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ABSTRACT

Task-based Virtual Personal Assistants (VPAs) rely on multi-domain
Dialogue State Tracking (DST) models to monitor goals throughout
a conversation. Previously proposed models show promising results
on established benchmarks, but they have difficulty adapting to
unseen domains due to domain-specific parameters in their model
architectures. We propose a new Similarity-based Multi-domain Di-
alogue State Tracking model (SM-DST) that uses retrieval-inspired
and fine-grained contextual token-level similarity approaches to
efficiently and effectively track dialogue state. The key difference
with state-of-the-art DST models is that SM-DST has a single model
with shared parameters across domains and slots. Because we base
SM-DST on similarity it allows the transfer of tracking informa-
tion between semantically related domains as well as to unseen
domains without retraining. Furthermore, we leverage copy mech-
anisms that consider the system’s response and the dialogue state
from previous turn predictions, allowing it to more effectively track
dialogue state for complex conversations. We evaluate SM-DST
on three variants of the MultiWwOZ DST benchmark datasets. The
results demonstrate that SM-DST significantly and consistently
outperforms state-of-the-art models across all datasets by absolute
5-18% and 3-25% in the few- and zero-shot settings, respectively.
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1 INTRODUCTION

Task-based Virtual Personal Assistants (VPAs) interact with users
in natural language to complete tasks. Modern VPAs such as Google
Assistant, Siri and Alexa support complex tasks that span multiple
domains. Figure 1 illustrates a multi-domain conversation with
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Figure 1: An example multi-domain dialogue; green and red
terms represent correctly and incorrectly predicted states.

Dialogue Context Dialogue State

Turn 1 - Usr: I'm looking for somewhere to}

stay in horth Cambridge, hotel-area : porth Cambridge ‘

hotel-area : north Cambridge

-
Pexell Fodgs® hotel-name : Lovell Lodge

Turn 2 - Sys: Would you like to try the
Usr: Yes, please.

hotel-area : north Cambridge
hotel-name : Lovell Lodge
taxi-departure : Lovell Lodge
taxi-destination : Ballare

Turn 3 - Sys: The booking goes through
[--]

Usr: Can you book a taxi from the
hotel to the Ballare?

Span-based Value Inform-based Value Refer-based Value

requests to book a hotel and a taxi ride to pick them up. Keeping
track of the state across these sub-tasks (domains) is called Dialogue
State Tracking (DST) and is an essential component that extracts
the intents expressed during the conversation and encodes them in
a set of states (i.e. a set of domain-slot pairs and their values)[5, 18].
DST models usually rely on an ontology that defines 1) slots for
a particular task (e.g. departure and destination for taxi booking)
and 2) the set of possible values for each. A DST model takes the
current utterance and previous dialogue history (with its state) and
predicts 1) if it mentions a given slot and 2) if so, its value. Based
on the current dialogue state VPAs decide the next optimal action
(e.g. a database query or a natural language generation response).

Current DST models can be categorised into ontology-based
and span-based. Ontology-based models [15, 23, 24] require full
access to a pre-defined ontology, where all domain-slot pairs and
their values are known in advance. They simplify the task of DST
by performing classification over the candidate values for a given
domain-slot pair and dialogue context. This works well for domains
with fixed categorical values, but their main disadvantage is that
knowing all possible values for open-domain slots such as a place
name is difficult or impossible. As a result, such models suffer from
the out-of-vocabulary problem for unseen values [19]. To address
this, span-based DST models [1, 7, 11, 13, 19] extract slot values
directly from the utterances and dialogue history without requiring
a pre-defined list of candidate values. These models assume that
the intent is expressed within the utterances and can be selected.
However, this also suffers from the issue that values may be implied.
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We show an example in Figure 1, where in Turn 2 the user implicitly
provides the value of “hotel-name” by selecting the value informed
by the system. In Turn 3, the user implicitly provides the value of
“taxi-departure” by referring to the value of “hotel-name” provided
in the previous turn. To address the challenges of coreference and
value sharing, several recent span-based DST models [7, 11] use
copy mechanisms to refer to a slot’s value from the dialogue state.
Despite the fact that current ontology and span-based models show
promising results on standard multi-domain datasets[5, 22], their
architectures are limited in the number of domains/slots and usually
required labeled data (supervised or weakly supervised) in order to
adapt to new domains and unseen slots.

We propose a new DST approach inspired by retrieval and no-
tions of similarity. We argue that DST models should have one
model with shared parameters and use slot and domain similarity.
As aresult, the proposed model be able to adapt to new domains over
an increasingly diverse area of application. The proposed model
leverages the similarity between slots across different domains with
similar values (e.g. the “area” slot for the hotel, restaurant and at-
traction domains). Similar domains are likely to share similar slots
and intents. For example, booking a train vs ordering a taxi, both
are transportation and require a departure (pickup point) and desti-
nation (drop-off point) slots with similar semantics. A model should
be able to transfer by learning from the train domain for the taxi
domain without additional training data. This is important because
collecting training data for new domains is also challenging, ex-
pensive, and time-consuming [9, 14, 18]. The contributions in this
work include the following:

e We propose a novel Similarity-based Multi-Domain Dialogue
State Tracking model (SM-DST) that uses retrieval-inspired
similarity as well as state copy mechanisms to track dialogue
state. Key components of the SM-DST model are scalable
and transferable because they share their parameters across
domains allowing them to track knowledge between similar
domains and values for unseen slots

e We propose an effective token-level correlation estimator
to estimate the similarity between the current dialogue con-
text and candidate slots. To the best of our knowledge, this
work is the first to estimate the similarity between dialogue
context and slots at token-level instead of sentence-level.

e We perform experiments on multi-domain DST benchmark
datasets. Results show the proposed model consistently and
significantly outperforms previous baselines in standard su-
pervised, few-shot, and zero-shot settings.

2 RELATED WORK

The diverse DST models proposed in previous literature can be cate-
gorised into two main types: the ontology-based [15, 21, 23, 24] and
span-based models [1, 2, 7, 11, 13, 16, 19]. Recently, these existing
DST models often exploit pre-trained contextual language models
(e.g. ELMO [17] and BERT [4]) to encode the utterances, system
responses, and dialogue history. They train supervised classifica-
tion models on these encoded dialogue representations to track the
current dialogue state. For example, Zhang et al. [23] propose an
ontology-based DST model that exploits BERT to learn a dialogue-
slot representation from the utterance and slot description. Then,

they use a separate BERT model to encode corresponding values of
the slot. Given a set of candidate values for a given slot from the pre-
defined ontology their model predicts the dialogue state based on
the similarity between the encoded candidate values and dialogue-
slot representations. In contrast, Lee et al. [15] exploit BERT for
two separate independent encoding of the dialogue context and
domain-slot pairs. They use attention models to learn dialogue-slot
representation and scores for every candidate slot-value pair in a
non-parametric manner using a distance measure.

Recent works[1, 2, 7, 11] focus on the span-based approach to
address the out-of-vocabulary problem for unseen-slot values as
well as generalisation issues of previously proposed ontology-based
DST models. Chao and Lane [1] propose a span-based model built
on BERT. They replace the original language-modelling head with
two specific heads: one that performs per-slot utterance level clas-
sification to predict whether a given slot is active or mentioned
in a given utterance and another per-slot head that predicts the
beginning and the end of the span that represents a value of the slot.
Chen et al. [2] propose a schema-guided model that exploits graph
attention networks to learn the hidden slot-slot relations from the
pre-defined schema and predicts the dialogue state from utterances
and learned schema graphs. However, the models proposed in [1, 2]
are not efficient because they must predict the dialogue state at
every previous turn from scratch. To address this, Kim et al. [11]
propose a copy mechanism that incorporates the dialogue state
predicted from previous turns when tracking the state at the cur-
rent turn. Their copy mechanism decides whether a value of a
given slot at the current turn can be copied from the previously
predicted value of the history. If not, they use separate recurrent
neural networks to decode the slot values given the dialogue-slot
representation. Inspired by [11], Heck et al. [7] recently propose
a triple copy mechanism that can copy a slot value from 1) span
prediction component 2) a system response memory that keeps
track of the system’s response operations, and 3) predicted values
from previous turns.

Although existing ontology and span-based DST models show
promising results on multiple DST benchmark datasets, their archi-
tectures are not scalable because they have per-slot parameters and
need to be retrained to learn them for new domains and unseen
slots. Several scalable models propose address this issue [13, 15, 19].
Wu et al. [19] propose a transferable span-based DST model that
transfers tracking knowledge across different domains and slots.
Their model consists of the dialogue encoder, a slot gate, and a state
generator, which shared across domains. Kumar et al. [13] extend
the scalable DST model proposed by Wu et al. [19] by improving the
encoding of dialogue context and slot semantics to robustly capture
important dependencies between slots and the conversation history.
They use cross-attention to model relationships between the con-
text dialogue and domain-slot pairs at different semantic levels and
self-attention to address the coreference and value sharing issue.
These scalable DST models can be used in a zero-shot setting for
new domains or unseen slot values. However, the existing scalable
DST models cannot leverage the auxiliary information such as the
system inform memory and the predicted dialogue state from previ-
ous turns. Therefore, they may not be able to handle the challenge
of coreference and value sharing.



3 SIMILARITY-BASED MULTI-DOMAIN DST
WITH COPY MECHANISMS

3.1 Problem Statement and Notation

The goal of Dialogue State Tracking is to record the structured
state of the task at a particular turn given the current utterance,
and previous system response as well as auxiliary features. Let
DS ={DS1,DSy, ..., DS+ } be the dialogue state of the user for each
turn. Each dialogue state DS; is a set of tuples (s, v), where s € S is
a domain-slot pair and v is a value associated with the domain-slot
s.Let X = {(U1, R1), (U2, R2), ..., (Ur, Ry) } be the sequence of user
utterance U and system response R pairs at each turn. Each (U, Ry)
pair can talk about single or multiple domains (e.g. restaurant and
taxi) and a certain number of slots (e.g. restaurant-name and taxi-
destination) associated with the respective domains. There are two
types of auxiliary features: system responses (inform acts) and

dialogue state memories. The system inform memory mzft e {0,1}
indicates whether a value of slot s is informed by the system in turn
t and the dialogue state memory mist_l € {0, 1} indicates whether
slot s’s value is predicted by the DST model in the previous turn.

3.2 The architecture of SM-DST

The architecture of SM-DST model is shown in the right part of
Figure 2 and consists of four main layers: input, embedding, corre-
lation estimation, and prediction layers. Starting at the bottom of
the figure, the input to SM-DST (yellow pentagons) are the current
dialogue context ¢; = [U;, Ry, Hy] at turn ¢, a given domain-slot
pair s and auxiliary features including the system inform mem-

ory méft € {0,1} and the dialogue state from the previous turn,
m‘sift_l e {0,1}. m;ft = 1 indicates that the system has recently

informed the value of slot s to the user at current turn ¢, while
mist_l = 1 indicates that the value of slot s was predicted in the
previous turn t — 1. Let Hy = (U;—1,R¢—1), ..., (U1, R1) be the dia-
logue history before turn t. Next, the embedding layer of SM-DST
consists of the slot encoder and dialogue encoder that encodes the
given slot s and dialogue context c¢; into separate contextualised
representations. The output of the embedding layer is passed to
the correlation estimation layer to learn the correlation between
the current dialogue context c; and slot s. Finally, the output from
the correlation estimation and embedding layers are passed to the
prediction layer that predicts the dialogue state at turn ¢. In the
prediction layer, there are three types of predictors: slot operation,
span-based value, and refer-based value.

The architecture of SM-DST differs from the architecture of
existing, less scalable DST models (e.g. [1, 7]) in several aspects,
illustrated in Figure 2. First, other DST models usually have only
one encoder to encode both dialogue context and domain-slot pairs,
while SM-DST has two separate encoders to independently encode
the dialogue context and domain-slot pairs. Second, other DST
models require N slot operation predictors and N span-based value
predictors, therefore, the complexity of these models increases as
the number of domain-slot pairs increases. Another disadvantage
is that they have N predictors and training data for every domain
in order to train each predictor. As a result, they are less likely to be
able to transfer the tracking knowledge from the seen domains to
the unseen domains. In contrast, SM-DST is scalable as it has only

three predictors that are shared across different domains. The main
advantage of shared predictors is that SM-DST can extract the user’s
dialogue state for unseen domain-slot pairs even though training
data for new domains is not available. The complexity of SM-DST
is constant since the parameters of SM-DST do not increase as the
number of domain-slot pairs increases. Unlike SM-DST, the existing
scalable models (e.g. [13, 19]) cannot leverage the system inform
memory and the predicted dialogue state from previous turns.

3.3 The Dialogue and Slot Encoders

The SM-DST model consists of the dialogue encoder and the slot
encoder where the former aims to capture the user’s intent from
the dialogue context and the latter learns the representation of
different domain-slot pairs (see the green and red rectangles in
Figure 2). The input of the dialogue encoder is the dialogue context
c at turn t that consists of current utterance U;, system response
R; and dialogue history H; = (Us-1, R¢-1), ..., (U1, R1). We exploit
pre-trained language models! (e.g. BERT[4]) as the encoder and the
domain-slot encoder to encode their inputs as follows:

Ec; = BERT([CLS]| ®U; & [SEP] ® R, ® [SEP] ® H; ® [SEP]), (1)

where & is the concatenation operation, [CLS] and [SEP] are
BERT’s special tokens. E¢; = [etCLS, e}, ey e;eq;‘“"] is the output
of the dialogue encoder that represents each token in the dialogue
context ¢ and seq,,, is the maximum length of the dialogue token
sequence. In particular, e[CLS € R" is the aggregated representation
of the total seq,,, sequential input tokens that captures the user’s
intention from the whole dialogue context c, where n is the size of
BERT’s contextual embedding dimension. T ; = [etl, ef, efeqi"“"]
are token-level representation of each token. Given the candidate
domain-slot pair s, we use the slot encoder to generate several
representations: namely slot, inform-slot and refer-slot representa-
tions. Following [15, 19], we exploit a separate pre-trained language
model to represent each candidate slot as follows:

Es = BERT([CLS] @ desc(s) & [SEP)),
EY = BERT([CLS] ® [INFORM] & [SEP] @ desc(s) @ [SEP)]),

E% = BERT([CLS| @ [REFER] & [SEP] & desc(s) & [SEP)),

)
where desc(s) is a function that returns a textual description of
domain-slot pair s. [[NFORM] and [REFER)] are special tokens that
are used to generate inform- and refer-slot representations. Es =
[seCLS, sel, .., seseqfna’(] is the output of the slot encoder that rep-
resents each token in slot s’s textual description and seq,, is the

maximum length of the slot token sequence. Ty = [sel, ..., sesequX]

are token-level embedding of each slot token. Similar to Es, E;f and
E3S represent the inform-slot and refer-slot contextualised embed-
dings. Tslf and Tsds € RS€max*" are the token-level embedding of
each slot token for inform-slot and refer-slot representations, re-
spectively. By adding the special [[INFORM] and [REFER] tokens
in front of the slot’s description, we obtain different representations

!Note that we can use any language models as the dialogue and slot encoders. For
simplicity, we exploit BERT as the dialogue and slot encoders because it is widely used
in previous literature [7, 23]
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of slot s, which can be used in different purposes. Indeed, the slot
embeddings Es and dialogue embeddings E. ; will be used by the
span-based value prediction, which extracts the slot value from the
whole dialogue context c;. The inform-slot and refer-slot embed-
dings, E;f and EgiS, will be used by the slot operation predictor and
refer-based value predictor, which extracts the slot value based on

the auxiliary features.

3.4 The Dialogue and Slot Correlation
Estimator

Unlike previous DST models [1, 7, 11] that directly pass the sentence-
level representation etCLS and the token-level representation T ;
to the predictors (the black lines in the left part of Figure 2), we
introduce a dialogue and slot correlation estimator that aims to
estimate the correlation scores between the current dialogue con-
text ¢; and the domain-slot pair s using their token-level contextu-
alised representations, T, ; and Ts. The correlation estimator (green
MaxSim rectangles in Figure 2) captures the relationship between
dialogue context and candidate slots. For example, given a context
“I'm looking for somewhere to stay in north Cambridge” and two
candidate domain-slot pairs “taxi-destination” and “hotel-area”, the
estimator generates higher correlation scores to “hotel-area” than
“taxi-destination” given the context. Unlike existing scalable DST
models[13, 19] that learn the correlation between dialogue context
and slots using their sentence-level representations (i.e. etCLS and
seCLS), we instead learn the correlation using their token-level rep-
resentation (i.e. Ty and T ;). Inspired by [10], given token-level rep-
resentations of the dialogue context Ttd and token-level representa-
tion of candidate slot s, T, the correlation scores of dialogue context
dtoslots, Scs € RS€max*5¢dmax | are estimated as Ses = Te,r TST,
where the similarity between each dialogue’s token-level contex-
tualised embedding e; and each slot’s token-level embedding se is
computed using cosine similarity. The similarity scores S s are then
passed to the span-based value predictor described in Section 3.6,
which extracts the slot values from the dialogue context c¢ at turn ¢.
We compute the inform- and refer-dialogue-slot correlation scores,

St and 59

c.s» of slot s to dialogue context ¢ using the token-level

inform- and refer-slot embeddings, Tsif and Tsds , as:

Sé]: = max Tsif ep- m;ft, 3)

er€lc,

S% = max T - ¢ - mfst_l, (4)
’ e €Tc, >

where m;ft € {0,1} is the system inform memory that indicates
whether a value of slot s is informed by the system in turn t and
ist_l € {0, 1} is the dialogue state memory that indicates whether
a value of slot s is previously predicted by the DST model in the

m

previous turn ¢ — 1. The correlation scores Séfs and Sgi € R3Tmax
will be used by the slot operation predictor (Section 3.5) and the
refer-based value predictor (Section 3.7).

3.5 The Slot Operation Predictor

The slot operation predictor (the blue rectangle in Figure 2) predicts
an operation for each slot to be one of: Ogj,; = { none, dontcare,
true, false, span, refer, inform}. The none and dontcare operations
denote that the slot does not take a value or could be any value,
respectively. The true and false operations denote a value of the
given boolean slot, e.g., hotel-parking and hotel-internet.

The span operation denotes that a value of the given slot could
be extracted from the current dialogue context c; (see the value
of hotel-area slot of turn 1 in Figure 1) and the model will obtain
the slot value from the span-based value predictor (Section 3.6).
The refer operation denotes that a value of the given slot could be
referred from a slot value previously predicted in the previous turn
m‘tjf ; (see turn 3 in Figurel where the user refers the hotel name
as the taxi departure). The inform operation denotes that a value
of the given slot could be copied from the system inform memory
m;"f oM (see turn 2 in Figure 1 where the user selects the hotel
name from the system’s recommendation). If the slot operation
predictor says that a value of the given domain-slot pair can be
referred or copied from the dialogue state memory mds1 or the

t7
system inform memory m;nf °™ then the model will obtain the

value from the auxiliary-based predictors (Section 3.7).
The input to the slot operation predictor is the concatenation of

the aggregate dialogue representation etCLS

, the inform-dialogue-
slot correlation score Sg:, and the refer-dialogue-slot correlation

score S‘Cii The probability distribution over the slot operations
Oqjor for domain-slot pair s at turn ¢ is defined as follow:

3519 = softmax(WIr (eFLS @5 @53) T4b%10%) € RIOstorl (5)



where Wslot ¢ RIOstot|Xd 3 pslot are Jearnable parameters and
bias. The previous domain-specific DST models (e.g. [1, 7]) have
independent weights WS¢ and bias b5/ for each slot s. Our pro-
posed SM-DST has only one weight W3¢ and bias b°! shared
across slots. This allows SM-DST to transfer knowledge to new
domains and unseen slots. The cross-entropy loss function for the
slot operation prediction is defined as:

Lytor = Z Z ~log(ysle" - (g5, ©)
t=1 s=
where ySlOt is the one-hot slot operation label for domain-slot pair
s at turn ¢.

3.6 The Span-based Value Predictor

The span-based value predictor provides a slot value from the
current dialogue context c; by copying to give a value for each
domain-slot pair from the dialogue context (the yellow rectangle
in Figure 2). The span-based value predictor takes the token-level
representation of the correlation between dialogue context c; and
slot s, Se, s € R3Imax*", as input and applies a two-way linear
mapping to compute the probability of the terms being the start
and the end position of the span for slot s, yS"" ! and ye”d

[OC, ﬁ] = Wspan . Sct,s + pSpan ¢ Rseqmaxxz

319 = 5o ftmax(a),

§°" = softmax(p),

where WP ¢ RS€maxx2
ters and bias. That the previous domain-specific DST models (e.g.
[1, 7]) have independent weight W;P " and bias bip " for each slot
s. In contrast, the proposed SM-DST has only one weight W*P4"
and bias b°P%" shared across different slots. This technique uses
fewer parameters and allows SM-DST to transfer knowledge to
new domains and unseen slots. Then, similar to the slot operation
predictor’s loss function (Equation (6)), we define the loss function
for the span-based value prediction as:

and b*P4" € R? are learnable parame-

start (Asmrt end (yend)T

~log(y;if™ - (4 T) —log(y
-Espan = Z Z Ls 2 Ls s

t=1 s=1
™)
where y; """ and y;'(* are the one-hot start and end position label
for domam slot palr sat turn t.

start end

3.7 The Refer-based Value Predictor

Inspired by Heck et al. 7], we describe the last component of the SM-
DST model, the refer-based value predictor that leverages additional

inform and the

dialogue state memory from the previous turn mt 1» to effectively
track the current dialogue state at turn ¢. Figure 1, the slot value of
hotel — name = LovellLodge can be referred to by using the system
inform memory from Turn 2 and the value of taxi — departure slot
in Turn 3 should be inferred from the hotel — name slot using the
dialogue state memory from Turn 2. The input of the inform-based

value predictor is the concatenation of the aggregated dialogue

representation efLS

information including the system inform memory m,

, the refer-dialogue-slot similarity Ssr’ecf " and the

inform-dialogue-slot similarity S;JZ We determine the probability
distribution over a particular domain-slot pair that its value that
can be referred to is computed as:

3 = softmax(W'eSe - (€85 @ 585 @ ST)T + b7y, (9)

Similar to the weight and bias parameters in the slot operation
and span-based value predictors, weight wrefer and bias brefer
parameters are shared across different domain-slot pairs. The loss
function for the refer-based value predictor is computed as:

refer Zz_log(yrefer (g:ifer) ), )

t=1 s=1

where y;es ¢’ is the one-hot reference label for domain-slot pair s
at turn ¢. We train all the components of model using the following
joint loss function.

Lsm-DsT = Bsior * Lstor + Hspan - Lspan + brefer * Lrefers (10)

where pigjo, fispan and pipe e, are hyperparameters that control
the weights of slot-, span- and refer-based loss functions.

4 EXPERIMENTAL SETUP

4.1 Datasets and Metrics

In particular, MultiwO0Z2.1, MultiWO0Z2.2 and MultiWOZ2.3 are
the largest datasets and contain over 10,000 dialogues across seven
domains: restaurant, taxi, attraction, hotel, train, hospital and po-
lice. MultiWOZ2.3 is the most recent benchmark dataset for DST?.
It is an enriched version of MultiwOZ2.1 and MultiWOZ2.2 that
identifies and fixes dialogue state annotation errors, inconsisten-
cies and ontology related issues from MultiWOZ2.1. Following
[11, 20, 23], we remove hospital and police domains in MultiwOZ2.1,
MultiWOZ2.2 and MultiWOZ2.3 because they only appear in the
training dataset. We use the standard training/validation/test split
strategy provided in the original datasets. Following previous liter-
ature [1, 7, 11, 23], we use two evaluation metrics to evaluate the
effectiveness, joint goal accuracy and slot accuracy [8]. At each
turn, the joint goal accuracy is 1.0 if and only if all domain-slot pairs
and their corresponding values are correctly predicted, otherwise
0. The score is averaged across all turns in the test set. The slot
accuracy individually compares each domain-slot pair and its cor-
responding value to the ground truth label. We conduct statistical
significance testing using a paired t-test and report significance at
the 95% confidence level.

4.2 Baseline Models

We implement our proposed SM-DST model using PyTorch®. We
use the pre-trained BERT-base-uncased model[4] that has 12 hid-
den layers with embedding dimension n = 768 as the dialogue
encoder?. For all previous DST baseline systems, we optimise them
similarly using cross-entropy loss and the Adam optimiser [12]
with a learning rate of 2¢™>. For the hyperparameters, we use the
optimized parameters reported in their previous work. A summary
of the baselines is described below.

Zhttps://github.com/lexmen318/MultiWOZ-coref
Shttps://github.com/feay1234/SM-DST
“https://huggingface.co/transformers/pretrained_models.html
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BERT-DST](1] exploits a pre-trained BERT model to encode
the utterance and system response into sentence- and token-level
representations that are used for the slot operation and slot value
predictions.

TRADE[19] is the scalable DST model that encodes the whole di-
alogue context using bidirectional Gated Recurrent Units (GRU) 3]
and generates the value for every slot using the GRU-based copy
mechanism.

MA-DST(13] is the state-of-the-art scalable DST model that
exploits deep contextualised word representations (ELMO) [17] to
learn relationships between dialogue context and slots.

SUMBT][15] is an ontology-based DST model that exploits BERT
as the encoder for the dialogue context and domain-slot pairs. Af-
ter encoding them it scores every candidate slot value in a non-
parametric manner using a distance measure.

Picklist-DST[23] is the state-of-the-art ontology-based DST
model that requires a pre-defined ontology with all possible values
for each domain-slot pair.

DS-DST [23] is a hybrid model that jointly trains both the
ontology- and span-based model. The ontology-based model used
in DS-DST is Picklist-DST and the span-based model is similar to
BERT-DST.

SOM-DST [11] is a span-based model that consists of the slot
operation predictor and the slot value generation®. It uses the copy-
mechanism for the slot operation prediction and uses Gated Recur-
rent Units (GRU) [3] for the slot value prediction.

SST [2] is a schema-guided model that exploits graph attention
networks to learn the slot-slot relationships from the utterances
and pre-defined schema graph.

TripPy [7] is the state-of-the-art span-based DST model that
uses the triple copy mechanisms to track the dialogue state.

5 EXPERIMENTAL RESULTS
5.1 Baseline Comparison

Tables 1 shows the effectiveness of DST models in terms of joint
goal accuracy on the three MultiWOZ datasets. The encoder column
indicates the pre-trained language model used by the baselines as
the dialogue encoder. Due to their recency or a lack of details, we
were not able to re-implement all baselines. For comparison we
include the as-reported results and are unable to test statistical
significance. We reproduce the results for TripPy and SOM-DST
models in Table 1. We find that the relative dialogue state tracking
effectiveness of these two models on MultiWOZ2.1 is consistent
with the results reported in the original papers [7, 11]. SOM-DST
outperforms both TRADE and DS-DST and is as effective as the
state-of-the-art ontology-based DST model (DST-picklist). Among
all the baselines in Tables 1, we observe that TripPy outperforms
all the ontology-based and span-based baselines on MultiWOZ2.1.
MultiWO0Z2.2 and MultiWOZ2.3 are the most recent DST datasets
and are not been widely compared to in the previous literature. As
a result, comparison is only available on a subset. The results of
TRADE, SUMBT and DS-DST on MultiWOZ2.2 and MultiWw0Z2.3
are those reported in [6, 22]. We do not report results of SOM-DST
on MultiWOZ2.2 as its implementation does not support it.

Shttps://github.com/clovaai/som-dst
Shttps://gitlab.cs.uni- duesseldorf.de/general/dsml/trippy-public

Table 1: Joint Goal Accuracy of DST models on the Multi-
WO0Z2.1, Multiw0Z2.2 and MultiW0Z2.3 datasets. The best
result is highlighted in bold and * denotes a significant dif-
ference between the best and the second-best performing re-
sults according to a paired t-test at p < 0.05. T indicates a
result previously reported.

Model Encoder MultiWOZ2.1 Multiw0Z2.2 Multiw0Z2.3
TRADE} GRU 45.60 45.40 49.20
SUMBTY GRU 49.20 49.70 52.90
DS-DST+ BERT 51.21 51.70 -

MA-DST# ELMO 51.04 - -

SOM-DST BERT 52.37 - 55.50
DST-picklistf BERT 53.30 - -

SSTt GAMT  55.23 - -

TripPy BERT  55.52 50.71 58.80
SM-DST BERT 56.86" 53.82" 62.44*

Comparing our proposed SM-DST model with the baselines
across the three multi-domain DST datasets in Table 1, we see that
it consistently outperforms all the ontology- and span-based DST
baselines in terms of joint goal accuracy across all datasets. SM-DST
significantly outperforms the state-of-the-art DST model, TripPy,
by 2.4%, 6.1% and 6.2% relative reduction in error on MultiwOZ2.1,
MultiW0Z2.2, and MultiWOZ2.3. We believe SM-DST is more effec-
tive than TripPy for several reasons. First, SM-DST shares tracking
knowledge across domains, while TripPy only learns per-domain.
Second, SM-DST learns the domain-slot similarity leveraging their
token-level representations (described in Section 3.4) while TripPy
uses coarser sentence-level representations that we hypothesize
does not fully capture the nuance of domain-slot relationships.
Comparing SM-DST with the state-of-the-art scalable DST model,
MA-DST, it outperforms MA-DST by 13.6% relative reduction in er-
ror on MultiWOZ2.1. Although the architecture of MA-DST shares
the tracking knowledge across domains, it does not leverage the
system inform memory m;ft or the dialogue state memory mfstil,
which we believe hurts its effectiveness. In contrast, SM-DST ex-
ploits the refer-based value predictor, described in Section 3.7, that
leverages the system inform memory m;ft and the dialogue state

memory mfi_l to track the current dialogue state. For a detailed

breakdown of the contribution of the components we refer the
reader to the detailed ablation study on each component of SM-
DST conducted in previous work [7].

5.2 Few-shot DST Effectiveness

Collecting training data for new domains is expensive and time-
consuming [9, 14, 18]. In this section, we compare the effectiveness
of SM-DST and TripPy in the few-shot experimental setup. We study
whether SM-DST is effective in tracking the dialogue state even
when the training dataset for the new domain is very limited. We
assume that just 1% of the original training data for the new domain
is available (around 20 dialogues). We note that TripPy is capable of
the few-shot setting, although the parameters of its predictors are
separate for each slot, its dialogue encoder is shared across different
domains (see Section 3.2). Therefore, if we have a few training
dataset for TripPy to train their predictors, it should be able to
transfer the tracking knowledge to unseen domains. Table 2 shows


https://github.com/clovaai/som-dst
https://gitlab.cs.uni-duesseldorf.de/general/dsml/trippy-public

Table 2: As per Table 1. Joint Goal Accuracy of TripPy and
SM-DST models on the Multiw0Z2.1, Multiw0Z2.2 and
MultiwOZ2.3 datasets in the few-shot setting. * denotes a
significant difference with a paired t-test at p < 0.05.

MultiwOZ2.1 Multiw0Z2.2 Multiw0Z2.3
Domain TripPy SM-DST TripPy SM-DST TripPy SM-DST
Hotel 69.34 74.17* 69.59 71.70* 69.03 74.70"
Train 76.55 81.96" 67.63 86.46" 77.55 85.51*
Taxi 91.32 91.52 91.29 91.59 91.66 91.78

Restaurant  76.22 86.88" 78.89 87.70* 80.91 88.17*
Attraction 77.55 90.37* 79.04 89.47" 81.02 88.31"

the joint goal accuracy of SM-DST and TripPy across five domains
on the MultiWOZ datasets for the few-shot setting. We observe that
SM-DST consistently outperforms TripPy on all domains across
the three datasets. SM-DST significantly outperforms TripPy on
the hotel, train, restaurant and attraction domains by 5-12% on
MultiW0Z2.1, 2-18% on MultiWOZ2.2, and 5-8% on MultiwOZ2.3.
Interestingly, on the restaurant and attraction domains using only
around 20 training dialogues for these two domains to train the
model obtain almost 90% of the full dataset, while TripPy can only
achieve around 80%. This indicates that the model requires less data
than TripPy to reach the same level of effectiveness. We also observe
that the behavior of TripPy and SM-DST on the taxi domains are
similar. We believe the reason is because all four taxi slots (i.e.
leaveAt, departure, destination and arriveBy) share similar values
with the corresponding slots in the train domain.

Next, we investigate the effectiveness of SM-DST and TripPy in
detail for each slot in the few-shot setting. The results in Table 3
show that SM-DST is consistently more effective than TripPy across
all slots in the most recent and reliable dataset, MultiwOZ 2.3.
There is approximately a 3% absolute improvement of SM-DST over
TripPy on average across all domain-slot pairs across all versions
of the dataset. TripPy only marginally outperforms SM-DST in
three slots for MultiWOZ2.1 and 2.2. The reasons for this on the
older datasets is unclear, but these had minor inconsistencies and
annotation issues.

We see that SM-DST outperforms TripPy by approximately 5-
7.5% absolute on the hotel-name, restaurant-name and attraction-
name domain-slot pairs. The values of these domain-slot pairs are
open vocabulary and are therefore more difficult to extract from
the dialogue context [7, 13, 19]. The largest gains over TripPy are
in hotel-internet and hotel-parking, with over an 8% improvement.
The hotel-type slot remains the most challenging for both models,
and although SM-DST improves by over 4.5% absolute, it is the worst
performing slot. In cases where the slot semantics are similar (area,
day) we also observe gains of SM-DST. On the unseen domain-slot
pairs (e.g. hotel-type, hotel-parking, hotel-stars and hotel-internet),
we observe that both SM-DST also provides significant gains. The
hotel-internet is 8.4%, parking is 8.2%, type is 4.6%, and stars is 3%.
We hypothesize the reason for this may be due to the more granular
per-token similarity used in SM-DST.

Furthermore, we analyse the DST predictions of TripPy and
SM-DST in the few-shot setting on MultiwOZ2.3 in Table 4. In

"These slots do not overlap with other slots from different domains

Table 3: Effectiveness of TripPy and SM-DST models in
terms of slot accuracy on the MultiwOZ datasets in the few-
shot setting.

MultiwOZ2.1 MultiwOZ2.2 Multiw0Z2.3
TripPy SM-DST TripPy SM-DST TripPy SM-DST

domain-slot pair

attraction-area 94.13 96.47 93.95 96.55 94.75 96.69
attraction-name 85.54 96.69 86.94 96.70 89.64 97.08
attraction-type 90.38 95.77 91.89 94.89 91.63 92.95
hotel-area 94.48 95.89 93.79 95.89 93.91 96.16
hotel-day 98.09 98.86 98.44 98.77 98.25 98.72
hotel-people 97.50 97.94 98.06 98.22 97.83 97.88
hotel-stay 98.44 98.98 98.32 99.31 98.75 99.06
hotel-internet 85.17 94.72 84.63 84.63 88.36 96.73
hotel-name 89.95 96.54 90.97 97.41 92.09 97.57
hotel-parking 85.40 91.24 85.40 85.40 84.37 92.53
hotel-price 95.27 97.22 95.16 96.85 95.67 97.27
hotel-stars 94.53 97.71 95.48 97.98 94.98 98.03
hotel-type 82.00 85.57 82.73 85.89 78.46 83.04
restaurant-area 94.57 96.85 94.15 96.70 95.28 96.81
restaurant-day 98.39 98.41 98.68 98.43 98.25 98.59

restaurant-people  98.32 98.25 98.30 98.06 98.81 98.86
restaurant-time 98.77 98.68 98.47 98.78 98.62 99.00
restaurant-food 94.61 97.12 94.45 97.65 96.46 97.68
restaurant-name 86.88 95.71 89.53 97.10 91.35 96.45
restaurant-price 94.11 97.82 94.32 97.34 94.61 98.02

taxi-arriveBy 96.79 96.80 96.80 97.46 96.62 96.91
taxi-departure 92.50 94.18 92.47 93.08 93.64 93.65
taxi-destination 92.17 93.00 92.08 92.93 93.23 93.68
taxi-leaveAt 96.80 97.44 96.31 98.24 97.64 98.58
train-arriveBy 93.53 95.48 87.32 98.26 89.64 95.65
train-people 95.52 96.36 94.99 96.19 96.32 96.53
train-day 96.46 98.40 95.58 97.63 97.64 98.63
train-departure 90.93 97.23 92.72 96.64 94.91 97.21
train-destination 95.98 98.05 94.68 97.73 96.55 98.17
train-leaveAt 92.06 90.37 81.78 96.64 90.98 94.00
average 93.31 96.13 92.95 95.91 93.97 96.40

the first row of Table 4, we observe that both TripPy and SM-DST
can effectively track the user’s dialogue state for the similar slots
(e.g. the departure, destination and leaveAt slots that are shared
between the train and taxi domains). However, in the second row,
we find that TripPy makes a mistake in extracting the value of the
taxi-departure slot, while SM-DST does not. These results show that
SM-DST is more effective and consistent than TripPy in tracking
the user’s dialogue state for the similar slots. Both TripPy and SM-
DST share similar mistakes when dealing with the unseen slots (e.g.
the restaurant-area slot which is completely new to both models).
Since we only train these two models on the few-shot dataset (i.e.
1% of the original dataset for the restaurant domain), they may not
have seen the restaurant-area slot during the training process. In
the last row of Table 4, we observe another mistake of TripPy when
it extracts the value of the attraction-type slot, whereas SM-DST
accurately predicts the value of the attraction-type slot. Overall,
in response to research question RQ2, the results reported in this
section demonstrate that SM-DST transfers more effectively on
slots that may be similar across domains as well as ones that have
more limited training data.



Table 4: Example dialogue states predicted by TripPy and SM-DST on the few-shot setting on MultiwOZ2.3. The accurate

predicted values are highlighted in green, otherwise in red.

Dialogue Context

TripPy

SM-DST

Dialogue id : SNG0448

Usr: I'd like a train from Cambridge to Broxbourne, please.

Sys: There are 133 trains making that trip, do you have a day and
time you ’d like to go?

Usr: Yes . I would like to leave on Sunday after 20:30.

Sys: TR7208 leaves at 21:01 . Would you like me to book it?

Usr: Yes and could I have the reference number after?

train-departure : Cambridge
train-destination
Broxbourne

train-day : Sunday
train-leaveAt : 21:01

train-departure : Cambridge
train-destination
Broxbourne

train-day : Sunday
train-leaveAt : 21:01

Dialogue id : SNG02207
Usr: I need to book a tax departing from gandhi.

taxi-departure : none taxi-departure : gandhi

Dialogue id : MUL0034

Usr: I'm looking for an expensive restaurant that serves Thai food,
please

Sys: There is one in the west and one in the centre of town . Do
you have a preference in area ?

Usr: I don’t have a preference in the area. I suppose you could book
me a table for two people at 12:30 on Saturday.

restaurant-area : none restaurant-area : none

restaurant-people : two restaurant-people : two

restaurant-data : Saturday restaurant-data : Saturday
restaurant-price : expensive

12:30

restaurant-price : expensive

restaurant-time : restaurant-time : 12:30

Dialogue id : PMUL4106
Usr: Hello, I am looking for a concerthall in the centre of town.

attraction-type : hall attraction-type : concerthall

attraction-area : centre attraction-area : centre

5.3 Zero-shot DST Effectiveness

In this section, we study the ability of SM-DST to generalise to
unseen domains by considering the zero-shot setting. Zero-shot as-
sumes that there is no training data for a new domain. For example,
on the MultiWoZ2.1 dataset, we train the models on the hotel, train
taxi and restaurant domains and evaluate their performance on the
attraction domain. This setting is more challenging than the few-
shot setting because models can only rely on parameters learned
from the seen domains and can not learn per-domain parameters.
Note that TripPy does not support the zero-shot setting, we there-
fore do not report results for it in the setup. We show the results
comparing SM-DST with state-of-the-art zero-shot models, TRADE
and MA-DST in Table 5. We only report effectiveness on Multi-
WOZ2.1 for compatibility with both models. As expected, the effec-
tiveness of all models drops dramatically. Overall, we observe that
SM-DST consistently outperforms these methods on MultiwWOZ2.1.
The largest and most significant gain over existing models is in the
train domain, with a 25% absolute effectiveness gain. Other domains
show consistent improvement between 3-5%. Similar to previous
results in [13, 19], we see that SM-DST performs the best on the
taxi domain. We hypothesize that reason why the zero-shot perfor-
mance of SM-DST on the taxi domain is relatively high is because
all the four slots (taxi-arriveBy, taxi-leaveAt, taxi-departure and
taxi-destination) share similar values with the corresponding slots
in the train domain (train-leaveAt, train-arriveBy, train-departure,
train-destination). This also explains why our model makes such
large improvements in the train domain, because it can leverage the
similarity to taxi slots. Overall, in response to research question RQ3
the results demonstrate that SM-DST can effectively transfer the
tracking context across slots and domains with similar semantics.

Table 5: As per Table 1, JGA of scalable DST models in the
zero-shot setting on the Multiw0Z2.1 dataset.

Domain TRADET MA-DST{ TripPy SM-DST
Hotel 14.20 16.28 - 23.00
Train 22.39 22.76 - 47.92
Taxi 59.21 59.27 - 62.90
Restaurant 12.59 13.56 - 16.82
Attraction 20.06 22.46 - 27.29

6 CONCLUSION

We address the problem of scaling and domain transfer for multi-
domain task-based virtual assistants. We propose a novel Similarity-
based Multi-Domain Dialogue State Tracking model (SM-DST). The
architecture of the model consists of five key components that have
shared parameters across slots and domains. This allows it to lever-
age data and parameters across domains and slots that share similar
semantics (e.g. train and taxis). The comprehensive experiments
on the DST benchmark datasets show that SM-DST significantly
outperforms the current state-of-the-art DST model, TripPy, by
approximately 2-6% relative reduction in error in the standard su-
pervised setting. In the zero-shot setting, SM-DST outperforms the
state-of-the-art model, MA-DST, by 3-25% absolute on joint goal
accuracy for MultiwOZ2.1.
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