Computers and Chemical Engineering 204 (2026) 109415

Contents lists available at ScienceDirect

Computers
& Chemical
Engineering

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

L))

Check for

A hybrid deep Q-learning approach to online planning and rescheduling of et
single-stage multi-product continuous processes™

Syu-Ning Johnn, Vassilis M. Charitopoulos

Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, University College London (UCL), London, WCIE 7JE, UK

ARTICLE INFO ABSTRACT

Keywords: Optimisation-based process scheduling methods lie at the core of the process supply chains, facilitating the
Autonomous online scheduling efficient allocation of limited resources and ensuring profitable operations. The efficiency and adaptability of
Reinforcement learning these methods are of paramount importance, especially when dealing with frequent modifications to existing

Deep neural networks
Continuous processes
Process scheduling
Q-learning

scheduling plans, caused by uncertainties and unforeseen real-world disturbances. Compared to heuristic
methods that heavily rely on instance-specific manual customisation and fine-tuning, reinforcement learning
(RL) has the advantages of learning from existing experiments and generalising to unknown scenarios, thus
automating the process with higher flexibility and adaptability. In this work, we propose an RL-based method
that transforms a single-stage multi-product process scheduling problem, originally framed as a mixed-integer
linear programming (MILP) problem, into a Markov decision process and trains the RL agent to identify
the optimal production sequence. The trained agent is subsequently integrated into a simplified planning
and scheduling linear programming (LP) framework to enable efficient decision-making for the re-optimised
production sequence and time length. Results show that our proposed learning-based integrated decision-
making framework demonstrates strong computational efficiency and adaptability, outperforming both the
benchmark random agent and heuristic approaches with minimal deviation from the optimal solution achieved
by the state-of-the-art MILP solvers.

1. Introduction the goal of facilitating real-time implementation of rescheduling for
processing systems.

Growing market competition and demand volatility constitute two
of the most prominent factors that endanger the profitability and
resilience of process industries (Badejo and lerapetritou, 2022). The
aim to efficiently organise production and meet the long-term manufac-
turing demands of multiple products necessitates the accommodation of
frequent modifications due to unforeseen fluctuations such as product
demand or electricity prices (Gupta et al., 2016; Castro et al., 2018).
Production management encompasses two key components: planning,
which involves resource planning over long time horizons, and schedul-
ing, which entails the detailed allocation of production tasks to specific
resources (Perez et al., 2021). Optimising the coordination of plan-
ning and scheduling is imperative for enhancing the overall process
supply chain efficiency. We therefore necessitate effective response
mechanisms capable of addressing recurring optimisation needs and
preventing financial losses (Kopanos and Puigjaner, 2019). In this
work, we focus on the integrated planning and online rescheduling of
multi-product continuous manufacturing systems through a novel hy-
brid deep Q-learning/linear programming (DQN/LP) framework with proaches to mitigate the exponential increase in computing effort as

1.1. Online reactive process scheduling

While the conventionally sequential approach to planning and
scheduling may neglect their interdependence and lead to suboptimal
solutions, simultaneous approaches for addressing the integrated plan-
ning and scheduling problem via mixed integer linear programming
(MILP) models can be time-consuming. Their computational complexity
stems from the combinatorial nature of the underlying formulations as
well as the inherent multi-scale coordination that is sought.

In recent years, there has been considerable research interest in the
effective integration of planning and scheduling within process indus-
tries. Many studies in the literature aim to reduce the computational
complexity and derive more computationally efficient frameworks. Pre-
vious studies by Erdirik-Dogan and Grossmann (2006, 2008) and Sung
and Maravelias (2007) introduced several decomposition-based ap-

* This article is part of a Special issue entitled: ‘ESCAPE - PSE 2024’ published in Computers and Chemical Engineering.
* Corresponding author.
E-mail address: v.charitopoulos@ucl.ac.uk (V.M. Charitopoulos).

https://doi.org/10.1016/j.compchemeng.2025.109415

Received 28 January 2025; Received in revised form 29 July 2025; Accepted 22 September 2025

Available online 27 September 2025

0098-1354/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cace
https://www.elsevier.com/locate/cace
https://orcid.org/0000-0001-9051-917X
mailto:v.charitopoulos@ucl.ac.uk
https://doi.org/10.1016/j.compchemeng.2025.109415
https://doi.org/10.1016/j.compchemeng.2025.109415
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2025.109415&domain=pdf
http://creativecommons.org/licenses/by/4.0/

S.-N. Johnn and V.M. Charitopoulos

instance size grows. Liu et al. (2008) and Charitopoulos et al. (2017,
2019) proposed a hybrid time representation approach that circum-
vents the direct handling of continuous-time formulation within each
period when the planning horizon expands.

To navigate dynamic industrial environments effectively, timely
and reactive responses are crucial to managing various uncertainties,
such as equipment malfunctions and rush order arrivals. Nevertheless,
existing exact methods encounter challenges in accommodating re-
optimisation to address the evolving information promptly, thereby
hindering their industrial applicability. For one, as suggested by Baker
(1977), we inevitably need to address an infinite real-time process using
decisions derived from a finite horizon planning model. The passive
re-optimisation of models triggered by individual events is inherently
difficult and inefficient in managing an ongoing system operating in-
definitely, where the conditions and parameters influencing optimality
can shift significantly over time (Harjunkoski et al., 2014). Further-
more, computational complexity associated with exact methods limits
the feasibility of re-optimising and generating entire new solutions
from scratch whenever new uncertainties arise. This complexity not
only demands substantial computational resources but also introduces
potential delays that can hinder the timely implementation of optimal
decisions (Li and Ierapetritou, 2008).

Consequently, the shortcomings of traditional decision-making ap-
proaches underscore the need for an automated online system that
can bolster decision-making efficiency to handle large datasets amidst
rapid modifications based on uncertainties unfolding in a sequential
and timely manner.

Many pertinent studies on online scheduling have been conducted
that incorporate re-optimisation to address real-time information in
critical characteristics such as demand and time uncertainties in an
efficient manner. Framinan et al. (2019) highlighted the significance
of frequently updating and maintaining the decision-making process
based on event-driven rescheduling policies. Gupta and Maravelias
(2019), Kopanos and Pistikopoulos (2014) and McAllister et al. (2019)
demonstrated that carefully designed models and efficient algorithms
with lower processing times can significantly enhance the implemen-
tation of the online decision-making system. However, their proposed
models remain MILP, posing limitations in terms of practicality, par-
ticularly for problems that require rapid decision determination and
updates when compared to LP.

1.2. Machine learning-based process scheduling

In recent years, the integration of machine learning (ML) into
process scheduling has received increasing attention (Hubbs et al.,
2020a), with recent studies showing very promising advancements and
developments of the ML applications in the chemical industry (Chi-
ang et al., 2022; Fuentes-Cortés et al., 2022). Reinforcement learning
(RL), a branch of ML that learns optimal strategies to map system
states to the optimal actions through trial-and-error by interacting with
an uncertain and dynamic environment, demonstrates the potential
for reactive online scheduling with lower computational costs (Hubbs
et al.,, 2020b). Unlike traditional rule-based learning systems, RL is
a popular training approach that exhibits the potential to discover
decision-making strategies generalised from its learned experiences.
Recent years have witnessed a notable surge in the application of RL
techniques within the process industry to optimise complex industrial
processes characterised by dynamic and stochastic behaviours. We refer
the interested readers to Lee et al. (2018) and Nian et al. (2020) for
reviews of RL applications within the field of industrial process systems.

Deep reinforcement learning (DRL) leverages the strengths of arti-
ficial neural networks to handle high-dimensional complex problems.
The DRL models can be broadly categorised into policy-based methods
and value-based methods. Many works with policy-based methods for
process systems that directly estimate the probability of selecting a
particular action from a given state, include actor—critic (Liu et al.,

Computers and Chemical Engineering 204 (2026) 109415

2020) advantage actor—critic (Hubbs et al., 2020a), deep deterministic
policy gradient (Ma et al., 2019), and policy gradients (Petsagkourakis
et al., 2020). In contrast to policy-based RL algorithms that optimise the
agent’s policy to guide its action, value-based RL algorithms focus on
approximating the value of each action or particular state to maximise
the expected reward function.

Deep Q-learning (DQN) is a popular value-based off-policy algo-
rithm within the RL framework that utilises experience replay and
target networks to ensure stable learning by estimating the quality
of a selected action at each time step. It demonstrates strong end-to-
end learning capability to learn from experiences generated by differ-
ent policies and effectively handle high-dimensional state spaces with
discrete action spaces.

The reasons for us to consider DQN are two-fold: firstly, our problem
involves a finite set of possible actions corresponding to the selection of
which products to schedule next in a production sequence, which forms
a discrete action space that fits the architecture and algorithm designs
of DQN. Secondly, DQN as an off-policy algorithm, owns greater sample
efficiency compared to policy gradient methods due to its ability to
utilise off-policy samples (Gu et al., 2016), thereby eliminating the
necessity for on-policy sample collection.

Existing studies applying Q-learning to the scheduling problem
include the work of Zheng and Chen (2024) on developing a DQN
framework with an actor—critic architecture to optimise model policies
for job sequencing and adjusting batch speeds in a single-machine
batch scheduling problem. Pan et al. (2021) proposed an oracle-assisted
constrained Q-learning algorithm to optimise a controller policy and
ensure that a given set of chance constraints is satisfied with a high
probability in a nonlinear stochastic optimal control system. More
generally, Karimi-Mamaghan et al. (2022) integrated Q-learning into
the iterated greedy metaheuristic as an efficient operator selection
mechanism for the permutation flow-shop scheduling problem. Their
results illustrate the superior performance of the proposed Q-learning
framework that can effectively surpass the performance of heuris-
tic methods in enhancing solution quality and commercial solvers in
reducing computational time.

1.3. Contributions of this work

This work introduces a novel hybrid learning-based decomposition
framework that integrates RL with a planning and scheduling reduced
MILP model to actively and recurrently optimise the online reschedul-
ing of production sequences for manufacturing processes. The proposed
framework focuses on a single-machine, single-line continuous process
setting. In scenarios where multiple identical parallel lines are assumed
to operate independently with no inter-line interactions (e.g., material
transfers between lines), the same learning-based algorithm can be
deployed concurrently across the parallel lines. This configuration ef-
fectively forms a set of single-stage multi-product continuous machines
that operate under no material transfers, each optimising its operations
in isolation as noted by Liu et al. (2010). We employ RL and decompose
the entire problem into two interdependent decision-making steps,
ensuring a feasible computational time frame and allowing for timely
updates to the solution as new data or uncertainties arise.

The proposed hybrid decomposition framework can be divided into
two stages: model training and model implementation. During the
model training stage, we opt for DQN to identify optimal produc-
tion sequences for each period in a single-unit multi-product planning
and scheduling problem. We frame the production sequencing as a
Markov decision process (MDP), a mathematical model of decision-
making characterised by discrete time steps involving states, actions
and rewards that form the foundation of RL. The DQN agent, after
constructing a production sequence, is rewarded proportionally for the
enhancement of the solution quality. A more detailed description of the
problem formulation can be found in Section 2.2.2.

S.-N. Johnn and V.M. Charitopoulos

Demand d

Computers and Chemical Engineering 204 (2026) 109415

Demand d Demand d"

Level

---T Weekp ,/,’f:’/ Weekp+1 Y

\

Weekp+2 Yhag

SchLeedI:IIing% %ca B %

I‘EZD% /e

Fig. 1. A conceptual representation of the planning and scheduling problem.

During the subsequent model implementation stage for real-time
rescheduling, the trained agent based on its refined strategy gener-
ates production sequences in an offline manner to support the online
rescheduling of production sequences. For each round of reschedul-
ing, the identified sequence is utilised as input for a linear program-
ming (LP) model to determine the remaining decisions on production
amount, backlog and inventory levels, and schedule length. The whole
set of decisions is updated continuously as new information becomes
available.

We demonstrate the effectiveness of our hybrid decomposition
framework in the context of a multi-product continuous manufacturing
process over multiple periods (weeks). Our findings reveal that the
computational time is approximately halved compared to conventional
MILP formulations with limited loss of optimality compared to the
MILP global solution. Through a series of case studies, the DQN-based
agent also demonstrates better performance on average in producing
sequences with a higher profit than the random learning baselines and
heuristic approach. By bridging the gap between RL and traditional
optimisation techniques, this study provides an efficient and scalable
decision-making framework for real-time continuous manufacturing
processes.

To summarise, the primary contributions of this work are:

» We propose a novel hybrid decomposition framework that in-
tegrates DQN with MILP to efficiently handle decision-making
on the re-optimised production sequence and process scheduling
length in dynamic environments.

We demonstrate the efficiency and flexibility of the proposed
framework by implementing it to planning and scheduling prob-
lems with varying product counts under both single-period and
multi-period scenarios in industrial process control.

We benchmark the proposed framework against established meth-
ods, including random learning baselines, a heuristic approach,
and state-of-the-art MILP solvers, showcasing competitive per-
formance in both computational efficiency and solution quality
provided by our approach.

The remainder of the article is structured as follows: Section 2
introduces the methodology and problem formulation of the MILP and
DQN models. Section 3 presents the two case studies and describes
relevant results. Lastly, Section 4 concludes the work and outlines
future research directions.

2. Methodology
2.1. TSP-based MILP integrated planning and scheduling model

We consider a continuous-time representation with the total plan-
ning horizon divided into discrete periods (weeks). Production de-
mands arrive at the beginning of each planning period (p). As shown
in Fig. 1, the planning and scheduling problem involves determin-
ing the set and amount of products to be manufactured at the plan-
ning level, followed by constructing a production sequence, establish-
ing production durations, inventory levels, backlogs, and inter-period
changeovers within each subsequent period at the scheduling level.

To investigate the planning and scheduling problem, we present the
complete MILP formulation outlined in the Appendix, which is derived
from the framework introduced by Liu et al. (2008).

2.2. DQN framework for online scheduling

2.2.1. Markov decision process

RL is a learning method that maps states to actions to maximise
the expected future rewards (Sutton and Barto, 2018). MDPs are a fun-
damental mathematical framework that model a sequential decision-
making process, based on which we can apply the RL techniques. An
MDP can be represented by a tuple (S, 4, P, R,y), containing the state
space, action space, transition function, reward function and discount
factor. A state s € S is a representation of the specific time step
within an environment that the agent is in. At each non-terminal
state s, the agent selects an action a € A(s) from the set of actions
available at this state and receives a reward r according to a given
reward function R(s,a), which is the immediate benefit for selecting
the state—action pair. Then, the agent reaches a new state based on the
transition probability that describes the likelihood of moving from one
state to another given an action. The key defining feature of a MDP is
the Markov property, i.e. that the future state of the system is solely
dependent on the preceding state-action pair, rendering the history of
events irrelevant.

The agent engages with the environment through episodes, each of
which encapsulates the agent’s interactions over time as a sequential
chain of states, actions, and rewards. Each episode of the agent—
environment interaction can be defined as a trajectory in the form
of s, > a, - r, — s,,; that terminates with a terminal state s*. A
conceptual representation of MDP is depicted in Fig. 2. By receiving
feedback in the form of rewards from the environment, the agent
is trained to refine its strategy with actions in dynamic states and
formulate an optimal policy z(a|s) that dictates the agent’s behaviour
to maximise the cumulative future rewards. Central to this learning is
the state-action value function Q(s, a), also denoted as Q-values, which
quantifies the expected rewards associated with taking any particular
state-action pair by following .

2.2.2. Online scheduling formulation via MDP

We make several key assumptions to streamline the analysis of
the online planning and scheduling problem. Firstly, we focus on a
continuous manufacturing process with a single production unit that
handles multiple products over a single or multiple periods, where
each period is equivalent to one week. The single period setting can
be treated as a special case of the multi-period setting. Demands for
different sets of products become available at the beginning of each
period. Each product can be produced at most once in each period,
with a known changeover time to any other product and associated
transition costs for switching between products.

The proposed hybrid decomposition framework utilises DQN to de-
velop a learning-based decision system for online production sequence
scheduling. The problem configuration that the hybrid framework is
designed to handle is presented in Fig. 1. Specifically, our goal is
to employ DQN to identify sequences of products that maximise the
objective function (3a). The constructed sequence is subsequently in-
corporated into a simplified LP model, derived from the full MILP
formulation (3), to determine the remaining decisions on production
quantity and duration. The complete decision framework iteratively
generates the production sequence determined by DQN and uses it

S.-N. Johnn and V.M. Charitopoulos

To "

]//l

o Y 1 M

O0O0OO0

Computers and Chemical Engineering 204 (2026) 109415

Tt

I
NG

&)

Fig. 2. A conceptual representation of MDP.

to calculate the production duration via the simplified LP model. To
develop the learning-based framework, it is essential to first transform
the production scheduling into a MDP for each period. The process for
achieving this is outlined below.

The production scheduling task is episodic, each of which involves
the agent completing a sequence of product selections. In this prob-
lem, each episode comprises a fixed number of periods indexed as
P = {l,...,p}, with each period consisting of multiple time steps
represented as T = {1, ...,1}, where the number of time steps can differ
between periods within the same episode. Each period is formulated as
a MDP starting with an initial state s,, which corresponds to the initial
solution where no production sequence has yet been formed, along with
a predefined sequence length limit, which is capped at the total number
of products with nonzero demand that can be chosen and added to the
sequence.

The agent is provided with two types of discrete actions that alter-
nate sequentially within each period: (1) picking an available product
with a nonzero demand to add to the end of the sequence during
the product selection phase, and (2) making a binary choice of either
continuing to include new product at the end of production sequence or
terminating the product selection process during the process termination
phase. Visualised in Fig. 3, the agent alternates between these two types
of actions until either all the available products have been included in
the sequence, or when the agent decides to quit and hence ends the
sequence with only a subset of demanded products, thus defining the
terminal state.

After an action is selected, the agent receives a reward based
on the improvement in the objective function. Upon completion, the
environment provides a reward and transitions the agent to a new state,
updating its stored information accordingly to reflect the sequential
progression. For the single-period scenario, when a terminal state is
reached, the environment resets and the same process repeats with
another randomly generated initial state s,. For the multi-period setting
in which each episode includes a fixed number of periods p;, p,, ..., p,,
the terminal state of any non-final period p; # p, transitions the agent
to the initial time step of the subsequent period p;,; within the same
episode. This transition entails updating the inventory, backlog, and
product demand for the sequential period while keeping the episode-
based information including inter-product transition time and product
sale price unchanged. At the end of the last period p, within the
episode, the agent transitions to begin a new episode, prompting a reset
of the environment.

The production scheduling problem for each period can be rep-
resented as a directed complete graph G = (V, E) where each node
represents a product and each directed arc as the transition between a
pair of products (Charitopoulos et al., 2017). A production sequence is
represented by a path comprising nodes and arcs, where the stopping
time at each node denotes the production time, and each arc represents
the inter-product changeover time. Each MDP state can be represented
by a feature matrix comprising a list of features either dependent
or independent of the current production sequence. The independent
features contain relevant information about each node, such as the
product index, production demand, unit price, inventory level, and
backlog level, regardless of whether this node has been included in the
production sequence or not. Moreover, a list of additional static features
captures state-independent information such as the transition time and
cost between any pair of nodes. These features remain static throughout

the period and are unaffected by the extension of the production
sequence during execution. Conversely, the dynamic features of a state
change as different products are selected, indexed by the time step ¢
of each period within an episode. A detailed description of the feature
matrix for the planning and scheduling problem is given in Table 1.

We denote the existing partial solution at state s, as F,, which
contains the production sequence up to the most recently selected
product. Additionally, a boolean indicator ¢, specifies the action phase:
¢, = 0 when the agent is at the product selection phase expanding the
production sequence, and ¢, = 1 when it is at the process termination
phase determining whether to continue or terminate the selection
process. Furthermore, b, indicates the remaining action capacity that
is available to the agent at each step 7. The total number of steps can
assume any integer value between 1 and twice the product sizes and
may vary across different periods within the same episode.

We now formulate each element of the MDP within the context of
the production scheduling problem with the details below:

« States §: each state s, is a tuple (G,X",X®, F,, b;, ¢,,1,), wherein
the graph G and feature set X" and X¢ contain all the node and
edge features, respectively. F, represents the solution formed as a
sequence of products at time 7. The available action budget b, is
a non-negative integer not exceeding the total number of nodes.
Boolean variable ¢, indicates the action phase at step ¢, whether
it is permissible to select an additional product, or to choose
to terminate the process or not. Boolean variable 7, indicates
whether an episode reaches a terminal state.

Actions A encompasses both the selection of an available product
and the determination of whether to continue or terminate the
selection process, together determined by the binary phase indi-
cator ¢, of the state. When ¢, = 0, the available set of actions is
the available products and are defined by the set A(s,) = {i : i ¢
F,,D; + B; > 0}, where D; and B; corresponding to the demand
and backlog level for the given period this time step 7 belongs to.
When ¢, = 1, the action is to decide whether or not to terminate
the process, with two available actions A(s,) = {C,T}.
Transitions P: when ¢, = 0, an available product not yet attached
to the sequence is selected, decreasing the action budget b, by
1. The selected product i, is appended to the current production
sequence F,_; = {i,i,,...,i;_;}, updating it to F, = {i, iy, ..., i;}.
The product i, is then masked as unavailable within the feature set
X, during the remaining steps until the environment resets to the
sequential period or initiates a new episode if the current period
is the last. Subsequently, ¢, assumes the value of 1 to start the
process termination decision phase, during which the transition
based on the chosen action either terminates the process, marking
the state as terminated by setting #, = True, or continues the
process and alternates to the sequential product selection phase,
setting ¢, = 0. ¢, alternates cyclically between the two values 0
and 1, with each value corresponding to the phase that follows
immediately to the completion of the preceding phase.

Rewards R are provided, either when the last available product
has been inserted so that the action budget is exhausted with
b, = 0 at ¢, = 0, or when the “terminate” option is picked at ¢, = 1
so that a state becomes the terminal state and a reward is given.
The reward takes the value of the improvement in solution quality
that can be assessed via an objective function f. Concretely, R, =
f(s,) is computed using (3a) and equals 0 otherwise for all the
non-terminal states.

S.-N. Johnn and V.M. Charitopoulos

Computers and Chemical Engineering 204 (2026) 109415

©
©)
3
®
®

Fig. 3. Sequential decision process alternating between product selection and process termination phases, where the former phase provides an action set including
products 1 to 5 and the latter includes only two actions “continue” and “terminate”. Products without demand and previously selected products are excluded
from the action set. Auxiliary start node S and end node E are included for clarity. The final production sequence is formed as 2 — 4 — 3 with the MDP process
terminated at the third iteration of the process termination phase, during which the agent terminates further selection process, leaving product 1 unselected for

this particular period. A reward is given at the end point E.

. 00 @ Q@ o¥e.
o
2o 0 o & o & b o »
7]
3s ©O6G ® ©® ©® @ ©® ©
28 b=6 b, =5 b, =4 bg =3 bg =2
3 8 gy =product 1 a, = product 3 a, = product 4 ae = product 6 ag = product 2
g o F={1} F, ={1,3} F,={1,3,4} Fg ={1,3,4,6} Fg=1{1,3,4,6,2}
Ry=0 R, =0 Ry=0 R =0 Rg =
no = False n, = False n4 = False ne = False ng = False
. ®0 @ o¥e. @A @.Q
]
52 @ ® ® O ® » (9
£
Es © 0O ©® ©® ©® ©® @ ® @ ©
€ bh=2 by =2 bs =2 by =2 by =2
2a a, = continue az = continue as = continue a; = continue ag = terminate
88 R=(F3 ={1,3} Fs={1,3,4} F, ={1,3,4,6} Fy={1,3,4,6,2}
2 R =0 R;=0 Rs =0 R;=0 Ry = f(s¢)
n, = False n3 = False ns = False n; = False N9 = True

Fig. 4. Proposed hybrid decomposition framework to tackle the planning and scheduling problem. The upper row of graphs refers to the product selection phase,

and the lower row to the process termination phase.

2.2.3. Motivational example

Fig. 4 showcases the visualisation of a MDP episode with a single
period, which begins with a starting state s, and ends at the terminal
state s*, which is reached either when the agent selects the termination
option at ¢, = 1 or when the selection budget is exhausted at ¢, = 0.
We assume an initial state s, based on a randomly generated initial
set of parameters, and all products 1 to 6 are associated with positive
demands. For simplicity, each state does not explicitly display the phase
indicator ¢;,.

From the top left-hand graph in the figure, the agent starts at state
so with an initial budget b, = 6. The value of ¢, is initialised to 0
to reflect the product selection phase, during which the agent selects
from the action set (marked in white) its first action q, = “product
1” (marked in red) according to its trained strategy to add to the
production sequence and transitioned to the sequential state s, in the
bottom left graph. All infeasible actions in this state are marked in grey.
In the subsequent state s, the indicator ¢, assumes the value 1, and
the agent selects a; = “Continue”, thereby maintaining the sequencing
process with », = False and transitioning to the next state with phase
indicator updated to ¢, = 0. Moving to state s,, the agent selects
a, = “product 3” from the available actions, updating the production
sequence to F, = {1,3}. The product selection process continues as the
agent iteratively selects actions a, = “product 4”, a4 = “product 6”
and ag = “product 2”, after choosing in their preceding states a; =
as = a; = “Continue” during the process termination phase. Eventually,

the agent chooses ay = “Terminate”, thereby terminating the process
and forming a sequence Fg = {1,3,4,6,2} with 5 products scheduled
inside the sequence, leaving product 5 unselected for the episode. The
newly constructed production sequence Fy is then integrated into the
MILP model, with the discrete decision variables treated as redefined
inputs, simplifying the MILP model into an LP problem on determining
the remaining continuous decisions. This will be further described
in Section 2.3.2.

2.3. Proposed hybrid learning framework

2.3.1. Deep Q-network

Q-learning (Watkins and Dayan, 1992) is a popular model-free RL
approach employed to solve MDPs by iteratively updating the Q-values
according to the rule:

O(s,a) « (1 —ay) - O(s,a) + a - (r +y- max Q(s’,a')) (€D

d'€A(s")

where QO(s,a) is the previous Q-value for the (s,a) pair, the term
max Q(s’,a’) denotes the maximum Q-value amongst all the possible
actions in the subsequent state s’, and r represents the immediate
reward the agent receives by performing the particular state-action
pair. The discount factor y balances immediate rewards against future
rewards, influencing the agent’s preference for short-term gains versus

S.-N. Johnn and V.M. Charitopoulos

long-term benefits. Through the iterative refinement in the MDP, the
agent refines its policy to estimate the optimal Q-values.

Deep neural networks are frequently utilised as function approxi-
mators for the Q(s,a) function, which facilitates the generalisation of
Q-values across states that share common characteristics and therefore
may consequently yield similar future rewards. Function approxima-
tion is particularly advantageous for problems with large state spaces,
which contrasts with the traditional Q-table approach: Unlike Q-tables
that explicitly record Q-values for every state-action combination,
DON provides a more scalable and efficient means of approximating
the Q-values by bypassing the memory challenges associated with
maintaining extensive records.

We employ the DQN algorithm (Mnih et al., 2015) for agent train-
ing, incorporating key techniques including the replay buffer and target
network. The replay buffer is an embedded memory replay mecha-
nism that stores the agent’s past interactions with the environment
as (s,a,r,s’,done) tuples inside a memory tank. During training, the
agent samples mini-batches from the memory tank to update the main
network parameters, enabling the utilisation of transition tuples drawn
from various historical time points stored inside the buffer, thereby
enhancing training stability compared to learning solely from the most
recent transition tuples in an online manner. The main and target
networks are function approximators, with the former responsible for
estimating the predicted Q-values and the latter for providing the target
Q-values. The target network is a duplicate of the main network that
is updated periodically by copying the main network’s parameters.
Common optimisation methods, such as stochastic gradient descent, are
employed to minimise the mean squared error between the predicted
and target Q-values.

During training, the DQN algorithm samples iterative batches of pre-
viously taken actions from the replay buffer to train the main network.
In this step, the algorithm takes the current state of the environment
as input and outputs a vector of Q-values corresponding to the list
of available actions. The main network parameters are periodically
transferred to the target network at a certain number of episodes to
stabilise the training process. The target network remains consistent
over this certain interval and is used to predict the future Q-values for
state-action pairs.

2.3.2. Hybrid decomposition framework

The proposed hybrid decomposition framework, depicted in Fig. 5,
begins with training the production sequencing agent within the DQN
framework marked in the blue dotted box. The production sequencing
process is cast into a MDP for the DQN agent to iteratively learn to
select products and form a production sequence until reaching a termi-
nal state for each period. The agent needs to determine the sequence
based on randomly generated historical product demands that optimise
the overall production profit while minimising the penalty costs.

The proposed framework adopts an open-loop optimisation ap-
proach. During training, the DQN agent’s policy is re-evaluated pe-
riodically for each sample batch, where environmental feedback is
applied to adjust future actions. Once the training is finished, the neural
network parameters are fixed and utilised for evaluation.

During the DQN training, the agent forms experience replay and
stores the agent—environment interaction as tuples of (s, a, r, s’, done) in
the replay buffer. Next, a sample batch of transition tuples is utilised
to estimate the predicted Q-value Qy(s,a) as the output of the main
network, given the specific state-action pair and under the current
main network parameter set §. The target Q-value is computed using
y =r+y-maxy Qys’,d") - (1 — done), which the main network learns
to predict. Subsequently, the main network parameters ¢ are updated
using the Adam optimiser, which aims to minimise the discrepancy
between the two networks, guided by the loss function computed
according to (y — Qy(s, @))*. Finally, the target network is periodically
updated by copying from the main network over the MDP dynamics.

Computers and Chemical Engineering 204 (2026) 109415

After the DQN agent is trained, it is embedded into the hybrid
framework and determines the production sequence in an offline man-
ner whenever new information, such as product demands, becomes
available and deteriorates the current decision. When a new produc-
tion sequence is formed, the sequence order is converted into the
corresponding set of discrete decisions, specifically the product indices
0, ,, the first and last products F;, and L;, inside the sequences,
and the procession relationships between products Z; ; , and ZF,; ,.
Those sequencing-related discrete decision variables are then treated as
known inputs and passed onto the MILP model, which is simplified to
be an LP formulation presented below as (2). The simplified LP model
resolves the remaining continuous decisions that include the produc-
tion amount, time, sales, inventory, and backlog decisions, which are
addressed with the chosen optimisation solver.

max Y Y PSS, - > D CB-B,— Y YCI-V, (2a)

iel peP iel peP iel peP

subject to
(3m), (3n), (30), (3p), (39), (3r)

Since all discrete decision variables are predetermined based on the
production sequences generated by the DQN agent, the MILP formu-
lation is simplified by treating all binary (E, ,, F; ,, L; ,, Z; ; ,» ZF; ;)
and integer (O;,) decision variables as parameters. This reduction
transforms the original MILP model into an LP model that can be
operated efficiently and solved significantly faster online compared to

the original combinatorial problem.

2.3.3. Bayesian optimisation

We employ Bayesian optimisation (BO) (Frazier, 2018) for hy-
perparameter tuning for the DQN framework to optimise algorithm
performance. BO builds a probability model of the objective function,
using it to guide the hyperparameter selection process to evaluate the
true objective function of the underlying problem. The advantage of
BO lies in its ability to efficiently converge to near-optimal solutions
within a relatively small set of samples. The algorithm is outlined in
the following Algorithm 1.

Algorithm 1 Bayesian Optimisation for DQN Hyperparameters

1: Input: Objective function f(x), random sample domain D =
{Gin F (D Yien

2: Define surrogate model S and acquisition function A

3: for 7 € {1,..T} or until convergence: do

4 Find x* = max, A(x, S,_;)

5. Evaluate current objective f(x*)

6: Update sample domain D <« D U (x*, f(x*))

7. Fit new surrogate model S, to updated sample domain D

8: end for

9: Output: return x**" = max,cp, f(x) as best hyperparameter set

We select Gaussian processes as the surrogate model for its ease
of optimisation and wide application to functions, and expected im-
provement as the acquisition function. The two functions are com-
monly chosen for their advantageous trade-off between exploration and
exploitation (Bergstra et al., 2011).

We apply BO to optimise on 5 DQN model hyperparameters that
include the learning rate «; and the discount factor y governing the
trade-off between short-term and long-term rewards from (1), the initial
exploration rate ¢, and the decay rate ¢ in the epsilon-greedy policy,
and the maximum batch size barch which controls the sample size for
the replay buffer. We establish a boundary for each hyperparameter,
wherein BO identifies its optimal value during the search. Once the best
set of hyperparameters is determined by BO, the set is subsequently
treated as inputs for the training and evaluation of the DQN agent
within the hybrid decomposition framework.

S.-N. Johnn and V.M. Charitopoulos

Computers and Chemical Engineering 204 (2026) 109415

’ Train DQN Agent to derive the discrete decisions N

Agent-Environment
interaction: forms
experience replay,
stores in buffer as
(s, a, 1, s') tuples

Product
Demand

Main Q Network
estimates the

Input sample
training batch to
main and target
networks

predicted Q-value

Target Network
estimates the target
Q-value

Update Target
Network weight
periodically at every
intermediate step

Train Main Network
via Adam Optimizer,
update network
parameters 0

Compute Loss
between the main and

target networks

Production amount, time, sales,
inventory, backlog decisions P,
Ti,pr Si,pr Vi,p: Bi,pr

Employ a reduced (MI)LP

formulation to derive the
continuous decisions 1

Scheduling sequence
decisions 0; , F;
Liy Z ZF;

P!
D

i,pr4i,j,pr

Fig. 5. Proposed hybrid decomposition framework to tackle the planning and scheduling problem as a sequential problem by DQN agent and an LP problem by

linear programming solvers.

3. Computational experiments

This section showcases several evaluation case studies conducted
using the trained DQN agents under single-period and multi-period
scenarios. The solution quality and efficiency of the proposed DQN-
LP decomposition framework are analysed by comparison to other
baselines and the optimal MILP solutions. Section 3.1 discusses the
experimental design and parameter setup. Section 3.2 and Section 3.3
present case studies to analyse the DQN-LP framework performance
in single-period and multi-period scenarios, respectively. Section 3.4
examines the profit and a range of penalty costs across various in-
stance sizes, and investigates the number of constraints and variables
encountered by the original MILP model and the proposed hybrid
framework.

3.1. Experiment configurations

3.1.1. Planning and scheduling problem setup

For the single-period scenarios, we evaluate the performance of the
hybrid decomposition framework over a predetermined instance size
(fixed number of products) and one week that encompasses 168 h. For
the multi-period scenarios, in which each episode encompasses multiple
periods (weeks), the DQN agent iteratively predicts the production
sequence of each period before proceeding to the subsequent period
of the same episode. Each episode begins with a reset of parameter
values that remain static throughout the duration of the episode and
are updated only when the current episode completes. Consequently,
the parameter updates for multi-period are consistent with those in the
single-period scenario.

The parameters are generated from the given distributions below.
Within each period of a particular episode, the unit of demand gen-
erated for each product follows a uniform distribution within the
range [0,20]. The sales quantity is constrained by the sum of each
product’s total demand and any backlog from the previous period. The
production level is not restricted by the demand constraints, but once a
product is selected and sequenced, it must have a minimum production
of at least 1 unit to allow sufficient warm-up and cool-down time for
the machine.

At the beginning of each episode, the sale price for all products
(PS,) is generated according to a uniform distribution within the range
of [5,20] per unit. The inventory and backlog costs in each episode
are adhered to 10% and 20% of the generated sale price for each

unit of product, respectively. The inventory and backlog levels at the
initial state that signify the start of the first period in each episode
are both initialised to 0. For the multi-period scenario in which an
episode contains multiple periods, the inventory and backlog levels
are calculated based on information from the preceding period via
constraints (3p) and (3q), respectively. The production rate, following
a conversion metric of 0.7 units per hour, dictates the conversion scale
between the quantity produced and the time required for production.
Lastly, the inter-product changeover times are generated from a range
of [30,100] minutes for each pair of different products within each
episode. For the single-period setting, only inter-product changeover
times are considered and referred to as “inner transitions”. In the
multi-period setting, both inter-product and inter-period changeovers
are accounted for, where the latter is referred to as “outer transitions”.
The outer transitions in a multi-period setting can be treated as the
changeover time from the last product of the previous period to the
first product in the subsequent period, which is generated using the
same range of changeover time parameters.

3.1.2. DQN agent setup and evaluation

During the model training phase, a random seed is utilised for
each episode to determine the parameter generation. The DQN agent
undergoes 10,000 episodes, which is equivalent to approximately 5 h
of training time. Throughout the training, validation of the agent’s
performance occurs every 25 steps. At each validation step, the cur-
rent network is used to predict outcomes for a designated set of 64
validation scenarios, each associated with an individual random seed
not utilised during training. The total objective value is calculated to
assess whether the current network demonstrates sufficiently strong
prediction accuracy to replace the previous network as the best model
with its corresponding parameters stored in the system.

We define the domain of learning rate to be ; € [0.00001,0.001] and
employ the stochastic gradient method with the Adam optimiser to it-
eratively update the neural network parameters using sampled batches.
We set the maximum batch size of the replay buffer to be between
[128,1024] and a dynamical sample batch size equal to 20% of the
maximum size. The agent employs an epsilon-greedy policy, generating
a random number between 0 and 1 at each time step. Any number
smaller than epsilon results in a random selection of action from the
action set. Otherwise, the agent greedily selects the action associated
with the highest Q-value as estimated by the network. The exploration
rate governs the balance between exploration and exploitation: towards

S.-N. Johnn and V.M. Charitopoulos

Computers and Chemical Engineering 204 (2026) 109415

Table 1
Features used by DQN agent to represent state.
Feature Type Rescale Description
decision step global onehot indicate whether ¢, =0 or 1
sequence length global maxabs sequence length at current step
product index indep maxabs all product indices in current episode
product demand indep maxabs all product demands in current episode
inventory level indep maxabs all product inventory levels in current episode
backlog level indep maxabs all product backlog levels in current episode
unit price indep maxabs all product prices in current episode
in-or-not dep onehot if a product is included or not in sequence
position index dep maxabs the position of a product in sequence
pairwise distance dep maxabs changeover time between current and previous products
cumul distance dep maxabs total changeover times between all products in sequence
is-last-action dep onehot whether current product is the last chosen
0
120
&
! 100
i
p® e
=3 Q 80
.| 5
60
’ ‘
. “
10 2
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Fig. 6. Training progression graphs for problems with 10 products (left) and 20 products (right).

the beginning of training, the agent is given a much larger epsilon
value to allow the exploration of more actions with similar probability,
whereas a decrease in the rate leads towards the exploitation of actions
with the highest Q-value. We set the initial exploration rate ¢, to be
between [0.1, 1.0] with a decay rate between [0.0001,0.01]. Lastly, the
discount factor y is set within the boundary [0.9,0.999] to be optimised
via BO.

During the model implementation phase, the trained DQN agent
is embedded into the hybrid framework and its offline performance
is assessed based on 50 distinct evaluation rounds. To benchmark the
performance of the proposed hybrid DQN-LP framework, it is compared
against three baseline approaches: a random baseline agent (RAN) with
a uniform random strategy that selects all possible actions at each
state with equal probability, a travelling salesman algorithm (TSP) that
utilises a local search-based heuristic to iteratively construct sequence
while ensuring the total time capacity is satisfied and simultaneously
tracking the best sequence achieved so far, and a full MILP model
solved using the CPLEX optimizer (MIP). This comparison aims to
highlight the effectiveness of the DQN-LP framework in optimising
process scheduling with stochasticity in instance parameters.

The neural network model is implemented and executed using
Python 3.8.5 and PyTorch 2.3 (Paszke et al., 2019), while the MILP
model was coded using Pyomo 6.7 (Hart et al., 2011) and solved using
IBM ILOG CPLEX 20.1 optimizer with Python interfaces. All models are
developed and run on a workstation with a 2 GHz Quad-Core Intel Core
i5 processor and 32 GB memory.

3.1.3. State representation features

Now we introduce the features for representing the DQN states.
The feature matrix includes the following information given in Table
1, in which the node-based features can be categorised into global
features and local features, where the latter can be further grouped
into sequence-dependent (‘“dep”) and sequence-independent (“indep”)
features. The sequence-dependent features are only included when
the corresponding product has been selected and placed inside the

sequence, otherwise the corresponding position has a value of 0. On the
contrary, the sequence-independent features will be included despite
the selection status of the product.

We adapt different encoding and normalisation techniques to dif-
ferent features based on their types and scales. One-hot encoding
(“onehot™) is applied to convert categorical information to binary 0
and 1 before feeding into the network. Maximum absolute scaling
(“maxabs”) is applied to numerical data to scale the data using its
global maximum value.

3.2. Case study 1: Single-period planning and scheduling

For the single-machine planning and scheduling problem with single-
period scenarios, Fig. 6 showcases the training progressions of the DQN
agent. Fig. 7 and Fig. 8 illustrate the performance of the proposed
hybrid DQN-LP framework from the evaluation set for 10 and 20
product instances, respectively.

From the top left figure from Fig. 7, we observe comparable perfor-
mance levels in terms of objective values amongst the TSP, MIP and
the hybrid DQN-LP framework. We also observe that these methods
consistently outperform the RAN approach. Specifically, the optimality
gap between the MIP solution and the solution derived by the proposed
hybrid DQN-LP framework is less than 4% on average. This difference
is primarily influenced by the inner-transition costs associated with
product changeovers, as illustrated in the lower left figure. The reason
is that in most of the 10 product scenarios, the accumulated demands
fit within the single period without exceeding time capacity, ensuring
that regardless of the production sequence, all products are ultimately
produced. For this small-scale instance, the TSP heuristic identifies a
production sequence with near-optimal inner-transition time by ex-
haustively enumerating an extensive set of possible sequences in a
brute-force manner. This is reflected in the highly similar profit levels
shown in the upper middle figure in Fig. 7. Such scenarios favour
the use of TSP and its embedded complete enumeration mechanism,
allowing for filtering optimal sequences with minimal penalty costs,

S.-N. Johnn and V.M. Charitopoulos

Computers and Chemical Engineering 204 (2026) 109415

Objective Profit Computation Time (sec)
1750 i
1750 0.20 o
1500 ®
’l‘ 1500 018 °
1250 °
1250 016
1000 °
1580 1000 0.14
& °
500 8 750 0.12
250 500 0.10 o o I
0 250 0.08 ’_—r_‘
=]
-250 0 0.06
RAN TSP Full-MIP DQN RAN TSP Full-MIP DQN RAN TSP Full-MIP DQN
Inner Transition Cost (h) Inventory Cost Backlog Cost

6 — 000
4
-0.02

-0.04

RAN TSP Full-MIP DQN RAN TSP

250
200
150

100

: =

Full-MIP DQN RAN TSP

==

Full-MIP DQN

Fig. 7. Evaluation summary for a single-period instance with 10 products.

Objective
2000
1500 1750
1500
°
o

1
000 1250

B

o
1000
500

500

Profit Computation Time (sec)

®

o
030
B 8
o
o
020

0 8
9 S
250 010 2 o
° —_—
-500 o ¢ == P
RAN TSP Full-MIP DQN RAN TSP Full-MIP DQN RAN TSP Full-MIP DQN
Inner Transition Cost (h) Inventory Cost Backlog Cost
175
0.04 500
15.0
o
125 002 400
10.0
0.00 300
75
50 8 \%' -0.02 200
25
-0.04 00
00
RAN TSP Full-MIP DQN RAN TSP Full-MIP DQN RAN TSP Full-MIP DQN

Fig. 8. Evaluation summary for 20 products single period instance.

provided there is sufficient computational power. The top right figure
demonstrates the significant computational efficiency of our hybrid
DQN-LP framework, as evidenced by a notable reduction of over 66%
in average computational time compared to the MIP method.

The summary of the 20 product instances in Fig. 8 showcases
a similar trend, where the DQN agent achieves performance levels
comparable to the MIP but surpasses both the TSP and RAN. Notably,
an optimality gap of 5.8% is observed compared to the exact solution
provided by MIP. Additionally, the DQN agent demonstrates more than
50% reduction in average computational time compared to MIP. The
transition costs associated with inter-product changeovers, as illus-
trated in the lower left figure, demonstrate that the DQN-LP framework
captures a more efficient production sequence with smaller inner-
transition costs and higher computational efficiency compared to the
TSP heuristic. While the exhaustive enumeration approach employed
by the TSP heuristic ensures competitive performance for small-scale
instances, it tends to exhibit limitations as the computing time increases
with the instance size.

Since nearly all scenarios fail to accommodate the accumulated
demands in a single period without exceeding the total time capac-
ity, we conduct additional analysis focusing on the actual solution

corresponding to the median-performance scenario from the 50 eval-
uation. Fig. 9 illustrates the decision levels associated with total sales,
production and backlog, where inventory is not shown, as both plots for
all products have no inventory planned. Particularly, we observe a high
resemblance amongst the production decisions made by the DQN agent
and MIP, with the primary differences arising from an additional 1 unit
of production on product 10 and 2 units on product 16 performed by
the hybrid framework. Due to time capacity, the DQN agent is required
to reduce its production on product 15. Overall, the total objective
value difference for this specific scenario is 3.9% between the DQN and
MIP.

3.3. Case study 2: Multi-period planning and scheduling

In this second case study, we extend the scope of the hybrid DQN-LP
framework to encompass multiple time periods. Within each episode,
the agent utilises observed information from the outset of each period
to generate predictions for subsequent periods. For the single-machine
planning and scheduling problem with multi-period scenarios, we in-
clude another random baseline “RAN-b” as a benchmark approach that
shuffles the order of all products with demand within a period and

S.-N. Johnn and V.M. Charitopoulos

Total Demands

19
13
9

18 18 19
13

Total Sales
20
14

18 17 19
13 13|
9
iicsssoool Lol]
OMNO00000OOONOMOO 0
1234567 8 91011121314151617181%20
Products

151414 15 14
9 10
4
0 ol 0
1234567 891011121314151617181920
Products

3

Total Demands Total Sales

20 18 18 19 19 20 18 19 19
151414 15 14 130 13 14 13|
10 9 1Y 9 10 9 8
4 3 4' I
0 ol 0 o OmNoooooolNoMoolNo
1234567 891011121314151617181920 12345678 91011121314151617181%20
Products Products

Computers and Chemical Engineering 204 (2026) 109415
19
L 130 13
9
4I
ollMococooololoolllo
1234567 891011121314151617181920
Products

Production A{noupt Backlog Amoynt

151414 15
10, 4
5
3
000 oooMoolloloo

1234567 8 91011121314151617181920
Products

Production Amougt 4

14 13|
9 8
olMoooooolBoloolllo

1234567 8 91011121314151617181920
Products

Backlog Amoynt

151404 15

10 9

3 2
1
000 olomoolofloo

1234567 891011121314151617181920
Products

Fig. 9. Evaluation performance for the DQN agent (above) versus MILP optimal solution (below) with median performance scenario for 20 product single period
instance. Note that inventory levels are not displayed, as all inventory values are zero.

Profit

2 po e

Objective

X Xehes

RAN RAN-b TsP DQN Full-MIP RAN RAN-b TSP DQN Full-MIP
Inner Transition Cost (h) Outer Transition Cost (h)
s T
o
o 150 °
& °
°
25 +
® ° o
100 ° °
o
= o 75 &
& o
50 °
" =
E 25
0 00
RAN RAN-b TSP DQN Ful-MIP RAN RAN-b TSP DQN Full-MIP

Computation Time (sec) Time Utility (%)
200
8 B
12 T
e — == ==
10
150
o8 125
& 100
075
04 8
5 8 g 0s0
°
02 ° =
§ 8 =
RAN RAN-b TSP DQN Full-mIP RAN RAN-b TSP DQN Full-mIP
Inventory Cost Backlog Cost
1400
004
1200
ooz 1000
000 w9
@0
w00
20
o
RAN RAN-b TSP DQN Full-MIP RAN RAN-b TSP DQN Full-MIP

Fig. 10. Evaluation summary for 20 products and 2 periods within each episode.

forms a random sequence. This approach aims to evaluate whether the
inclusion of more products in the production sequence, despite incur-
ring higher inter-product transition costs, can help reduce the backlog
costs and enhance the solution quality in a multi-period scenario.

Fig. 10 presents the evaluation summary for instances with 20
products over a two-week period for each episode. The top left graph of
objective value shows that both TSP and the hybrid framework achieves
competitive performance compared to MIP, with optimality gaps of
13.2% and 15.3%, respectively. Both methods consistently outperform
the RAN and RAN-b benchmarks in delivering higher average objective
values. Additionally, our framework exhibits superior computational
efficiency compared to the exact method, reducing the time required
to generate solutions by over 92%. The DQN-LP framework generates
production sequences that yield competitive performance in terms of
inner-transition costs, as shown in the bottom left graph in Fig. 10.
Due to the presence of multiple periods within each episode, the
outer transition cost associated with product changeovers between two
consecutive periods is also computed, as depicted in the second graph
in the bottom row. This indicates that the proposed hybrid frame-
work outperforms the TSP heuristics and RAN-b benchmark. We also
measure the time utility across all periods and rescale the percentage
between 0 and the number of periods. As shown in the right-most
graph in the top row, the hybrid DQN-LP framework achieves a higher
utilisation of production time during each period than the TSP and
both random baselines. Similar tendencies are observed inside the 20
product instances with 3 periods as shown in Fig. 11.

We select the evaluation scenario with the median set of perfor-
mance and visualise the specific production schedules using Gantt
charts for each period generated by the DQN agent, TSP and MIP in Fig.

10

12 for the 20-product 2-period instances, and in Fig. 13 for the 20-
product 3-period instances. Analysis of both charts reveals that the
DQN agent effectively identifies and prioritises products that conclude
at the end of the previous period. This strategy minimises changeover
times between the two periods, demonstrating the agent’s capability in
optimising scheduling decisions.

3.4. Study on larger-scale instances

In this section, we investigate the scalability of the proposed lear-
ning-based approach by applying it to larger-scale instances. Specifi-
cally, we evaluate its performance in scenarios involving 40, 50, 60,
70 and 80 products and an extended planning horizon with number of
periods up to 8 weeks. Each value inside the graph is averaged from 5
evaluation rounds.

In the backlog level plots (left column) presented in Fig. 15 and Fig.
17, we observe that the DQN agent demonstrates better performance
in terms of producing lower backlog than the TSP heuristic, RAN and
RAN-b methods across the evaluated scenarios. The only exceptions oc-
cur in the 40-product instance with 2, 3, 5 and 6 periods and 80-product
instance with 3 periods, where the backlog created by the DQN agent
is slightly higher than any of the 3 benchmark methods. The average
difference between the DQN backlog levels and the optimal solution
is 15% on average across all periods. In the inventory plots (middle
column) presented in Fig. 15 and Fig. 17, we observe a relatively stable
trend for DQN across instances with 40 and 50 products involving
different periods. In the scenarios with 60, 70 and 80 products, the
DQN-generated inventory levels appear slightly elevated, which is due
to one seed giving poor performance and reducing the profit. Both
the TSP heuristic and RAN-b methods result in less inventory levels,

S.-N. Johnn and V.M. Charitopoulos

Computers and Chemical Engineering 204 (2026) 109415

000 Objective Profit Computation Time (sec) Time Utility (%)
000 6 ° 0 o ==
- | % . 5 [
-
. 4000 4 8 20
8] a
1000 000 0 L]
| - | =
~1000 1000 1 1o
-2000 0 o] —8— - o RS
RAN RAN-b TSP DQN Full-MIP RAN RAN-b TSP DQN Ful-MIP RAN RAN-b TSP DQN Full-MIP RAN RAN-b TSP DQN Full-MIP
- Inner Transition Cost (h) Outer Transition Cost (h) Inventory Cost Backlog Cost
50 ® o ? 7 2500
© 2 ® 7 o i 2000
20 15 b4 o t o o °
8 & 1500 ° 8
2 10 2 T ¥ 8
2L i 3 o0
= i ° 5 .
RAN RAN-b TSP DQN Full-MIP RAN RAN-b TSP DQN Full-MIP RAN RAN-b TSP DQN Full-MIP RAN RAN-b TSP DQN Full-MIP
Fig. 11. Evaluation summary for 20 products and 3 periods within each episode.
w2 I I3 4 GEEPEY 14 I 2 18 10 Products
Full-MIP 1 2 18 [EN 20 s /IEl 16 14 e S Fracluictsl
e 3 Product 2
@8 Product 3
w2 131 20 I NIz 18 1008 14 I 4 2 | 3 Product 4
DON w1 @2 s W 18 16 147 50 I | ™= Product>
3 Product 6
B Product 7
1 [|
w2 {2 5 18 51 I 6 20 el 14 == Product 8
TSP wl4 18 5N I DEN . 14 16 8 B 2 B Product 9
3 Product 10
w2 | FI0 NN 1438 I § S N 2w | R Aot
3 Product 12
- B I - |
RAN-b wl 14 [l 18 8 16 2 G = =3 Product 13
[Product 14
w2 s B Product 15
RAN WES - | [Product 16
? 3 Product 17
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 17(C—) Product18
Time @l Product 19
3 Product 20
Fig. 12. Gantt chart for the median performance scenario with 20 products and 2 periods.
w3:] 2 AN 16 | S 14 6 4 Products
Full-MIP w2 s 8 16 301 13 | 2 BN Product 1
. wl-4 4 20 6 10 M3'EEEE 8 SN 7 N (3 Product 2
B8 Product 3
w3 4 167 I 5 I 2 18 14 B| — product 4
1] R
SN = EE 17 = — —_— mEmam | Products
R |
Wl 4 - - - 3 Product 6
W3 417 SRS 167 (207 Few NS 14 pam | (™ Product?
TSP w2 - O ——)3 E— 15 8 2 16 4 =3 Product 8
wl4{ 4 mSmE2 6 mmemm 10 I 17w iss | B Product 9
[Product 10
w3 1116 13HNSEN 161 8 4 14 200 = . B Product 11
RAN-b w2 {6 s g 16 19T 15 2 31 4 I =3 Product 12
E N R e —
wl 10 . 6 7. 4 NS D7 e . 0 Product 13
[Product 14
RAN y; :.4 13 B Product 15
wi 4 4 [Product 16
3 Product 17
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 17(E= Product18
Time Bl Product 19
3 Product 20

11

Fig. 13. Gantt chart for the median performance scenario with 20 products and 3 periods.

S.-N. Johnn and V.M. Charitopoulos

—— Full-MIP
400 —— TSP

()
3 300 RAN
3] —— RAND
o
© 200
o
o)
S
=)
Z 100

0

4

Computers and Chemical Engineering 204 (2026) 109415

5

Periods

Fig. 14. Averaged total production sequence length summed across up to 8 periods generated by different methods, averaged over 40, 50, 60, 70 and 80 products

instances.

Full-MIP
TSP
DQN
RAN
RANb

20000

15000

10000

5000

25000 —— Full-MIP 500 —— Full-MIP
—— TSP —— TSP
—— DON —— DON
400
20000 RAN RAN
—— RAND —— RAND
15000 300
10000 200
5000 100
0 0
1 2 3 4 5 6 7 8 1 2 3

40 products backlog level

35000 _,

Full-MIP
so00 . 1oF
—— DaN
RAN
RAND

—— Full-MIP
—— TSP
DON
RAN
RAND.

25000

20000

15000

10000

5000

4

40 products inventory level

5 6 7 8 1 2 3 4 5 6 7 8

40 products profit

—— Full-MIP
—— TSP
DON
RAN
RAND.

25000

20000

15000

10000

5000

1 2 3 4 5 6 7 8 1 2 3

60 products backlog level

50000

Full-MIP
TSP
DQN
RAN
RANb

Full-MIP
TSP
DON
RAN
RANb

40000

30000

20000

10000

60 products inventory level

60 products profit

35000

Full-MIP
TSP
DQN
RAN
RANb

30000

25000

20000

15000

10000

5000

80 products backlog level

80 products inventory level

80 products profit

Fig. 15. Backlog level (left column) inventory level (middle column) and profit (right column) for instance sizes 40, 60 and 80 products (from top to bottom row)
with 1 to 8 periods in each subplot. Each subplot compares performance level between MIP, TSP, DQN, RAN and RAN-b methods averaged from 5 evaluation

rounds.

primarily due to longer sequence lengths they generate that lead to
higher changeover times and demand backlog. The RAN method creates
higher inventory level as it creates shorter sequence lengths on average.

In the inner transition plots (middle column) presented in Fig. 16
and Fig. 18, we observe that the DQN agent consistently gives better
performance compared to the TSP heuristic and RAN-b method in
generating lower inner transition cost across various instance sizes.
Moreover, from the production sequence average length analysis de-
picted in Fig. 14, it shows that the TSP heuristic and RAN-b method
generate longer production sequences than the DQN agent, leading
to higher changeovers and inner transition costs. On the contrary,

12

the RAN method creates a relatively shorter sequence length, which
causes significant backlog amount but lower inner transition costs
between product changeovers. Similar trend can be observed in the
outer transition plots (middle column) in Fig. 16 and Fig. 18, where the
DOQN agent produces lower outer changeover costs between consecutive
periods compared to the TSP heuristic.

The right-most column of subplots in Fig. 15 and Fig. 17 showcase
the overall objective in profit. Given the computational complexity with
exact solvers for larger size instances, a 1-hour CPU limit was imposed
on the solution of each instance. The computational time for different
instance sizes is shown in the right-most column in Fig. 16 and Fig.

S.-N. Johnn and V.M. Charitopoulos

3500 —— Full-MIP —— Full-MIP
—— TSP 3000 —— TSP
3000 —«— poN —— DON
2500 RAN
2500 e
2000
2000
1500 1500
1000 1000
500 500
0 0
1 2 3 4 5 6 7 8 1 2 3

40 products computation time

3500 —— Full-MIP 5000 —*— Ful-MIP
—— TSP —— TSP
3000 —— paN —— DON
oo 4000 =
—— RANb
2000 3000
1500 2000
1000
1000
500
0 0
1 2 3 4 5 6 7 8 1 2 3

60 products computation time

3500 —— Full-MIP 7000 . Fyi-mIP

—— TSP —— TSP
6000
3000 —— paN —— DON
5000 RAN
2!
500 -
2000 4000
1500 3000
1000 2000
500 1000
0 0
1 2 3 4 5 6 7 8 1 2 3

80 product computation time

40 products inner transition

60 products inner transition

80 products inner transition

Computers and Chemical Engineering 204 (2026) 109415

Full-MIP
TSP
DQN
RAN
RANb

40

40 products outer transition

Full-MIP
TSP
DQN
RAN
RANb

40

60 products outer transition

Full-MIP
TSP
DQN
60 RAN
—— RANb

40

80 products outer transition

Fig. 16. Computational time [s] (left column), inner transition cost (middle column) and outer transition cost (right column) for instance sizes 40, 60 and 80
products (from top to bottom row) with 1 to 8 periods in each subplot. Each subplot compares performance level between MIP, TSP, DQN, RAN and RAN-b

methods averaged from 5 evaluation rounds.

18. The plots present a comparative efficiency analysis that reveals
a balance point at which the computational complexity is significant
for the exact solver. We observe that the computating time begins to
rise significantly when 5 or more periods are involved in the scenario.
Overall, the general trend illustrates that the DQN agent generates
production sequences of good quality associated with better profit level,
contributing to a strong overall performance. As a result, the DQN
agent outperforms the TSP heuristic, RAN and RAN-b methods for large
instance sizes up to 80 products, compared to the optimal solution
provided by the Full-MIP model.

Lastly, we conduct a comparative analysis of the number of con-
straints and variables generated by the full MILP model in contrast to
the reduced LP model utilised within the decomposition framework.
We also compare the number of decisions made by the DQN and RAN
agents. As illustrated in Fig. 3, we observe that an increase in the
length of decision process contributes to a more extensive set of agent
decisions, resulting in the formation of a longer production sequence.
This trend is reflected in Table 4, where the DQN’s formed sequence
is longer than RAN, and that the total number of decisions increase
as the number of period increases. Moreover, Table 2 and Table 3
show that both the number of constraints and variables from the
MILP model are substantially higher than those from the reduced LP
model. Consequently, our proposed hybrid framework operates on a
smaller formulation size compared to the original MILP model, thereby
enhancing computational efficiency.

4. Conclusions and future work

In this work, we introduced a hybrid DQN-LP decomposition frame-
work that recurrently optimises the production decisions for continuous
manufacturing processes. The proposed framework decomposes the
problem into two parts, containing an online rescheduling of pro-
duction sequences tackled by the DQN agent after converting the

13

problem into a MDP, and the remaining decisions representable by
a much smaller simplified LP model that can be efficiently tackled
using state-of-the-art solvers. For the model training, we employed
DON to determine the optimal production sequences for a single-unit,
multi-product planning and scheduling problem, considering both the
single-period and multi-period scenarios. By integrating DQN deci-
sions based on the identified sequences into the MILP formulation,
we have significantly enhanced computational efficiency to achieve
competitive solution quality and enabled fast calculation of production
quantities and scheduling durations. This advancement underscores the
effectiveness of bridging the gap between RL and traditional optimisa-
tion techniques to streamline and accelerate complex decision-making
processes for real-time dynamic manufacturing problems.

A key direction for future expansions will focus on extending the
current framework to a multi-machine, multi-line setting, enabling
inter-line operations and collaboration among machines to collectively
produce toward a unified manufacturing objective. This effectively
forms a multi-agent learning system, with the aim of further enhancing
the accuracy and flexibility of the production scheduling decision-
making processes in addressing more complex and dynamic industrial
scenarios. Another future work direction is to incorporate a more gen-
eralised convolution neural network architecture, such as Graph Neural
Network, to better generalise the training process on graph-structured
data for different instance sizes.

CRediT authorship contribution statement

Syu-Ning Johnn: Writing — review & editing, Writing — origi-
nal draft, Visualization, Software, Methodology, Investigation, For-
mal analysis, Data curation, Conceptualization. Vassilis M. Chari-
topoulos: Writing — review & editing, Validation, Supervision, Re-
sources, Project administration, Methodology, Investigation, Funding
acquisition, Formal analysis, Conceptualization.

S.-N. Johnn and V.M. Charitopoulos

Table 2

Computers and Chemical Engineering 204 (2026) 109415

Number of constraints for instance sizes 40, 50, 60, 70 and 80 products with 1 to 8 periods in each subplot. Comparison between

MILP and reduced LP formulation.

Products Method 1 2 3 4 5 6 7 8

40 Full-MIP 3733 5938 8143 10348 12553 14758 16963 19168
Reduced-LP 328 610 892 1174 1456 1738 2020 2302

50 Full-MIP 5663 8918 12173 15428 18683 21938 25193 28448
Reduced-LP 408 760 1112 1464 1816 2168 2520 2872

60 Full-MIP 7993 12498 17003 21508 26013 30518 35023 39528
Reduced-LP 488 910 1332 1754 2176 2598 3020 3442

70 Full-MIP 10723 16678 22633 28588 34543 40498 46 453 52408
Reduced-LP 568 1060 1552 2044 2536 3028 3520 4012

80 Full-MIP 13853 21458 29063 36668 44273 51878 59483 67088
Reduced-LP 648 1210 1772 2334 2896 3458 4020 4582

Table 3

Number of variables for instance sizes 40, 50, 60, 70 and 80 products with 1 to 8 periods in each subplot. Comparison between

MILP and reduced LP formulation.

Products Method 1 2 3 4 5 6 7 8
40 Full-MIP 3566 7126 10686 14246 17 806 21366 24926 28486
Reduced-LP 1806 3606 5406 7206 9006 10806 12606 14406
50 Full-MIP 5456 10906 16356 21806 27 256 32706 38156 43606
Reduced-LP 2756 5506 8256 11006 13756 16506 19256 22006
60 Full-MIP 7746 15486 23226 30966 38706 46 446 54186 61926
Reduced-LP 3906 7806 11706 15606 19506 23406 27306 31206
70 Full-MIP 10436 20866 31296 41726 52156 62586 73016 83446
Reduced-LP 5256 10506 15756 21006 26256 31506 36756 42006
80 Full-MIP 13526 27 046 40566 54086 67 606 81126 94 646 108166
Reduced-LP 6806 13606 20406 27206 34006 40806 47 606 54406
Table 4 Table 5
Number of trained DQN agent decisions for instance sizes 40, 50, 60, 70 and MILP parameters summary.
80 products with 1 to 8 periods in each subplot. Comparison between DQN Symbol Category Description
and RAN agents. D; real demand of product i at the end of period p
Products ~ Method 1 2 3 4 5 6 7 8 7, real changeover time from product i to j
DQN 40 76 112 160 206 248 270 284 Ps; real sale price of product i
40 RAN 4 6 36 26 12 20 28 28 CI, real unit inventory cost of product i
CB, real unit backlog cost of product i
50 DON 46 90 146 166 232 262 328 366 CC;; real changeover cost from product i to j
RAN 2 4 8 18 10 30 22 36 r real processing rate of product i
60 DQON 48 92 146 218 250 318 342 394 9[’1‘”" real lower bound on processing rate in period p
RAN 4 8 8 14 20 18 28 42 0, real upper bound on processing rate in period p
o DON 48 98 160 206 260 308 374 430 V’::: real lower bound on i.nventory level for product [.
RAN 2 8 12 16 18 24 42 34 Vv real upper bound on inventory level for product i
M integer large number, takes the value of the cardinality of set I
80 DQN 48 116 162 238 288 380 400 498
RAN 8 4 18 8 32 32 40 42

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

Financial support from the Engineering & Physical Sciences Re-
search Council, UK grants EP/V051008/1, EP/W003317/1 is gratefully
acknowledged.

Appendix A. TSP-based MILP formulation

Let i € I be the set of products on the processing unit and p €
P as the set of planning periods. Following the notation given in
Charitopoulos et al. (2017), we define the list of model parameters
in Table 5 and the list of decision variables in Table 6 for the complete
MILP formulation given in (3).

14

The complete MILP formulation for the planning and scheduling
problem is presented below.

max Z Z PS; - Sip = Z Z Z CCii-Zijo

iel peP iel jil pEP
i#j
- Z Z Z CGC;; -ZF;;, - Z Z CB;-B;, - Z Z CL-v,
i€l jel peP i€l peP i€l peP
i#j p22
(3a)

subject to
2 F,=1 peP (3b)
iel
2 Lip=1 peP (30)
iel
F,<E, iel,peP (3d)
L, <E, iel,peP (3e)
> Ziyp=Ey,-F, jeLi#jpeP (3D
iel

S.-N. Johnn and V.M. Charitopoulos

Computers and Chemical Engineering 204 (2026) 109415

Table 6
MILP decision variables summary.
Symbol Category Description
E, binary whether product i is scheduled for production in period p
F, binary whether product i is the first product in the sequence in period p
L, binary whether product i is the last product in the sequence in period p
Zip binary whether product i precedes product j in period p
ZF,;;, binary whether product i precedes product j in periods p and p + 1
0, integer order index of product i in the sequence in period p
Pr;, real amount of product i produced in period p
Sip real sales of amount of product i in period p
T, real processing time of product i in period p
Vi real inventory level of product i in period p
B, real backlog level of product i in period p
—— Ful-MIP 800 —— Ful-MIP 25000 —— Ful-MIP
30000 P 00— TSP —— TSP
—— DQN —— DQN —— DQN
25000 RAN 600 RAN 20000 RAN
—— RAND —— RANb —— RANb
20000 500 15000
15000 400
300 10000
10000
200
5000 5000
100 —
0 o et \\ o
1 2 3 4 5 6 7 8 1 2 3 5 6 7 8 1 2 3 4 5 6 7 8
50 products backlog level 50 products inventory level 50 products profit
—— Ful-MIP —— Full-MIP —— Full-MIP
40000 —s— TSP 800 —— TSP 30000 —e— TSP
—— DQON —— DQN —— DQN
RAN RAN 25000 RAN
30000 —o— RAND 600 —— RAND —— RAND
20000
20000 400 15000
10000
10000 200
5000
.,
0 0 0
1 2 3 4 5 6 7 8 1 2 3 5 6 7 8 1 2 3 4 5 6 7 8

70 products backlog level

70 products inventory level

70 products profit

Fig. 17. Backlog level (left column) inventory level (middle column) and profit (right column) for instance sizes 50 and 70 products (from top to bottom row)

with 1 to 8 periods in each subplot. Each subplot compares
rounds.

> Z,,=E,-L, i€eli#jpeP (33
jel

2 ZFi, = Fj, jelLpePp>2 (3h)
iel

Y ZF =L, JELpEP,p22 (30
jel

0,,—O,+)<-M1-2,,, i,jeELi#jpeP (3j
0,,<M-E, iel,peP (3K
F,<0,< Y E, iel,peP 3D

iel

low .
Hp"“ E,<T,,< B‘I;FEi’p iel,pe P (3m)
NT,+Y Y w,Z,,+ZF;,)<6v peP (3n)
iel i€l jel:i#j

Pr;, =rT,, iel,peP (30)
B,,=B;, +D;,- S, ielpeP (3p)
Vip=Vipo1 +Pr; =S, iel,peP (3q
Vimm < Vi,p < V‘_maX iel,peP (3r)

where the objective function (3a) represents an optimisation that max-
imises the total production revenue while simultaneously minimising
the penalties that include the internal products changeover costs, the
external products changeover costs between two consecutive periods,
the demand backlog costs, and the additional production inventory
costs.

Constraints (3b) and (3c) specify that in any given planning period,
only one product can be produced first and only one product can be
produced last, respectively. Constraints (3d) and (3e) ensure that a

15

performance level between MIP, TSP, DQN, RAN and RAN-b methods averaged from 5 evaluation

product cannot be scheduled as the first or last in a period unless it
is assigned to that period, thereby maintaining the feasibility of the
numerical index for each product. Constraints (3f) and (3g) specify
that if a product is assigned to a planning period, it will result in a
changeover with another assigned product unless it is either the first
or the last to be processed in that period. Similarly, constraints (3h)
and (3i) model the changeovers across adjacent periods.

The following set of symmetric-breaking constraints (3j)-(31) ex-
clude infeasible production sub-cycles via the introduction of proces-
sion order index O, ,, thereby avoiding the enumeration of symmet-
ric solutions. Specifically, constraints (3j) indicate the order index
of any product j that is processed after i must be bigger than 1.
Constraints (3k) suggest that if a product i is not assigned to a planning
period, then its order index should be set to 0. Constraints (31) specify
the upper and lower bounds of the order index.

To track timing within each period, we use constraints (3m) to
set the minimum and maximum processing time thresholds that can
be dedicated to any product scheduled inside the sequence. Con-
straints (3n) provide an upper bound for each period on the total
allowed time, consisting of both the total production time, the internal
changeover time, and the changeover time between two periods. For
the remaining continuous variables, constraints (30) specify the pro-
duction rate and link the production amount to the production time
variables. Constraints (3p) ensure the conservation of backlog balance
for any product in any period. Similarly, constraints (3q) ensure the
inventory balance for any product in any period. Lastly, constraints (3r)
limit the inventory level of any product within a specified range of
upper and lower bounds.

S.-N. Johnn and V.M. Charitopoulos

3500 —— Full-MIP —— Ful-MIP
pe=i 4000 Tsp
3000 —o— paN
2500 3000
2000
2000
1500
1000
1000
500
0 0
1 2 3 4 5 6 7 8 1 2 3

50 products computation time

6000

3500 —— Full-MIP —=— Ful-MIP
—— TSP —— TSP
3000 —— paN 5000 . paN
~+ RAN
2500 4000 —«— RAND
2000
3000
1500
2000
1000
500 1000
o o ——
1 2 3 4 5 6 7 8 1 2 3

70 products computation time

50 products inner transition

70 products inner transition

Computers and Chemical Engineering 204 (2026) 109415

Full-MIP
TSP
DQN
RAN
RAND

50 products outer transition

Full-MIP
TSP
DON
RAN
RANb

70 products outer transition

Fig. 18. Computational time in [s] (left column), inner transition cost (middle column) and outer transition cost (right column) for instance sizes 50 and 70

products (from top to bottom row) with 1 to 8 periods
methods averaged from 5 evaluation rounds..

Appendix B. Additional plots

See Figs. 17 and 18.

Data availability

Data will be made available upon request by the corresponding
author.

References

Badejo, O., lerapetritou, M., 2022. Integrating tactical planning, operational planning
and scheduling using data-driven feasibility analysis. Comput. Chem. Eng. 161,
107759.

Baker, K.R., 1977. An experimental study of the effectiveness of rolling schedules in
production planning. Decis. Sci. 8 (1), 19-27.

Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B., 2011. Algorithms for hyper-parameter
optimization. NeurIPS 24.

Castro, P.M., Grossmann, LE., Zhang, Q., 2018. Expanding scope and computational
challenges in process scheduling. Comput. Chem. Eng. 114, 14-42.

Charitopoulos, V.M., Dua, V., Papageorgiou, L.G., 2017. Traveling salesman problem-
based integration of planning, scheduling, and optimal control for continuous
processes. Ind. Eng. Chem. Res. 56 (39), 11186-11205.

Charitopoulos, V.M., Papageorgiou, L.G., Dua, V., 2019. Closed-loop integration of
planning, scheduling and multi-parametric nonlinear control. Comput. Chem. Eng.
122, 172-192.

Chiang, L.H., Braun, B., Wang, Z., Castillo, I., 2022. Towards artificial intelligence at
scale in the chemical industry. AIChE J. 68 (6), e17644.

Erdirik-Dogan, M., Grossmann, L.E., 2006. A decomposition method for the simultaneous
planning and scheduling of single-stage continuous multiproduct plants. Ind. Eng.
Chem. Res. 45 (1), 299-315.

Erdirik-Dogan, M., Grossmann, LE., 2008. Simultaneous planning and scheduling of
single-stage multi-product continuous plants with parallel lines. Comput. Chem.
Eng. 32 (11), 2664-2683.

Framinan, J.M., Fernandez-Viagas, V., Perez-Gonzalez, P., 2019. Using real-time infor-
mation to reschedule jobs in a flowshop with variable processing times. Comput.
Ind. Eng. 129, 113-125.

Frazier, P.I., 2018. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.
02811.

Fuentes-Cortés, L.F., Flores-Tlacuahuac, A., Nigam, K.D., 2022. Machine learning
algorithms used in PSE environments: A didactic approach and critical perspective.
Ind. Eng. Chem. Res. 61 (25), 8932-8962.

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R.E., Levine, S., 2016. Q-prop: Sample-
efficient policy gradient with an off-policy critic. arXiv preprint arXiv:1611.
02247.

Gupta, D., Maravelias, C.T., 2019. On the design of online production scheduling
algorithms. Comput. Chem. Eng. 129, 106517.

16

in each subplot. Each subplot compares performance level between MIP, TSP, DQN, RAN and RAN-b

Gupta, D., Maravelias, C.T., Wassick, J.M., 2016. From rescheduling to online
scheduling. Chem. Eng. Res. Des. 116, 83-97.

Harjunkoski, 1., Maravelias, C.T., Bongers, P., Castro, P.M., Engell, S., Grossmann, LE.,
Hooker, J., Méndez, C., Sand, G., Wassick, J., 2014. Scope for industrial applica-
tions of production scheduling models and solution methods. Comput. Chem. Eng.
62, 161-193.

Hart, W.E., Watson, J.-P., Woodruff, D.L, 2011. Pyomo: modeling and solving
mathematical programs in python. Math. Program. Comput. 3, 219-260.

Hubbs, C.D., Li, C., Sahinidis, N.V., Grossmann, LE., Wassick, J.M., 2020a. A deep
reinforcement learning approach for chemical production scheduling. Comput.
Chem. Eng. 141, 106982.

Hubbs, C.D., Perez, H.D., Sarwar, O., Sahinidis, N.V., Grossmann, L.E., Wassick, J.M.,
2020b. Or-gym: A reinforcement learning library for operations research problems.
arXiv preprint arXiv:2008.06319.

Karimi-Mamaghan, M., Mohammadi, M., Pasdeloup, B., Meyer, P., 2022. Learning to
select operators in meta-heuristics: An integration of Q-learning into the iterated
greedy algorithm for the permutation flowshop scheduling problem. European J.
Oper. Res..

Kopanos, G.M., Pistikopoulos, E.N., 2014. Reactive scheduling by a multiparametric
programming rolling horizon framework: a case of a network of combined heat
and power units. Ind. Eng. Chem. Res. 53 (11), 4366—4386.

Kopanos, G.M., Puigjaner, L., 2019. Solving Large-Scale Production Scheduling and
Planning in the Process Industries. Springer.

Lee, J.H., Shin, J., Realff, M.J., 2018. Machine learning: Overview of the recent
progresses and implications for the process systems engineering field. Comput.
Chem. Eng. 114, 111-121.

Li, Z., Ierapetritou, M.G., 2008. Reactive scheduling using parametric programming.
AIChE J. 54 (10), 2610-2623.

Liu, C.-L., Chang, C.-C., Tseng, C.-J., 2020. Actor-critic deep reinforcement learning for
solving job shop scheduling problems. Ieee Access 8, 71752-71762.

Liu, S., Pinto, J.M., Papageorgiou, L.G., 2008. A TSP-based MILP model for medium-
term planning of single-stage continuous multiproduct plants. Ind. Eng. Chem. Res.
47 (20), 7733-7743.

Liu, S., Pinto, J.M., Papageorgiou, L.G., 2010. MILP-based approaches for medium-term
planning of single-stage continuous multiproduct plants with parallel units. Comput.
Manag. Sci. 7 (4), 407-435.

Ma, Y., Zhu, W., Benton, M.G., Romagnoli, J., 2019. Continuous control of a
polymerization system with deep reinforcement learning. J. Process Control 75,
40-47.

McAllister, R.D., Rawlings, J.B., Maravelias, C.T., 2019. Rescheduling penalties for
economic model predictive control and closed-loop scheduling. Ind. Eng. Chem.
Res. 59 (6), 2214-2228.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., et al., 2015. Human-level control
through deep reinforcement learning. Nature 518 (7540), 529-533.

Nian, R., Liu, J., Huang, B., 2020. A review on reinforcement learning: Introduction
and applications in industrial process control. Comput. Chem. Eng. 139, 106886.

Pan, E., Petsagkourakis, P., Mowbray, M., Zhang, D., del Rio-Chanona, A., 2021.
Constrained Q-learning for batch process optimization. IFAC-PapersOnLine 54 (3),
492-497.

http://refhub.elsevier.com/S0098-1354(25)00418-1/sb1
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb1
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb1
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb1
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb1
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb2
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb2
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb2
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb3
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb3
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb3
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb4
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb4
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb4
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb5
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb5
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb5
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb5
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb5
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb6
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb6
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb6
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb6
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb6
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb7
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb7
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb7
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb8
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb8
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb8
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb8
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb8
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb9
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb9
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb9
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb9
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb9
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb10
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb10
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb10
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb10
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb10
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1807.02811
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb12
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb12
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb12
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb12
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb12
http://arxiv.org/abs/1611.02247
http://arxiv.org/abs/1611.02247
http://arxiv.org/abs/1611.02247
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb14
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb14
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb14
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb15
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb15
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb15
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb16
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb16
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb16
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb16
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb16
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb16
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb16
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb17
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb17
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb17
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb18
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb18
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb18
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb18
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb18
http://arxiv.org/abs/2008.06319
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb20
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb20
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb20
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb20
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb20
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb20
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb20
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb21
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb21
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb21
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb21
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb21
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb22
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb22
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb22
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb23
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb23
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb23
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb23
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb23
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb24
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb24
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb24
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb25
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb25
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb25
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb26
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb26
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb26
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb26
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb26
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb27
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb27
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb27
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb27
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb27
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb28
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb28
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb28
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb28
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb28
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb29
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb29
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb29
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb29
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb29
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb30
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb30
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb30
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb31
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb31
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb31
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb32
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb32
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb32
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb32
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb32

S.-N. Johnn and V.M. Charitopoulos

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., et al., 2019. Pytorch: An imperative style,
high-performance deep learning library. NeurIPS 32.

Perez, H.D., Amaran, S., Erisen, E., Wassick, J.M., Grossmann, LE., 2021. Optimiza-

tion of extended business processes in digital supply chains using mathematical
programming. Comput. Chem. Eng. 152, 107323.

Petsagkourakis, P., Sandoval, 1.0., Bradford, E., Zhang, D., del Rio-Chanona, E.A., 2020.

Reinforcement learning for batch bioprocess optimization. Comput. Chem. Eng.
133, 106649.

17

Computers and Chemical Engineering 204 (2026) 109415

Sung, C., Maravelias, C.T., 2007. An attainable region approach for production planning
of multiproduct processes. AIChE J. 53 (5), 1298-1315.

Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning: An Introduction. MIT Press.

Watkins, C.J., Dayan, P., 1992. Q-learning. Mach. Learn. 8, 279-292.

Zheng, X., Chen, Z., 2024. An improved deep Q-learning algorithm for a trade-off

between energy consumption and productivity in batch scheduling. Comput. Ind.
Eng. 188, 109925.

http://refhub.elsevier.com/S0098-1354(25)00418-1/sb33
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb33
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb33
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb33
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb33
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb34
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb34
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb34
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb34
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb34
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb35
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb35
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb35
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb35
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb35
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb36
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb36
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb36
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb37
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb38
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb39
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb39
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb39
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb39
http://refhub.elsevier.com/S0098-1354(25)00418-1/sb39

	A hybrid deep Q-learning approach to online planning and rescheduling of single-stage multi-product continuous processes
	Introduction
	Online reactive process scheduling
	Machine Learning-based Process Scheduling
	Contributions of this work

	Methodology
	TSP-based MILP integrated planning and scheduling model
	DQN Framework for Online Scheduling
	Markov Decision Process
	Online Scheduling Formulation via MDP
	Motivational example

	Proposed hybrid learning framework
	Deep Q-Network
	Hybrid Decomposition Framework
	Bayesian Optimisation

	Computational Experiments
	Experiment configurations
	Planning and Scheduling Problem Setup
	DQN Agent Setup and Evaluation
	State Representation Features

	Case Study 1: Single-period planning and scheduling
	Case Study 2: Multi-period planning and scheduling
	Study on Larger-scale Instances

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. TSP-based MILP Formulation
	Appendix B. Additional Plots
	Data availability
	References

