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SUMMARY

Polymer electrolyte fuel cells (PEFCs) are promising for mobile and stationary applications, but short oper-
ational lifetimes and frequent faults limit their commercial viability. This work introduces a black-box diag-
nostic method using multifrequency Walsh function perturbation signals to detect water management and
starvation faults. The approach improves signal-to-noise ratio and accuracy without harming the cell. Using
voltage response as the diagnostic variable, dense neural networks (DNNs), 1D convolutional neural net-
works (1D-CNNs), and support vector machines (SVMs) were tested. All models accurately classified normal,
drying, and starvation conditions in a single PEFC, with 1D-CNN and SVMs reaching 100% accuracy. How-
ever, model generalization to a different PEFC was poor. Including data from multiple PEFCs significantly
improved performance, with the 1D-CNN showing superior generalization, even when trained on limited un-
seen data. This establishes the 1D-CNN as the most effective model for robust, scalable PEFC diagnostics

across varied datasets.

INTRODUCTION

As the global population rises, a fundamental shift away from
fossil fuels is urgently required to satisfy the increasing energy
demand of the modern world. Not only is the extraction and com-
bustion of fossil fuels detrimental to the environment due to their
associated greenhouse gas emissions, but sources of oil, coal,
and natural gas are becoming increasingly expensive and diffi-
cult to extract. Polymer electrolyte fuel cells (PEFCs) have the
potential to play a crucial role in solving some of these issues,
producing no harmful emissions during their operation. They
are cleaner and more efficient than traditional combustion en-
gines. However, one of the largest factors limiting the commer-
cial ubiquity of PEFCs is their high likelihood of faults. For the
operation to remain stable, PEFCs must be controlled within a
narrow range of operating conditions; deviation from these con-
ditions leads to enhanced degradation and performance losses."
Although some faults can be corrected via control action (recov-
erable faults), certain faults can only be rectified via the complete
replacement of components (permanent faults). Water manage-
ment is a critical issue for PEFCs, accounting for over 50% of all
failures and can be divided into flooding and drying faults.? Dry-
ing reduces the ionic conductivity of the membrane and, in addi-
tion to performance decline, can also result in permanent mem-
brane degradation since it becomes more brittle and prone to
cracks and pinholes.® Hence, it should be noted that if recover-
able faults are not detected in time, their status will exacerbate,
often leading to permanent faults and damage to the materials in
the fuel cell. There is a clear motivation for efficient fault diag-
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nosis strategies to identify and rectify faults before they irrevers-
ibly worsen.

Fault diagnostic strategies can be classified into offline and
on-line methods. Offline methods involve experiments that
take place under laboratory conditions and may require disas-
sembly of the PEFC." While these techniques are especially use-
ful in understanding the fundamental characteristics and behav-
iors of PEFCs, their intrusive nature makes them inappropriate
for onboard, real-time use in operational cells. In contrast, on-
line diagnosis techniques only use (often crude) signals from
the sensors attached to the PEFC to estimate its state of health
(SoH). Although this means that measurements can be taken
more quickly and continuously compared to offline techniques,
much less physical information on the SoH of the PEFC is real-
ized with each measurement. Therefore, computational models
are integrated to assist in the diagnostic procedure, improving
the accuracy of SoH estimations and providing meaning to the
sensor data.” On-line techniques can be classed as model-
based (white-box), data-driven (black-box), or a combination
of the two (grey-box).

In model-based fault diagnosis, a mathematical model repre-
senting the real process runs alongside the PEFC during opera-
tion. Consisting of theoretical differential and/or algebraic equa-
tions, the process model takes the same input conditions
received by the operating PEFC to generate an output. The
model output is then compared with the output data of the
PEFC, and the difference between the two “residual” is calcu-
lated; a residual of zero indicates normal operation, while a
non-zero residual signifies the presence of a fault. In 2009,
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Escobet et al.” modified the MATLAB/Simulink PEFC model
developed by Pukrushpan et al.® to include a set of six different
fault states. The faults were implemented into the model via the
sensitivities of the residuals, allowing the SoH to be identified
based on the relative values of the model residuals. The fault re-
gions could then be displayed in the three-dimensional residual
space, with the health of the PEFC being predicted based on the
Euclidian distance between the position of the system itself and
the six different faults. While this demonstrates how a white-box
model can successfully identify faults in real-time, it is too
computationally demanding to be applied to a real system due
to the large number of model equations involved. Moreover,
since the model is a representation of the physical system, a
perfectly accurate model simply cannot exist; hence, the model
uncertainty must also be considered, further increasing its over-
all complexity.” In the future, advances in onboard computing
power may increase the viability of white-box models as a means
for fault identification; however, as they stand, they are too com-
plex to implement on-line.

Due to the intricacy of white-box models, black-box models
are becoming increasingly popular due to their simplicity and
speed. Rather than being based on fundamental physical equa-
tions, black-box models are derived from experimental data-
sets and diagnose faults via machine learning algorithms, which
classify the experimental data into different health states. How-
ever, this limits their genericity compared to their white-box
counterparts, whose model parameters can be easily adjusted
to reflect other PEFCs; instead, black-box models require a
large historical dataset from the exact/similar PEFC to
function effectively. One of the most widely used black-box
models is the artificial neural network (ANN), consisting of no-
des or “neurons” organized into layers with the nonlinear acti-
vation function, through which information can pass and be
classified.®

The use of neural networks in fuel cell diagnostics has
increased in the last 15 years or so. In 2010, Yousfi Steiner
et al.”'" attempted to identify water management issues in
PEFCs using a recurrent neural network (RNN), whereby the out-
puts of some neurons are fed back to previous layers, facilitating
the storage of time-series data. When a fault occurred in the
PEFC, its output deviated from that of the RNN, generating a re-
sidual and allowing the fault state to be detected. Although the
RNN modeled the system well, its ability to be generalized to
other PEFC systems was significantly reduced since it was fitted
too heavily to the exact PEFC used in the experiments. In 2013,
to improve the issue of generalization, Shao et al. used an ANN
ensemble to identify four different faults associated with the
cooling and reactant delivery systems."' As proposed by Han-
sen and Salamon, ANN ensembles consist of multiple sub-
ANNSs, which are trained separately before combining their out-
puts to form an ensemble output.'? This, therefore, improves
their generalization capability, since each sub-ANN can be
trained on a different physical variable of the PEFC, preventing
overfitting to any specific variable. When testing its performance,
the ANN ensemble achieved a diagnostic accuracy of 93.24%,
representing a significant improvement over the accuracies of
the sub-ANNs alone, which ranged in accuracy from 75.24%
10 85.62%. Support vector machines (SVMs) are a more recently
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developed subset of machine learning algorithms which formu-
late a hyperplane in a multidimensional space and classify data
depending on which side of the hyperplane it lies.'® It was
applied to PEFC fault diagnosis in 2016 by Li et al.,’* who devel-
oped an on-line platform to predict SoH in real time based on the
cell voltage profiles of cells within a stack. Attaining a global clas-
sification accuracy of 84.98%, it was concluded that the main
reason for reductions in accuracy was due to the time delay of
the on-line model. Furthermore, since the model was pre-trained
on laboratory data, it did not account for the aging effect of the
PEFC; long-term performance degradation could cause the
cell voltages to become too dissimilar from those used to train
the model, reducing diagnostic accuracy.

Electrochemical impedance spectroscopy (EIS) is a widely
used diagnostic technique in electrochemical systems and in-
volves the perturbation of the operating state using a sinusoidal
current/voltage and recording the amplitude and phase of the
corresponding voltage/current response. The perturbation
signal frequencies range from around 0.1 Hz to 10 kHz, such
that processes acting over a wide range of timescales can be
explored,'® though the measurements must be carried out
sequentially and thus EIS has a time period of several minutes
for measurement. Recently, we combined all the testing fre-
quencies into a single multifrequency signal via summation to
solve the long measurement time problem associated with
EIS."® This was then used to perturb the PEFC, with the corre-
sponding AC (alternating current) voltage response being
measured. Traditionally, the system response is converted to
the frequency domain and analyzed with Nyquist plots; however,
in this case, the data were kept in the time domain for two main
reasons. Firstly, all the information available in the Nyquist plots
is also available in the AC voltage response of the system, albeit
heavily convoluted. Secondly, conversion to the frequency
domain is often time-consuming and computationally
demanding; to diagnose the system as quickly as possible,
removing this stage of the process helped significantly. The AC
voltage response was used directly as the diagnostic variable
for the input to a 1-dimensional convolutional neural network
(1D-CNN), which was trained with samples corresponding to
flooding, drying, and normal operating states, producing a diag-
nostic accuracy of 100%. Despite this, a drawback of the meth-
odology is that the summation of the perturbation signals in-
creases the overall amplitude of the multifrequency signal.
Typically, a perturbation amplitude of 5%-10% of the DC current
is used since excessive amplitudes alter the operation of the
PEFC, while diminutive amplitudes are hidden in operating noise,
reducing measurement accuracy.'”

A recent study,'® which followed up on the proposed AC
voltage response, improved diagnostics by selecting key fre-
quency points via the distribution of relaxation times. This work
takes a step further and focuses on developing a methodology
to diagnose PEFC faults in a fast, on-line and nonintrusive
manner to maintain optimal operation and improve durability.
The final objective is for these efforts to help realize the commer-
cial ubiquity of PEFCs, providing a reliable and clean alternative
energy source for use in mobile or stationary applications.

Elsewhere, recent work has explored methods to improve the
generalizability of PEMFC fault diagnostic methods to reduce the
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Figure 1. Construction of multifrequency

perturbation signal using multisine summa-
tion

(A) Individual AC signals ranging from 1 Hz to
512 Hz used to construct the multifrequency
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perturbation signal via multisine summation.

— fz =4Hz

V \/

\ J \/ \\/ | \‘v‘

(B) Final multifrequency perturbation signal. The
maximum amplitude of 0.5 A corresponds to 5%
of the nominal 10 A DC current.
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were applied, followed by a 4 s period
to allow the PEFC to return to its steady
state operation. This was repeated 200
times (1,600 s) for each SoH, with the
AC voltage responses used directly as
the inputs for diagnostic machine-
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reliance on extensive fault data. Gong et al.'® developed a digital
twin platform to simulate fault data, which was used to train a
temporal convolutional network (TCN). This learning was trans-
ferred to a different fuel cell system via a domain adaptive trans-
fer convolution network (DATCN), achieving 98.5% accuracy.
While accurate, this method relies on sufficient similarity
between the digital and physical systems, which cannot always
be guaranteed. Chen et al. utilized long short-term memory
(LSTM) networks to identify insulation faults in fuel cell vehi-
cles.?® Again, their model demonstrated a high accuracy of
99.91%; however, its application was fault specific, limiting its
broader use.

In this work, we demonstrate that utilizing the Walsh function
to construct multifrequency perturbation signals can effectively
maximize the signal-to-noise ratio between the AC voltage
response and normal operating noise. For the same perturbation
signal amplitude, the Walsh function can generate a larger PEFC
voltage response in comparison to the summation method, solv-
ing the issue of excessive perturbation amplitude faced in previ-
ous work.'® We also demonstrate the generalization capabilities
of the 1D-CNN algorithm, in comparison to other neural network
and SVM models, by training and testing it on two physically
different membrane electrode assemblies (MEAS).

3.0 3.5 4.0

learning algorithms.

Two different methods were used for
the formulation of the AC perturbation
signals. First, the summation method
used by Zhou et al. was investigated,'® whereby the signals of
each frequency are simply added together to obtain one multi-
frequency signal. To probe processes of different time scales
within the PEFC signals across a spectrum spanning from
1 Hz to 512 Hz were used, as shown in Figure 1A. In this way,
the range of testing frequencies used in EIS (such that pro-
cesses acting over a wide range of timescales can be explored)
is combined into one multifrequency signal. Hence, we are un-
able to produce a Nyquist plot; however, all the information
available in the Nyquist plot is also available in the PEMFC
voltage response, albeit heavily convoluted. This complexity
presents an opportunity to leverage machine learning algo-
rithms, which can extract this convoluted information that is
invisible to the human eye. High-frequency signals are included
to probe short-time scale processes (e.g., ohmic resistance)
while low-frequency signals are included to probe long-time
scale processes (e.g., mass transport resistance) such that no
key frequency bands are omitted.

Denoting these frequencies as fi(t), the multifrequency signal
fu(t) can be expressed as:

=K (D)

k € {0,...,9}, (Equation 1)
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A Figure 2. Construction of multifrequency
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where fi(t) = sin(2“2xt), k € {0,...,9}  (Equation 2)

The amplitude of fi(t) is controlled by the scaling constant K.
The perturbation amplitude was set at 5% of the operating cur-
rent; at 400 mA cm ™2 with an active area of 25 cm?, the current is
10 A, so the maximum amplitude of fy(t) was set at 0.5 A, as
shown in Figure 1B. The second method used was based on
the Walsh function (WF), which generates a square binary signal
according to Equation 3:

fi(t) = sgn(sin(2*2xt)) (Equation 3)

The signum function sgn(x) is a piecewise function defined as
follows:

-1, ifx<0
sgn(x) =< 0, ifx=0 (Equation 4)
1, ifx>0

Hence, the 10 individual WF frequencies from 1 Hz to 512 Hz
can be visualized as in Figure 2A. The multifrequency WF signal
can then be formulated via Equation 5, summing the individual
frequencies and passing them through another signum function:

4 iScience 28, 113350, September 19, 2025

fu(t) = K~sgn{ngn{sin(2k2nt)}}, k € {0,...,9}
k
(Equation 5)

The scaling constant K can then be used to adjust the ampli-
tude to 0.5 A, yielding the signal displayed in Figure 2B.

Diagnostic algorithms
The AC voltage responses were used directly as the diagnostic
variables for SoH predictions; this was achieved by passing
the voltage responses as inputs to three machine learning algo-
rithms: dense neural networks (DNNs), one-dimensional convo-
lutional neural networks (1D-CNNs), and support vector ma-
chines (SVMs) using linear and radial basis function (RBF)
kernel functions. Further details can be found in the Data S1:
Diagnosis algorithms. DNNs were used as they can model com-
plex, non-linear relationships in high-dimensional data, which
aligns well with the nature of the AC voltage responses; however,
they can be prone to overfitting when data are limited.

The DNN was built using TensorFlow 2.15.0?" in Python 3.10.2
according to the structure outlined in Table 1 and Figure 3A.
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Table 1. Properties of each layer of the fully connected deep
neural network

Layer Dimension Parameters Activation
Input (40001, 1) — -

D1 (512, 1) 20,481,024 RelLU

D2 (64, 1) 32,832 RelLU

D3 3, 1) 195 Softmax

The input layer has a size of 40001 since the voltage response was used
directly as the input to the network and was recorded for 4 s by the Gamry
potentiostat at a sampling rate of 10 kHz (10,000 samples per second).
The output layer has a size of 3 since the predicted health state is either
normal, drying, or starvation. D, dense layer.

1D-CNNSs, on the other hand, are well-suited for capturing spatial
patterns in sequential data, such as those found in the voltage re-
sponses, potentially reducing the chance of overfitting. The 1D-
CNN was also built using TensorFlow according to the specifica-
tions in Table 2 and Figure 3B. Both networks were trained via
the minimization of their cross-entropic losses as outlined in
Equation S5. SVMs were included for their memory efficiency,
as they calculate optimal decision hyperplanes without relying
on the full dimensionality of the input space. This is advanta-
geous given the high information content and large size of the
AC voltage responses; however, their performance is known to
degrade with highly non-linear data. The SVM models were im-
plemented using scikit-learn 1.2.2° in Python 3.10.2. Additional
details regarding the architecture of these algorithms are pro-
vided in the supplemental information.

Perturbation signal comparison

To compare the two types of perturbation signals, the PEFC was
operated under normal conditions while applying AC perturba-
tions, alternating between the multisine and WF signals from
Figures 1B and 2B, respectively. A 40 s sample of the cell voltage
can be seen in Figure 4, highlighting the regions where each
perturbation was applied.

Figure 4 highlights that, for the same perturbation amplitude,
the WF signal is able to generate a response in the cell voltage
that is approximately two times larger than that generated by
the multisine signal; it is, therefore, easier to differentiate be-
tween the WF response and the normal voltage noise of the
PEFC. In comparison, the low signal-to-noise ratio of the multi-
sine signal can result in measurement errors when passed
through subsequent machine learning (ML) algorithms, since it
becomes harder to distinguish between the AC voltage response
and the normal voltage noise, as discussed by Giner-Sanz
et al.?® Obtaining a similar response amplitude with the multisine
method would require an increase in the perturbation signal
amplitude. However, this is detrimental since the system needs
to be maintained in a steady state; thus, the perturbation ampli-
tude must be large enough to avoid measurement errors but
small enough to prevent deviation from the normal operation.
The improvement in signal-to-noise ratio was investigated in pre-
vious work by Zhou et al.,>* who analyzed the fast fourier trans-
form frequency spectra of both the WF and multisine signals. It
was found that the WF signal had nearly twice the amplitude
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for each frequency. Therefore, the WF perturbation is superior
to the multisine signal since, for the same amplitude, it can
generate a larger voltage response in the PEFC, solving the issue
of excessive perturbation amplitude faced in previous work.'®

Fault diagnostic procedure

The potentiostat was used to apply the perturbation signals 200
times to the PEFC during each fault state. Since the variation of
the voltage is the variable of concern (i.e., the response to the
applied perturbation), each voltage sample was subtracted
from the first value in the sequence. This has the effect of elimi-
nating the DC voltage component, leaving behind the AC
component, and also serves to normalize the data, transforming
the voltage responses to be on a similar scale of +0.1 V to
improve the training stability and performance of any subse-
quent ML models.?® Hence, the voltage responses were pro-
duced for all three fault states as displayed in Figure 5, ready
to be passed directly into ML algorithms as the diagnostic vari-
ables for classification.

Although the perturbation signal remained unchanged for
each sample, the AC voltage responses were observed to be
different under different health states. However, for samples
within the same health state, the voltage responses remained
similar. Figure 5 shows the drying, normal, and starvation voltage
responses, as well as locally enlarged versions to identify the
subtle differences between health states. Looking at the locally
enlarged plot for the normal state, the voltage response remains
at approximately +0.005 V for all samples with less variability. In
contrast, for the drying and starvation states, the responses are
more erratic and increase rapidly to over +0.010 V. While these
subtle differences between the voltage responses can be
noticed by the human eye, neural networks and other ML algo-
rithms that excel at pattern recognition can utilize all of the rich
information stored within the responses, instantly and accurately
distinguishing between them.

Performance of different algorithms

The hypothesis was that the 1D-CNN would perform best due to
its unique ability to extract spatially correlated features from the
information-rich voltage responses. The DNN was expected to
be more prone to overfitting and computationally intensive due
to the larger number of parameters involved in its architecture.
However, it facilitates a direct comparison to the 1D-CNN, high-
lighting the effectiveness of its convolutional layers. Finally, the
SVM was hypothesized to achieve high accuracy if the voltage
responses in the feature space were clean and well separated
but struggle if noisy and overlapping.

The voltage responses were divided into a train-test split of
80:20, whereby 480 random responses were used to train the
DNN, and the remaining 120 were used to evaluate its accuracy.
The diagnostic results can be seen in Figures 6A and 6B. Despite
the large number of parameters to be trained, after 100 complete
passes through the training data (epochs), the DNN reached a
training accuracy and loss of 98.38% and 0.0983, respectively,
demonstrating that the network was able to successfully converge
and diagnose the SoH based on the AC voltage response. Howev-
er, the instability and fluctuations during training are typical indica-
tors of underfitting, where the network struggles to correctly

iScience 28, 113350, September 19, 2025 5
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Figure 3. Architectures of the DNN and 1D-CNN models used for PEMFC fault classification
(A) Schematic of the DNN structure showing layer types and dimensions. D, dense layer.
(B) Schematic of the 1D-CNN structure. Convolutional and max pooling layers reduce input dimensionality and extract local features. C, convolutional layer; MP,

maxpool layer.

predict the unseen data as the parameters have not been fully opti-
mized.”® Nevertheless, the DNN was able to converge and per-
formed well on the test data, achieving a diagnostic accuracy of
99.17%, only misclassifying one of the 120 test voltage responses,
as revealed in Figure 6B, where the rows of the confusion matrix
indicate the actual SoH while the columns indicate the predictions.
Due to the stochastic nature of the Adam optimizer, random initial-
ization of the network parameters, and random train-test partition,
the diagnosis results may vary slightly between executions.”’
The diagnostic accuracy of the 1D-CNN was also investigated,
repeating the same procedure as before. Figure 6C indicates that
the 1D-CNN converged faster and more smoothly than the DNN
during training, suggesting that the optimized parameters fit the
data more closely. Unlike the DNN, where the neurons between
each layer are fully connected, the convolutional layers connect

6 iScience 28, 113350, September 19, 2025

each neuron to a region of neurons in the previous layer, reducing
the number of connections in the model.?® The 1D-CNN pos-
sesses ~12 times fewer parameters than the DNN, as indicated
by Tables 1 and 2, reducing the computational demand on the opti-
mizer. This is an important factor for on-board and real-time diag-
nosis in operating systems. In addition, the convolutional and pool-
ing layers within the network reduce the dimensionality of the AC
voltage response input, extracting spatially correlated features.
The dense layers are then used to diagnose the SoH based on
this condensed feature map, rather than the entire voltage
response as in the DNN, simplifying the optimization task and
reducing convergence time.”® The 1D-CNN reached a training ac-
curacy and loss of 100% and 2.291 x 104, respectively, indicating
aslightimprovement over the DNN, and achieved a diagnostic test
accuracy of 100% as shown in Figure 6D.



iScience

¢? CellPress

OPEN ACCESS

Table 2. Properties of each layer of the 1-dimensional convolutional neural network

Layer Dimension Parameters Activation Filters Filter Size Filter Stride
Input (40001, 1) - = — — _

C1 (3991, 64) 6,464 RelLU 64 (100, 1) 10

MP1 (1995, 64) - - 64 3, 1) 2

Cc2 (200, 32) 10,272 RelU 32 5,1) 10

MP1 (100, 32) = = 32 (2,1) 2

Flatten (8200, 1) - - - - -

D1 (512, 1) 1,638,912 RelU = = =

D2 (64, 1) 32,832 RelLU - - -

D3 3, 1) 195 Softmax - - -

C, convolutional layer; MP, max pool layer; D, dense layer. The output of the convolutional layers is flattened before it can be passed into the fully
connected layer since it has a higher dimensionality from the number of filters used.

The diagnostic procedure was also repeated for the SVM
models with linear and RBF kernels. Figures 6E and 6F demon-
strate that both kernels were effective in classifying the 120 testing
samples, achieving diagnostic accuracies of 100%. In general,
SVM is known to perform efficiently in high-dimensional spaces;
in this case, the dimension of the voltage responses is R*°%°"
and the SVM models were still able to construct the classification
hyperplanes with ease. Another key advantage of SVM is its mem-
ory efficiency since it only needs the set of support vectors to
make a prediction rather than the whole dataset.*° The large num-
ber of parameters in the neural networks makes them relatively
memory inefficient in comparison. However, as mentioned previ-
ously, perfect diagnostic accuracy suggests that there are clear
margins of separation between each SoH class; SVM is known
to perform poorly when the training data have more noise; hence,
when additional data are passed to the SVM model from a
different MEA or operating condition, its accuracy could be signif-

icantly reduced if there is any overlap between the datasets. This
issue was investigated further by Sabzekar et al.,*' who used
fuzzy SVMs to differentiate between outliers and reduce the effect
of noisy data; however, this was not explored here.

Generalization procedure

To test the generalization capability of the models, an additional
identical MEA was fabricated, and the fault procedure was
repeated to obtain a further 200 voltage responses for normal, dry-
ing, and starvation states. Thus far, the voltage responses were all
taken from the same MEA at a similar point in its life; as the PEFC is
operated over its lifespan, its performance will change accord-
ingly, potentially altering the way it responds to the multifrequency
perturbation signals and rendering the previously trained model
obsolete. Hence, it is paramount to test if the model can predict
the health states of PEFCs operating outside the training data
range rather than being constrained to the original data.
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Figure 4. Comparison of cell voltage
response to multisine and Walsh function
perturbations
Sample of the cell voltage response during alter-
nating AC perturbations using multisine and Walsh
function signals.
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Figure 5. Normalized voltage responses under different operating conditions for ML diagnostics
(A-C) Normalized voltage responses used as diagnostic inputs under (A) drying, (B) normal, and (C) starvation conditions. While 200 responses were collected per

condition, 11 representative samples are shown for clarity.
(D-F) Locally enlarged sections of the voltage responses for (D) drying, (E) normal, and (F) starvation conditions, highlighting the rich diagnostic information

embedded in the signal features.

The rationale behind repeating the data collection on adifferent it could be used effectively to investigate the generalization capa-
MEA was to explore how the model deals with data from a bility of the models. The datasets from each MEA can be defined
different cell that is also performing “normally”. The polarisation  as follows:
curvesin Figure S2 were employed to compare the performances
of the MEAs before commencing the testing procedure. These D; = Old MEA voltage responses
indicate that the unseen MEA had a better performance,
achieving 39.0% and 61.9% higher power and current densities,

respectively; since the unseen MEA had a different performance, D, = Unseen MEA voltage responses
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The algorithms were independently trained on D4 and tested on
D, to check if they could predict the SoH of an MEA that the model
had never “seen” before. The diagnostic accuracies can be seen
in Figures 7A-7D, indicating that the DNN outperformed the other
models. Although the DNN was not able to fit as closely to the orig-
inal data initially, this improved its generalisation capability, pre-
dicting 72% of the unseen data correctly. Conversely, when
tested on D, the 1D-CNN and SVMs only predicted ~33% of
the unseen data correctly. Since there are three target classes,
this accuracy indicates that the models were not able to distin-
guish between any of the fault states between the two datasets.

To improve the generalization performance, datasets D1 and
D, were combined into one rich dataset to give the following
train-test splits:

Training data = a(Dq + D»),
Testing data = (1 — «)(D4 + D2),

where a is the train split fraction set at 0.8. Thus, the models were
trained using 960 random samples from D¢ and D, and were
tested using the remaining 240 samples. From Figures 7E-7H,

Normal
Predicted labels

Normal
Predicted labels

Normal
Predicted labels

¢? CellPress
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Figure 6. Training performance and classi-
40 fication accuracy of ML models for PEMFC
diagnostics
(A) Training accuracy and loss curves for the DNN.
30 (B) Confusion matrix for DNN classification
results, with correct predictions along the prin-
cipal diagonal.
(C) Training accuracy and loss curves for the
1D-CNN.
(D) Confusion matrix for 1D-CNN test results.
5 (E) Confusion matrix for the SVM classifier with a
0 linear kernel.
(F) Confusion matrix for the SVM classifier with a
radial basis function kernel.

Predictions

Starvation

it is evident that the diagnostic accuracy
for all models was improved by incorpo-
rating data from both MEAs into the
training set. This ensured that the models
were fitted to the health states of both
MEAs, rather than being constrained to
0 one, as observed in Figures 7A-7D. The
1D-CNN and linear-SVM performed simi-
larly well, achieving diagnostic accu-
racies of 99.2% and 98.8%, respectively.
The DNN achieved a slightly lower accu-
racy of 97.5% while the RBF-SVM per-
formed notably worse, misclassifying 13
starvation samples as normal.
Although these results suggest that it is
10 necessary to train the models using data
5 from both MEAs, this is not ideal as, for
0 the model to predict the SoH of any
generic MEA, it’s possible it would require
previous data from the same MEA (though
it could also be the case that training data
containing a sufficiently large number and variation of MEAs
would be able to classify unseen MEAs that are outside of the
training dataset. This is impractical for several reasons, including
the excessive amount of data required to train the models and the
fact that, if an MEA changes unexpectedly during its lifetime, the
model may no longer be able to predict its SoH, though more
extensive investigations are required at this time to confirm this.
Furthermore, the experimental results were obtained at the spec-
ified operating conditions in Table 3; if the same MEA was oper-
ated at a different current density, for example, there is no guar-
antee that the model will perform successfully at conditions that
it was not trained with. This highlights the main limitation of
black-box models, being their dependence on a good-quality his-
torical dataset, which is often difficult or impossible to obtain.
One potential solution to the issue of requiring a large training
dataset is to reduce the number of samples from each individual
MEA. In this way, a few samples from a wide variety of different
MEAs at different points in their life and different operating con-
ditions could be used, such that any normally operating MEA will
fit somewhere into this range. This would avoid having to train
with data from every MEA that makes use of the model, provided
that the initial testing data are taken from an extensive range of
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MEA ages and operating conditions. To test the concept of only
including a small amount of unseen data from a different MEA,
the train and test data were set up as follows:

Training data = D, + pD,
Testing data = (1 — p)Do,

where f is the fraction of D, included in the training set. Varying
from 0 to 0.95 reveals the amount of D, that needs to be present
in the training set for the model to accurately predict the SoH. In
essence, the algorithms were initially trained on D4 and tested on
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Figure 7. Generalization test confusion
200 matrices for ML models using different
175 training and test datasets
150 (A-D) Confusion matrices showing model perfor-
mance when trained on dataset D4 and tested on
dataset D, for (A) DNN, (B) 1D-CNN, (C) linear-
SVM, and (D) RBF-SVM.
(E-H) Confusion matrices after combining data-
50 sets D4 and D, into a single dataset, with models
tested on 80% of this combined data: (E) DNN, (F)
1D-CNN, (G) linear-SVM, and (H) RBF-SVM.

5]
S
Predictions

Starvation

D, as done previously. Then, the algo-
rithms were retrained on D4 with an addi-
tional 5% of D,, sampled randomly. This
process was repeated in 5% intervals,
7 incrementally increasing the amount of
50 D, in the training dataset; the results are
2 displayed in Figure 8.

0 Figure 8 shows how the accuracies of
the models increase as a larger fraction
of D, is added to the training set. When
none of D, was used to train the models,
a 73.0% accuracy was achieved with the
DNN in comparison to the ~33% accu-
racy obtained with the 1D-CNN and
SVMs (as previously described). How-
ever, when a larger proportion of D, is
used to train the DNN, its accuracy only
increases slightly, plateauing at ~90%.
In contrast, although the 1D-CNN per-
forms poorly when g = 0, its diagnostic
accuracy quickly improves as it gets
trained on a larger amount of D,, reach-
ing a maximum of 99.1%. The steep in-
crease in accuracy when a small addition
£ of D, is used to train the 1D-CNN is
3 particularly appealing, suggesting that it
could perform well for generalization
diagnosis, where a small amount of
data from a variety of MEAs is used for
0 training.

The SVM models underperform in
comparison to the neural networks due
to their formulation, whereby the C and

& parameters allow the misclassification of some faults on the
wrong side of the hyperplanes. Therefore, adding a small amount
of D, to the SVM training set may have no effect on its perfor-
mance, since it is fundamentally designed in such a way to allow
some outliers to be misclassified. Hence, if data from another
MEA is significantly different and causes overlap, the SVM model
will treat them as outliers, and the hyperplanes will not be up-
dated. In contrast, the Adam optimizer used in the neural net-
works will attempt to minimize loss and update their fitting pa-
rameters regardless of overlap or noise, enabling them to be
influenced by a wider range of data and enhancing their general-
ization potential. This is directly reflected in their improved

)
S
Predictions

Starvation

Predictions

Starvation

Starvation



iScience

¢? CellPress

OPEN ACCESS

Table 3. Operating conditions required for normal, air starvation, and drying health states

Condition Current density (mA cm™) Inlet temperatures (°C) Anode stoichiometry Cathode stoichiometry
Normal 400 52.5 +1.5 +3.0
Starvation 400 52.5 +1.5 +1.5
Dehydration 400 40.0 +1.5 +3.0

The cell was heated to 60°C in all cases.

accuracy over the SVMs when a small quantity of unseen data is
used for training.

The local connectivity and convolution of the 1D-CNN pro-
mote its superiority over the other models since they significantly
reduce the dimensionality of the AC voltage response input, al-
lowing the model to fit more closely to the training data and
achieve higher diagnostic accuracies. Although it was incapable
of predicting the SoH of an MEA that was not included in the
training set, it responded well to the inclusion of small amounts
of unseen training data, attaining an accuracy of 95.1% when
only 20% of the unseen data was added to the training set. More-
over, as proposed by Mao et al.,** multi-sensor signals could
achieve better diagnostic performances than cell voltages alone;
combining the AC voltage response with other diagnostic fea-
tures could promote the robustness of the framework to detect
a wider range of faults, such as flooding and CO poisoning,
that were not explored here.

DISCUSSION

In this paper, a black-box model approach was developed to di-
agnose PEM fuel cell faults, involving the use of multifrequency
Walsh function AC perturbation signals to capture convoluted in-
formation on their SoH. The Walsh function was employed to
minimize the overall amplitude of the perturbation signals,
improving the signal-to-noise ratio while ensuring that the
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<
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Fraction of D; in Training Set

Figure 8. Generalization test accuracies with incremental inclusion
of dataset D, in training

Model accuracies when trained on dataset D4 supplemented with varying
proportions of dataset D,, showing the effect of added data on generalization
performance.

PEFC is not damaged by high amplitude perturbations. The cor-
responding voltage responses were then used directly as the
diagnostic inputs to a DNN, 1D-CNN, linear-SVM, and RBF-
SVM to compare their effectiveness at classifying the SoH; all
models were able to effectively diagnose normal, drying, and
starvation conditions of an individual MEA, with the 1D-CNN
and SVMs achieving 100% diagnostic accuracy.

To assess their generalization performance, the models were
tested using data generated in the same manner from another
identically fabricated MEA. The models were unable to diagnose
the SoH of the unseen MEA when trained on the old one, with the
DNN achieving the best accuracy of only 72%; even though the
data acquisition and manufacture of both MEAs were the same,
the voltage responses were too dissimilar to be grouped by the
pre-trained algorithms. Conversely, combining the data from
both MEAs into one rich dataset yielded superior results, with
the 1D-CNN achieving the highest diagnostic accuracy of
99.2%. Furthermore, the 1D-CNN also achieved a better gener-
alization performance when trained with a small proportion of
data from the unseen MEA. When 20% of the unseen data was
used in training, it attained an accuracy of 95.1% in comparison
to the DNN and linear-SVM, which fell short at 83.0% and 66.2%,
respectively. Therefore, the parameter sharing and local connec-
tivity of the convolutional layers in the 1D-CNN allowed for higher
computational efficiency, reduced errors, and faster conver-
gence, making it the most suitable model architecture for the
diagnostic framework. It is expected to be capable of managing
a wide range of data from a variety of MEAs while maintaining
high accuracy, paving the way for generalized, on-board fault
diagnostics.

Looking to the future, a wider range of operating conditions,
fault types, and MEAs should be included in the training set to
ensure that the model can be generalized to other systems; how-
ever, further testing needs to be performed to understand if the
model can interpolate/extrapolate for MEAs at unseen conditions
to those within the training dataset. As well as different operating
conditions, the effect of long-term operation on diagnostic accu-
racy needs to be explored, since performance degradation over
time may reduce, causing the pre-trained model to become
redundant. The framework should also be extended to a PEFC
stack using multiple voltage responses from different cells simul-
taneously. This is now feasible given our recent demonstration of
multichannel voltage responses®* and adapted to diagnose more
types of faults; however, both of these improvements will neces-
sitate a larger model with more parameters, making hyperpara-
meter optimization more critical. Although not explored here,
the methodology could also be applied to other electrochemical
devices, such as lithium-ion batteries for rapid on-line diagnostics
in a variety of different applications.
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Limitations of the study

While the proposed diagnostic framework demonstrates high
accuracy in controlled settings, several limitations remain. In
real-world fuel cell systems, faults often manifest as gradual deg-
radations or soft differences, such as varying degrees of flooding
or starvation, rather than the clearly defined fault categories like
complete starvation or severe water management issues used in
this study. The model has also not been validated on a large
batch of fuel cell stacks, which is important for confirming its
generalization across different manufacturing variations and
long-term operational conditions. Furthermore, the method has
not yet been tested on commercial fuel cell systems operating
in industrial environments, where complex system interactions
and external noise may impact diagnostic accuracy. These lim-
itations must be addressed to fully establish the robustness
and practical applicability of the approach.
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REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data
Experimental data This paper Mendeley Data: https://doi.org/10.17632/pn95bsbhv9.1

Software and algorithms

Python 3.10.2
Gamry Framework
Analysis Code

Python Software Foundation
Gamry Framework
This paper

https://www.python.org/
https://www.gamry.com/
Zenodo: https://doi.org/10.5281/zenodo.16734066

Other

850e Fuel Cell Test System
Reference 3000

Gas diffusion electrodes
211 membrane

Scribner Associates
Gamry Framework
HyPlat

Nafion

https://www.scribner.com/
https://www.gamry.com/
https://www.hyplat.com/
https://www.nafion.com/en/

METHOD DETAILS

The MEA seen in Figure S1 was fabricated in-house, using gas diffusion electrodes (GDEs) with platinum loadings of 0.4 mg cm-2
(HyPlat, South Africa). These employed 250 um thick H23C9 carbon paper and MPLs (Freudenberg, Germany) with hydrophobic
treatment to facilitate water removal. The GDEs were cut into two 5 x 5 cm squares and sandwiched between an 8 x 8 cm square
of Nafion™ 211 membrane (DuPont, USA), with a thickness of 25.4 um. Using a hot press (Carver Inc., USA), the GDEs and mem-
brane were pressed together for 3 minutes at 140 °C, with a clamping pressure of 2.75 MPa to bond the layers together and form the
MEA.*®

The MEA was sealed with a torque of 4 Nm in the PEFC test fixture (Scribner Associates, USA) between two graphite flow fields,
consisting of 17 serpentine passes with channel widths and depths of 1 mm. The PEFC was then installed into an 850e test system
(Scribner Associates, USA), undergoing a conditioning cycle to ‘break-in’ the MEA before the polarisation curves and diagnostic tests
were carried out.®*

Diagnostic tests at three different health states (normal, reactant starvation, drying) were performed at a current density of
400 mA cm™. To induce starvation, the cathode-side stoichiometry was reduced from +3.0 to +1.5, reducing the amount of oxygen
available for the reaction. Although a stoichiometry of +1.5 indicates 50% more oxygen than is theoretically required, it is likely to
cause some starvation, particularly on a local level. To induce drying, the inlet temperatures of the anode and cathode were reduced
to ~40°C (while maintaining a cell temperature of 60°C). This reduced the amount of water entering the system.

QUANTIFICATION AND STATISTICAL ANALYSIS

There are no quantification or statistical analyses to include in this study.
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