasing sparsity of the point cloud has a more significant
impact, as reflected in the steady rise of ATV with distance
for all classes. Interestingly, there is an outlier for small boats
at (10 m < Dist ≤ 20 m), where ETV is 0.0010 higher than at
greater distances. This is likely due to the very small sample size
for training in these conditions, which prevents the model from
learning properly.

Overall, the experimental results highlight that the proposed
U-MPCD effectively estimates predictive uncertainties, captur-
ing both epistemic and aleatoric components in real-time while
improving detection accuracy compared to the baseline MPCD.
These advancements enhance the safety and reliability of ASV
operations.

3) Visualized Results: Fig. 5 presents sample visualizations
of detection results from the baseline model (PointPillar), the
proposed deterministic network (MPCD), and the uncertainty-
aware variant (U-MPCD) in BEV. White bounding boxes
indicate deterministic predictions, while U-MPCD additionally
provides color-coded uncertainty-aware boxes. In scenario 1,
PointPillar’s predicted bounding box is too narrow to reflect the
target boat’s actual width, appears overly long, and is shifted to
the right rather than centered on the boat. By contrast, MPCD’s
bounding box prediction more accurately represents the boat’s
size and position. Consequently, in U-MPCD, the predictive
uncertainty for bounding box position, size, and heading remains
small, as indicated by the green bounding box closely over-
lapping the white one, and the correspondingly low quantified
uncertainty values. In scenario 2, PointPillar mistakenly treats
one large ship as two separate boats. MPCD addresses this issue
more effectively thanks to its stronger global context modeling.
However, since the bow of the vessel is not captured, predict-
ing its true length is challenging. As shown by the U-MPCD
results, the variance in the boat’s length is higher than its width,
indicating relatively greater uncertainty in length estimation.

In scenario 3, the model faces difficulties owing to limited
point cloud information for the target boat. As shown in the
visualized results for both PointPillar and MPCD, discrepancies
arise in the heading and size of the predicted bounding boxes.
Consequently, the predictive uncertainty remains high. In the
U-MPCD output, the variance of the bounding box size and
heading is notably large, resulting in a significant gap between
the red and white bounding boxes. In scenario 4, the challenging
boat highlighted in the scene has point cloud features consisting
only of a mast, which results in high predictive uncertainty.

Beyond this extreme case, boats located closer to the LiDAR
generally benefit from richer point cloud feature and therefore
display lower uncertainty, as demonstrated by the green box
closely matching the white one. In contrast, predictive uncer-
tainty grows with distance, where sparser point cloud features
translate into a wider gap between the green and white bounding
boxes. In addition, a false detection appears in the PointPillar
results but not in MPCD’s. The detailed uncertainty patterns of
these cases can be further examined in the 3-D visualizations
provided in Fig. 6. In scenario 5, background point cloud is
incorrectly identified as a boat, resulting in extremely high
predictive uncertainty for this erroneous detection.

V. ABLATION STUDY

A. Multihead Attention

To identify the optimal number of attention heads in the pillar
feature extraction stage, experiments were conducted with 1, 2,
3, and 4 heads, as shown in Table VII. With a single head, the
mAP is lowest at 36.20%, and the AP values for all classes are
also significantly small. This result likely arises from a single
head focusing exclusively on the most critical features in each
pillar and overlooking others, leading to an imbalance in feature
representation. Increasing the number of heads to two raises
the mAP to 42.72%, with modest improvements in each class,
reflecting a more balanced approach to feature extraction.

With three heads, the mAP climbs further to 51.21%, driven
by a substantial increase in the AP of medium and large boats,
although the AP for small boats drops to 40.70%. This suggests
that the extra attention heads may prioritize features beneficial
for medium and large boats, possibly due to the sample dis-
tribution in the training set. Finally, using four heads yields
the highest mAP of 58.64%, with notable improvements for
medium and large boats, demonstrating the capacity of mul-
tihead attention to comprehensively capture features across a
variety of object classes. However, inference speed decreases
slightly as more attention heads are introduced. Considering the
potential performance benefits and the associated increase in
computational cost, configurations with more than four heads
were not explored. Overall, a configuration with four heads is
selected, providing the best balance between detection accuracy
and computational efficiency.

B. Hybrid Backbone

This section provides an ablation study of various 2-D back-
bone designs as shown in Table VIII, keeping a four-head
attention PFN fixed. Initially, Swin ViT was adopted as the 2-D
backbone, but its detection accuracy drop significantly below
that of the baseline PointPillar. A possible reason is that Swin
ViT requires larger data sets and carefully tuned hyperparam-
eters to function effectively. The limited data set in this study
prevents full optimization of the Swin ViT parameters.

Subsequently, a modified lightweight MobileViT was used as
the 2-D backbone, showing better overall performance than Swin
ViT and suggesting that a lighter model is more appropriate for
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Fig. 5. Visualization results of detection across five challenging real-world scenarios for PointPillar (baseline), MPCD, and U-MPCD in BEV. The first column
shows the RGB image, while the following columns present LiDAR-based detections for each model. For PointPillar and MPCD, bounding boxes are shown
in white to indicate deterministic predictions. For U-MPCD, both white bounding boxes (deterministic predictions) and additional uncertainty-aware bounding
boxes are shown, with colors representing predictive uncertainty (green=low, yellow=moderate, red=high). The quantitative predictive uncertainty for the most
challenging object in each scenario is also reported.

TABLE VII
COMPARISON OF VARIOUS MULTIHEAD ATTENTION CONFIGURATIONS IN THE PILLAR FEATURE NET
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Fig. 6. Additional qualitative visualization results focusing exclusively on U-MPCD outputs in 3-D view. Both predicted classes and confidence scores are shown,
along with uncertainty-aware bounding boxes (green=low, yellow=moderate, red=high). Compared to the BEV visualizations, these 3-D results emphasize how
uncertainty estimates complement CLS and REG outputs, offering more interpretable and spatially informative indicators of detection reliability in diverse maritime
scenarios.

the small size data set. However, MobileViT did not substantially
improve detection across all classes. For instance, medium and
large boat AP values increase significantly, but small boat AP
remained low, implying a limited capacity to capture detailed
local features. To address this limitation, a multiscale fusion
strategy was introduced in MobileViT, extracting feature maps

from different scales, reshaping the output of each scale to 128
channels, and then concatenating them to enhance local feature
representation. Although these changes led to improved small-
boat detection accuracy, the expected overall performance was
not achieved, likely due to MobileViT’s inherent constraints in
extracting local features.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University College London. Downloaded on November 19,2025 at 15:35:45 UTC from IEEE Xplore.  Restrictions apply. 



20 IEEE JOURNAL OF OCEANIC ENGINEERING

TABLE VIII
COMPARISON OF VARIOUS 2-D BACKBONE CONFIGURATIONS

Therefore, to leverage the CNN backbone’s ability to capture
fine local features, the multiscale MobileViT is integrated with
the original CNN backbone to form a hybrid design, aiming to
learn both local and global features more effectively. Because
two substantial modules were merged, the initial design choice
was to reshape each scale’s feature output in MobileViT to
only eight channels to reduce computational cost. However,
experimental results showed that overly compressing features
during upsampling led to an increased proportion of noise and a
final mAP of just 27.04. Ultimately, assigning 48 output channels
per MobileViT stage created a more balanced tradeoff between
local and global feature extraction, producing a 73.1% mAP
and only marginally lower inference time. This configuration
represents the final MPCD model. In addition, incorporating
a squeeze-and-excitation module further improved accuracy
for certain classes but incurred a slight increase in inference
time.

VI. CONCLUSION AND LEARNED LESSONS

In this article, we first introduced the MPCD, specifically de-
signed for ASVs operating in maritime environments. The pro-
posed model addresses the real-time demands of maritime object
detection using LiDAR-captured point clouds. The proposed
model is built upon PointPillar for its fast inference speed and
notable detection performance. Maritime environments present
unique challenges, such as large variance in target object size,
requiring a detection model capable of effectively capturing both
local features (e.g., fine-grained geometric details of a boat’s
edges or corners) and global features (e.g., the overall structure
or spatial layout of a boat in the scene).

To address these challenges, we proposed two modules within
the proposed MPCD model: the attention-based point feature
net (PFN) and the hybrid 2-D backbone. The attention-based
PFN employs a multihead attention mechanism to correlate
points within each pillar, enabling refined pillar-level feature
representation, which constitutes local features. These features
are then scattered back to form a 2-D pseudoimage. The hybrid
2-D backbone combines the original 2-D CNN backbone from
PointPillar with a modified MobileViT in parallel. By adopting

a multiscale encoder–decoder structure, this design leverages
the CNN’s capacity for local feature extraction while utilizing
MobileViT for effective global feature fusion, ensuring robust
learning of both fine details and broader spatial relationships.
Experimental results demonstrate that integrating the attention-
based PFN and the hybrid backbone improves the capacity for
capturing pillar-level local features through the attention mech-
anism and enhances the ability to extract global features using
the hybrid backbone. This synergistic combination achieves a
12.8% increase in detection accuracy compared to the baseline
model.

To further enhance the reliability of the proposed determin-
istic model, we integrated it with the multi-input multi-output
(MIMO) approach, a practical implementation of BNNs. This
integration enables the model to estimate predictive uncertainty,
resulting in the U-MPCD. Experimental results demonstrate
that U-MPCD effectively captures both epistemic and aleatoric
uncertainty while slightly improving detection accuracy by
2% compared to the deterministic MPCD. With an inference
speed of 15.03 Hz, U-MPCD aligns well with the Velodyne
VLP-16 LiDAR update frequency of range from 5 to 20 Hz,
making it suitable for real-time ASV operations. These advance-
ments significantly improve the safety and reliability of ASV
deployments.

The lessons learned through this research can be broadly
categorized into two aspects: data collection trials and detection
model development. Regarding data collection, the key insights
are as follows.

1) LiDAR Performance and Point Cloud Sparsity: The on-
board Velodyne 16-line LiDAR, specified to have a range
of up to 100 m, exhibits significant point cloud sparsity
in real-world maritime data collection. Once a target boat
exceeds 30 m, the captured features become extremely
sparse, often reducing large ships to a single line of
points and making object detection challenging. This
limitation is even more critical for small boats, whose
returns may disappear almost entirely at longer distances,
resulting in reduced detection accuracy. Unlike ground
vehicles, which are typically closer to LiDAR sensors,
boats in maritime environments are farther away, further
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exposing the limitations of low-line-count LiDAR in terms
of both operational range and vertical resolution. With
only 16 channels, the wide vertical spacing between beams
leads to poor coverage of large vessels beyond 20–30 m,
with long ships (e.g., 40 m in length) often appearing
as just a thin line of points. These factors collectively
highlight the importance of considering LiDAR specifi-
cations when deploying perception systems in maritime
environments and point to the need for sensors with
higher resolution and extended range to support reliable
detection.

2) LiDAR Occlusion and Sensor Placement: The LiDAR
setup on a boat is more likely to experience self-occlusion
due to the vessel’s large structure. In contrast, LiDAR
on ground vehicles can be easily mounted on the roof,
providing an unobstructed 360◦ field of view with min-
imal self-occlusion. To mitigate this issue, multiple Li-
DAR sensors can be strategically positioned at different
locations on the boat to achieve comprehensive 360◦ cov-
erage while minimizing occlusions caused by the vessel
itself. This setup requires careful calibration between sen-
sors to ensure accurate data fusion. Alternatively, a single
LiDAR sensor can be used but should be optimized to
focus specifically on the area of interest.

Regarding detection model development, the lessons learned
are as follows.

1) Training Sample Imbalance: The model’s performance is
constrained by the relatively small and imbalanced data
set used for training. Specifically, certain object cate-
gories, such as small boats, may be underrepresented,
leading to biased learning and reduced detection accuracy
in those cases. Future work should focus on expanding
and diversifying the training data set to better evaluate
the model’s generalization capabilities. In addition, to
reduce the need for extensive manual labeling, exploring
unsupervised or semi-supervised learning methods could
be beneficial, enabling the model to learn from unlabeled
or partially labeled data while improving scalability and
adaptability.

2) Balancing Local and Global Feature Extraction: Achiev-
ing effective boat detection in maritime point clouds re-
quires a careful balance between local and global feature
extraction. Multihead attention in the PFN enhances pillar-
level feature extraction but struggles when objects span
too few or too many pillars, making it overly sensitive
to noise or failing to capture complete object structures.
Meanwhile, the hybrid backbone improves global feature
aggregation, particularly for long-range targets, but may
suppress fine-grained local details at shorter distances due
to conflicts with CNN-based feature extraction. Our exper-
iments show that using only one of these modules can de-
grade overall performance, while their integration refines
local geometric cues and strengthens global spatial rela-
tionships, leading to a well-balanced, high-performance
detection model. This finding underscores the necessity
of jointly leveraging both local and global information to
overcome the challenges of maritime perception.

3) Challenges in Detection Accuracy Under Sparse Point
Clouds: The model’s REG accuracy decreases at longer
distances due to the increased sparsity of point cloud data,
which reduces the geometric information available for
bounding box estimation. This limitation is particularly
pronounced for small or distant boats, where the lim-
ited number of reflected points makes accurate detection
especially challenging. Despite improvements in feature
extraction, the absence of sufficient raw data remains a
fundamental constraint. To address this, future work could
investigate advanced feature enhancement strategies, such
as multiframe temporal fusion, point cloud upsampling,
or multi-modal fusion with complementary sensors (e.g.,
cameras or radar). On the hardware side, higher-resolution
or multi-LiDAR configurations could help alleviate spar-
sity. In controlled experiments, adding reflective panels
or markers to small vessels may also increase the density
of captured points. Collectively, these approaches repre-
sent promising directions for improving both small-object
detection and long-range performance in sparse maritime
point clouds.

4) Deployment on Constrained Computing Platforms: All
experiments in this study were conducted using a high-end
GPU (RTX 4090), which may not reflect the hardware
constraints of embedded systems or edge devices typically
available on ASVs. Although our model achieves real-time
performance relative to LiDAR update rates in this setup,
deployment on embedded platforms will likely require ad-
ditional optimization. Potential approaches include model
compression techniques (e.g., pruning, quantization, or
knowledge distillation), efficient backbone architectures
tailored for edge devices, and hardware acceleration using
FPGAs or dedicated artificial intelligence (AI) proces-
sors. Future work will evaluate the tradeoffs between
detection accuracy, uncertainty estimation, and inference
speed when deploying the proposed method on embedded
systems in real maritime environments.
While this study focuses on maritime environments, the
proposed framework has the potential to be extended
to other domains, such as autonomous driving with au-
tonomous ground vehicles (AGVs) and aerial perception
with autonomous aerial vehicles (AAVs). In road-based
scenarios, where objects, such as cars and trucks, are typi-
cally closer to the sensor and exhibit less point cloud spar-
sity, the framework could be used to investigate how un-
certainty estimation contributes to safety-critical decision-
making, especially for small or distant targets. Similarly,
in aerial robotics, UAVs often encounter sparse point
clouds due to altitude and sensor limitations, presenting
challenges analogous to maritime perception. Evaluating
our method in such cross-domain settings would not only
highlight its adaptability but also help to systematically
identify its limitations. These studies represent a promis-
ing avenue for future research and could further demon-
strate the importance of tailoring perception frameworks
to the unique sensing and operational constraints of each
domain.
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