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A B S T R A C T 

Simulation-based inference (SBI) enables cosmological parameter estimation when closed-form likelihoods or models are 
unavailable. However, SBI relies on machine learning for neural compression and density estimation. This requires large training 

data sets which are prohibitively expensive for high-quality simulations. We overcome this limitation with multifidelity transfer 
learning, combining less expensive, lower fidelity simulations with a limited number of high-fidelity simulations. We demonstrate 
our methodology on dark matter density maps from two separate simulation suites in the hydrodynamical CAMELS Multifield 

Data set. Pre-training on dark-matter-only N -body simulations reduces the required number of high-fidelity hydrodynamical 
simulations by a factor between 8 and 15, depending on the model complexity, posterior dimensionality, and performance metrics 
used. By leveraging cheaper simulations, our approach enables performant and accurate inference on high-fidelity models while 
substantially reducing computational costs. 

Key words: methods: statistical – software: machine learning – cosmology: cosmological parameters – dark matter – large-scale 
structure of Universe. 
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 I N T RO D U C T I O N  

osmological inference is increasingly turning to machine learning 
ML) techniques for improved precision, accuracy, and efficiency. 
n particular, simulation-based inference (SBI) has emerged as a 
ool to enable statistical analysis of the large-scale structure beyond 
raditional Gaussian likelihood-based analysis. These techniques 
ave been applied to weak lensing measurements of cosmic shear 
uch as the Kilo-Degree Survey (Lin et al. 2023 ; von Wietersheim-
ramsta et al. 2025 ), the Dark Energy Survey (Jeffrey, Alsing &
anusse 2021 ; Gatti et al. 2024 ; Jeffrey et al. 2025 ), the Subaru
yper Suprime-Cam (e.g. Novaes et al. 2025 ) and the Sloan Digital
ky Survey-III Baryon Oscillation Spectroscopic Survey (Hahn et al. 
024 ; Lemos et al. 2024 ; Thiele et al. 2024 ). 
Inference on shear and clustering data beyond two-point statistics 

as gained importance for precision cosmology, particularly as 
pcoming surveys prepare to probe more non-linear scales (e.g. 
uclid , Euclid Collaboration 2025 ; the Vera Rubin Observatory, 

vezić et al. 2019 ; the Nancy Grace Roman Space Telescope, Gehrels
t al. 2015 ). A wide body of research has now explored various
trategies for advancing beyond-Gaussian analysis, incorporating 
.g. field-level inference, such as Bayesian Origin Reconstruction 
rom Galaxies (BORG, Jasche & Wandelt 2013 ; Jasche, Leclercq & 

andelt 2015 ; Jasche & Lavaux 2019 ), using lognormal maps 
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Xavier, Abdalla & Joachimi 2016 ; Leclercq & Heavens 2021 ;
oruah, Rozo & Fiedorowicz 2022 ), or higher-order statistics, 

uch as the three-point correlation function (Schneider & Lombardi 
003 ; Takada & Jain 2003 ; Halder et al. 2021 ; Hahn et al. 2024 ),
perture mass (Jarvis, Bernstein & Jain 2004 ; Semboloni et al.
011 ; Martinet et al. 2021 ; Secco et al. 2022 ), scattering transforms
Cheng et al. 2020 ; Régaldo-Saint Blancard et al. 2024 ; Cheng et al.
025 ), and peak counts (Harnois-Déraps et al. 2021 ; Zürcher et al.
022 ). Another important line of research, particularly for better 
nderstanding the widely discussed S8 tension (see e.g. Abdalla et al. 
022 , for a review) is probing the effects of systematics. For example,
on-linear effects on the matter distribution become important over 
mall scales, and become coupled with complex baryonic effects 
hich are hard to model (McCarthy et al. 2018 ; Schneider et al. 2019 ,
020 ). Large simulation efforts have been dedicated to probing the
ffect of baryonic feedback at small scales (McCarthy et al. 2018 ;
illaescusa-Navarro et al. 2021 , 2022 ; Ni et al. 2023 ; Schaye et al.
023 ; Elbers et al. 2025 ). 
SBI uses ML models known as neural density estimators (NDEs) 

o model the probabilistic relationship between parameters and data 
mpirically, allowing the method to drop the common assumption 
f a Gaussian likelihood. 1 Examples of modelling choices include 
 We define SBI as using ML-based models of the likelihood (or related 
uantites), as distinct from using a simulation-based pipeline to estimate the 
aussian covariance of the likelihood (e.g. Harnois-Déraps et al. 2024 ). 
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he posterior (Papamakarios & Murray 2016 ; Alsing, Wandelt &
eeney 2018 ; Alsing et al. 2019 ; Greenberg, Nonnenmacher &
acke 2019 ; Deistler, Goncalves & Macke 2022 ), the likelihood

Lueckmann et al. 2019 ; Papamakarios, Sterratt & Murray 2019 ), or
atios of these quantities (Durkan, Murray & Papamakarios 2020 ;
ermans, Begy & Louppe 2020 ). This allows for various sources
f error, including both measurement errors and systematic effects,
o be incorporated in the likelihood by directly simulating them.
BI offers an efficiency advantage over many traditional likelihood-
ased techniques, enabling significant reductions in the number
f simulations required to model the posterior by interpolating
etween them (Alsing et al. 2018 ; Cranmer, Brehmer & Louppe
020 ). In addition to this, ML-based neural compression has gained
opularity for extracting summary statistics from high-dimensional
bservations, such as from ensembles of summary statistics, weak
ravitational lensing convergence maps or dark matter density maps
Gupta et al. 2018 ; Fluri et al. 2019 , 2022 ; Ribli et al. 2019 ; Matilla
t al. 2020 ; Jeffrey et al. 2021 ; Makinen et al. 2021 ; Lu, Haiman &
i 2023 ; Gatti et al. 2024 ; Lanzieri et al. 2025 ; Lemos et al. 2024 ).
L-based compression and density estimation have received further

ttention for their ability to significantly improve the constraining
ower of the observations (e.g. Jeffrey et al. 2021 ; Dai & Seljak
024 ). 
However, training robust and informative neural compression
odels is challenging, particularly when considering small data sets

for instance, fewer than O(104 ) data examples, see e.g. Bairagi,
andelt & Villaescusa-Navarro 2025 ; Jeffrey et al. 2025 ; Park,
atti & Jain 2025 ). Recent work has demonstrated that ML models

ail to optimally compress low-dimensional power spectrum data
n a data-limited regime (Bairagi et al. 2025 ). Neural compression
f field-level data, on the other hand, often relies on deep learning
echniques such as convolutional neural networks (CNNs), which are
articularly data-hungry: for instance, Jeffrey et al. ( 2025 ) trained a
arge ensemble of CNN-based neural compression models in order
o mitigate against their weak performance in the absence of a large
raining data set. In addition, the density modelling of SBI is also
amstrung by a lack of training data. Prior work has shown that
ommon neural density estimation techniques underperform with
imited data, yielding inaccurate and poorly calibrated posteriors
Lueckmann et al. 2021 ; Hermans et al. 2022 ; Lemos et al. 2023a ;
elaunoy et al. 2024 ; Tucci & Schmidt 2024 ; Krouglova et al.
025 ). This makes extending SBI to more realistic cosmological
odels that require expensive, fine-grid hydrodynamical simulations

hallenging. 
Our work aims to reduce the number of expensive simulations

equired to perform cosmological inference by leveraging cheaper
imulators. In a recent example, Jia ( 2024a , b ) use a pre-trained
nference model (via neural quantile estimation) that is calibrated
n a small target data set using a quantile-shifting technique. In
his study, we develop the use of transfer learning, a popular
echnique in the ML community that leverages data from one
omain to improve performance in another (see e.g. Zhuang et al.
020 , for a survey). One example of transfer learning is domain
daptation, which has been used within cosmology to improve
he robustness of inference with respect to uncertain physical
rocesses; domain adaptation improves generalization across data
ets by aligning their feature representations. This can be achieved
n a number of ways: introducing additional loss terms, such as
aximum mean discrepancy (MMD; Roncoli et al. 2023 ); adversar-

ally, by training a discriminator to minimize domain differences
Ganin & Lempitsky 2015 ; Andrianomena & Hassan 2025 ; Jo
t al. 2025 ); or using optimal transport methods to explicitly map
NRAS 542, 3231–3245 (2025)
etween latent distributions (Wehenkel et al. 2025 ; Andrianomena &
assan 2025 ). 
Our approach is straightforward: we perform transfer learning by

rst pre-training on a large corpus of cheaper, lower fidelity data
efore training the model on a small set of accurate examples (a
rocess known as fine-tuning). This widely used approach underpins
oundation models, which are large, generic pre-trained models that
an later be fine-tuned for specific tasks (He et al. 2016 ; Devlin
t al. 2019 ; Dosovitskiy et al. 2021 ; Radford et al. 2021 ; Zhai
t al. 2022 ; Kirillov et al. 2023 ). Pre-training allows models to
earn generalizable features, which improves performance when
dapting to new, related data sets (Bengio 2012 ; Hoffmann et al.
019 ; Kornblith, Shlens & Le 2019 ; Mishra et al. 2022 ; Lastufka
t al. 2024 ; Tahir, Ganguli & Rotskoff 2025 ). Some prior work
as used this approach for cosmological inference (Gondhalekar &
oriwaki 2024 ; Sharma, Dai & Seljak 2024 ), but prior to this work

here had been no comprehensive investigation into whether pre-
raining can substantially reduce the number of accurate simulations
equired to perform inference. Concurrent with this work, Krouglova
t al. ( 2025 ) demonstrated that the exact same principle of transfer
earning is effective for standard density estimation architectures
uch as neural spline flows, with applications directly to SBI. Since
he submission of this manuscript, two independent studies proposed
nhancements to a basic transfer learning strategy, each demonstrat-
ng improved outcomes (Hikida et al. 2025 ; Thiele, Bayer & Takeishi
025 ). 
This paper is structured as follows. Our methodology is described

n Section 2 . In Section 2.1 , we describe the multifidelity simulation
uites that we use for transfer learning. Section 2.2 presents the

L architectures and training procedures developed for this work,
hile the metrics used for model evaluation are introduced in
ection 2.3 . Section 3 presents the results of our multifidelity

ransfer learning methodology, and compares it with a high-fidelity-
nly approach for two examples: Section 3.1 explores a two-
imensional inference problem, and Section 3.2 addresses a more
omplicated five-dimensional inference problem, with a larger set
f cosmological parameters and astrophysical nuisance parameters.
inally, we present a discussion of our results and our conclusions in
ection 4 . 

 M E T H O D O L O G Y  

.1 Data 

his work introduces a simple framework for multifidelity inference
n cosmological data. We utilize the CAMELS Multifield Data set
CMD; Villaescusa-Navarro et al. 2022 ; Ni et al. 2023 ), a well-
tudied collection of simulations covering different fidelities and sub-
rid physics models, to demonstrate our methodology. In particular,
he CMD includes a gravity-only N -body simulation suite using
ADGET-3 (Springel 2005 ), as well as several magnetohydrodynam-

cal simulation suites. In this study, we use N -body simulations as
he lower fidelity data set, and the IllustrisTNG CMD suites as high-
delity simulations. These IllustrisTNG simulations were produced
sing the AREPO code (Springel 2010 ) to solve the same sub-grid
hysics models as the original IllustrisTNG simulations (Weinberger
t al. 2016 ; Pillepich et al. 2018 ). 

The CMD comprises thousands of simulations sampling universes
ith different cosmologies and astrophysical processes. These sim-
lations are standardised to volumes of (25 h−1 Mpc )3 . For each
imulation, 15 current-time ( z = 0) pseudo-independent 2D mat-
er slices are extracted by considering five slices per dimension
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Figure 1. Comparison of the (scaled) dark matter density maps between 
paired simulations from the IllustrisTNG and N -body CMD simulation suites. 
Paired simulations have identical initial conditions as well as cosmological 
and astrophysical parameters. Panel (a) shows a log-scaled dark matter density 
map, Mcdm 

, from the IllustrisTNG Latin hypercube (LH) suite. Panel (b) gives 
the ratio between the IllustrisTNG Mcdm 

and the paired N -body Mcdm 

, with 
a zoomed-in inlay of a particularly high contrast region. Panel (c) shows the 
power spectrum ratio between the two maps (blue line), along with a random 

selection of 250 spectral ratios between paired maps from the LH suite (grey 
lines). Panel (d) shows the peak count statistics, computed by applying a four 
pixel Map filter (see text for details) and computing the peak signal-to-noise 
ratio over the background level. The exact cosmological and astrophysical 
feedback parameters are given in panel (d). 
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of thickness 5 h−1 Mpc ); these are then pixelized into bins of
pproximate area (0 . 1 h−1 Mpc )2 to produce 2D images of the density
elds with side of 256 pixels (see Villaescusa-Navarro et al. 2021 
or the exact procedure). This work performs inference directly on 
ensity maps: we use 2D dark matter density maps, denoted as

cdm 

, from the N -body simulations and the IllustrisTNG simulations 
though we demonstrate our conclusions are unchanged for total 
atter density maps Mtot in Appendix B ). We then take the log of

he maps and normalize them by subtracting the mean and dividing 
y the standard deviation of the pixel values, so that the resulting
istribution is approximately unit Gaussian. These processed maps 
re then passed into the ML models. An example of these maps is
iven in Fig. 1 , which shows the differences between two simulations, 
ne hydrodynamical and one N -body, with identical parameters 
nd initial conditions. Fig. 1 explores the differences between the 
ultifidelity simulations through a mass density ratio map, the power 

pectrum ratio, and a comparison of the peak statistics. The peak 
tatistics were computed by first applying a four pixel aperture mass
 Map ) filter following Schneider et al. ( 1998 ), implemented using
ENSPACK . 2 

We apply our methodology to two of the simulation suites from
he CMD: (i) the Latin hypercube suite (LH; Villaescusa-Navarro 
t al. 2022 ), which varies the matter density fraction �m 

and the
mplitude of the matter density power spectrum, parametrized by 
8 , alongside four astrophysical nuisance parameters ( ASN,1 , ASN,2 , 
AGN,1 , AAGN,2 ); and, (ii) the Sobol28 suite (SB28; Ni et al. 2023 ),
hich varies �m 

, σ8 , the scalar spectral index ns , the Hubble
arameter h , and the baryonic density fraction �b , in addition to
3 astrophysical nuisance parameters. The astrophysical parameters 
n the LH suite control the strength and behaviour of the stellar and
ctive galactic nuclei (AGN) feedback in the simulations, while the 
B28 suite varies a more detailed set of baryonic feedback processes
ontrolling stellar and AGN feedback, supermassive black hole 
rowth rates, star formation rates, and stellar population modelling. 
t is worth noting that the small simulation box-size 25 ( h−1 Mpc )3 

ay restrict the degree to which some of these effects, particularly
GN feedback, impact the simulations. 
These suites contain 15 000 and 30 720 paired N -body and

llustrisTNG dark matter maps, respectively. In both cases, we 
erform inference over only the cosmological parameters, implicitly 
arginalizing over all nuisance parameters. For each suite, we re- 

erve the last 200 cosmologies (corresponding to 3000 matter density 
aps) as a holdout set, split evenly into 100 cosmologies (1500
aps) for validation and 100 cosmologies (1500 maps) for testing. 
he validation set is used for hyperparameter tuning and selection 
f the best model during training; the test set is used exclusively
or model evaluation, with results reported in Section 3 . This strict
plit ensures no data leakage between the training, validation, and 
est sets. The paired nature of the CMD means our transfer learning
pproach inherently uses seed-matched simulations at both low and 
igh fidelity in the training set. However, we explicitly verify that
e achieve the same results with unpaired low and high fidelity data

ets in Appendix B . 
We augment the 2D matter map data set by randomly flipping and

otating the images during training. We perform no further processing 
r augmentation, such as field smoothing or addition of noise, to the
ow or high fidelity maps. 

.2 Model training 

n this study, we focus on neural posterior estimation (NPE; Papa-
akarios & Murray 2016 ). We perform inference directly at the map

evel, and train a CNN-NDE neural network end-to-end to model 
he posterior distribution p( θ | x), where θ denotes the cosmological 
arameters and x the observation. The neural network parameters 
 are trained to produce a model of the posterior qϕ ( θ | x), which

s generally achieved through the forward Kullback–Leibler (KL) 
ivergence: 

KL 

(
p( θ | x) ‖ qϕ ( θ | x)

)
= E p( θ,x) 

[
log p( θ | x) − log qϕ ( θ | x)

]
= E p( θ,x) 

[− log qϕ ( θ | x) + const. 
]
. 

(1) 

he log-posterior term p( θ | x) does not depend on the neural
etwork parameters ϕ, and so can be ignored as a constant in the
bjective function: 

 ( ϕ) = −E p( θ,x) 

[
log qϕ ( θ | x)

]
. (2) 
MNRAS 542, 3231–3245 (2025)
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Figure 2. The neural network architecture used to perform NPE in this work. 
(a) A CNN identical to that used in Villaescusa-Navarro et al. ( 2022 ) extracts 
informative features from the input dark matter map images. The CNN is 
built of blocks with three repeats of a 2D convolution, batch normalization, 
followed by leaky ReLU non-linearities (LReLU; Maas et al. 2013 ). After 
each block, the spatial dimension of the activation maps is halved using a 
stride of 2, and the number of channels is doubled. The final convolutional 
layer is flattened and passed to a pair of feedforward layers. (b) The extracted 
low-dimensional summary statistics, t , are fed into a RQ-NSF. The RQ-NSF 
uses the summary statistic as conditional information to transform a simple 
base distribution into the modelled posterior qϕ ( θ | x). 
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ote that this formulation yields an identical objective to the
ariational Mutual Information Maximization approach, without

he emphasis on learning an information-optimal summary statistic
Jeffrey et al. 2021 ). 

The objective in equation ( 2 ) is used to first pre-train the network
n N -body dark matter maps until convergence. It is then used again
ithout modification to fine-tune the network on IllustrisTNG maps.
ll weights from the pre-trained network are transferred and used

o initialize the fine-tuning stage on the high-fidelity maps, with the
ntire network being trained during this phase. We do not freeze
ny layers or restrict fine-tuning to specific components (e.g. the
ompression network or NDE), nor do we add extra layers. We use
his framework for simplicity, since only one network needs to be
rained and all training can be done end-to-end. Extensions to e.g.
eural likelihood estimation, and further variants, will be explored in
uture work. We do not envision these would require any significant
odifications, but would need several training stages as in Jeffrey

t al. ( 2021 ). 
We performed an initial exploration and hyperparameter tuning

f architectures for data compression and density estimation. All
odel architecture and hyperparameter tuning was performed on the

igh-fidelity-only task. This ensures that our results are not biased
oward improving transfer learning performance. We were partly
otivated by the fact that common neural network architectures used

or neural summarization, such as CNNs, are well-suited for transfer
etween data sets. This stems from the inductive bias of CNNs,
hich encourages the learning of generic, transferable features that

re then composed over a hierarchy of scales (Girshick et al. 2014 ;
osinski et al. 2014 ; Kornblith et al. 2019 ). We found that the tailored
NN architecture from Villaescusa-Navarro et al. ( 2022 ), which
as optimized for the CAMELS data set using the hyperparameter
ptimization framework optuna (Akiba et al. 2019 ), outperformed
arious standard architectures, such as ResNet (He et al. 2016 ) and
onvNext (Liu et al. 2022 ), both when pre-trained from natural image
ata or randomly initialized. We therefore used the CNN architecture
rom Villaescusa-Navarro et al. ( 2022 ) as our neural compression
ackbone, changing only the dimension of the final output layer to
nstead serve as a latent embedding. We found that using the CNN
o compress matter density maps to larger latent dimension sizes
lightly improved performance, so set the latent dimension to 128. 

We used a rational-quadratic neural spline flow (RQ-NSF; Durkan
t al. 2019 ) as the NDE head of the network, implemented using the
BI PYTHON package (Tejero-Cantero et al. 2022 ). We found this
DE architecture gave significant improvements over alternative
opular choices, such as Masked Autoregressive Flows (Papa-
akarios, Pavlakou & Murray 2017 ). We also found that inserting

atch normalization (Ioffe & Szegedy 2015 ; Santurkar et al. 2018 )
ayers between spline flow blocks (similar to the CNN architecture)
ubstantially improved performance, both in pre-training and fine-
uning. An overview of the architecture is presented in Fig. 2 . 

Once the architecture was selected, we performed end-to-end
raining of the network on the NPE objective in equation ( 2 ).

e made a range of modifications that improved performance.
e utilized a weight decay of 0.01, which regularizes the neural

etwork by adding a small penalty term to the network weight
agnitudes (Krogh & Hertz 1991 ; Loshchilov & Hutter 2017 ).
his was particularly important for the fine-tuning stage, where

egularization while training on very small data sets was greatly
eneficial. We used a short learning rate (LR) warm-up period, which
as been found to improve deep learning model training (He et al.
016 ; Goyal et al. 2017 ; Vaswani et al. 2017 ) with a number of posited
xplanations (see e.g. Gotmare et al. 2019 ; Kalra & Barkeshli 2024 ).
NRAS 542, 3231–3245 (2025)
arger batch-sizes (we selected 64) also improved performance for
ll models. We found that using a cyclic LR scheduler (Smith 2017 )
s in Villaescusa-Navarro et al. ( 2022 ) improved performance when
raining on large data sets, i.e. > O(104 ) maps. Baseline experiments
nd pre-training were performed with a LR of 2 × 10−4 . Fine-tuning
as performed with a LR of 1 × 10−5 and an exponential decay

cheduler. All models were trained using the AdamW optimizer
Loshchilov & Hutter 2017 ). 

We repeat all training runs six times, changing only the initializa-
ion of the network, the random selection of N maps from the training
ata set, and the (random) order in which the training data is passed to
he network. The model with the lowest validation loss from each run
s saved and used for evaluation. All models pre-trained on N -body
imulations used the entire N -body training suite, and models with
he lowest validation loss were saved for fine-tuning and evaluation.

.3 Evaluation 

.3.1 Posterior accuracy 

odel evaluation in SBI is a well-studied task, and commonly used
etrics include posterior-predictive checks (e.g. Papamakarios et al.

017 ; Durkan et al. 2019 ), kernel-based distance tests such as MMD,
nd classifier two-sample tests (Friedman 2004 ; Lopez-Paz & Oquab
017 ). Lueckmann et al. ( 2021 ) presented a review and comparison
etween various evaluation choices. In our case, where the true
osterior is unknown, one could construct a ‘high-quality’ posterior
y using the full simulation suite to train multiple models with dif-
erent initializations, and then averaging their inference results. This
ensemble’-based strategy can be used to improve posterior quality
y integrating over the model’s epistemic uncertainty (Hermans et al.
022 ; Lin et al. 2023 ). Unfortunately, we found empirically that
ve-member model ensembles led to underconfident (conservative)
osteriors. This finding is compatible with prior work (Hermans et al.
022 ). We expect that this could be overcome with larger ensembles,
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ut this approach becomes highly computationally demanding for 
eep learning-based models. We therefore avoid overreliance on 
etrics that require reference posteriors. 
In the absence of a high-quality reference posterior, the most 

ppealing headline metric to quantify model performance is simply 
he mean test posterior probability (MTPP) log qϕ ( θ | x) at the true 
arameter values θ . This is estimated by computing an expectation 
ver the test data set D: 

TPP = E ( x,θ ) ∼D 

[
log qϕ ( θ | x)

]
. (3) 

his serves as a robust test for posterior quality given enough test
xamples (Lueckmann et al. 2021 ), though the scale of this metric is
ot particularly interpretable. 
To complement this, we estimate the calibration of each model 

ver the entire test set. This is achieved by running inference on each
est data realization, and estimating the frequency at which the truth
ies within a given credibility level. This test allows us to identify

odelling issues in the posteriors, such as bias and overconfidence 
Hermans et al. 2022 ). For K credibility level bins, we estimate the
bserved frequency within a given bin ˆ pi , and compare it with the 
xpected (ideal) frequency pi = 1 /K . We then compute a calibration 
rror C, which is the relative mean-squared error (MSE) between the 
wo quantities: 

 = 1 

K 

K ∑ 

i= 1 

(
ˆ pi − pi 

pi 

)2 

= 1 

K 

K ∑ 

i= 1 

(
ˆ pi 

pi 

− 1

)2 

. (4) 

he right-hand side simply provides an equivalent expression for 
he calibration error C in terms of the ratios between observed and
xpected frequencies at given credibility levels, ˆ pi /pi , which we 
efer to as ‘overcoverage’. 

We utilize Tests of Accuracy with Random Points (TARP; Lemos 
t al. 2023b ) to estimate the coverage statistics efficiently. We 
ootstrap the estimated credibility level statistics produced by TARP 

5 times and quote the mean of the estimated ˆ pi . 
Together, the MTPP and calibration error C provide robust diag- 

ostics of the fidelity of the learned posteriors. Once these diagnostics 
ndicate well-calibrated and accurate inference, we can begin to 
ssess how informative the posteriors are. 

.3.2 Constraining power 

ood calibration is a necessary pre-condition for a useful, reliable 
osterior model. Once this property is satisfied we can test the amount
f information that the model is capable of extracting from the dark
atter density maps. We compute the Figure of Merit (FoM), which 

stimates the constraining power of each model. Assuming a flat 
rior on [0,1], the FoM can be computed as: 

oM = [ det Cov [ θ | x]] −1 /n , (5) 

here Cov [ θ | x] is the covariance matrix of the posterior, and n is
he dimensionality of the posterior. A higher FoM indicates a tighter 
onstraint on the parameters, meaning the model is more informative 
provided the model is unbiased). In practice, we transform the 
osmological variables to a flat prior on [0,1] to compute the FoM and
stimate the covariance using samples from the modelled posterior. 

Finally, for a more interpretable metric of the posterior quality, 
e compute the MSE between the modelled posterior mean ˆ θ and 

he true parameters θ over the entire test set. We report these MSEs
roken down by parameter to probe whether the posterior quality 
iffers significantly between parameters. 
 RESULTS  

e run a range of experiments comparing high-fidelity-only models 
gainst the transfer learning approach. We use N to denote the
umber of IllustrisTNG 2D dark matter density maps used during the
raining stage. Of the data set size N , 90 per cent is used as training
ata, while 10 per cent is used for validation data. All results report
he mean performance on the test set. 

.1 CAMELS multifield data set: LH suite 

e compare the performance of each method over a range of
llustrisTNG data set sizes. We present the results of the LH
xperiments in Fig. 3 . We find that small IllustrisTNG data set
izes lead to poor performance when training from random network 
nitialization, whereas pre-training on N -body maps leads to good 
erformance with very few simulations. For instance, a pre-trained 
odel that is then fine-tuned with N = 200 IllustrisTNG maps has

igher MTPP than the high-fidelity-only approach with N = 6400 
aps. 
One complicating factor is the posterior calibration, quantified 

n Fig. 3 b. This demonstrates that despite the high test posterior
robability, models fine-tuned with very few IllustrisTNG maps 
ppear to be poorly calibrated. We find that acceptable calibration 
s achieved after N = 800 fine-tuning maps, while training with
nly high-fidelity maps requires N = 6400 for similar posterior 
alibration. We therefore find at least a factor of 8 reduction in
he number of simulations required to produce a performant, well- 
alibrated model of the posterior. 

We present calibration curves from a range of data set sizes
cross the two approaches in Fig. 4 . These show the standard
umulative distribution of observed credibility levels in the main 
anels, as well as the overcoverage distribution ˆ pi /pi in the insets. 
hese reaffirm the calibration issues identified in Fig. 3 : training

rom scratch with fewer than N = 6400 maps leads to significantly
verconfident posteriors. The high overcoverage at { 0 , 1 } (paired
ith the below-ideal coverage in the middle of the distribution) is
 clear indicator of overconfidence, since it indicates that the true
arameters occur at extreme credibility levels too often. On the other
and, the transfer learning models display a more minor form of bias
nd overconfidence until reaching around N = 800 maps. 

The FoM performance as a function of data set size is shown
n Fig. 3 c. When training using only high-fidelity simulations, low
ata set sizes lead to low FoMs. This observation indicates that
he features (or summary statistics) extracted by the CNN are not
articularly informative. Additionally, the overconfident posteriors 
ndicate limitations in the performance of the NDE, since it is
ncapable of producing trustworthy posteriors. We therefore conclude 
hat both the CNN neural compressor and the density estimation 

odel perform poorly with small training data sets. 
On the other hand, the very high MTPP and FoMs of the transfer

earning models (even from N = 200) indicate that the pre-trained
NNs produce highly informative features. However, the inferred 
osteriors for N = [200 , 400] are biased and overconfident, suggest-
ng that the NDE needs at least N = 800 maps to correctly adjust
he inferred posteriors to ensure good calibration. We found that the
oM for the N -body pre-training task was ∼1400, much greater 

han the baseline and transfer learning models on the IllustrisTNG 

nference task. The dip in the FoM at N = 800 is thus potentially
elated to the reduced constraining power of extracted CNN features 
n the IllustrisTNG data finally becoming properly incorporated 
y the NDE. This could be due to the feature-shift between
MNRAS 542, 3231–3245 (2025)
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Figure 3. Inference results on the IllustrisTNG LH suite for a 2D posterior over �m 

and σ8 . We compare the performance of the two approaches: training with 
only high-fidelity maps (blue) against the transfer learning approach (green), which uses 12 000 N -body maps for pre-training. An accurate benchmark model 
trained on the entire IllustrisTNG LH suite training set is shown by the dashed red line. The accurate model (red) uses a cyclic LR scheduler, which performs 
slightly better than an exponential scheduler for large data sets, as detailed in Section 2.2 . Panel (a) shows the MTPP, panel (b) shows the calibration error C of 
the modelled posterior, defined in equation ( 4 ), and panel (c) shows the FoM, all as a function of high-fidelity data set size N . Panel (c) should be interpreted 
with the proviso that the model must be well-calibrated before the FoM measures genuine constraining power. All results show the mean and standard error over 
six independent training runs (including independent pre-training runs on the N -body simulations). 

Figure 4. Main panels : cumulative calibration curves of the nominal credibility level distribution, assessing the posterior coverage quality as a function of 
data set size. The ideal calibration curve is shown by the black dashed line. Shaded regions show the 2 σ uncertainties derived from bootstrapping. Insets : the 
overcoverage values per credibility level, see equation ( 4 ) and the surrounding text for details. The shaded orange region highlights the discrepancy between 
the ideal and observed distribution of credibility levels, which is quantified by the calibration error metric introduced in equation ( 4 ). Panel (a) shows training 
from high-fidelity-only simulations, where models with small data set sizes display significant overconfidence, and better calibration (though now mildly 
underconfident) is achieved at N = 6400. Panel (b) shows that transfer learning requires around N = 800 IllustrisTNG maps to achieve good calibration. 
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-body simulations and IllustrisTNG, as well as the inherent greater
ncertainties due to the more complex physics of the hydrodynamical
imulation suite. These results indicate that for very small fine-tuning
ata sets, the performance bottleneck on this task is adapting the
DE. In future work we will explore whether the NDE head could
e fine-tuned while preserving good calibration statistics with more
dvanced techniques (such as balanced SBI; e.g. Delaunoy et al.
022 ). 
Three representative examples of inference on test cosmology
aps are shown in Fig. 5 . We compare models produced using only

igh-fidelity maps ( N = 800), transfer learning ( N = 800), and an
accurate’ reference model trained on the full IllustrisTNG training
et. These examples are qualitatively consistent with the analysis
resented above. The high-fidelity-only N = 800 model gives very
NRAS 542, 3231–3245 (2025)
ninformative constraints compared to the other two posteriors.
n the other hand, the fine-tuned model appears well-calibrated,

nd only slightly less constraining than the model trained with
16 . 25 more high-fidelity maps. We present a similar comparison
ith a high-fidelity model trained on N = 3200 in Appendix A ,
emonstrating that even for larger high-fidelity data set sizes, pre-
raining yields significantly improved posteriors. 

Appendix B presents a range of further tests into the model
erformance. We found that the pre-trained models performed very
oorly on high-fidelity maps when no fine-tuning was performed
corresponding to N = 0). We explored the quality of the fine-tuned
NN compressor by freezing the CNN and re-training the NDE with

arger data set sizes. This presented more evidence that the limiting
actor at very low fine-tuning data set sizes was the NDE. We also
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Figure 5. Three representative examples of inference from the LH simulation suite. The true cosmology is shown by the black dashed line. A model trained 
using transfer learning with N = 800 high-fidelity IllustrisTNG maps is compared against a high-fidelity-only model trained with N = 800 maps. The posteriors 
are compared with an ‘accurate’ posterior model that was trained using the full simulation suite. 
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Figure 6. MSE between the inferred posterior mean ˆ θ and the true cosmology 
θ . Results are broken down per-parameter, with panel (a) showing �m 
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with the true cosmological parameters. 
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howed that the small performance gap between the ‘accurate’ model 
nd the transfer learning models with larger data set sizes was caused
y slightly worse compression. 
Another consideration was the possibility that the paired aspect of 

he data sets was responsible for the significant performance gains 
rom lower fidelity pre-training. While we did make any explicit use 
f the simulation pairs, this could still have had an impact depending
n the training dynamics of the network. We tested this in Appendix B
nd found strong evidence that the paired aspect of the source and
arget data set has no impact on our results. We therefore conclude
hat our transfer learning approach does not depend on paired data 
ets. In principle, this means that large, pre-existing simulation suites 
ould be used as multifidelity data sets without the need to pair initial
onditions and cosmological parameters. 

We found that fine-tuning with the entire IllustrisTNG suite pro- 
uced a slightly weaker model than the ‘accurate’ benchmark model 
i.e. the transfer learning curve in Fig. 3 a does not intersect with
he ‘accurate’ performance). We analyse the convergence properties 
f the approaches further in Appendix B . We show that the slightly
ower transfer learning MTPP plateau is partially due to the low 

R used during fine-tuning, and a higher LR nearly recovers the 
accurate’ performance. This is consistent with the intuitive notion 
hat a higher LR allows the training procedure to escape from the
lightly sub-optimal region of the weight-space that is reached during 
re-training. These observations are perfectly compatible with the 
tudy of Sharma et al. ( 2024 ), who found no clear benefits of transfer
earning when using a large high-fidelity data set. 

We present the degree of agreement between the posterior sample 
eans ˆ θ and the true cosmologies θ in Fig. 6 , broken down 

or σ8 and �m 

. These indicate pre-training yields very large im- 
rovements in the posterior for both parameters. �m 

and σ8 are 
nferred with similar precision relative to the baseline over the entire 
est set. 

.2 CAMELS multifield data set: SB28 suite 

e repeat the experiments of Section 3.1 on the SB28 suite, this
ime performing inference over a five-dimensional posterior. The 
ery broad range of nuisance parameters, as well as the extra three
osmological parameters { ns , h, �b } , lead to a more challenging
nference problem. Prior work has only explored inferring �m 

and σ8 

rom this data set, and has found that the larger set of cosmological
nd astrophysical parameters leads to much weaker constraints on 
8 (Ni et al. 2023 ). Ni et al. ( 2023 ) also indicated that the Hubble
onstant h and the baryonic fraction �b have minor effects on the
imulations, indicating that these may be challenging to constrain. 
ote that the SB28 suite contains roughly double the number of

imulations as the LH suite, enabling a more accurate ML-based 
eference model. 

Fig. 7 displays the headline metrics comparing the two training 
pproaches with a baseline ‘accurate’ model that used the entire SB28
uite training set. Again, the transfer learning models significantly 
utperform models trained from scratch, and the MTPP score of 
he transfer learning experiments are only surpassed when training a 
igh-fidelity-only model with N = 12 800 IllustrisTNG maps. Pan- 
ls (b) and (c) in Fig. 7 present a similar pattern as in Section 3.1 : all
MNRAS 542, 3231–3245 (2025)
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Figure 7. Inference results for the five-dimensional posteriors on the IllustrisTNG SB28 suite. Training with only high-fidelity maps (blue) is compared against 
the transfer learning approach (green). An accurate benchmark model trained on the entire IllustrisTNG SB28 suite training set is shown by the dashed red line. 
Panel (a) shows the MTPP, panel (b) shows the calibration error and panel (c) shows the FoM, all as a function of high-fidelity data set size N . Panel (c) should 
be interpreted with the proviso that the model must be well-calibrated before the FoM measures genuine constraining power. Again, all results show the mean 
and standard error over six independent training runs. 
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ransfer learning models are more constraining and better calibrated
han training from scratch (until N = 12 800). However, fine-tuned

odels display (minor) calibration issues until N ≥ 800. The uptick
n calibration error C for the transfer learning approach is very
inor and largely within errors, so we do not attempt to interpret

t. Interestingly, all fine-tuned models are better calibrated in the
B28 experiments than in the LH experiments (note the different
-axis scales). 
The performance difference between high-fidelity-only models

nd transfer learning models is even larger than in Section 3.1 .
epending on the exact MTPP performance desired, Fig. 7 indicates

hat pre-training on N -body simulations allows for a factor of 10–15
eduction in high-fidelity simulations to train an informative, well-
alibrated model of the posterior. 

We found that none of the models could constrain �b and h
ar beyond the uniform prior. Given that this was a feature of
he ‘accurate’ baseline model, trained on 27 720 maps, we may
onclude that this a genuine feature of the simulations, at least
p to the resolving power of the CNN-NDE architecture used to
erform inference. This is reflected by the FoM results in Fig. 7 (c),
hich are significantly lower for all models than the FoM in the LH

uite experiment. We present two examples of inference in Fig. 8 ,
howing only { �m 

, σ8 , ns } . This implicitly marginalizes over the
oorly constrained �b and h . Again, we compare training from
cratch with N = 800 and fine-tuning with just N = 800 maps
gainst an ‘accurate’ baseline. We present examples of inference
f the full five-dimensional posterior in Appendix C . 
Again, multifidelity transfer learning produces a model that

ignificantly outperforms high-fidelity-only training. The difference
n posterior quality is even more stark than in Fig. 5 ; the high-
delity-only posteriors are very uninformative and fail to extract
uch useful cosmological information from the density maps.
he overconfidence identified in Fig. 8 is apparent as a bias in

he left panel of Fig. 5 . On the other hand, the transfer learning
pproach recovers the key features of the accurate baseline posteriors,
ncluding both the location and width of the posterior contours.
oth the ‘accurate’ and transfer learning models yield a degeneracy
etween the amplitude of the matter density power spectrum σ8 and
he scalar spectral index ns . This degeneracy is expected for two-point
tatistics at the very short scales probed in the CMD simulations,
iven both parameters have similar, difficult to distinguish marginal
ffects on the power spectrum. The results in Fig. 8 indicate that the
NRAS 542, 3231–3245 (2025)
on-linear effects probed by the CNN are insufficient to fully break
his degeneracy. 

The larger performance gains reported here relative to the LH suite
n Section 3.1 likely result from the more complex task of modelling
 five-dimensional posterior and marginalizing over a larger set
f astrophysical parameters. We tentatively conclude that transfer
earning may perform even better in more challenging inference
roblems, particularly those involving higher dimensional posteriors
nd a broader set of nuisance parameters. As the complexity of the
arget task increases, the value of incorporating prior knowledge
hrough pre-training is likely to grow. 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

n this study, we have demonstrated that leveraging multifidelity sim-
lations can significantly reduce the number of expensive simulations
equired to perform cosmological inference with SBI. By pre-training
 neural inference model on a large set of lower fidelity dark matter
nly simulations, we were able to perform informative and well-
alibrated inference on IllustrisTNG hydrodynamical simulations
ith < 1000 high-fidelity dark matter maps. This is a substantial

mprovement over previous work, which had demonstrated that
raining neural compression algorithms with small data sets led
o suboptimal compression and inference (Hermans et al. 2022 ;
airagi et al. 2025 ; Jeffrey et al. 2025 ; Park et al. 2025 ). The relative

implicity of our framework makes this method broadly applicable
cross cosmology. 

Prior work has explored various approximate Bayesian computa-
ion (ABC) methods for multifidelity inference (Prescott & Baker
020 , 2021 ), for instance by using low fidelity rejection sampling
o improve the accurate simulation efficiency during inference.
hese have been extended to sequential multifidelity ABC (Warne
t al. 2022 ), as well as to likelihood-free multifidelity inference by
everaging importance sampling (Prescott, Warne & Baker 2024 ).
ariance reduction strategies that capitalize on paired multifidelity
imulations to isolate the statistical uncertainty, have also been used
o improve estimates of cosmological observables (Chartier et al.
021 ; Lee et al. 2024 ). Adaptation of these strategies directly for
osmological inference, particularly when dealing with significantly
on-Gaussian posteriors that SBI is well suited for, remains an
nteresting avenue for future work. An additional line of work
ould be to explore tailoring our approach for transfer learning, for
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Figure 8. Two examples of posterior inference on IllustrisTNG dark matter maps from the SB28 test set. Contours are visualized over the three parameters 
that can be constrained by the data: { �m 

, σ8 , ns } . The true cosmology is shown by the black dashed line. A model trained using transfer learning with N = 800 
high-fidelity IllustrisTNG maps is compared against a high-fidelity-only model trained with N = 800 maps. The posteriors are compared with an ‘accurate’ 
posterior model that was trained using the full training set. 
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nstance through architecture improvements that work with Fourier 
epresentations of the inputs (e.g. Yang & Soatto 2020 ; Mao et al.
023 ; Bernardini et al. 2025 ) or specialized pre-training and transfer
earning techniques (e.g. He et al. 2022 ; Akhmetzhanova, Mishra- 
harma & Dvorkin 2024 ; Oquab et al. 2024 ). 
This work focused on matter density maps at different fidelities; 

here are many more possible observables that have previously 
een probed for performing cosmological inference, such as neutral 
ydrogen, gas temperature and metallicity maps (Hassan, Andri- 
nomena & Doughty 2020 ; Prelogović et al. 2022 ; Andrianom- 
na & Hassan 2023 , 2025 ; Gluck et al. 2024 ). Adaptation between
bservables could call for similar specialized approaches (e.g. 
ian et al. 2025 ). 
Future work could apply transfer learning to a wide variety of mul-

ifidelity data sets across cosmological inference. Recent work has 
emonstrated that neural compression even performs sub-optimally 
n lower dimensional data, such as power spectra (Bairagi et al. 2025 )
r ensembles of traditional summary statistics (Park et al. 2025 ), 
hen data set sizes are limited. There is a very wide array of methods

or producing mock observations of varying fidelities: for instance, 
mpirically calibrated semi-analytic emulators (e.g. Takahashi et al. 
012 ; Mead et al. 2016 , 2021 ), fast-executing lognormal dark matter
imulations (e.g. Lin et al. 2023 ; Tessore et al. 2023 ; Wietersheim-
ramsta et al. 2025 ) and ML-based emulators (e.g. Heitmann 

t al. 2009 ; Aricò et al. 2021 ; Euclid Collaboration 2021 ; Giri &
chneider 2021 ; Piras, Joachimi & Villaescusa-Navarro 2023 ). These 

echniques could be used to build large mock pre-training data 
ets, allowing for a significant reduction in the computation time 
equired for the production of high-fidelity simulation data sets for 
ransfer learning. Similarly, computation budgets could be reoriented 
owards fewer high-fidelity simulations with more particles or larger 
imulation boxes. Either way, by enabling an order of magnitude 
eduction in high-fidelity simulations, this work demonstrates that 
ultifidelity transfer learning has the potential to transform our 

pproach to SBI in cosmology. 
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arnois-Déraps J. et al., 2024, MNRAS , 534, 3305 
assan S. , Andrianomena S., Doughty C., 2020, MNRAS , 494, 5761 
e K. , Zhang X., Ren S., Sun J., 2016, Proc. of the IEEE Conf. on Computer

Vision and Pattern Recognition. IEEE, New Jersey, United States, 770 
e K. , Chen X., Xie S., Li Y., Dollár P., Girshick R., 2022, Proc. of the

IEEE/CVF Conf. on Computer Vision and Pattern Recognition. IEEE,
New Jersey, United States, p. 16000 

eitmann K. , Higdon D., White M., Habib S., Williams B. J., Lawrence E.,
Wagner C., 2009, ApJ , 705, 156 

ermans J. , Begy V., Louppe G., 2020, in III H. D., Singh A., eds, Proceedings
of Machine Learning Research, Vol. 119, Proceedings of the 37th Interna-
tional Conference on Machine Learning. PMLR, Massachusetts, United
States, p. 4239. https://proceedings.mlr.press/v119/hermans20a.html 

ermans J. , Delaunoy A., Rozet F., Wehenkel A., Begy V., Louppe G., 2022,
Trans. Mach. Learn. Res.. https://openreview.net/forum?id=LHAbHkt6
Aq 

ikida Y. , Bharti A., Jeffrey N., Briol F.-X., 2025, preprint
( arXiv:2506.06087 ) 

offmann J. , Bar-Sinai Y., Lee L. M., Andrejevic J., Mishra S., Rubinstein
S. M., Rycroft C. H., 2019, Sci. Adv. , 5, eaau6792 

offe S. , Szegedy C., 2015, in Bach F., Blei D., eds, Proceedings of
Machine Learning Research, Vol. 37, Proceedings of the 32nd Inter-
national Conference on Machine Learning. PMLR, Lille, France, p. 448,
https://proceedings.mlr.press/v37/ioffe15.html 
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PPENDIX  A :  F U RTH E R  POSTERIOR  

O M PA R I S O N S  

e present a further comparison between high-fidelity-only training,
ith N = 3200, and the transfer learning approach for the LH suite
-parameter inference problem in Fig. A1 . Despite the factor of ×4
ncrease in the number of high-fidelity maps used during training,
he multifidelity approach yields significantly tighter posteriors that
etter match the ‘accurate’ model. In addition, the right-most panel
n Fig. A1 is suggestive of the overconfidence issue identified in
ection 3.1 ; high-fidelity-only models trained with fewer than N =
400 IllustrisTNG maps exhibit a large degree of overconfidence,
er Fig. 4 . 

PPENDIX  B:  PROBING  M O D E L  

E R F O R M A N C E  

e performed a range of experiments to better understand the
odel performance. The results of these experiments are summarized

n Fig. B1 . We explored the impact of the paired aspect of the
ultifidelity simulation suite (i.e. that each simulation in the lower
delity N -body suite is paired with a high-fidelity simulation with

dentical cosmological parameters and initial conditions). This could
otentially improve performance, perhaps due to implicit memoriza-
ion of the (pre-)training data (a well-studied phenomenon in deep
earning, see e.g. Yeom et al. 2018 ; Carlini et al. 2019 , 2023 ). We
ested this by ensuring different (i.e. unpaired) cosmologies where
sed during pre-training and fine-tuning, and found that pairing had
o discernable impact on performance. 
We further investigated the neural network inference model by

plitting it into two components: the neural compression performed
y the CNN, and the density estimation of the NDE. In order
o better disambiguate the role of each component, we took the
est transfer learning models from Section 3.1 and froze the CNN.
his fixed the summary statistics that were extracted from the dark
atter density maps for a given transfer learning size N . We then

etrained the NDE using the high-fidelity-only approach on the entire
raining data set ( N = 12000) with the frozen neural compression

odel. The resulting performance is shown in red in Fig. B1 .
he frozen CNN results (red) are produced by taking the CNN

rom the transfer-learning approach (green), freezing its weights,
NRAS 542, 3231–3245 (2025)
nd retraining the NDE with the full high-fidelity data set. We
bserve that at low N (e.g. N = 200), the model with a frozen
NN but fully retrained NDE (red) outperforms the standard transfer

earning baseline (green), suggesting that the NDE limits transfer
earning performance in the low N regime. As N increases the
aseline transfer learning model catches up, and by N = 2400 both
pproaches perform similarly, indicating that the NDE is no longer
 performance bottleneck. This convergence implies that the main
imitation of transfer learning at higher N (i.e. N > 2400) is due to
lightly suboptimal CNN-based compression. These results suggest
hat while pre-training on N -body simulations encourages highly
nformative summaries, there are likely subtle differences in the high-
delity IllustrisTNG simulations (that are useful for slightly improv-

ng cosmological constraints) which the CNN fails to discover during
ne-tuning. 
Fig. B1 also shows the N = 0 transfer learning case, where only

he N -body simulation pre-training is performed and no high-fidelity
aps are used. The extremely poor performance indicates that there

re significant differences between the different simulation fidelities,
nd a fine-tuning step is necessary. 

Next, we test whether transfer learning for (the more observation-
lly important) total matter density Mtot behaves any differently. A
ey concern is that the improved performance from transfer learning
ould be largely due to the strong similarity between the IllustrisTNG
ark matter density Mcdm 

and that of dark matter-only N -body
imulations. Fig. B2 demonstrates that multifidelity transfer learning
erforms just as well when fine-tuning on Mtot . 
We compare the results from Section 3.1 with inference on

he Mtot field with an identical methodology. We find that trans-
er learning still leads to up to an order-of-magnitude reduction
n the number of high-fidelity maps required to train an accu-
ate, trustworthy inference model, compared with high-fidelity-only
raining. 

The small downward shift of all Mtot inference performance curves
‘accurate’, transfer learning and high-fidelity-only) on the MTPP
etric from Section 3.1 a indicates that inference using the Mtot maps

s slightly more challenging. However, there is also a slightly larger
ap between the ‘accurate’ Mtot model and transfer learned models
and low N high-fidelity-only models) compared with inference
esults on Mtot . This suggests that: (i) some features in Mtot require a
arge number of training maps ( N > 6400) for the CNN to learn to
xtract, more-so than in the Mcdm 

case, and (ii) N -body pre-training
ives slightly less informative features than in the Mcdm 

case, perhaps
or similar reasons as (i). 

Finally, we present results exploring the convergence properties
f transfer learning and high-fidelity-only training in Fig. B3 . We
xtend the data set sizes up to N = 12000 for the high-fidelity-
nly and transfer learning approaches. The additional line (orange)
hows the results from transfer learning when using the same LR
nd scheduler as the ‘accurate’ reference models. We find that all
odels asymptote slightly below the ‘accurate’ model baseline.

n the high-fidelity-only approach, this is due to a difference in
cheduler; as discussed in the text, we find a cyclic LR scheduler
‘accurate’, red) slightly outperforms an exponential scheduler for
arge data set sizes ( N > 10000). In the transfer learning case, using
he same LR and scheduler as the ‘accurate’ models (orange) gets
loser to recovering the baseline at N = 12000, but this leads to
igher variance training with worse calibration at smaller data set
izes. We therefore conclude that pre-training can lead to a very
inor reduction in performance when the pre-training data set is no

arger than the target data set, but that in all other instances it is
esirable. 
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Figure A1. Three representative examples of inference from the LH simulation suite. The true cosmology is shown by the black dashed line. A model 
trained using transfer learning with N = 800 high-fidelity IllustrisTNG maps is compared against a high-fidelity-only model trained with N = 3200 maps. The 
posteriors are compared with an ‘accurate’ posterior model that was trained using the full simulation suite. 

Figure B1. Comparing inference results on the IllustrisTNG LH suite for various experiments. We reproduce the results from Fig. 3 for (a) MTPP (note that 
the y -axis scale has been shortened for enhanced visualization) and (b) FoM. We also show results from experiments: pre-training and fine-tuning without any 
paired data (orange); training a neural compression model with N IllustrisTNG maps and then freezing the CNN compression to train an NDE with the full 
( N = 12000) LH training suite (red); and the performance of models only pre-trained on N -body simulations (black, corresponding to N = 0 IllustrisTNG 

maps). 

Figure B2. Comparing transfer learning results on the IllustrisTNG LH suite using Mcdm 

(dot-dashed lines) and Mtot (solid lines). We reproduce the Mcdm 

results from Fig. 3 for (a) MTPP and (b) calibration error. Pre-training on N -body simulations gives near equivalent improvements over training with only 
high-fidelity maps when performing inference on Mtot fields. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/542/4/3231/8245134 by C
atherine Sharp user on 14 N

ovem
ber 2025
MNRAS 542, 3231–3245 (2025)



3244 A. A. Saoulis et al.

M

Figure B3. The convergence behaviour of our approaches as a function of data set size for the LH suite. The legend shows which LR scheduler ( cyclic or 
exp ) was used, which we found had a minor effect on asymptotic behaviour. We reproduce the Mcdm 

results from Fig. 3 and extend the experiments to run 
all the way to N = 12000 (blue and green lines). We also report the results of transfer learning using the high LR and cyclic scheduler settings used for the 
‘Accurate’ baseline model (orange line). 
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PPENDIX  C :  U N C O N S T R A I N E D  

A R A M E T E R S  IN  SB28  

he posterior estimation models in Section 3.2 were trained
o perform five-dimensional inference on { �m 

, σ8 , ns , h, �b } .
owever, we found that h and �b could not be constrained
y the data (or, partially, by the CNN-NDE architecture).
ere, we present some more details on these unconstrained
arameters. 
Fig. C1 shows the posterior sample ensemble mean MSE for

wo cosmological parameters: σ8 and �b . The posterior recovery
f σ8 behaves similarly to Section 3.1 , with very good performance
elative to the ‘accurate’ baseline. On the other hand, we find that
re-training on N -body simulations leads to no improvement over
he high-fidelity-only training approach for �b . In one sense this
s expected: N -body simulations do not provide a strong probe
f how �b affects dark matter maps (beyond the initial matter
ower spectrum), and so there should not be much direct transfer
f knowledge. In addition, Fig. C2 demonstrates that there is
ittle constraining information on �b in the dark matter density

aps. 
However, the fact that the high quality pre-trained summary

tatistics cannot be adapted to improve inference of �b is, at least
aı̈vely, somewhat surprising. This suggests that the features relevant
or inferring �b are disjoint from those governed by variations in
NRAS 542, 3231–3245 (2025)

i

igure C1. MSE between the inferred posterior mean ˆ θ and the true cosmology
anel (b) showing �b . While transfer learning yields a significant improvement in
imulations. 

o

 �m 

, σ8 , ns , h } for N -body simulations, resulting in a representation
ismatch that prevents effective transfer from pre-training. Ni et al.

 2023 ) demonstrated that the values of �b explored in the CMD SB28
imulation suite had a minor effect on both the star formation rate
ensity and the gas power spectra of the simulations, smaller even
han several of the astrophysical nuisance parameters. In addition
o this, since �b primarily modulates the amount of gas available
or star formation and black hole accretion (Elbers et al. 2025 ), these
ignatures may be occluded by the wide range of nuisance parameters
ffecting baryonic feedback in the hydrodynamical simulations. 

On the other hand, we found that while h could not be
roperly constrained by the data, transfer learning yielded sim-
lar constraints to the ‘accurate’ baseline (as opposed to �b ,
hich was poorly constrained and transfer learning gave no
enefit). 
Two examples of five-dimensional posterior inference are given in

ig. C2 . In the first example, none of the models can constrain h and
b much beyond the uniform prior. We can highlight two key qualita-

ive features: the fine-tuned approach gives significantly better agree-
ent with the baseline than training from scratch, and it is statistically

onsistent with the accurate posterior. In the second example, the
accurate’ posterior gives a (weak) constraint on �b , while the other
odels fail to provide any constraints. A small but not insignificant

raction of the inferred posteriors follows this second pattern, which
s consistent with the minor improvement in constraining power of �b 
 θ . Results are broken down per-parameter, with panel (a) showing σ8 and 
 σ8 , we find negligible impact on �b , which has little effect on the N -body 

n 14 N
ovem

ber 2025
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Figure C2. Two examples of posterior inference on IllustrisTNG dark matter maps from the SB28 test suite over the full five-dimensional 
posterior. The true cosmology is shown by the black dashed line. A model trained using transfer learning with N = 800 high-fidelity Il- 
lustrisTNG maps is compared against a high-fidelity-only model trained with N = 3200 maps. The posteriors are compared with an ‘accu- 
rate’ posterior model that was trained using the full simulation suite. We find that for most 2D dark matter density maps, �b and h are 
unconstrained. 
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hown in Fig. C1 . We found that these examples tended to coincide
ith extreme cosmologies (at the boundaries of the prior volume), 

nd particularly for large values of �b as is the case in Fig. C2 . We
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eserve a more systematic analysis as a potential avenue for future
ork. 

his paper has been typeset from a TE 

X/LA TE 

X file prepared by the author. 
MNRAS 542, 3231–3245 (2025)

 Access article distributed under the terms of the Creative Commons Attribution License 
roduction in any medium, provided the original work is properly cited. 

34 by C
atherine Sharp user on 14 N

ovem
ber 2025

https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 METHODOLOGY
	3 RESULTS
	4 DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: FURTHER POSTERIOR COMPARISONS
	APPENDIX B: PROBING MODEL PERFORMANCE
	APPENDIX C: UNCONSTRAINED PARAMETERS IN SB28

