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Abstract
Gridded and time-continuous paleoclimate model outputs are increasingly used to
inform high-resolution models in biogeography and other disciplines. However, few
studies quantitatively evaluate such outputs for bias, uncertainty, and consistency
with other climate reconstructions of similar scale and scope of interest. Here
we evaluate downscaled and bias-corrected output from two paleoclimate models
against proxy-based reconstructions from European sites in the mid-Holocene
(9000–5000 years before present) by comparing absolute values of annual
precipitation sum, and mean January and July air temperature. We paired proxy-
based climate values with simulated ones from the same time and place. For pairs
within each site we checked for correlation. Then we pooled pair-wise differences
of all sites together to check for systematic over- or underestimation. Correlation
analysis revealed that climate models reproduce a winter warming trend in the
northern half of Europe. Pair-wise differences indicate that all gridded datasets
show both over- and underestimation bias compared to proxies in different climate
variables, but without one dataset performing consistently better. Distinguishing
performance between these datasets is complicated by high uncertainties in
proxy-based reconstructions. Our results indicate that, at least on the whole-
European scale, time-continuous model outputs resolve relevant mid-Holocene
climatic changes only to a very limited degree. In order to account for current
uncertainties in reconstructing paleoclimate we advise users not to rely on only
one gridded dataset and to evaluate reconstructions from models against proxy
data from the area of interest.
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Introduction

Understanding how ecosystems and prehistoric societies have responded to past
climatic changes provides important background for understanding ongoing climatic,
environmental, and cultural changes. Paleoclimate model simulations are valuable for
understanding drivers and mechanisms of past climate. In addition, their output is
increasingly used to inform analyses of biological or cultural changes: for example, in
dynamic vegetation models (Miller et al. 2008; Allen et al. 2020; Huntley et al. 2023),
in species distribution models (Franklin et al. 2015; Divı́šek et al. 2022), in eco-cultural
niche models (Banks et al. 2008, 2013), or as Bayesian priors in proxy-based climate
reconstructions (Ön et al. 2023). Simulated paleoclimate datasets with continuous
timeseries are particularly appealing because they can directly drive dynamic models
or be matched to dated fossil or archaeological finds. However, few studies using such
model outputs also evaluate them against proxy-based reconstructions of past climate.
In particular, to users not specialized in paleoclimate modeling it can be difficult to
assess how reliable simulation-derived datasets are and at which spatial and temporal
scale they can be used.

Paleobiogeographers and archaeologists share an interest in linking biological or
cultural remains with corresponding paleoclimate reconstructions. Based on these
links, they can fit or evaluate models in order to investigate how climate shaped
culture or the distribution and abundances of organisms (Franklin et al. 2015; d’Alpoim
Guedes et al. 2016). Linking dated remains from specific sites to climate becomes
particularly convenient with paleoclimate data that is gridded and time-continuous.
Here, a high spatial resolution (e.g., a 1 km grid) promises to capture important
local conditions, such as elevation effects. The temporal resolution should ideally
range on the scale of decades to a few centuries in order to match (1) the speed
of sociocultural processes (Shennan 2018) and (2) the dating precision of remains
(Lacourse and Gajewski 2020). Paleoclimatic variable values can be given as relative
numbers (e.g., in Kelvin difference to preindustrial) or absolute numbers (e.g., in °C).
For biogeographers and archaeologists, absolute climate values are more useful (Myers
et al. 2015) as they can drive mechanistic models (e.g., dynamic vegetation models),
are comparable with modern observations (e.g., drought tolerance of crops), and can
mark physiological limits of taxa (e.g., frost tolerance). If a paleoclimate dataset meets
these desiderata on a technical level, it remains to be verified that (a) it actually resolves
the spatiotemporal dynamics of interest and (b) it is not systematically biased towards
climate values that are too high or too low.

Output from paleoclimate model runs can provide the spatiotemporal resolution
needed for biogeographical analyses. However, computational constraints allow global
climate models to run only on a rather coarse spatial resolution (typically 2–4°
horizontally) on centennial-to-millennial timescales (Askjær et al. 2022). Downscaling
is required to obtain more localized information.

Downscaling approaches can be dynamical or statistical. Dynamical downscaling
may involve adding sub-grid cell calculations (Quiquet et al. 2018; Arthur et al. 2023)
or running a finer-grained regional climate model that integrates with the coarser-
grained global climate model (Ludwig et al. 2019). In statistical downscaling on the
other hand, information from fine-grained modern-day climate data (e.g., 1° resolution)
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is used to correct the coarse-grained output of a global climate simulation (e.g., Lorenz
et al. 2016). This way, modern-day climate helps to resolve topographic features, such
as elevational effects, but it cannot improve temporal dynamics.

Statistical downscaling often goes hand in hand with bias correction. Bias refers to
how much the climate-model output for the present deviates from observations on a
grid cell basis (Maraun 2016). With present-day climate as the only overlap between
simulations and observations, the relationship between them is assumed invariant over
time (for critique see Maraun 2016). Bias correction can then be applied to the whole
simulated timeseries on a grid-cell basis (Beyer et al. 2020). Notably, this procedure
compensates for model shortcomings only on a very superficial level and cannot correct
major model errors (Maraun et al. 2017). However, the advantage is that bias correction
allows interpreting timeseries as absolute quantities rather than as relative to present.
Therefore, downscaled and bias-corrected paleoclimate model output provides the
spatial structure desired as input for biogeographical models.

Apart from spatial resolution, users of paleoclimate model outputs are interested
in its temporal resolution and extent. Time-continuous simulation-based paleoclimate
datasets can be created with different methods. One way is to perform actually transient
climate simulations, which accounts for the transient nature of climate evolution
but takes a long time to compute (Liu et al. 2009). Another way is to simulate
equilibrium climate for time slices (e.g., every 1000 years) and then interpolate between
them in order to generate a time-continuous output dataset (Singarayer and Valdes
2010). These “snapshots” can be simulated in parallel, which is much faster than
transient simulations (Armstrong et al. 2019). Both approaches can yield datasets of
multimillennial extent and of monthly, annual, or centennial resolution. However, it
remains to be evaluated how the two approaches differ in resolving the spatiotemporal
dynamics that are of interest to users.

Evaluation of paleoclimate model simulations is routinely done with independent,
proxy-based reconstructions. Previous comparisons between simulated and proxy-
based paleoclimate reconstructions have often focused on specific time slices (e.g.,
Bonfils et al. 2004) or on global-scale patterns (e.g., Zhang et al. 2022) and often
only on mean surface air temperature (e.g., Kaufman et al. 2020b). Armstrong et al.
(2019) and Karger et al. (2023) showed that statistical bias-correction of paleoclimate-
model output improves the fit to Arctic ice-core temperature reconstructions, but gave
little attention to temperate regions. Evaluations aimed at improving climate models
typically focus on relative differences, for instance between mid-Holocene and pre-
industrial conditions (e.g., Russo and Cubasch 2016; Russo et al. 2022). In contrast,
our aim is to evaluate climate model data products as applied by end users.

Consequently, we chose time-continuous, downscaled, and bias-corrected gridded
datasets from two different paleoclimate models: HadCM3B (Armstrong et al. 2019)
and CHELSA-TraCE21k (Karger et al. 2023). We compared model-based with
proxy-derived timeseries from across Europe (Kaufman et al. 2020a), checking for
correlations as well as systematic over- or underestimation. Ideally, a good match
between simulated and proxy-based paleoclimate values would justify using the
full range of climate-model output variables with complete spatiotemporal coverage.
However, an unsatisfactory match would be important for informing choice and
interpretation of paleoclimate model outputs.
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Figure 1. (a) Proxy sites used in this study. (b) Example timeseries for one climate variable
in one proxy site (rectangle in map). Points show proxy-based reconstructions (pi ± 2e) and
lines the values in the enclosing grid cell from simulated/modern climate (si). The pair-wise
difference si − pi is the basis of comparison. (c) Temporal coverage in 100-year bins of
proxy-based reconstructions (all climate variables pooled).

Methods

Study area and time
We compared outputs of paleoclimate models with proxy-based reconstructions
in Europe (10° W–30° E and 38–60° N; Fig. 1a) in the range 9000–5000 years
before present (BP): a period covering the introduction and spread of farming, and
profound societal changes. Europe is exceptionally well covered by climate proxy
records (Kaufman et al. 2020a). We excluded the early Holocene because it is very
dissimilar to modern pollen and chironomid calibration datasets, rendering proxy-
based reconstructions less reliable (Williams et al. 2001). In the late Holocene,
pollen-based climate reconstructions become less reliable again because of increasing
anthropogenic land use (Rao et al. 2022).

Climate model data
We selected the two time-continuous paleoclimate datasets by Armstrong et al. (2019)
and Karger et al. (2023), which we refer to as HadCM3B and CHELSA-TraCE21k,
respectively. A number of transient climate simulations have been performed for the

Prepared using sagej.cls



Journal Title XX(X)

Holocene (Askjær et al. 2022, and references therein), but for typical biogeographic
analyses their output needs to be downscaled, bias-corrected, and converted to an
accessible data format. Armstrong et al. (2019) and Karger et al. (2023) have already
done this postprocessing.

The two time-continuous paleoclimate model outputs originate from different
climate models and experienced different post-processing. In a snapshot modeling
approach, Armstrong et al. (2019) used the HadCM3B (Valdes et al. 2017) general
circulation model to simulate 1000-year time slices, forced (during the Holocene)
with orbital parameters, greenhouse gases, and ice sheets. Each simulation ran for
at least 6000 years on a horizontal resolution of 3.75° × 2.5°. They splined these
snapshot simulations together into a continuous monthly timeseries. Afterwards they
added interannual variability produced by the original HadCM3B simulation. Finally
they downscaled to 0.5° spatial resolution and bias-corrected using CRU CL v2.0
observations-based data (New et al. 2002). The CRU dataset covers the period 1901
to 1990 in 1/6th degree resolution. Armstrong et al. (2019) upscaled it to 0.5° in order
to calculate the difference (or ratio, in the case of precipitation) between observations
and modeled values for each month and each grid cell. Assuming a constant bias, they
applied this difference as correction to all modeled values (“delta method”; Beyer et al.
2020). The resulting dataset has a monthly resolution.

The second paleoclimate model output, CHELSA-TraCE21k V1.0 (Karger et al.
2023), is based on the fully transient simulation TraCE-21k (Liu et al. 2009; He 2011),
which used the Community Climate System Model 3. This 21,000-year simulation
was not only forced with orbital parameters, greenhouse gases, and ice sheets but also
with meltwater discharges. Karger et al. (2023) used the CHELSA V1.2 algorithm
(Karger et al. 2017) to statistically downscale the original TraCE-21k output to a
spatial resolution of 30 arcsec (c. 1 km) In a first step, they calculated annual mean
air temperatures and annual precipitation sums of the original TraCE-21k output.
Next, they downscaled these from their original resolution of 3.75° to 0.5°. On
this 0.5° grid they calculated the modern-day bias (“delta”) between simulated and
observed values, using the upsampled CHELSA V1.2 data from 1980–1990 (Karger
et al. 2017) as reference. Based on these deltas they bias-corrected the 21,000-
year timeseries in 100-year average time steps. Finally, they processed all 100-year
time steps with the CHELSA V1.2 algorithm (Karger et al. 2017), which calculates
elevational temperature gradients and orographic precipitation. This algorithm used
simulated atmospheric pressure and wind from TraCE-21k as well as paleo-orography.
The final dataset provides a commonly used set of bioclimatic variables, similar to
WorldClim (Hijmans et al. 2005), in 100-year slices at c. 1 km resolution.

Paleoclimate proxies
Although coverage of Holocene pollen records is exceptionally good in Europe, the
number of quantitative climate reconstructions is limited, and of these only some are
open access. Most proxy-based paleoclimate reconstructions in this study (102 sites;
Fig. 1a) come from the Temp12k 1.1.0 database (Kaufman et al. 2020a), which itself
drew from earlier compilations (Wanner et al. 2011; Marcott et al. 2013; Sundqvist
et al. 2014; Routson et al. 2019; Marsicek et al. 2018). For quality control, Temp12k
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includes only records that span at least 4000 years, resolve sub-millennial patterns with
a median sample spacing finer than 400 years, and have age control points spacing less
than 3000 years (Kaufman et al. 2020a). Dating precision of individual samples varies
with distance to age control point and age-depth model (Lacourse and Gajewski 2020).
We supplemented Temp12k by data from Samartin et al. (2017) and Feurdean et al.
(2008). All records stem from dated lake sediment or bog cores (Fig. 1a) and differ
in number of data points and temporal coverage. Most records (n = 85) are based
on pollen, which provide estimates of mean surface air temperature of the coldest
and warmest months (here equated with January and July) and annual precipitation
sum. The area size a pollen archive represents depends on the catchment size and
other factors but typically corresponds to a radius of below 50 km (Theuerkauf et al.
2016). Some records (n = 17) are based on chironomid larvae, which only indicate
temperature of the warmest month but on local scale (Brooks 2006). The modern
analog technique (Overpeck et al. 1985) has been used for all reconstructions, which
employs a transfer function calibrated with modern-day datasets (challenges of transfer
functions are discussed by Brooks (2006) and Chevalier et al. (2020)).

Data analyses
For each proxy record, we extracted the corresponding simulated climate by identifying
the grid cell of the respective dataset that encloses the proxy site. In each of these grid
cells, we paired each proxy-based climate data point in time with the corresponding
centennial mean from the simulated paleoclimate (Fig. 1b). CHELSA-TraCE21k is
already aggregated to centennial means, and we aggregated the HadCM3B data to
matching 100-year periods. For the HadCM3B data, we calculated annual precipitation
as the twelve-month sum of monthly precipitation (dataset variable pr) and equated
temperature of warmest/coldest month with July/January values of variable tr. In the
CHELSA data, the annual precipitation sum is coded as the variable name bio12.
As the CHELSA dataset lacks monthly mean temperature and only provides each
month’s minimum and maximum temperature (variables tasmax and tasmin), we
approximated mean July and January temperature by taking the mean of the month’s
respective minimum and maximum temperature.

In a first step, we checked to what degree the simulated paleoclimate timeline
correlates with the temporal changes in the proxies. To this end, we used R 4.2.2 (R
Core Team 2023) to calculate Spearman’s ρ rank correlation coefficient (Spearman
1904) for the pairs of proxy-based and simulated paleoclimate data points for each
climate variable.

In the next step, we quantified the overall differences between simulated and
proxy-based climate data. We formulated a model for the difference δ between the
aforementioned pairs of simulated (si) and proxy-based (pi) climate data. In order to
account for differences between sites (sample count, study design, etc.), the model
is hierarchical with “site” as levels (subscript j). While quantified uncertainty is
unavailable for the simulated datasets, we included uncertainty (standard deviation e)
in proxy-based reconstructions: for temperature e = 1.4K in chironomid-based and
e = 2.0K in pollen-based values (Kaufman et al. 2020a), and for annual precipitation
e = 165mma−1 (Williams and Shuman 2008). The unknown “true” proxy-based
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climate values are denoted with φi. We fitted the following model once for each climate
variable and gridded dataset.

pi ∼ Normal(φi, e)

δi = (si − φi)

δi ∼ StudentT(ν, αj , σj)

αj ∼ Normal(ᾱ, ϵ)
log(σj) ∼ Normal(σ̄, τ)

ᾱ ∼ Normal(0, 1)
3ϵ ∼ Exponential(1)
σ̄ ∼ Exponential(1)
τ ∼ Exponential(1)
ν ∼ Exponential(1)

Both the mean αj and standard deviation σj are modeled hierarchically so that their
pooled estimates ᾱ and σ̄ can be used to predict the proxy–simulation difference δ̃
for a hypothetical new site (i.e., any grid cell in the study area). At the same time,
ᾱ indicates the “grand mean” of difference between the simulated and proxy-based
climate. We chose weakly informative prior probability distributions. Note that for
computational efficiency and easier prior selection we calculated δ as the z-score of
s− φ in the model implementation. We implemented and fitted the model in Stan, a
probabilistic programming language for Bayesian inference (Carpenter et al. 2017).
We used Stan version 2.34.0 (Stan Development Team 2023) through the R package
cmdstanr (Gabry and Češnovar 2022). Please see Supplementary Information for the
model source code.

Some biogeographical studies of the Holocene have used modern-day climate
instead of paleoclimate (e.g., Conolly et al. 2008). This approach neglects any temporal
changes. Consequently, such studies draw insights from spatial variance only, which
has arguably remained fairly constant because it chiefly depends on topography (e.g.,
continental or elevational gradients). In order to evaluate the benefits of paleoclimate
model outputs, we included the modern-day CHELSA 2.1 dataset (Karger et al. 2021)
1981–2010 in the analysis of pair-wise differences (Fig. 1b). It represents a 30-
year average climatology at 30 arcsec resolution from statistically downscaling the
observation-based ERA-Interim climatic reanalysis (Karger et al. 2017). Because of the
shared CHELSA processing, the modern-day dataset differs from CHELSA-TraCE21k
only in lacking any paleoclimate. In total, this yielded 9 model fits: 3 climate variables
times 3 gridded climate datasets.

In order to test whether the estimate of ᾱ may be biased by latitude or elevation
we fitted one model with each of these variables as covariate added to αj . We
found no consistent improvement for out-of-sample estimates using Pareto Smoothed
Importance Sampling (Vehtari et al. 2024), which indicates that latitude and elevation
do not bias the estimate. Spatial autocorrelation do not appear to substantially bias the
results either, as residuals do not show strong spatial patterns (Fig. SI 4).
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Figure 2. Rank correlation coefficients (Spearman’s ρ) for each proxy site. Each point
represents the correlation between the proxy-based and simulated paleoclimate timeseries
(9000-5000 years before present) of the respective climate variable for one proxy site.
Numbers on significant positive correlations correspond to timeseries plots in Figure 3 and
the Supplementary Information. Among seemingly random distributions, both climate
models capture proxy-derived trends in January temperature in the northern half of Europe
(big triangles in center panels).

Results
Correlation coefficients between proxy-based and simulated paleoclimate timeseries
(Fig. 2) are both positive and negative but mostly insignificant. Significant positive
correlations suggest that simulated and proxy-based timeseries agree in temporal
change. Studying the timeseries (Fig. SI 1–3) behind significant correlations we found
no particular patterns except the following: Correlation coefficients (Fig. 2) for both
models demonstrate a clear pattern of positive correlations for January temperatures of
sites in the northern half of continental Europe (>52° N). The timeseries plots for these
sites in Figures 3 and SI 2 show a winter warming trend in proxies and model output.

In the analysis of pair-wise differences to proxy-based climate variables, none of
the gridded datasets appears to be clearly superior to any other. Figure 4 summarizes
the posterior distributions of the grand mean of differences ᾱ, i.e., the systematic bias
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Figure 3. Timeseries for mean January temperature of those sites where both climate
models (lines connecting 100-year means with ±2 standard deviations from interannual
variability) show significant (p ≤ 0.05) correlation with pollen-based reconstructions (dots
with ±2 standard deviations). Most sites show a saturating temperature rise.

of the datasets. CHELSA-modern systematically overestimates precipitation (Fig. 4a),
CHELSA-TraCE21k underestimates winter temperature (Fig. 4b), and HadCM3B
overestimates summer temperature (Fig. 4c).

When using the gridded datasets for spatial analysis, the overall bias is of lesser
interest than the deviation predicted for any single value in space and time. In principle,
this predicted pair-wise difference δ̃ can be used to correct values in the gridded dataset,
based on proxy data. The lower subpanels in Figure 4 show the posterior distributions
of the predicted differences. The distributions are very wide and overlapping, which
suggests that there is no major distinction between the datasets in how well they may
match single proxy-based reconstructions.

Discussion

Paleoclimate datasets from general circulation models provide gridded and time-
continuous climate variables. We have focused on Holocene Europe, where
such datasets hold potential to drive spatiotemporal analyses of ecological and
cultural processes. By comparing two such available datasets with quantitative
proxy-based reconstructions over the period 9000–5000 years BP we found that:
(1) correlations between simulation-based and proxy-based reconstructions show
model-data agreement for regional winter-warming trends, (2) simulation-based
datasets do not match proxy-based reconstructions systematically better than does
modern-day climate, and, (3) the evaluation is affected by high uncertainties. This is
not to discard the value of paleoclimate simulation output for biogeographical studies.
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Figure 4. Posterior probability distributions of pair-wise differences (si − φi) between
gridded datasets and European proxy-based paleoclimate reconstruction in
9000–5000 years before present. ᾱ are mean pair-wise differences, indicating systematic
mismatches. δ̃ are predictions for si − φi in a hypothetical new proxy site (i.e., any grid
cell). Values above zero indicate an overestimation compared to proxies, and below zero
underestimation.

Rather, our results will hopefully help to inform users of such products on where to
apply them.

Previous evaluations of transient paleoclimate simulations compared temperature
variability to proxies based on frequency bands. Model–proxy agreement strongly
depends on scale (Laepple et al. 2023). On the regional scale, climate models generally
struggle to reproduce the multidecadal and centennial variability seen in proxies of
terrestrial temperatures (Hébert et al. 2022) and sea surface temperatures (Laepple
and Huybers 2014; Weitzel et al. 2024). In contrast, global mean surface temperature
variability aligns reasonably well between proxies and simulations on all timescales
(Zhu et al. 2019; Askjær et al. 2022). Finally, at the local level, centennial-scale
variability of temperature and precipitation is typically much higher in proxies than in
simulations (Dee et al. 2017; Laepple et al. 2023). This mismatch on variability on local
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scale was not only found in frequency bands but also in direct timeseries comparison
(Nicholson et al. 2019). Consequently, our results support previous findings from
another methodological angle.

Possible reasons for model–proxy agreement
While mid-Holocene climate changes were undoubtedly large enough to be relevant
for early farmers in Europe (Sánchez Goñi et al. 2016; Warden et al. 2017; Colledge
et al. 2019; Betti et al. 2020), in comparison to late-glacial processes, they are of
small magnitude and extent, with regionally varying impact (e.g., Seppä et al. 2007;
Roberts et al. 2011; Samartin et al. 2017). The HadCM3B and TraCE21k simulations
were not specifically designed to resolve these changes in mid-Holocene Europe but
rather aimed at reproducing larger-scale patterns. Nonetheless, both models capture a
proxy-derived winter warming trend at higher latitudes (Fig. 3). Notably, the winter
warming trend we found in both proxies and models is completed around 6000 years
BP (Fig. 3). From 6000 years BP to the pre-industrial time, studies show a winter
cooling trend in northern Europe (Bonfils et al. 2004; Mauri et al. 2014; Strandberg
et al. 2022). We therefore interpret the winter warming as largely a result of increasing
winter insolation due to changes in the Earth’s orbit (Zhang et al. 2022), a driving force
well represented in climate models. In addition, the retreat of continental ice sheets
might have contributed to warming winters up until 7000 years BP (Baker et al. 2017).

As paleoclimate simulation output is downsampled and bias-corrected with modern-
day climate, it carries a strong topographic signal, which partially explains why there
are no striking differences between simulated paleoclimate and modern-day climate in
our analysis. Elevation of proxy sites did not help to statistically explain model–proxy
differences. This indicates that the topographic signal is already in the gridded datasets
from downscaling and bias-correcting post-processing. We did not, however, test this
hypothesis by analyzing non-bias-corrected paleoclimate outputs.

Transient vs. snapshot simulations
In contrast to the transient TraCE21k simulation by Liu et al. (2009), which
ran continuously, the HadCM3B dataset by Armstrong et al. (2019) originates
from snapshot simulations that were splined together in post-processing. Transient
simulations are computationally very expensive but intended to represent continuous
climate evolution more mechanistically. In contrast, snapshot simulations can be
efficiently computed in parallel. In principle, one would expect a transient simulation
to represent centennial-scale climate fluctuations better, in particular because of lag
effects (Zhu et al. 2019) and drivers such as meltwater pulses, which are included
in TraCE21k. The slightly stronger correlations with proxy-based reconstructions in
CHELSA-TraCE21k (Fig. 2) could be attributable to its transience, but we consider
the overall performance difference to HadCM3B to be marginal.

Possible reasons for model–proxy disagreement
Reasons for a lack of correlation can be sought in insufficiencies of the climate
models, in inaccuracies from proxies, and in misalignment between the two. TraCE21k
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simulations were transient but their spatial resolution was probably too low to capture
regional-scale climate dynamics. More recent studies using higher-resolution regional
climate models promise to better capture spatial patterns (usually on 10–25 km grids;
Ludwig et al. 2019): for example representing more realistic soil moisture availability
(Russo and Cubasch 2016; Russo et al. 2022), topographic features (Arthur et al. 2023),
or Neolithic land use effects (Strandberg et al. 2022). Also the temporal variability
in Holocene climate remains enigmatic with regard to drivers and mechanisms on
multi-centennial scale (Askjær et al. 2022). This variability may be caused by external
drivers such as oscillations in solar irradiance (Mayewski et al. 2004; Wu et al.
2018), meltwater pulses (Gregoire and Morrill 2021), and anthropogenic land clearance
(Hopcroft et al. 2023) or result from internal feedback mechanisms such as the Atlantic
Meridional Overturning Circulation (Stuiver et al. 1995; McDermott et al. 2001) or
Arctic sea ice (Hörner et al. 2017). These interactions and their regional-scale impacts
are far from being fully understood.

Bias and uncertainty of proxy-based reconstructions may also explain their lack
of correlation with model-based outputs. A number of assumptions are required for
deriving absolute temperature and precipitation values from pollen and chironomid
larvae (Brooks 2006; Chevalier et al. 2020): for example, stationarity of the transfer
function, representativeness of the modern-day reference dataset, negligibility of
human land-use effects, and so on. For pollen, it is often unclear which geographical
extent a given sample represents (Theuerkauf et al. 2016). In addition, dating precision
in proxies may be too low to resolve the climate change signals of interest (Mayewski
et al. 2004; Blaauw 2012), which, if not taken into account, can skew comparison
with climate simulations. All this makes it difficult to distinguish signal from noise in
proxy-derived climate timeseries without considering the particularities of each proxy
site. Consequently, a database of proxy-based timeseries such as Temp12k (Kaufman
et al. 2020a) is undoubtedly able to demonstrate climate trends on multimillennial
and continental-to-global scale (e.g., Kaufman et al. 2020b) but cannot necessarily be
expected to represent climate dynamics on the scale relevant for cultural and ecological
changes in mid-Holocene Europe.

Avenues for improving model–proxy agreement
The high uncertainty associated with single climate values (δ̃ in Fig. 4) limits the
usefulness of the gridded datasets as predictor variables in statistical models. The
wide credibility intervals not only stem from accounting for measurement errors
in proxy-based reconstructions but also from our aggregating over the whole of
Europe and the mid-Holocene. Modeling pair-wise differences at a finer spatiotemporal
resolution could potentially increase precision of estimating model–proxy differences.
Erb et al. (2022) used a comparable data assimilation approach to fuse proxy data
with information from climate models on a global scale. For such data assimilation on
the regional scale, we believe it would not only need more proxy sites but also error
quantifications of proxy transfer functions that are more granular than the conservative
standard deviations we applied blanketly to all proxy reconstructions. The development
of probabilistic transfer functions (Chevalier et al. 2014; Chevalier 2022) is a promising
step in that direction.
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On the other hand, paleoclimate simulations could be improved in different ways, for
example by increasing spatial resolution (the models analyzed here operate on c. 3.75°
resolution); by incorporating relevant forcings, such as meltwater fluxes (here only
included in one climate model), volcanic eruptions, methane, or solar output (Ellerhoff
et al. 2022; van Dijk et al. 2024); by refining atmosphere–biosphere interactions
(Hopcroft et al. 2023); or by improving downscaling, for example using regional
climate models (Maraun et al. 2017; Ludwig et al. 2019). In addition, the stationarity
assumption of delta bias correction fails to account for any paleoclimate dynamics
(Maraun 2016). Here, data assimilation can help to reduce model bias in a dynamic
way (Fallah et al. 2018; Jonkers et al. 2021).

Reliability and scale
Returning to the introductory question of how reliable simulation-derived datasets
are and at which scales they can be used. Pair-wise differences showed substantial
discrepancies towards proxies for all gridded datasets (Fig. 4), but — on this
level of data aggregation — we cannot say if proxies or bias-corrected simulation
outputs are closer to true paleoclimatic conditions. Similar uncertainty remains with
climate change signals. Here, evaluating climate dynamics on smaller scales than
multimillennial protracted deglaciation processes requires scrutinizing the accuracy of
proxy-based inference (Jacobson et al. 2024) as well as a better understanding of the
physical mechanisms themselves (Wanner et al. 2008; Renssen et al. 2009). Regarding
spatial scale, statistical downscaling helps resolve local-scale topographic features but
modeling climate patterns specific to mid-Holocene Europe in simulations remains
subject to ongoing research efforts (e.g., Bonfils et al. 2004; Samartin et al. 2017; Russo
et al. 2022). For matching ecological or archaeological occurrence data to paleoclimate,
it is probably more important to resolve relatively certain local-scale topography effects
rather than uncertain climate change signals. For driving analyses of biogeographical
or sociocultural dynamics in mid-Holocene Europe, we see little additional benefit in
the analyzed time-continuous datasets over using high-resolution modern-day climate
or downscaled output from relevant snapshot simulations (e.g., 6000 or 8500 years BP
Brierley and Zhang 2021; Gregoire and Morrill 2021).

Conclusions
Downscaled and bias-corrected output of paleoclimate simulations are an accessible
solution to drive biogeographical analyses. In the case of mid-Holocene Europe (9000–
5000 years BP), the two model outputs analyzed (HadCM3B and CHELSA-TraCE21k)
reproduce temporal changes of quantitative proxy-based reconstructions only partially:
i.e., a multimillennial postglacial winter warming in the northern half of Europe. At this
stage, we therefore discourage using them to drive analyses aimed at understanding the
effects of climate change in mid-Holocene Europe, at least without further analyses.
We have not analyzed in depth if there are parts or regions of Europe where proxies
and climate models show similar patterns not apparent in correlation coefficients.
In general, each dataset, including modern-day climate, systematically over- or
underestimates certain paleoclimate variables, without any one being consistently
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superior in matching proxy-based reconstructions. Accordingly, we cannot recommend
one over the other, and, in fact, modern-day climate may not necessarily be a worse
choice than paleoclimatic model outputs, in light of the given uncertainties. In general,
we advise users not to rely on only one gridded paleoclimatic dataset. Continuous
improvement of climate models, increasing availability of proxy data, improved
methods for proxy-based reconstructions, and data assimilation approaches promise
to provide more precise and accurate datasets in the near future.
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the central European steppe flora: insights from palaeodistribution modelling and migration
simulations. Ecography 2022(12): e06293. DOI:10.1111/ecog.06293.

d’Alpoim Guedes JA, Crabtree SA, Bocinsky RK and Kohler TA (2016) Twenty-first century
approaches to ancient problems: Climate and society. Proceedings of the National Academy
of Sciences 113(51): 14483–14491. DOI:10.1073/pnas.1616188113.

Ellerhoff B, Kirschner MJ, Ziegler E, Holloway MD, Sime L and Rehfeld K (2022)
Contrasting state-dependent effects of natural forcing on global and local climate variability.
Geophysical Research Letters 49(10): e2022GL098335. DOI:e10.1029/2022GL098335.
E2022GL098335 2022GL098335.

Ellis EC (2021) Land use and ecological change: A 12,000-year history. Annual Review of
Environment and Resources 46(1): 1–33. DOI:10.1146/annurev-environ-012220-010822.

Erb MP, McKay NP, Steiger N, Dee S, Hancock C, Ivanovic RF, Gregoire LJ and Valdes P
(2022) Reconstructing Holocene temperatures in time and space using paleoclimate data
assimilation. Climate of the Past 18(12): 2599–2629. DOI:10.5194/cp-18-2599-2022.

Fallah B, Russo E, Acevedo W, Mauri A, Becker N and Cubasch U (2018) Towards high-
resolution climate reconstruction using an off-line data assimilation and COSMO-CLM 5.00
model. Climate of the Past 14(9): 1345–1360. DOI:10.5194/cp-14-1345-2018.

Prepared using sagej.cls



Journal Title XX(X)

Feurdean A, Klotz S, Mosbrugger V and Wohlfarth B (2008) Pollen-based quantitative
reconstructions of Holocene climate variability in NW Romania. Palaeogeography,
Palaeoclimatology, Palaeoecology 260(3): 494–504. DOI:10.1016/j.palaeo.2007.12.014.

Franklin J, Potts AJ, Fisher EC, Cowling RM and Marean CW (2015) Paleodistribution modeling
in archaeology and paleoanthropology. Quaternary Science Reviews 110: 1–14. DOI:
10.1016/j.quascirev.2014.12.015.
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Ludwig P, Gómez-Navarro JJ, Pinto JG, Raible CC, Wagner S and Zorita E (2019) Perspectives
of regional paleoclimate modeling. Annals of the New York Academy of Sciences 1436(1):
54–69. DOI:10.1111/nyas.13865.

Maraun D (2016) Bias correcting climate change simulations - a critical review. Current Climate
Change Reports 2(4): 211–220. DOI:10.1007/s40641-016-0050-x.

Maraun D, Shepherd TG, Widmann M, Zappa G, Walton D, Gutiérrez JM, Hagemann S,
Richter I, Soares PMM, Hall A and Mearns LO (2017) Towards process-informed bias

Prepared using sagej.cls

https://cp.copernicus.org/articles/19/439/2023/
https://cp.copernicus.org/articles/19/439/2023/


Journal Title XX(X)

correction of climate change simulations. Nature Climate Change 7(11): 764–773. DOI:
10.1038/nclimate3418.

Marcott SA, Shakun JD, Clark PU and Mix AC (2013) A reconstruction of regional and
global temperature for the past 11,300 years. Science 339(6124): 1198–1201. DOI:
10.1126/science.1228026.

Marsicek J, Shuman BN, Bartlein PJ, Shafer SL and Brewer S (2018) Reconciling divergent
trends and millennial variations in Holocene temperatures. Nature 554(7690): 92–96. DOI:
10.1038/nature25464.

Mauri A, Davis BAS, Collins PM and Kaplan JO (2014) The influence of atmospheric circulation
on the mid-Holocene climate of Europe: a data–model comparison. Climate of the Past
10(5): 1925–1938. DOI:10.5194/cp-10-1925-2014.

Mayewski PA, Rohling EE, Curt Stager J, Karlén W, Maasch KA, Meeker LD, Meyerson
EA, Gasse F, van Kreveld S, Holmgren K and et al (2004) Holocene climate variability.
Quaternary Research 62(3): 243–255. DOI:10.1016/j.yqres.2004.07.001.

McDermott F, Mattey DP and Hawkesworth C (2001) Centennial-scale Holocene climate
variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science
294(5545): 1328–1331. DOI:10.1126/science.1063678.

Miller PA, Giesecke T, Hickler T, Bradshaw RHW, Smith B, Seppä H, Valdes PJ and Sykes
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