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ABSTRACT

Simulation-based inference (SBI) enables cosmological parameter estimation when closed-form likelihoods or models are
unavailable. However, SBI relies on machine learning for neural compression and density estimation. This requires large training
data sets which are prohibitively expensive for high-quality simulations. We overcome this limitation with multifidelity transfer
learning, combining less expensive, lower fidelity simulations with a limited number of high-fidelity simulations. We demonstrate
our methodology on dark matter density maps from two separate simulation suites in the hydrodynamical CAMELS Multifield
Data set. Pre-training on dark-matter-only N-body simulations reduces the required number of high-fidelity hydrodynamical
simulations by a factor between 8 and 15, depending on the model complexity, posterior dimensionality, and performance metrics
used. By leveraging cheaper simulations, our approach enables performant and accurate inference on high-fidelity models while
substantially reducing computational costs.

Key words: methods: statistical — software: machine learning — cosmology: cosmological parameters — dark matter — large-scale

structure of Universe.

1 INTRODUCTION

Cosmological inference is increasingly turning to machine learning
(ML) techniques for improved precision, accuracy, and efficiency.
In particular, simulation-based inference (SBI) has emerged as a
tool to enable statistical analysis of the large-scale structure beyond
traditional Gaussian likelihood-based analysis. These techniques
have been applied to weak lensing measurements of cosmic shear
such as the Kilo-Degree Survey (Lin et al. 2023; von Wietersheim-
Kramsta et al. 2025), the Dark Energy Survey (Jeffrey, Alsing &
Lanusse 2021; Gatti et al. 2024; Jeffrey et al. 2025), the Subaru
Hyper Suprime-Cam (e.g. Novaes et al. 2025) and the Sloan Digital
Sky Survey-III Baryon Oscillation Spectroscopic Survey (Hahn et al.
2024; Lemos et al. 2024; Thiele et al. 2024).

Inference on shear and clustering data beyond two-point statistics
has gained importance for precision cosmology, particularly as
upcoming surveys prepare to probe more non-linear scales (e.g.
Euclid, Euclid Collaboration 2025; the Vera Rubin Observatory,
Ivezi¢ et al. 2019; the Nancy Grace Roman Space Telescope, Gehrels
et al. 2015). A wide body of research has now explored various
strategies for advancing beyond-Gaussian analysis, incorporating
e.g. field-level inference, such as Bayesian Origin Reconstruction
from Galaxies (BORG, Jasche & Wandelt 2013; Jasche, Leclercq &
Wandelt 2015; Jasche & Lavaux 2019), using lognormal maps
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(Xavier, Abdalla & Joachimi 2016; Leclercq & Heavens 2021;
Boruah, Rozo & Fiedorowicz 2022), or higher-order statistics,
such as the three-point correlation function (Schneider & Lombardi
2003; Takada & Jain 2003; Halder et al. 2021; Hahn et al. 2024),
aperture mass (Jarvis, Bernstein & Jain 2004; Semboloni et al.
2011; Martinet et al. 2021; Secco et al. 2022), scattering transforms
(Cheng et al. 2020; Régaldo-Saint Blancard et al. 2024; Cheng et al.
2025), and peak counts (Harnois-Déraps et al. 2021; Ziircher et al.
2022). Another important line of research, particularly for better
understanding the widely discussed Sg tension (see e.g. Abdalla et al.
2022, for areview) is probing the effects of systematics. For example,
non-linear effects on the matter distribution become important over
small scales, and become coupled with complex baryonic effects
which are hard to model (McCarthy et al. 2018; Schneider et al. 2019,
2020). Large simulation efforts have been dedicated to probing the
effect of baryonic feedback at small scales (McCarthy et al. 2018;
Villaescusa-Navarro et al. 2021, 2022; Ni et al. 2023; Schaye et al.
2023; Elbers et al. 2025).

SBI uses ML models known as neural density estimators (NDEs)
to model the probabilistic relationship between parameters and data
empirically, allowing the method to drop the common assumption
of a Gaussian likelihood.! Examples of modelling choices include

'We define SBI as using ML-based models of the likelihood (or related
quantites), as distinct from using a simulation-based pipeline to estimate the
Gaussian covariance of the likelihood (e.g. Harnois-Déraps et al. 2024).
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the posterior (Papamakarios & Murray 2016; Alsing, Wandelt &
Feeney 2018; Alsing et al. 2019; Greenberg, Nonnenmacher &
Macke 2019; Deistler, Goncalves & Macke 2022), the likelihood
(Lueckmann et al. 2019; Papamakarios, Sterratt & Murray 2019), or
ratios of these quantities (Durkan, Murray & Papamakarios 2020;
Hermans, Begy & Louppe 2020). This allows for various sources
of error, including both measurement errors and systematic effects,
to be incorporated in the likelihood by directly simulating them.
SBI offers an efficiency advantage over many traditional likelihood-
based techniques, enabling significant reductions in the number
of simulations required to model the posterior by interpolating
between them (Alsing et al. 2018; Cranmer, Brehmer & Louppe
2020). In addition to this, ML-based neural compression has gained
popularity for extracting summary statistics from high-dimensional
observations, such as from ensembles of summary statistics, weak
gravitational lensing convergence maps or dark matter density maps
(Gupta et al. 2018; Fluri et al. 2019, 2022; Ribli et al. 2019; Matilla
et al. 2020; Jeffrey et al. 2021; Makinen et al. 2021; Lu, Haiman &
Li 2023; Gatti et al. 2024; Lanzieri et al. 2025; Lemos et al. 2024).
ML-based compression and density estimation have received further
attention for their ability to significantly improve the constraining
power of the observations (e.g. Jeffrey et al. 2021; Dai & Seljak
2024).

However, training robust and informative neural compression
models is challenging, particularly when considering small data sets
(for instance, fewer than O(10%) data examples, see e.g. Bairagi,
Wandelt & Villaescusa-Navarro 2025; Jeffrey et al. 2025; Park,
Gatti & Jain 2025). Recent work has demonstrated that ML models
fail to optimally compress low-dimensional power spectrum data
in a data-limited regime (Bairagi et al. 2025). Neural compression
of field-level data, on the other hand, often relies on deep learning
techniques such as convolutional neural networks (CNNs), which are
particularly data-hungry: for instance, Jeffrey et al. (2025) trained a
large ensemble of CNN-based neural compression models in order
to mitigate against their weak performance in the absence of a large
training data set. In addition, the density modelling of SBI is also
hamstrung by a lack of training data. Prior work has shown that
common neural density estimation techniques underperform with
limited data, yielding inaccurate and poorly calibrated posteriors
(Lueckmann et al. 2021; Hermans et al. 2022; Lemos et al. 2023a;
Delaunoy et al. 2024; Tucci & Schmidt 2024; Krouglova et al.
2025). This makes extending SBI to more realistic cosmological
models that require expensive, fine-grid hydrodynamical simulations
challenging.

Our work aims to reduce the number of expensive simulations
required to perform cosmological inference by leveraging cheaper
simulators. In a recent example, Jia (2024a, b) use a pre-trained
inference model (via neural quantile estimation) that is calibrated
on a small target data set using a quantile-shifting technique. In
this study, we develop the use of transfer learning, a popular
technique in the ML community that leverages data from one
domain to improve performance in another (see e.g. Zhuang et al.
2020, for a survey). One example of transfer learning is domain
adaptation, which has been used within cosmology to improve
the robustness of inference with respect to uncertain physical
processes; domain adaptation improves generalization across data
sets by aligning their feature representations. This can be achieved
in a number of ways: introducing additional loss terms, such as
maximum mean discrepancy (MMD; Roncoli et al. 2023); adversar-
ially, by training a discriminator to minimize domain differences
(Ganin & Lempitsky 2015; Andrianomena & Hassan 2025; Jo
et al. 2025); or using optimal transport methods to explicitly map
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between latent distributions (Wehenkel et al. 2025; Andrianomena &
Hassan 2025).

Our approach is straightforward: we perform transfer learning by
first pre-training on a large corpus of cheaper, lower fidelity data
before training the model on a small set of accurate examples (a
process known as fine-tuning). This widely used approach underpins
foundation models, which are large, generic pre-trained models that
can later be fine-tuned for specific tasks (He et al. 2016; Devlin
et al. 2019; Dosovitskiy et al. 2021; Radford et al. 2021; Zhai
et al. 2022; Kirillov et al. 2023). Pre-training allows models to
learn generalizable features, which improves performance when
adapting to new, related data sets (Bengio 2012; Hoffmann et al.
2019; Kornblith, Shlens & Le 2019; Mishra et al. 2022; Lastufka
et al. 2024; Tahir, Ganguli & Rotskoff 2025). Some prior work
has used this approach for cosmological inference (Gondhalekar &
Moriwaki 2024; Sharma, Dai & Seljak 2024), but prior to this work
there had been no comprehensive investigation into whether pre-
training can substantially reduce the number of accurate simulations
required to perform inference. Concurrent with this work, Krouglova
et al. (2025) demonstrated that the exact same principle of transfer
learning is effective for standard density estimation architectures
such as neural spline flows, with applications directly to SBI. Since
the submission of this manuscript, two independent studies proposed
enhancements to a basic transfer learning strategy, each demonstrat-
ing improved outcomes (Hikida et al. 2025; Thiele, Bayer & Takeishi
2025).

This paper is structured as follows. Our methodology is described
in Section 2. In Section 2.1, we describe the multifidelity simulation
suites that we use for transfer learning. Section 2.2 presents the
ML architectures and training procedures developed for this work,
while the metrics used for model evaluation are introduced in
Section 2.3. Section 3 presents the results of our multifidelity
transfer learning methodology, and compares it with a high-fidelity-
only approach for two examples: Section 3.1 explores a two-
dimensional inference problem, and Section 3.2 addresses a more
complicated five-dimensional inference problem, with a larger set
of cosmological parameters and astrophysical nuisance parameters.
Finally, we present a discussion of our results and our conclusions in
Section 4.

2 METHODOLOGY

2.1 Data

This work introduces a simple framework for multifidelity inference
on cosmological data. We utilize the CAMELS Multifield Data set
(CMD; Villaescusa-Navarro et al. 2022; Ni et al. 2023), a well-
studied collection of simulations covering different fidelities and sub-
grid physics models, to demonstrate our methodology. In particular,
the CMD includes a gravity-only N-body simulation suite using
GADGET-3 (Springel 2005), as well as several magnetohydrodynam-
ical simulation suites. In this study, we use N-body simulations as
the lower fidelity data set, and the IllustrisTNG CMD suites as high-
fidelity simulations. These IllustrisTNG simulations were produced
using the AREPO code (Springel 2010) to solve the same sub-grid
physics models as the original IllustrisTNG simulations (Weinberger
et al. 2016; Pillepich et al. 2018).

The CMD comprises thousands of simulations sampling universes
with different cosmologies and astrophysical processes. These sim-
ulations are standardised to volumes of (25 h_'Mpc)3. For each
simulation, 15 current-time (z = 0) pseudo-independent 2D mat-
ter slices are extracted by considering five slices per dimension
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Figure 1. Comparison of the (scaled) dark matter density maps between
paired simulations from the IllustrisTNG and N-body CMD simulation suites.
Paired simulations have identical initial conditions as well as cosmological
and astrophysical parameters. Panel (a) shows a log-scaled dark matter density
map, Mcdm, from the IllustrisTNG Latin hypercube (LH) suite. Panel (b) gives
the ratio between the IllustrisTNG Mg and the paired N-body M¢gm, with
a zoomed-in inlay of a particularly high contrast region. Panel (c) shows the
power spectrum ratio between the two maps (blue line), along with a random
selection of 250 spectral ratios between paired maps from the LH suite (grey
lines). Panel (d) shows the peak count statistics, computed by applying a four
pixel My, filter (see text for details) and computing the peak signal-to-noise
ratio over the background level. The exact cosmological and astrophysical
feedback parameters are given in panel (d).

(of thickness 5h~'Mpc); these are then pixelized into bins of
approximate area (0.1 h~'Mpc)? to produce 2D images of the density
fields with side of 256 pixels (see Villaescusa-Navarro et al. 2021
for the exact procedure). This work performs inference directly on
density maps: we use 2D dark matter density maps, denoted as
M am, from the N-body simulations and the IllustrisTNG simulations
(though we demonstrate our conclusions are unchanged for total
matter density maps M, in Appendix B). We then take the log of
the maps and normalize them by subtracting the mean and dividing
by the standard deviation of the pixel values, so that the resulting
distribution is approximately unit Gaussian. These processed maps
are then passed into the ML models. An example of these maps is
givenin Fig. 1, which shows the differences between two simulations,
one hydrodynamical and one N-body, with identical parameters
and initial conditions. Fig. 1 explores the differences between the
multifidelity simulations through a mass density ratio map, the power
spectrum ratio, and a comparison of the peak statistics. The peak
statistics were computed by first applying a four pixel aperture mass
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(M,,) filter following Schneider et al. (1998), implemented using
LENSPACK.’

We apply our methodology to two of the simulation suites from
the CMD: (i) the Latin hypercube suite (LH; Villaescusa-Navarro
et al. 2022), which varies the matter density fraction 2, and the
amplitude of the matter density power spectrum, parametrized by
og, alongside four astrophysical nuisance parameters (Asn i, Asn.,
AacN.1, AacNp); and, (ii) the Sobol28 suite (SB28; Ni et al. 2023),
which varies ,, og, the scalar spectral index ng, the Hubble
parameter /s, and the baryonic density fraction 2y, in addition to
23 astrophysical nuisance parameters. The astrophysical parameters
in the LH suite control the strength and behaviour of the stellar and
active galactic nuclei (AGN) feedback in the simulations, while the
SB28 suite varies a more detailed set of baryonic feedback processes
controlling stellar and AGN feedback, supermassive black hole
growth rates, star formation rates, and stellar population modelling.
It is worth noting that the small simulation box-size 25 (h~!Mpc)?
may restrict the degree to which some of these effects, particularly
AGN feedback, impact the simulations.

These suites contain 15000 and 30720 paired N-body and
MlustrisTNG dark matter maps, respectively. In both cases, we
perform inference over only the cosmological parameters, implicitly
marginalizing over all nuisance parameters. For each suite, we re-
serve the last 200 cosmologies (corresponding to 3000 matter density
maps) as a holdout set, split evenly into 100 cosmologies (1500
maps) for validation and 100 cosmologies (1500 maps) for testing.
The validation set is used for hyperparameter tuning and selection
of the best model during training; the test set is used exclusively
for model evaluation, with results reported in Section 3. This strict
split ensures no data leakage between the training, validation, and
test sets. The paired nature of the CMD means our transfer learning
approach inherently uses seed-matched simulations at both low and
high fidelity in the training set. However, we explicitly verify that
we achieve the same results with unpaired low and high fidelity data
sets in Appendix B.

We augment the 2D matter map data set by randomly flipping and
rotating the images during training. We perform no further processing
or augmentation, such as field smoothing or addition of noise, to the
low or high fidelity maps.

2.2 Model training

In this study, we focus on neural posterior estimation (NPE; Papa-
makarios & Murray 2016). We perform inference directly at the map
level, and train a CNN-NDE neural network end-to-end to model
the posterior distribution p(6 | x), where 8 denotes the cosmological
parameters and x the observation. The neural network parameters
¢ are trained to produce a model of the posterior g,(6 | x), which
is generally achieved through the forward Kullback—Leibler (KL)
divergence:

DyL (P(9 [ ) 11 g6 | x)) = Ep.x) [log p(® | x) —loggq,(6 | x)]
= Epo.v) [—10g¢,(6 | x) + const.] .
(1

The log-posterior term p(6 | x) does not depend on the neural
network parameters ¢, and so can be ignored as a constant in the
objective function:

L(p) = ~Epo. [logq, @ | 1)] . (¢
Zhttps://github.com/CosmoStat/lenspack
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Note that this formulation yields an identical objective to the
Variational Mutual Information Maximization approach, without
the emphasis on learning an information-optimal summary statistic
(Jeffrey et al. 2021).

The objective in equation (2) is used to first pre-train the network
on N-body dark matter maps until convergence. It is then used again
without modification to fine-tune the network on IllustrisTNG maps.
All weights from the pre-trained network are transferred and used
to initialize the fine-tuning stage on the high-fidelity maps, with the
entire network being trained during this phase. We do not freeze
any layers or restrict fine-tuning to specific components (e.g. the
compression network or NDE), nor do we add extra layers. We use
this framework for simplicity, since only one network needs to be
trained and all training can be done end-to-end. Extensions to e.g.
neural likelihood estimation, and further variants, will be explored in
future work. We do not envision these would require any significant
modifications, but would need several training stages as in Jeffrey
et al. (2021).

We performed an initial exploration and hyperparameter tuning
of architectures for data compression and density estimation. All
model architecture and hyperparameter tuning was performed on the
high-fidelity-only task. This ensures that our results are not biased
toward improving transfer learning performance. We were partly
motivated by the fact that common neural network architectures used
for neural summarization, such as CNNs, are well-suited for transfer
between data sets. This stems from the inductive bias of CNNs,
which encourages the learning of generic, transferable features that
are then composed over a hierarchy of scales (Girshick et al. 2014;
Yosinski et al. 2014; Kornblith et al. 2019). We found that the tailored
CNN architecture from Villaescusa-Navarro et al. (2022), which
was optimized for the CAMELS data set using the hyperparameter
optimization framework optuna (Akiba et al. 2019), outperformed
various standard architectures, such as ResNet (He et al. 2016) and
ConvNext (Liu et al. 2022), both when pre-trained from natural image
data or randomly initialized. We therefore used the CNN architecture
from Villaescusa-Navarro et al. (2022) as our neural compression
backbone, changing only the dimension of the final output layer to
instead serve as a latent embedding. We found that using the CNN
to compress matter density maps to larger latent dimension sizes
slightly improved performance, so set the latent dimension to 128.

We used a rational-quadratic neural spline flow (RQ-NSF; Durkan
et al. 2019) as the NDE head of the network, implemented using the
SBI PYTHON package (Tejero-Cantero et al. 2022). We found this
NDE architecture gave significant improvements over alternative
popular choices, such as Masked Autoregressive Flows (Papa-
makarios, Pavlakou & Murray 2017). We also found that inserting
batch normalization (Ioffe & Szegedy 2015; Santurkar et al. 2018)
layers between spline flow blocks (similar to the CNN architecture)
substantially improved performance, both in pre-training and fine-
tuning. An overview of the architecture is presented in Fig. 2.

Once the architecture was selected, we performed end-to-end
training of the network on the NPE objective in equation (2).
We made a range of modifications that improved performance.
We utilized a weight decay of 0.01, which regularizes the neural
network by adding a small penalty term to the network weight
magnitudes (Krogh & Hertz 1991; Loshchilov & Hutter 2017).
This was particularly important for the fine-tuning stage, where
regularization while training on very small data sets was greatly
beneficial. We used a short learning rate (LR) warm-up period, which
has been found to improve deep learning model training (He et al.
2016; Goyal et al. 2017; Vaswani et al. 2017) with a number of posited
explanations (see e.g. Gotmare et al. 2019; Kalra & Barkeshli 2024).
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Figure 2. The neural network architecture used to perform NPE in this work.
(a) A CNN identical to that used in Villaescusa-Navarro et al. (2022) extracts
informative features from the input dark matter map images. The CNN is
built of blocks with three repeats of a 2D convolution, batch normalization,
followed by leaky ReLU non-linearities (LReLU; Maas et al. 2013). After
each block, the spatial dimension of the activation maps is halved using a
stride of 2, and the number of channels is doubled. The final convolutional
layer is flattened and passed to a pair of feedforward layers. (b) The extracted
low-dimensional summary statistics, ¢, are fed into a RQ-NSF. The RQ-NSF
uses the summary statistic as conditional information to transform a simple
base distribution into the modelled posterior g, (6 | x).

Larger batch-sizes (we selected 64) also improved performance for
all models. We found that using a cyclic LR scheduler (Smith 2017)
as in Villaescusa-Navarro et al. (2022) improved performance when
training on large data sets, i.e. >((10%) maps. Baseline experiments
and pre-training were performed with a LR of 2 x 10~*. Fine-tuning
was performed with a LR of 1 x 107> and an exponential decay
scheduler. All models were trained using the AdamW optimizer
(Loshchilov & Hutter 2017).

We repeat all training runs six times, changing only the initializa-
tion of the network, the random selection of N maps from the training
data set, and the (random) order in which the training data is passed to
the network. The model with the lowest validation loss from each run
is saved and used for evaluation. All models pre-trained on N-body
simulations used the entire N-body training suite, and models with
the lowest validation loss were saved for fine-tuning and evaluation.

2.3 Evaluation

2.3.1 Posterior accuracy

Model evaluation in SBI is a well-studied task, and commonly used
metrics include posterior-predictive checks (e.g. Papamakarios et al.
2017; Durkan et al. 2019), kernel-based distance tests such as MMD,
and classifier two-sample tests (Friedman 2004; Lopez-Paz & Oquab
2017). Lueckmann et al. (2021) presented a review and comparison
between various evaluation choices. In our case, where the true
posterior is unknown, one could construct a ‘high-quality’ posterior
by using the full simulation suite to train multiple models with dif-
ferent initializations, and then averaging their inference results. This
‘ensemble’-based strategy can be used to improve posterior quality
by integrating over the model’s epistemic uncertainty (Hermans et al.
2022; Lin et al. 2023). Unfortunately, we found empirically that
five-member model ensembles led to underconfident (conservative)
posteriors. This finding is compatible with prior work (Hermans et al.
2022). We expect that this could be overcome with larger ensembles,
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but this approach becomes highly computationally demanding for
deep learning-based models. We therefore avoid overreliance on
metrics that require reference posteriors.

In the absence of a high-quality reference posterior, the most
appealing headline metric to quantify model performance is simply
the mean test posterior probability (MTPP) log g, (6 | x) at the true
parameter values 6. This is estimated by computing an expectation
over the test data set D:

MTPP = E(X,H)~D [loqu(G | )C)} . (3)

This serves as a robust test for posterior quality given enough test
examples (Lueckmann et al. 2021), though the scale of this metric is
not particularly interpretable.

To complement this, we estimate the calibration of each model
over the entire test set. This is achieved by running inference on each
test data realization, and estimating the frequency at which the truth
lies within a given credibility level. This test allows us to identify
modelling issues in the posteriors, such as bias and overconfidence
(Hermans et al. 2022). For K credibility level bins, we estimate the
observed frequency within a given bin p;, and compare it with the
expected (ideal) frequency p; = 1/K. We then compute a calibration
error C, which is the relative mean-squared error (MSE) between the
two quantities:

c 1 zK:(ﬁi—Pi)z 1 i(ﬁi 1>2 @
K= pi K= \pi .

The right-hand side simply provides an equivalent expression for

the calibration error C in terms of the ratios between observed and

expected frequencies at given credibility levels, p;/p;, which we

refer to as ‘overcoverage’.

We utilize Tests of Accuracy with Random Points (TARP; Lemos
et al. 2023b) to estimate the coverage statistics efficiently. We
bootstrap the estimated credibility level statistics produced by TARP
25 times and quote the mean of the estimated p;.

Together, the MTPP and calibration error C provide robust diag-
nostics of the fidelity of the learned posteriors. Once these diagnostics
indicate well-calibrated and accurate inference, we can begin to
assess how informative the posteriors are.

2.3.2 Constraining power

Good calibration is a necessary pre-condition for a useful, reliable
posterior model. Once this property is satisfied we can test the amount
of information that the model is capable of extracting from the dark
matter density maps. We compute the Figure of Merit (FoM), which
estimates the constraining power of each model. Assuming a flat
prior on [0,1], the FoM can be computed as:

FoM = [det Cov[6 | x]]7'/*, ©)

where Cov[6 | x] is the covariance matrix of the posterior, and n is
the dimensionality of the posterior. A higher FoM indicates a tighter
constraint on the parameters, meaning the model is more informative
(provided the model is unbiased). In practice, we transform the
cosmological variables to a flat prior on [0,1] to compute the FoM and
estimate the covariance using samples from the modelled posterior.

Finally, for a more interpretable metric of the posterior quality,
we compute the MSE between the modelled posterior mean 8 and
the true parameters 6 over the entire test set. We report these MSEs
broken down by parameter to probe whether the posterior quality
differs significantly between parameters.
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3 RESULTS

We run a range of experiments comparing high-fidelity-only models
against the transfer learning approach. We use N to denote the
number of [llustrisTNG 2D dark matter density maps used during the
training stage. Of the data set size N, 90 per cent is used as training
data, while 10 per cent is used for validation data. All results report
the mean performance on the test set.

3.1 CAMELS multifield data set: LH suite

We compare the performance of each method over a range of
MlustrisTNG data set sizes. We present the results of the LH
experiments in Fig. 3. We find that small IllustrisTNG data set
sizes lead to poor performance when training from random network
initialization, whereas pre-training on N-body maps leads to good
performance with very few simulations. For instance, a pre-trained
model that is then fine-tuned with N = 200 IllustrisTNG maps has
higher MTPP than the high-fidelity-only approach with N = 6400
maps.

One complicating factor is the posterior calibration, quantified
in Fig. 3b. This demonstrates that despite the high test posterior
probability, models fine-tuned with very few IllustrisTNG maps
appear to be poorly calibrated. We find that acceptable calibration
is achieved after N = 800 fine-tuning maps, while training with
only high-fidelity maps requires N = 6400 for similar posterior
calibration. We therefore find at least a factor of 8 reduction in
the number of simulations required to produce a performant, well-
calibrated model of the posterior.

We present calibration curves from a range of data set sizes
across the two approaches in Fig. 4. These show the standard
cumulative distribution of observed credibility levels in the main
panels, as well as the overcoverage distribution p;/p; in the insets.
These reaffirm the calibration issues identified in Fig. 3: training
from scratch with fewer than N = 6400 maps leads to significantly
overconfident posteriors. The high overcoverage at {0, 1} (paired
with the below-ideal coverage in the middle of the distribution) is
a clear indicator of overconfidence, since it indicates that the true
parameters occur at extreme credibility levels too often. On the other
hand, the transfer learning models display a more minor form of bias
and overconfidence until reaching around N = 800 maps.

The FoM performance as a function of data set size is shown
in Fig. 3c. When training using only high-fidelity simulations, low
data set sizes lead to low FoMs. This observation indicates that
the features (or summary statistics) extracted by the CNN are not
particularly informative. Additionally, the overconfident posteriors
indicate limitations in the performance of the NDE, since it is
incapable of producing trustworthy posteriors. We therefore conclude
that both the CNN neural compressor and the density estimation
model perform poorly with small training data sets.

On the other hand, the very high MTPP and FoMs of the transfer
learning models (even from N = 200) indicate that the pre-trained
CNNs produce highly informative features. However, the inferred
posteriors for N = [200, 400] are biased and overconfident, suggest-
ing that the NDE needs at least N = 800 maps to correctly adjust
the inferred posteriors to ensure good calibration. We found that the
FoM for the N-body pre-training task was ~1400, much greater
than the baseline and transfer learning models on the IllustrisTNG
inference task. The dip in the FoM at N = 800 is thus potentially
related to the reduced constraining power of extracted CNN features
on the IllustrisTNG data finally becoming properly incorporated
by the NDE. This could be due to the feature-shift between
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Figure 3. Inference results on the IllustrisTNG LH suite for a 2D posterior over 2, and og. We compare the performance of the two approaches: training with
only high-fidelity maps (blue) against the transfer learning approach (green), which uses 12000 N-body maps for pre-training. An accurate benchmark model
trained on the entire IlustrisTNG LH suite training set is shown by the dashed red line. The accurate model (red) uses a cyclic LR scheduler, which performs
slightly better than an exponential scheduler for large data sets, as detailed in Section 2.2. Panel (a) shows the MTPP, panel (b) shows the calibration error C of
the modelled posterior, defined in equation (4), and panel (c) shows the FoM, all as a function of high-fidelity data set size N. Panel (c) should be interpreted
with the proviso that the model must be well-calibrated before the FoM measures genuine constraining power. All results show the mean and standard error over

six independent training runs (including independent pre-training runs on the N-body simulations).
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Figure 4. Main panels: cumulative calibration curves of the nominal credibility level distribution, assessing the posterior coverage quality as a function of
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overcoverage values per credibility level, see equation (4) and the surrounding text for details. The shaded orange region highlights the discrepancy between
the ideal and observed distribution of credibility levels, which is quantified by the calibration error metric introduced in equation (4). Panel (a) shows training
from high-fidelity-only simulations, where models with small data set sizes display significant overconfidence, and better calibration (though now mildly

underconfident) is achieved at N = 6400. Panel (b) shows that transfer learning requires around N = 800 IllustrisTNG maps to achieve good calibration.

N-body simulations and [llustrisTNG, as well as the inherent greater
uncertainties due to the more complex physics of the hydrodynamical
simulation suite. These results indicate that for very small fine-tuning
data sets, the performance bottleneck on this task is adapting the
NDE. In future work we will explore whether the NDE head could
be fine-tuned while preserving good calibration statistics with more
advanced techniques (such as balanced SBI; e.g. Delaunoy et al.
2022).

Three representative examples of inference on test cosmology
maps are shown in Fig. 5. We compare models produced using only
high-fidelity maps (N = 800), transfer learning (N = 800), and an
‘accurate’ reference model trained on the full IllustrisTNG training
set. These examples are qualitatively consistent with the analysis
presented above. The high-fidelity-only N = 800 model gives very
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uninformative constraints compared to the other two posteriors.
On the other hand, the fine-tuned model appears well-calibrated,
and only slightly less constraining than the model trained with
%x16.25 more high-fidelity maps. We present a similar comparison
with a high-fidelity model trained on N = 3200 in Appendix A,
demonstrating that even for larger high-fidelity data set sizes, pre-
training yields significantly improved posteriors.

Appendix B presents a range of further tests into the model
performance. We found that the pre-trained models performed very
poorly on high-fidelity maps when no fine-tuning was performed
(corresponding to N = 0). We explored the quality of the fine-tuned
CNN compressor by freezing the CNN and re-training the NDE with
larger data set sizes. This presented more evidence that the limiting
factor at very low fine-tuning data set sizes was the NDE. We also
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Figure 5. Three representative examples of inference from the LH simulation suite. The true cosmology is shown by the black dashed line. A model trained
using transfer learning with N = 800 high-fidelity IllustrisTNG maps is compared against a high-fidelity-only model trained with N = 800 maps. The posteriors
are compared with an ‘accurate’ posterior model that was trained using the full simulation suite.

showed that the small performance gap between the ‘accurate’ model
and the transfer learning models with larger data set sizes was caused
by slightly worse compression.

Another consideration was the possibility that the paired aspect of
the data sets was responsible for the significant performance gains
from lower fidelity pre-training. While we did make any explicit use
of the simulation pairs, this could still have had an impact depending
on the training dynamics of the network. We tested this in Appendix B
and found strong evidence that the paired aspect of the source and
target data set has no impact on our results. We therefore conclude
that our transfer learning approach does not depend on paired data
sets. In principle, this means that large, pre-existing simulation suites
could be used as multifidelity data sets without the need to pair initial
conditions and cosmological parameters.

We found that fine-tuning with the entire IllustrisTNG suite pro-
duced a slightly weaker model than the ‘accurate’ benchmark model
(i.e. the transfer learning curve in Fig. 3 a does not intersect with
the ‘accurate’ performance). We analyse the convergence properties
of the approaches further in Appendix B. We show that the slightly
lower transfer learning MTPP plateau is partially due to the low
LR used during fine-tuning, and a higher LR nearly recovers the
‘accurate’ performance. This is consistent with the intuitive notion
that a higher LR allows the training procedure to escape from the
slightly sub-optimal region of the weight-space that is reached during
pre-training. These observations are perfectly compatible with the
study of Sharma et al. (2024), who found no clear benefits of transfer
learning when using a large high-fidelity data set.

We present the degree of agreement between the posterior sample
means 6 and the true cosmologies 6 in Fig. 6, broken down
for og and . These indicate pre-training yields very large im-
provements in the posterior for both parameters. 2,, and og are
inferred with similar precision relative to the baseline over the entire
test set.

3.2 CAMELS multifield data set: SB28 suite

We repeat the experiments of Section 3.1 on the SB28 suite, this
time performing inference over a five-dimensional posterior. The
very broad range of nuisance parameters, as well as the extra three
cosmological parameters {ng, h, Qp}, lead to a more challenging
inference problem. Prior work has only explored inferring €2,, and og
from this data set, and has found that the larger set of cosmological
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Figure 6. MSE between the inferred posterior mean 6 and the true cosmology
6. Results are broken down per-parameter, with panel (a) showing €, and
panel (b) showing og. Transfer learning models show very good consistency
with the true cosmological parameters.

and astrophysical parameters leads to much weaker constraints on
og (Ni et al. 2023). Ni et al. (2023) also indicated that the Hubble
constant 4 and the baryonic fraction €2 have minor effects on the
simulations, indicating that these may be challenging to constrain.
Note that the SB28 suite contains roughly double the number of
simulations as the LH suite, enabling a more accurate ML-based
reference model.

Fig. 7 displays the headline metrics comparing the two training
approaches with a baseline ‘accurate’ model that used the entire SB28
suite training set. Again, the transfer learning models significantly
outperform models trained from scratch, and the MTPP score of
the transfer learning experiments are only surpassed when training a
high-fidelity-only model with N = 12 800 IllustrisSTNG maps. Pan-
els (b) and (c) in Fig. 7 present a similar pattern as in Section 3.1: all
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be interpreted with the proviso that the model must be well-calibrated before the FOM measures genuine constraining power. Again, all results show the mean

and standard error over six independent training runs.

transfer learning models are more constraining and better calibrated
than training from scratch (until N = 12 800). However, fine-tuned
models display (minor) calibration issues until N > 800. The uptick
in calibration error C for the transfer learning approach is very
minor and largely within errors, so we do not attempt to interpret
it. Interestingly, all fine-tuned models are better calibrated in the
SB28 experiments than in the LH experiments (note the different
y-axis scales).

The performance difference between high-fidelity-only models
and transfer learning models is even larger than in Section 3.1.
Depending on the exact MTPP performance desired, Fig. 7 indicates
that pre-training on N-body simulations allows for a factor of 10-15
reduction in high-fidelity simulations to train an informative, well-
calibrated model of the posterior.

We found that none of the models could constrain €2, and &
far beyond the uniform prior. Given that this was a feature of
the ‘accurate’ baseline model, trained on 27720 maps, we may
conclude that this a genuine feature of the simulations, at least
up to the resolving power of the CNN-NDE architecture used to
perform inference. This is reflected by the FoM results in Fig. 7(c),
which are significantly lower for all models than the FoM in the LH
suite experiment. We present two examples of inference in Fig. 8,
showing only {2, og, ns}. This implicitly marginalizes over the
poorly constrained 2, and k. Again, we compare training from
scratch with N = 800 and fine-tuning with just N = 800 maps
against an ‘accurate’ baseline. We present examples of inference
of the full five-dimensional posterior in Appendix C.

Again, multifidelity transfer learning produces a model that
significantly outperforms high-fidelity-only training. The difference
in posterior quality is even more stark than in Fig. 5; the high-
fidelity-only posteriors are very uninformative and fail to extract
much useful cosmological information from the density maps.
The overconfidence identified in Fig. 8 is apparent as a bias in
the left panel of Fig. 5. On the other hand, the transfer learning
approach recovers the key features of the accurate baseline posteriors,
including both the location and width of the posterior contours.
Both the ‘accurate’ and transfer learning models yield a degeneracy
between the amplitude of the matter density power spectrum og and
the scalar spectral index n;. This degeneracy is expected for two-point
statistics at the very short scales probed in the CMD simulations,
given both parameters have similar, difficult to distinguish marginal
effects on the power spectrum. The results in Fig. 8 indicate that the
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non-linear effects probed by the CNN are insufficient to fully break
this degeneracy.

The larger performance gains reported here relative to the LH suite
in Section 3.1 likely result from the more complex task of modelling
a five-dimensional posterior and marginalizing over a larger set
of astrophysical parameters. We tentatively conclude that transfer
learning may perform even better in more challenging inference
problems, particularly those involving higher dimensional posteriors
and a broader set of nuisance parameters. As the complexity of the
target task increases, the value of incorporating prior knowledge
through pre-training is likely to grow.

4 DISCUSSION AND CONCLUSIONS

In this study, we have demonstrated that leveraging multifidelity sim-
ulations can significantly reduce the number of expensive simulations
required to perform cosmological inference with SBI. By pre-training
a neural inference model on a large set of lower fidelity dark matter
only simulations, we were able to perform informative and well-
calibrated inference on IllustrisTNG hydrodynamical simulations
with <1000 high-fidelity dark matter maps. This is a substantial
improvement over previous work, which had demonstrated that
training neural compression algorithms with small data sets led
to suboptimal compression and inference (Hermans et al. 2022;
Bairagi et al. 2025; Jeffrey et al. 2025; Park et al. 2025). The relative
simplicity of our framework makes this method broadly applicable
across cosmology.

Prior work has explored various approximate Bayesian computa-
tion (ABC) methods for multifidelity inference (Prescott & Baker
2020, 2021), for instance by using low fidelity rejection sampling
to improve the accurate simulation efficiency during inference.
These have been extended to sequential multifidelity ABC (Warne
et al. 2022), as well as to likelihood-free multifidelity inference by
leveraging importance sampling (Prescott, Warne & Baker 2024).
Variance reduction strategies that capitalize on paired multifidelity
simulations to isolate the statistical uncertainty, have also been used
to improve estimates of cosmological observables (Chartier et al.
2021; Lee et al. 2024). Adaptation of these strategies directly for
cosmological inference, particularly when dealing with significantly
non-Gaussian posteriors that SBI is well suited for, remains an
interesting avenue for future work. An additional line of work
would be to explore tailoring our approach for transfer learning, for
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Figure 8. Two examples of posterior inference on IllustrisTNG dark matter maps from the SB28 test set. Contours are visualized over the three parameters
that can be constrained by the data: {Qn,, o3, ns}. The true cosmology is shown by the black dashed line. A model trained using transfer learning with N = 800
high-fidelity IllustrisTNG maps is compared against a high-fidelity-only model trained with N = 800 maps. The posteriors are compared with an ‘accurate’

posterior model that was trained using the full training set.

instance through architecture improvements that work with Fourier
representations of the inputs (e.g. Yang & Soatto 2020; Mao et al.
2023; Bernardini et al. 2025) or specialized pre-training and transfer
learning techniques (e.g. He et al. 2022; Akhmetzhanova, Mishra-
Sharma & Dvorkin 2024; Oquab et al. 2024).

This work focused on matter density maps at different fidelities;
there are many more possible observables that have previously
been probed for performing cosmological inference, such as neutral
hydrogen, gas temperature and metallicity maps (Hassan, Andri-
anomena & Doughty 2020; Prelogovi¢ et al. 2022; Andrianom-
ena & Hassan 2023, 2025; Gluck et al. 2024). Adaptation between
observables could call for similar specialized approaches (e.g.
Lian et al. 2025).

Future work could apply transfer learning to a wide variety of mul-
tifidelity data sets across cosmological inference. Recent work has
demonstrated that neural compression even performs sub-optimally
on lower dimensional data, such as power spectra (Bairagi et al. 2025)
or ensembles of traditional summary statistics (Park et al. 2025),
when data set sizes are limited. There is a very wide array of methods
for producing mock observations of varying fidelities: for instance,
empirically calibrated semi-analytic emulators (e.g. Takahashi et al.
2012; Mead et al. 2016, 2021), fast-executing lognormal dark matter
simulations (e.g. Lin et al. 2023; Tessore et al. 2023; Wietersheim-
Kramsta et al. 2025) and ML-based emulators (e.g. Heitmann
et al. 2009; Arico et al. 2021; Euclid Collaboration 2021; Giri &
Schneider 2021; Piras, Joachimi & Villaescusa-Navarro 2023). These
techniques could be used to build large mock pre-training data
sets, allowing for a significant reduction in the computation time
required for the production of high-fidelity simulation data sets for
transfer learning. Similarly, computation budgets could be reoriented
towards fewer high-fidelity simulations with more particles or larger
simulation boxes. Either way, by enabling an order of magnitude
reduction in high-fidelity simulations, this work demonstrates that
multifidelity transfer learning has the potential to transform our
approach to SBI in cosmology.
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APPENDIX A: FURTHER POSTERIOR
COMPARISONS

We present a further comparison between high-fidelity-only training,
with N = 3200, and the transfer learning approach for the LH suite
2-parameter inference problem in Fig. Al. Despite the factor of x4
increase in the number of high-fidelity maps used during training,
the multifidelity approach yields significantly tighter posteriors that
better match the ‘accurate’ model. In addition, the right-most panel
in Fig. Al is suggestive of the overconfidence issue identified in
Section 3.1; high-fidelity-only models trained with fewer than N =
6400 IllustrisTNG maps exhibit a large degree of overconfidence,
per Fig. 4.

APPENDIX B: PROBING MODEL
PERFORMANCE

We performed a range of experiments to better understand the
model performance. The results of these experiments are summarized
in Fig. B1. We explored the impact of the paired aspect of the
multifidelity simulation suite (i.e. that each simulation in the lower
fidelity N-body suite is paired with a high-fidelity simulation with
identical cosmological parameters and initial conditions). This could
potentially improve performance, perhaps due to implicit memoriza-
tion of the (pre-)training data (a well-studied phenomenon in deep
learning, see e.g. Yeom et al. 2018; Carlini et al. 2019, 2023). We
tested this by ensuring different (i.e. unpaired) cosmologies where
used during pre-training and fine-tuning, and found that pairing had
no discernable impact on performance.

We further investigated the neural network inference model by
splitting it into two components: the neural compression performed
by the CNN, and the density estimation of the NDE. In order
to better disambiguate the role of each component, we took the
best transfer learning models from Section 3.1 and froze the CNN.
This fixed the summary statistics that were extracted from the dark
matter density maps for a given transfer learning size N. We then
retrained the NDE using the high-fidelity-only approach on the entire
training data set (N = 12000) with the frozen neural compression
model. The resulting performance is shown in red in Fig. Bl.
The frozen CNN results (red) are produced by taking the CNN
from the transfer-learning approach (green), freezing its weights,
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and retraining the NDE with the full high-fidelity data set. We
observe that at low N (e.g. N = 200), the model with a frozen
CNN but fully retrained NDE (red) outperforms the standard transfer
learning baseline (green), suggesting that the NDE limits transfer
learning performance in the low N regime. As N increases the
baseline transfer learning model catches up, and by N = 2400 both
approaches perform similarly, indicating that the NDE is no longer
a performance bottleneck. This convergence implies that the main
limitation of transfer learning at higher N (i.e. N > 2400) is due to
slightly suboptimal CNN-based compression. These results suggest
that while pre-training on N-body simulations encourages highly
informative summaries, there are likely subtle differences in the high-
fidelity IlustrisTNG simulations (that are useful for slightly improv-
ing cosmological constraints) which the CNN fails to discover during
fine-tuning.

Fig. B1 also shows the N = 0 transfer learning case, where only
the N-body simulation pre-training is performed and no high-fidelity
maps are used. The extremely poor performance indicates that there
are significant differences between the different simulation fidelities,
and a fine-tuning step is necessary.

Next, we test whether transfer learning for (the more observation-
ally important) total matter density M,y behaves any differently. A
key concern is that the improved performance from transfer learning
could be largely due to the strong similarity between the IllustrisTNG
dark matter density M gy, and that of dark matter-only N-body
simulations. Fig. B2 demonstrates that multifidelity transfer learning
performs just as well when fine-tuning on M.

We compare the results from Section 3.1 with inference on
the M,y field with an identical methodology. We find that trans-
fer learning still leads to up to an order-of-magnitude reduction
in the number of high-fidelity maps required to train an accu-
rate, trustworthy inference model, compared with high-fidelity-only
training.

The small downward shift of all M, inference performance curves
(‘accurate’, transfer learning and high-fidelity-only) on the MTPP
metric from Section 3.1 a indicates that inference using the M, maps
is slightly more challenging. However, there is also a slightly larger
gap between the ‘accurate’ M, model and transfer learned models
(and low N high-fidelity-only models) compared with inference
results on M,y,. This suggests that: (i) some features in M, require a
large number of training maps (N > 6400) for the CNN to learn to
extract, more-so than in the M gy, case, and (ii) N-body pre-training
gives slightly less informative features than in the M4, case, perhaps
for similar reasons as (i).

Finally, we present results exploring the convergence properties
of transfer learning and high-fidelity-only training in Fig. B3. We
extend the data set sizes up to N = 12000 for the high-fidelity-
only and transfer learning approaches. The additional line (orange)
shows the results from transfer learning when using the same LR
and scheduler as the ‘accurate’ reference models. We find that all
models asymptote slightly below the ‘accurate’ model baseline.
In the high-fidelity-only approach, this is due to a difference in
scheduler; as discussed in the text, we find a cyclic LR scheduler
(‘accurate’, red) slightly outperforms an exponential scheduler for
large data set sizes (N > 10000). In the transfer learning case, using
the same LR and scheduler as the ‘accurate’ models (orange) gets
closer to recovering the baseline at N = 12000, but this leads to
higher variance training with worse calibration at smaller data set
sizes. We therefore conclude that pre-training can lead to a very
minor reduction in performance when the pre-training data set is no
larger than the target data set, but that in all other instances it is
desirable.
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Figure Al. Three representative examples of inference from the LH simulation suite. The true cosmology is shown by the black dashed line. A model
trained using transfer learning with N = 800 high-fidelity IllustrisTNG maps is compared against a high-fidelity-only model trained with N = 3200 maps. The
posteriors are compared with an ‘accurate’ posterior model that was trained using the full simulation suite.
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the y-axis scale has been shortened for enhanced visualization) and (b) FoM. We also show results from experiments: pre-training and fine-tuning without any
paired data (orange); training a neural compression model with N IllustrisTNG maps and then freezing the CNN compression to train an NDE with the full
(N = 12000) LH training suite (red); and the performance of models only pre-trained on N-body simulations (black, corresponding to N = 0 IllustrisTNG
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Figure B3. The convergence behaviour of our approaches as a function of data set size for the LH suite. The legend shows which LR scheduler (cyclic or
exp) was used, which we found had a minor effect on asymptotic behaviour. We reproduce the Mcgm, results from Fig. 3 and extend the experiments to run
all the way to N = 12000 (blue and green lines). We also report the results of transfer learning using the high LR and cyclic scheduler settings used for the

‘Accurate’ baseline model (orange line).

APPENDIX C: UNCONSTRAINED
PARAMETERS IN SB28

The posterior estimation models in Section 3.2 were trained
to perform five-dimensional inference on {2y, os, ng, h, Qp}.
However, we found that 2 and €2, could not be constrained
by the data (or, partially, by the CNN-NDE architecture).
Here, we present some more details on these unconstrained
parameters.

Fig. C1 shows the posterior sample ensemble mean MSE for
two cosmological parameters: og and €2,. The posterior recovery
of og behaves similarly to Section 3.1, with very good performance
relative to the ‘accurate’ baseline. On the other hand, we find that
pre-training on N-body simulations leads to no improvement over
the high-fidelity-only training approach for 2. In one sense this
is expected: N-body simulations do not provide a strong probe
of how €, affects dark matter maps (beyond the initial matter
power spectrum), and so there should not be much direct transfer
of knowledge. In addition, Fig. C2 demonstrates that there is
little constraining information on €24, in the dark matter density
maps.

However, the fact that the high quality pre-trained summary
statistics cannot be adapted to improve inference of €2} is, at least
naively, somewhat surprising. This suggests that the features relevant
for inferring €2y, are disjoint from those governed by variations in

(a) :
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1072
+ High fidelity only
7 Transfer learning
=
& 6x107
ax10. e

(b) 1.4 x 10~
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{Qn, o3, ng, h} for N-body simulations, resulting in a representation
mismatch that prevents effective transfer from pre-training. Ni et al.
(2023) demonstrated that the values of €2, explored in the CMD SB28
simulation suite had a minor effect on both the star formation rate
density and the gas power spectra of the simulations, smaller even
than several of the astrophysical nuisance parameters. In addition
to this, since €2, primarily modulates the amount of gas available
for star formation and black hole accretion (Elbers et al. 2025), these
signatures may be occluded by the wide range of nuisance parameters
affecting baryonic feedback in the hydrodynamical simulations.

On the other hand, we found that while %2 could not be
properly constrained by the data, transfer learning yielded sim-
ilar constraints to the ‘accurate’ baseline (as opposed to £y,
which was poorly constrained and transfer learning gave no
benefit).

Two examples of five-dimensional posterior inference are given in
Fig. C2. In the first example, none of the models can constrain 4 and
Q2 much beyond the uniform prior. We can highlight two key qualita-
tive features: the fine-tuned approach gives significantly better agree-
ment with the baseline than training from scratch, and it is statistically
consistent with the accurate posterior. In the second example, the
‘accurate’ posterior gives a (weak) constraint on €2y, while the other
models fail to provide any constraints. A small but not insignificant
fraction of the inferred posteriors follows this second pattern, which
is consistent with the minor improvement in constraining power of 2y,
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)
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Figure C1. MSE between the inferred posterior mean 6 and the true cosmology 6. Results are broken down per-parameter, with panel (a) showing og and
panel (b) showing €2,. While transfer learning yields a significant improvement in og, we find negligible impact on €2y, which has little effect on the N-body

simulations.
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Figure C2. Two examples of posterior inference on IllustrisTNG dark matter maps from the SB28 test suite over the full five-dimensional
posterior. The true cosmology is shown by the black dashed line. A model trained using transfer learning with N = 800 high-fidelity II-
lustrisTNG maps is compared against a high-fidelity-only model trained with N = 3200 maps. The posteriors are compared with an ‘accu-
rate’ posterior model that was trained using the full simulation suite. We find that for most 2D dark matter density maps, Q2 and h are
unconstrained.

shown in Fig. C1. We found that these examples tended to coincide reserve a more systematic analysis as a potential avenue for future
with extreme cosmologies (at the boundaries of the prior volume), work.

and particularly for large values of €2} as is the case in Fig. C2. We
This paper has been typeset from a TeX/IATgX file prepared by the author.
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