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SUMMARY

Polymer electrolyte fuel cells (PEFCs) are promising for mobile and stationary applications, but short oper

ational lifetimes and frequent faults limit their commercial viability. This work introduces a black-box diag

nostic method using multifrequency Walsh function perturbation signals to detect water management and 

starvation faults. The approach improves signal-to-noise ratio and accuracy without harming the cell. Using 

voltage response as the diagnostic variable, dense neural networks (DNNs), 1D convolutional neural net

works (1D-CNNs), and support vector machines (SVMs) were tested. All models accurately classified normal, 

drying, and starvation conditions in a single PEFC, with 1D-CNN and SVMs reaching 100% accuracy. How

ever, model generalization to a different PEFC was poor. Including data from multiple PEFCs significantly 

improved performance, with the 1D-CNN showing superior generalization, even when trained on limited un

seen data. This establishes the 1D-CNN as the most effective model for robust, scalable PEFC diagnostics 

across varied datasets.

INTRODUCTION

As the global population rises, a fundamental shift away from 

fossil fuels is urgently required to satisfy the increasing energy 

demand of the modern world. Not only is the extraction and com

bustion of fossil fuels detrimental to the environment due to their 

associated greenhouse gas emissions, but sources of oil, coal, 

and natural gas are becoming increasingly expensive and diffi

cult to extract. Polymer electrolyte fuel cells (PEFCs) have the 

potential to play a crucial role in solving some of these issues, 

producing no harmful emissions during their operation. They 

are cleaner and more efficient than traditional combustion en

gines. However, one of the largest factors limiting the commer

cial ubiquity of PEFCs is their high likelihood of faults. For the 

operation to remain stable, PEFCs must be controlled within a 

narrow range of operating conditions; deviation from these con

ditions leads to enhanced degradation and performance losses.1

Although some faults can be corrected via control action (recov

erable faults), certain faults can only be rectified via the complete 

replacement of components (permanent faults). Water manage

ment is a critical issue for PEFCs, accounting for over 50% of all 

failures and can be divided into flooding and drying faults.2 Dry

ing reduces the ionic conductivity of the membrane and, in addi

tion to performance decline, can also result in permanent mem

brane degradation since it becomes more brittle and prone to 

cracks and pinholes.3 Hence, it should be noted that if recover

able faults are not detected in time, their status will exacerbate, 

often leading to permanent faults and damage to the materials in 

the fuel cell. There is a clear motivation for efficient fault diag

nosis strategies to identify and rectify faults before they irrevers

ibly worsen.

Fault diagnostic strategies can be classified into offline and 

on-line methods. Offline methods involve experiments that 

take place under laboratory conditions and may require disas

sembly of the PEFC.1 While these techniques are especially use

ful in understanding the fundamental characteristics and behav

iors of PEFCs, their intrusive nature makes them inappropriate 

for onboard, real-time use in operational cells. In contrast, on- 

line diagnosis techniques only use (often crude) signals from 

the sensors attached to the PEFC to estimate its state of health 

(SoH). Although this means that measurements can be taken 

more quickly and continuously compared to offline techniques, 

much less physical information on the SoH of the PEFC is real

ized with each measurement. Therefore, computational models 

are integrated to assist in the diagnostic procedure, improving 

the accuracy of SoH estimations and providing meaning to the 

sensor data.4 On-line techniques can be classed as model- 

based (white-box), data-driven (black-box), or a combination 

of the two (grey-box).

In model-based fault diagnosis, a mathematical model repre

senting the real process runs alongside the PEFC during opera

tion. Consisting of theoretical differential and/or algebraic equa

tions, the process model takes the same input conditions 

received by the operating PEFC to generate an output. The 

model output is then compared with the output data of the 

PEFC, and the difference between the two ‘‘residual’’ is calcu

lated; a residual of zero indicates normal operation, while a 

non-zero residual signifies the presence of a fault. In 2009, 
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Escobet et al.5 modified the MATLAB/Simulink PEFC model 

developed by Pukrushpan et al.6 to include a set of six different 

fault states. The faults were implemented into the model via the 

sensitivities of the residuals, allowing the SoH to be identified 

based on the relative values of the model residuals. The fault re

gions could then be displayed in the three-dimensional residual 

space, with the health of the PEFC being predicted based on the 

Euclidian distance between the position of the system itself and 

the six different faults. While this demonstrates how a white-box 

model can successfully identify faults in real-time, it is too 

computationally demanding to be applied to a real system due 

to the large number of model equations involved. Moreover, 

since the model is a representation of the physical system, a 

perfectly accurate model simply cannot exist; hence, the model 

uncertainty must also be considered, further increasing its over

all complexity.7 In the future, advances in onboard computing 

power may increase the viability of white-box models as a means 

for fault identification; however, as they stand, they are too com

plex to implement on-line.

Due to the intricacy of white-box models, black-box models 

are becoming increasingly popular due to their simplicity and 

speed. Rather than being based on fundamental physical equa

tions, black-box models are derived from experimental data

sets and diagnose faults via machine learning algorithms, which 

classify the experimental data into different health states. How

ever, this limits their genericity compared to their white-box 

counterparts, whose model parameters can be easily adjusted 

to reflect other PEFCs; instead, black-box models require a 

large historical dataset from the exact/similar PEFC to 

function effectively. One of the most widely used black-box 

models is the artificial neural network (ANN), consisting of no

des or ‘‘neurons’’ organized into layers with the nonlinear acti

vation function, through which information can pass and be 

classified.8

The use of neural networks in fuel cell diagnostics has 

increased in the last 15 years or so. In 2010, Yousfi Steiner 

et al.9,10 attempted to identify water management issues in 

PEFCs using a recurrent neural network (RNN), whereby the out

puts of some neurons are fed back to previous layers, facilitating 

the storage of time-series data. When a fault occurred in the 

PEFC, its output deviated from that of the RNN, generating a re

sidual and allowing the fault state to be detected. Although the 

RNN modeled the system well, its ability to be generalized to 

other PEFC systems was significantly reduced since it was fitted 

too heavily to the exact PEFC used in the experiments. In 2013, 

to improve the issue of generalization, Shao et al. used an ANN 

ensemble to identify four different faults associated with the 

cooling and reactant delivery systems.11 As proposed by Han

sen and Salamon, ANN ensembles consist of multiple sub- 

ANNs, which are trained separately before combining their out

puts to form an ensemble output.12 This, therefore, improves 

their generalization capability, since each sub-ANN can be 

trained on a different physical variable of the PEFC, preventing 

overfitting to any specific variable. When testing its performance, 

the ANN ensemble achieved a diagnostic accuracy of 93.24%, 

representing a significant improvement over the accuracies of 

the sub-ANNs alone, which ranged in accuracy from 75.24% 

to 85.62%. Support vector machines (SVMs) are a more recently 

developed subset of machine learning algorithms which formu

late a hyperplane in a multidimensional space and classify data 

depending on which side of the hyperplane it lies.13 It was 

applied to PEFC fault diagnosis in 2016 by Li et al.,14 who devel

oped an on-line platform to predict SoH in real time based on the 

cell voltage profiles of cells within a stack. Attaining a global clas

sification accuracy of 84.98%, it was concluded that the main 

reason for reductions in accuracy was due to the time delay of 

the on-line model. Furthermore, since the model was pre-trained 

on laboratory data, it did not account for the aging effect of the 

PEFC; long-term performance degradation could cause the 

cell voltages to become too dissimilar from those used to train 

the model, reducing diagnostic accuracy.

Electrochemical impedance spectroscopy (EIS) is a widely 

used diagnostic technique in electrochemical systems and in

volves the perturbation of the operating state using a sinusoidal 

current/voltage and recording the amplitude and phase of the 

corresponding voltage/current response. The perturbation 

signal frequencies range from around 0.1 Hz to 10 kHz, such 

that processes acting over a wide range of timescales can be 

explored,15 though the measurements must be carried out 

sequentially and thus EIS has a time period of several minutes 

for measurement. Recently, we combined all the testing fre

quencies into a single multifrequency signal via summation to 

solve the long measurement time problem associated with 

EIS.16 This was then used to perturb the PEFC, with the corre

sponding AC (alternating current) voltage response being 

measured. Traditionally, the system response is converted to 

the frequency domain and analyzed with Nyquist plots; however, 

in this case, the data were kept in the time domain for two main 

reasons. Firstly, all the information available in the Nyquist plots 

is also available in the AC voltage response of the system, albeit 

heavily convoluted. Secondly, conversion to the frequency 

domain is often time-consuming and computationally 

demanding; to diagnose the system as quickly as possible, 

removing this stage of the process helped significantly. The AC 

voltage response was used directly as the diagnostic variable 

for the input to a 1-dimensional convolutional neural network 

(1D-CNN), which was trained with samples corresponding to 

flooding, drying, and normal operating states, producing a diag

nostic accuracy of 100%. Despite this, a drawback of the meth

odology is that the summation of the perturbation signals in

creases the overall amplitude of the multifrequency signal. 

Typically, a perturbation amplitude of 5%–10% of the DC current 

is used since excessive amplitudes alter the operation of the 

PEFC, while diminutive amplitudes are hidden in operating noise, 

reducing measurement accuracy.17

A recent study,18 which followed up on the proposed AC 

voltage response, improved diagnostics by selecting key fre

quency points via the distribution of relaxation times. This work 

takes a step further and focuses on developing a methodology 

to diagnose PEFC faults in a fast, on-line and nonintrusive 

manner to maintain optimal operation and improve durability. 

The final objective is for these efforts to help realize the commer

cial ubiquity of PEFCs, providing a reliable and clean alternative 

energy source for use in mobile or stationary applications.

Elsewhere, recent work has explored methods to improve the 

generalizability of PEMFC fault diagnostic methods to reduce the 
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reliance on extensive fault data. Gong et al.19 developed a digital 

twin platform to simulate fault data, which was used to train a 

temporal convolutional network (TCN). This learning was trans

ferred to a different fuel cell system via a domain adaptive trans

fer convolution network (DATCN), achieving 98.5% accuracy. 

While accurate, this method relies on sufficient similarity 

between the digital and physical systems, which cannot always 

be guaranteed. Chen et al. utilized long short-term memory 

(LSTM) networks to identify insulation faults in fuel cell vehi

cles.20 Again, their model demonstrated a high accuracy of 

99.91%; however, its application was fault specific, limiting its 

broader use.

In this work, we demonstrate that utilizing the Walsh function 

to construct multifrequency perturbation signals can effectively 

maximize the signal-to-noise ratio between the AC voltage 

response and normal operating noise. For the same perturbation 

signal amplitude, the Walsh function can generate a larger PEFC 

voltage response in comparison to the summation method, solv

ing the issue of excessive perturbation amplitude faced in previ

ous work.16 We also demonstrate the generalization capabilities 

of the 1D-CNN algorithm, in comparison to other neural network 

and SVM models, by training and testing it on two physically 

different membrane electrode assemblies (MEAs).

Figure 1. Construction of multifrequency 

perturbation signal using multisine summa

tion 

(A) Individual AC signals ranging from 1 Hz to 

512 Hz used to construct the multifrequency 

perturbation signal via multisine summation. 

(B) Final multifrequency perturbation signal. The 

maximum amplitude of 0.5 A corresponds to 5% 

of the nominal 10 A DC current.

RESULTS

Signal generation and acquisition

To perform the simultaneous multifre

quency perturbation technique as out

lined by Zhou et al.,16 a Reference 3000 

potentiostat/galvanostat (Gamry Instru

ments, USA) was used to apply AC per

turbations to the PEFC and record the 

corresponding voltage response, with a 

sampling frequency of 10 kHz. Multifre

quency perturbation signals with dura

tions of 4 s (any data after the first 1 s is 

just for extra and repetitive information) 

were applied, followed by a 4 s period 

to allow the PEFC to return to its steady 

state operation. This was repeated 200 

times (1,600 s) for each SoH, with the 

AC voltage responses used directly as 

the inputs for diagnostic machine- 

learning algorithms.

Two different methods were used for 

the formulation of the AC perturbation 

signals. First, the summation method 

used by Zhou et al. was investigated,16 whereby the signals of 

each frequency are simply added together to obtain one multi

frequency signal. To probe processes of different time scales 

within the PEFC signals across a spectrum spanning from 

1 Hz to 512 Hz were used, as shown in Figure 1A. In this way, 

the range of testing frequencies used in EIS (such that pro

cesses acting over a wide range of timescales can be explored) 

is combined into one multifrequency signal. Hence, we are un

able to produce a Nyquist plot; however, all the information 

available in the Nyquist plot is also available in the PEMFC 

voltage response, albeit heavily convoluted. This complexity 

presents an opportunity to leverage machine learning algo

rithms, which can extract this convoluted information that is 

invisible to the human eye. High-frequency signals are included 

to probe short-time scale processes (e.g., ohmic resistance) 

while low-frequency signals are included to probe long-time 

scale processes (e.g., mass transport resistance) such that no 

key frequency bands are omitted.

Denoting these frequencies as fk(t), the multifrequency signal 

fM(t) can be expressed as:

fM(t) = K⋅
∑

k
fk(t); k ∈ {0;…; 9}; (Equation 1) 
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where fk(t) = sin
(
2k2πt

)
; k ∈ {0;…;9} (Equation 2) 

The amplitude of fM(t) is controlled by the scaling constant K. 

The perturbation amplitude was set at 5% of the operating cur

rent; at 400 mA cm− 2 with an active area of 25 cm2, the current is 

10 A, so the maximum amplitude of fM(t) was set at 0.5 A, as 

shown in Figure 1B. The second method used was based on 

the Walsh function (WF), which generates a square binary signal 

according to Equation 3:

fk(t) = sgn
(
sin

(
2k2πt

))
(Equation 3) 

The signum function sgn(x) is a piecewise function defined as 

follows:

sgn(x) =

⎧
⎨

⎩

− 1; if x < 0

0; if x = 0

1; if x > 0

(Equation 4) 

Hence, the 10 individual WF frequencies from 1 Hz to 512 Hz 

can be visualized as in Figure 2A. The multifrequency WF signal 

can then be formulated via Equation 5, summing the individual 

frequencies and passing them through another signum function:

fM(t) = K⋅sgn

{
∑

k

sgn
{

sin
(
2k2πt

)}
}

; k ∈ {0;…;9}

(Equation 5) 

The scaling constant K can then be used to adjust the ampli

tude to 0.5 A, yielding the signal displayed in Figure 2B.

Diagnostic algorithms

The AC voltage responses were used directly as the diagnostic 

variables for SoH predictions; this was achieved by passing 

the voltage responses as inputs to three machine learning algo

rithms: dense neural networks (DNNs), one-dimensional convo

lutional neural networks (1D-CNNs), and support vector ma

chines (SVMs) using linear and radial basis function (RBF) 

kernel functions. Further details can be found in the Data S1: 

Diagnosis algorithms. DNNs were used as they can model com

plex, non-linear relationships in high-dimensional data, which 

aligns well with the nature of the AC voltage responses; however, 

they can be prone to overfitting when data are limited.

The DNN was built using TensorFlow 2.15.021 in Python 3.10.2 

according to the structure outlined in Table 1 and Figure 3A. 

Figure 2. Construction of multifrequency 

perturbation signal using Walsh function 

method 

(A) Individual AC signals ranging from 1 Hz to 

512 Hz used to construct the multifrequency 

perturbation signal via the Walsh function method. 

(B) Final multifrequency perturbation signal ob

tained using the Walsh function method.
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1D-CNNs, on the other hand, are well-suited for capturing spatial 

patterns in sequential data, such as those found in the voltage re

sponses, potentially reducing the chance of overfitting. The 1D- 

CNN was also built using TensorFlow according to the specifica

tions in Table 2 and Figure 3B. Both networks were trained via 

the minimization of their cross-entropic losses as outlined in 

Equation S5. SVMs were included for their memory efficiency, 

as they calculate optimal decision hyperplanes without relying 

on the full dimensionality of the input space. This is advanta

geous given the high information content and large size of the 

AC voltage responses; however, their performance is known to 

degrade with highly non-linear data. The SVM models were im

plemented using scikit-learn 1.2.222 in Python 3.10.2. Additional 

details regarding the architecture of these algorithms are pro

vided in the supplemental information.

Perturbation signal comparison

To compare the two types of perturbation signals, the PEFC was 

operated under normal conditions while applying AC perturba

tions, alternating between the multisine and WF signals from 

Figures 1B and 2B, respectively. A 40 s sample of the cell voltage 

can be seen in Figure 4, highlighting the regions where each 

perturbation was applied.

Figure 4 highlights that, for the same perturbation amplitude, 

the WF signal is able to generate a response in the cell voltage 

that is approximately two times larger than that generated by 

the multisine signal; it is, therefore, easier to differentiate be

tween the WF response and the normal voltage noise of the 

PEFC. In comparison, the low signal-to-noise ratio of the multi

sine signal can result in measurement errors when passed 

through subsequent machine learning (ML) algorithms, since it 

becomes harder to distinguish between the AC voltage response 

and the normal voltage noise, as discussed by Giner-Sanz 

et al.23 Obtaining a similar response amplitude with the multisine 

method would require an increase in the perturbation signal 

amplitude. However, this is detrimental since the system needs 

to be maintained in a steady state; thus, the perturbation ampli

tude must be large enough to avoid measurement errors but 

small enough to prevent deviation from the normal operation. 

The improvement in signal-to-noise ratio was investigated in pre

vious work by Zhou et al.,24 who analyzed the fast fourier trans

form frequency spectra of both the WF and multisine signals. It 

was found that the WF signal had nearly twice the amplitude 

for each frequency. Therefore, the WF perturbation is superior 

to the multisine signal since, for the same amplitude, it can 

generate a larger voltage response in the PEFC, solving the issue 

of excessive perturbation amplitude faced in previous work.16

Fault diagnostic procedure

The potentiostat was used to apply the perturbation signals 200 

times to the PEFC during each fault state. Since the variation of 

the voltage is the variable of concern (i.e., the response to the 

applied perturbation), each voltage sample was subtracted 

from the first value in the sequence. This has the effect of elimi

nating the DC voltage component, leaving behind the AC 

component, and also serves to normalize the data, transforming 

the voltage responses to be on a similar scale of ±0.1 V to 

improve the training stability and performance of any subse

quent ML models.25 Hence, the voltage responses were pro

duced for all three fault states as displayed in Figure 5, ready 

to be passed directly into ML algorithms as the diagnostic vari

ables for classification.

Although the perturbation signal remained unchanged for 

each sample, the AC voltage responses were observed to be 

different under different health states. However, for samples 

within the same health state, the voltage responses remained 

similar. Figure 5 shows the drying, normal, and starvation voltage 

responses, as well as locally enlarged versions to identify the 

subtle differences between health states. Looking at the locally 

enlarged plot for the normal state, the voltage response remains 

at approximately +0.005 V for all samples with less variability. In 

contrast, for the drying and starvation states, the responses are 

more erratic and increase rapidly to over +0.010 V. While these 

subtle differences between the voltage responses can be 

noticed by the human eye, neural networks and other ML algo

rithms that excel at pattern recognition can utilize all of the rich 

information stored within the responses, instantly and accurately 

distinguishing between them.

Performance of different algorithms

The hypothesis was that the 1D-CNN would perform best due to 

its unique ability to extract spatially correlated features from the 

information-rich voltage responses. The DNN was expected to 

be more prone to overfitting and computationally intensive due 

to the larger number of parameters involved in its architecture. 

However, it facilitates a direct comparison to the 1D-CNN, high

lighting the effectiveness of its convolutional layers. Finally, the 

SVM was hypothesized to achieve high accuracy if the voltage 

responses in the feature space were clean and well separated 

but struggle if noisy and overlapping.

The voltage responses were divided into a train-test split of 

80:20, whereby 480 random responses were used to train the 

DNN, and the remaining 120 were used to evaluate its accuracy. 

The diagnostic results can be seen in Figures 6A and 6B. Despite 

the large number of parameters to be trained, after 100 complete 

passes through the training data (epochs), the DNN reached a 

training accuracy and loss of 98.38% and 0.0983, respectively, 

demonstrating that the network was able to successfully converge 

and diagnose the SoH based on the AC voltage response. Howev

er, the instability and fluctuations during training are typical indica

tors of underfitting, where the network struggles to correctly 

Table 1. Properties of each layer of the fully connected deep 

neural network

Layer Dimension Parameters Activation

Input (40001, 1) – –

D1 (512, 1) 20,481,024 ReLU

D2 (64, 1) 32,832 ReLU

D3 (3, 1) 195 Softmax

The input layer has a size of 40001 since the voltage response was used 

directly as the input to the network and was recorded for 4 s by the Gamry 

potentiostat at a sampling rate of 10 kHz (10,000 samples per second). 

The output layer has a size of 3 since the predicted health state is either 

normal, drying, or starvation. D, dense layer.
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predict the unseen data as the parameters have not been fully opti

mized.26 Nevertheless, the DNN was able to converge and per

formed well on the test data, achieving a diagnostic accuracy of 

99.17%, only misclassifying one of the 120 test voltage responses, 

as revealed in Figure 6B, where the rows of the confusion matrix 

indicate the actual SoH while the columns indicate the predictions. 

Due to the stochastic nature of the Adam optimizer, random initial

ization of the network parameters, and random train-test partition, 

the diagnosis results may vary slightly between executions.27

The diagnostic accuracy of the 1D-CNN was also investigated, 

repeating the same procedure as before. Figure 6C indicates that 

the 1D-CNN converged faster and more smoothly than the DNN 

during training, suggesting that the optimized parameters fit the 

data more closely. Unlike the DNN, where the neurons between 

each layer are fully connected, the convolutional layers connect 

each neuron to a region of neurons in the previous layer, reducing 

the number of connections in the model.28 The 1D-CNN pos

sesses ∼12 times fewer parameters than the DNN, as indicated 

by Tables 1 and 2, reducing the computational demand on the opti

mizer. This is an important factor for on-board and real-time diag

nosis in operating systems. In addition, the convolutional and pool

ing layers within the network reduce the dimensionality of the AC 

voltage response input, extracting spatially correlated features. 

The dense layers are then used to diagnose the SoH based on 

this condensed feature map, rather than the entire voltage 

response as in the DNN, simplifying the optimization task and 

reducing convergence time.29 The 1D-CNN reached a training ac

curacy and loss of 100% and 2.291 ×10− 4, respectively, indicating 

a slight improvement over the DNN, and achieved a diagnostic test 

accuracy of 100% as shown in Figure 6D.

Figure 3. Architectures of the DNN and 1D-CNN models used for PEMFC fault classification 

(A) Schematic of the DNN structure showing layer types and dimensions. D, dense layer. 

(B) Schematic of the 1D-CNN structure. Convolutional and max pooling layers reduce input dimensionality and extract local features. C, convolutional layer; MP, 

maxpool layer.
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The diagnostic procedure was also repeated for the SVM 

models with linear and RBF kernels. Figures 6E and 6F demon

strate that both kernels were effective in classifying the 120 testing 

samples, achieving diagnostic accuracies of 100%. In general, 

SVM is known to perform efficiently in high-dimensional spaces; 

in this case, the dimension of the voltage responses is R40001, 

and the SVM models were still able to construct the classification 

hyperplanes with ease. Another key advantage of SVM is its mem

ory efficiency since it only needs the set of support vectors to 

make a prediction rather than the whole dataset.30 The large num

ber of parameters in the neural networks makes them relatively 

memory inefficient in comparison. However, as mentioned previ

ously, perfect diagnostic accuracy suggests that there are clear 

margins of separation between each SoH class; SVM is known 

to perform poorly when the training data have more noise; hence, 

when additional data are passed to the SVM model from a 

different MEA or operating condition, its accuracy could be signif

icantly reduced if there is any overlap between the datasets. This 

issue was investigated further by Sabzekar et al.,31 who used 

fuzzy SVMs to differentiate between outliers and reduce the effect 

of noisy data; however, this was not explored here.

Generalization procedure

To test the generalization capability of the models, an additional 

identical MEA was fabricated, and the fault procedure was 

repeated to obtain a further 200 voltage responses for normal, dry

ing, and starvation states. Thus far, the voltage responses were all 

taken from the same MEA at a similar point in its life; as the PEFC is 

operated over its lifespan, its performance will change accord

ingly, potentially altering the way it responds to the multifrequency 

perturbation signals and rendering the previously trained model 

obsolete. Hence, it is paramount to test if the model can predict 

the health states of PEFCs operating outside the training data 

range rather than being constrained to the original data.

Table 2. Properties of each layer of the 1-dimensional convolutional neural network

Layer Dimension Parameters Activation Filters Filter Size Filter Stride

Input (40001, 1) – – – – –

C1 (3991, 64) 6,464 ReLU 64 (100, 1) 10

MP1 (1995, 64) – – 64 (3, 1) 2

C2 (200, 32) 10,272 ReLU 32 (5, 1) 10

MP1 (100, 32) – – 32 (2, 1) 2

Flatten (3200, 1) – – – – –

D1 (512, 1) 1,638,912 ReLU – – –

D2 (64, 1) 32,832 ReLU – – –

D3 (3, 1) 195 Softmax – – –

C, convolutional layer; MP, max pool layer; D, dense layer. The output of the convolutional layers is flattened before it can be passed into the fully 

connected layer since it has a higher dimensionality from the number of filters used.

Figure 4. Comparison of cell voltage 

response to multisine and Walsh function 

perturbations 

Sample of the cell voltage response during alter

nating AC perturbations using multisine and Walsh 

function signals.
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The rationale behind repeating the data collection on a different 

MEA was to explore how the model deals with data from a 

different cell that is also performing ‘‘normally’’. The polarisation 

curves in Figure S2 were employed to compare the performances 

of the MEAs before commencing the testing procedure. These 

indicate that the unseen MEA had a better performance, 

achieving 39.0% and 61.9% higher power and current densities, 

respectively; since the unseen MEA had a different performance, 

it could be used effectively to investigate the generalization capa

bility of the models. The datasets from each MEA can be defined 

as follows:

D1 = Old MEA voltage responses 

D2 = Unseen MEA voltage responses 

Figure 5. Normalized voltage responses under different operating conditions for ML diagnostics 

(A–C) Normalized voltage responses used as diagnostic inputs under (A) drying, (B) normal, and (C) starvation conditions. While 200 responses were collected per 

condition, 11 representative samples are shown for clarity. 

(D–F) Locally enlarged sections of the voltage responses for (D) drying, (E) normal, and (F) starvation conditions, highlighting the rich diagnostic information 

embedded in the signal features.
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The algorithms were independently trained on D1 and tested on 

D2 to check if they could predict the SoH of an MEA that the model 

had never ‘‘seen’’ before. The diagnostic accuracies can be seen 

in Figures 7A–7D, indicating that the DNN outperformed the other 

models. Although the DNN was not able to fit as closely to the orig

inal data initially, this improved its generalisation capability, pre

dicting 72% of the unseen data correctly. Conversely, when 

tested on D2, the 1D-CNN and SVMs only predicted ∼33% of 

the unseen data correctly. Since there are three target classes, 

this accuracy indicates that the models were not able to distin

guish between any of the fault states between the two datasets.

To improve the generalization performance, datasets D1 and 

D2 were combined into one rich dataset to give the following 

train-test splits:

Training data = α(D1 + D2);

Testing data = (1 − α)(D1 + D2);

where α is the train split fraction set at 0.8. Thus, the models were 

trained using 960 random samples from D1 and D2, and were 

tested using the remaining 240 samples. From Figures 7E–7H, 

Figure 6. Training performance and classi

fication accuracy of ML models for PEMFC 

diagnostics 

(A) Training accuracy and loss curves for the DNN. 

(B) Confusion matrix for DNN classification 

results, with correct predictions along the prin

cipal diagonal. 

(C) Training accuracy and loss curves for the 

1D-CNN. 

(D) Confusion matrix for 1D-CNN test results. 

(E) Confusion matrix for the SVM classifier with a 

linear kernel. 

(F) Confusion matrix for the SVM classifier with a 

radial basis function kernel.

it is evident that the diagnostic accuracy 

for all models was improved by incorpo

rating data from both MEAs into the 

training set. This ensured that the models 

were fitted to the health states of both 

MEAs, rather than being constrained to 

one, as observed in Figures 7A–7D. The 

1D-CNN and linear-SVM performed simi

larly well, achieving diagnostic accu

racies of 99.2% and 98.8%, respectively. 

The DNN achieved a slightly lower accu

racy of 97.5% while the RBF-SVM per

formed notably worse, misclassifying 13 

starvation samples as normal.

Although these results suggest that it is 

necessary to train the models using data 

from both MEAs, this is not ideal as, for 

the model to predict the SoH of any 

generic MEA, it’s possible it would require 

previous data from the same MEA (though 

it could also be the case that training data 

containing a sufficiently large number and variation of MEAs 

would be able to classify unseen MEAs that are outside of the 

training dataset. This is impractical for several reasons, including 

the excessive amount of data required to train the models and the 

fact that, if an MEA changes unexpectedly during its lifetime, the 

model may no longer be able to predict its SoH, though more 

extensive investigations are required at this time to confirm this. 

Furthermore, the experimental results were obtained at the spec

ified operating conditions in Table 3; if the same MEA was oper

ated at a different current density, for example, there is no guar

antee that the model will perform successfully at conditions that 

it was not trained with. This highlights the main limitation of 

black-box models, being their dependence on a good-quality his

torical dataset, which is often difficult or impossible to obtain.

One potential solution to the issue of requiring a large training 

dataset is to reduce the number of samples from each individual 

MEA. In this way, a few samples from a wide variety of different 

MEAs at different points in their life and different operating con

ditions could be used, such that any normally operating MEA will 

fit somewhere into this range. This would avoid having to train 

with data from every MEA that makes use of the model, provided 

that the initial testing data are taken from an extensive range of 

iScience 28, 113350, September 19, 2025 9 

iScience
Article

ll
OPEN ACCESS



MEA ages and operating conditions. To test the concept of only 

including a small amount of unseen data from a different MEA, 

the train and test data were set up as follows:

Training data = D1 + βD2;

Testing data = (1 − β)D2;

where β is the fraction of D2 included in the training set. Varying β 
from 0 to 0.95 reveals the amount of D2 that needs to be present 

in the training set for the model to accurately predict the SoH. In 

essence, the algorithms were initially trained on D1 and tested on 

Figure 7. Generalization test confusion 

matrices for ML models using different 

training and test datasets 

(A–D) Confusion matrices showing model perfor

mance when trained on dataset D1 and tested on 

dataset D2 for (A) DNN, (B) 1D-CNN, (C) linear- 

SVM, and (D) RBF-SVM. 

(E–H) Confusion matrices after combining data

sets D1 and D2 into a single dataset, with models 

tested on 80% of this combined data: (E) DNN, (F) 

1D-CNN, (G) linear-SVM, and (H) RBF-SVM.

D2 as done previously. Then, the algo

rithms were retrained on D1 with an addi

tional 5% of D2, sampled randomly. This 

process was repeated in 5% intervals, 

incrementally increasing the amount of 

D2 in the training dataset; the results are 

displayed in Figure 8.

Figure 8 shows how the accuracies of 

the models increase as a larger fraction 

of D2 is added to the training set. When 

none of D2 was used to train the models, 

a 73.0% accuracy was achieved with the 

DNN in comparison to the ∼33% accu

racy obtained with the 1D-CNN and 

SVMs (as previously described). How

ever, when a larger proportion of D2 is 

used to train the DNN, its accuracy only 

increases slightly, plateauing at ∼90%. 

In contrast, although the 1D-CNN per

forms poorly when β = 0, its diagnostic 

accuracy quickly improves as it gets 

trained on a larger amount of D2, reach

ing a maximum of 99.1%. The steep in

crease in accuracy when a small addition 

of D2 is used to train the 1D-CNN is 

particularly appealing, suggesting that it 

could perform well for generalization 

diagnosis, where a small amount of 

data from a variety of MEAs is used for 

training.

The SVM models underperform in 

comparison to the neural networks due 

to their formulation, whereby the C and 

ξ parameters allow the misclassification of some faults on the 

wrong side of the hyperplanes. Therefore, adding a small amount 

of D2 to the SVM training set may have no effect on its perfor

mance, since it is fundamentally designed in such a way to allow 

some outliers to be misclassified. Hence, if data from another 

MEA is significantly different and causes overlap, the SVM model 

will treat them as outliers, and the hyperplanes will not be up

dated. In contrast, the Adam optimizer used in the neural net

works will attempt to minimize loss and update their fitting pa

rameters regardless of overlap or noise, enabling them to be 

influenced by a wider range of data and enhancing their general

ization potential. This is directly reflected in their improved 
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accuracy over the SVMs when a small quantity of unseen data is 

used for training.

The local connectivity and convolution of the 1D-CNN pro

mote its superiority over the other models since they significantly 

reduce the dimensionality of the AC voltage response input, al

lowing the model to fit more closely to the training data and 

achieve higher diagnostic accuracies. Although it was incapable 

of predicting the SoH of an MEA that was not included in the 

training set, it responded well to the inclusion of small amounts 

of unseen training data, attaining an accuracy of 95.1% when 

only 20% of the unseen data was added to the training set. More

over, as proposed by Mao et al.,32 multi-sensor signals could 

achieve better diagnostic performances than cell voltages alone; 

combining the AC voltage response with other diagnostic fea

tures could promote the robustness of the framework to detect 

a wider range of faults, such as flooding and CO poisoning, 

that were not explored here.

DISCUSSION

In this paper, a black-box model approach was developed to di

agnose PEM fuel cell faults, involving the use of multifrequency 

Walsh function AC perturbation signals to capture convoluted in

formation on their SoH. The Walsh function was employed to 

minimize the overall amplitude of the perturbation signals, 

improving the signal-to-noise ratio while ensuring that the 

PEFC is not damaged by high amplitude perturbations. The cor

responding voltage responses were then used directly as the 

diagnostic inputs to a DNN, 1D-CNN, linear-SVM, and RBF- 

SVM to compare their effectiveness at classifying the SoH; all 

models were able to effectively diagnose normal, drying, and 

starvation conditions of an individual MEA, with the 1D-CNN 

and SVMs achieving 100% diagnostic accuracy.

To assess their generalization performance, the models were 

tested using data generated in the same manner from another 

identically fabricated MEA. The models were unable to diagnose 

the SoH of the unseen MEA when trained on the old one, with the 

DNN achieving the best accuracy of only 72%; even though the 

data acquisition and manufacture of both MEAs were the same, 

the voltage responses were too dissimilar to be grouped by the 

pre-trained algorithms. Conversely, combining the data from 

both MEAs into one rich dataset yielded superior results, with 

the 1D-CNN achieving the highest diagnostic accuracy of 

99.2%. Furthermore, the 1D-CNN also achieved a better gener

alization performance when trained with a small proportion of 

data from the unseen MEA. When 20% of the unseen data was 

used in training, it attained an accuracy of 95.1% in comparison 

to the DNN and linear-SVM, which fell short at 83.0% and 66.2%, 

respectively. Therefore, the parameter sharing and local connec

tivity of the convolutional layers in the 1D-CNN allowed for higher 

computational efficiency, reduced errors, and faster conver

gence, making it the most suitable model architecture for the 

diagnostic framework. It is expected to be capable of managing 

a wide range of data from a variety of MEAs while maintaining 

high accuracy, paving the way for generalized, on-board fault 

diagnostics.

Looking to the future, a wider range of operating conditions, 

fault types, and MEAs should be included in the training set to 

ensure that the model can be generalized to other systems; how

ever, further testing needs to be performed to understand if the 

model can interpolate/extrapolate for MEAs at unseen conditions 

to those within the training dataset. As well as different operating 

conditions, the effect of long-term operation on diagnostic accu

racy needs to be explored, since performance degradation over 

time may reduce, causing the pre-trained model to become 

redundant. The framework should also be extended to a PEFC 

stack using multiple voltage responses from different cells simul

taneously. This is now feasible given our recent demonstration of 

multichannel voltage responses24 and adapted to diagnose more 

types of faults; however, both of these improvements will neces

sitate a larger model with more parameters, making hyperpara

meter optimization more critical. Although not explored here, 

the methodology could also be applied to other electrochemical 

devices, such as lithium-ion batteries for rapid on-line diagnostics 

in a variety of different applications.

Table 3. Operating conditions required for normal, air starvation, and drying health states

Condition Current density (mA cm− 2) Inlet temperatures (◦C) Anode stoichiometry Cathode stoichiometry

Normal 400 52.5 +1.5 +3.0

Starvation 400 52.5 +1.5 +1.5

Dehydration 400 40.0 +1.5 +3.0

The cell was heated to 60◦C in all cases.

Figure 8. Generalization test accuracies with incremental inclusion 

of dataset D2 in training 

Model accuracies when trained on dataset D1 supplemented with varying 

proportions of dataset D2, showing the effect of added data on generalization 

performance.
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Limitations of the study

While the proposed diagnostic framework demonstrates high 

accuracy in controlled settings, several limitations remain. In 

real-world fuel cell systems, faults often manifest as gradual deg

radations or soft differences, such as varying degrees of flooding 

or starvation, rather than the clearly defined fault categories like 

complete starvation or severe water management issues used in 

this study. The model has also not been validated on a large 

batch of fuel cell stacks, which is important for confirming its 

generalization across different manufacturing variations and 

long-term operational conditions. Furthermore, the method has 

not yet been tested on commercial fuel cell systems operating 

in industrial environments, where complex system interactions 

and external noise may impact diagnostic accuracy. These lim

itations must be addressed to fully establish the robustness 

and practical applicability of the approach.
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KEY RESOURCES TABLE

METHOD DETAILS

The MEA seen in Figure S1 was fabricated in-house, using gas diffusion electrodes (GDEs) with platinum loadings of 0.4 mg cm-2 

(HyPlat, South Africa). These employed 250 μm thick H23C9 carbon paper and MPLs (Freudenberg, Germany) with hydrophobic 

treatment to facilitate water removal. The GDEs were cut into two 5 × 5 cm squares and sandwiched between an 8 × 8 cm square 

of NafionTM 211 membrane (DuPont, USA), with a thickness of 25.4 μm. Using a hot press (Carver Inc., USA), the GDEs and mem

brane were pressed together for 3 minutes at 140 ◦C, with a clamping pressure of 2.75 MPa to bond the layers together and form the 

MEA.33

The MEA was sealed with a torque of 4 Nm in the PEFC test fixture (Scribner Associates, USA) between two graphite flow fields, 

consisting of 17 serpentine passes with channel widths and depths of 1 mm. The PEFC was then installed into an 850e test system 

(Scribner Associates, USA), undergoing a conditioning cycle to ‘break-in’ the MEA before the polarisation curves and diagnostic tests 

were carried out.34

Diagnostic tests at three different health states (normal, reactant starvation, drying) were performed at a current density of 

400 mA cm-2. To induce starvation, the cathode-side stoichiometry was reduced from +3.0 to +1.5, reducing the amount of oxygen 

available for the reaction. Although a stoichiometry of +1.5 indicates 50% more oxygen than is theoretically required, it is likely to 

cause some starvation, particularly on a local level. To induce drying, the inlet temperatures of the anode and cathode were reduced 

to ∼40◦C (while maintaining a cell temperature of 60◦C). This reduced the amount of water entering the system.

QUANTIFICATION AND STATISTICAL ANALYSIS

There are no quantification or statistical analyses to include in this study.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Experimental data This paper Mendeley Data: https://doi.org/10.17632/pn95bsbhv9.1

Software and algorithms

Python 3.10.2 Python Software Foundation https://www.python.org/

Gamry Framework Gamry Framework https://www.gamry.com/

Analysis Code This paper Zenodo: https://doi.org/10.5281/zenodo.16734066

Other

850e Fuel Cell Test System Scribner Associates https://www.scribner.com/

Reference 3000 Gamry Framework https://www.gamry.com/

Gas diffusion electrodes HyPlat https://www.hyplat.com/

211 membrane Nafion https://www.nafion.com/en/
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