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 A B S T R A C T

Optimisation-based process scheduling methods lie at the core of the process supply chains, facilitating the 
efficient allocation of limited resources and ensuring profitable operations. The efficiency and adaptability of 
these methods are of paramount importance, especially when dealing with frequent modifications to existing 
scheduling plans, caused by uncertainties and unforeseen real-world disturbances. Compared to heuristic 
methods that heavily rely on instance-specific manual customisation and fine-tuning, reinforcement learning 
(RL) has the advantages of learning from existing experiments and generalising to unknown scenarios, thus 
automating the process with higher flexibility and adaptability. In this work, we propose an RL-based method 
that transforms a single-stage multi-product process scheduling problem, originally framed as a mixed-integer 
linear programming (MILP) problem, into a Markov decision process and trains the RL agent to identify 
the optimal production sequence. The trained agent is subsequently integrated into a simplified planning 
and scheduling linear programming (LP) framework to enable efficient decision-making for the re-optimised 
production sequence and time length. Results show that our proposed learning-based integrated decision-
making framework demonstrates strong computational efficiency and adaptability, outperforming both the 
benchmark random agent and heuristic approaches with minimal deviation from the optimal solution achieved 
by the state-of-the-art MILP solvers.
1. Introduction

Growing market competition and demand volatility constitute two 
of the most prominent factors that endanger the profitability and 
resilience of process industries (Badejo and Ierapetritou, 2022). The 
aim to efficiently organise production and meet the long-term manufac-
turing demands of multiple products necessitates the accommodation of 
frequent modifications due to unforeseen fluctuations such as product 
demand or electricity prices (Gupta et al., 2016; Castro et al., 2018). 
Production management encompasses two key components: planning, 
which involves resource planning over long time horizons, and schedul-
ing, which entails the detailed allocation of production tasks to specific 
resources (Perez et al., 2021). Optimising the coordination of plan-
ning and scheduling is imperative for enhancing the overall process 
supply chain efficiency. We therefore necessitate effective response 
mechanisms capable of addressing recurring optimisation needs and 
preventing financial losses (Kopanos and Puigjaner, 2019). In this 
work, we focus on the integrated planning and online rescheduling of 
multi-product continuous manufacturing systems through a novel hy-
brid deep Q-learning/linear programming (DQN/LP) framework with 
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the goal of facilitating real-time implementation of rescheduling for 
processing systems.

1.1. Online reactive process scheduling

While the conventionally sequential approach to planning and 
scheduling may neglect their interdependence and lead to suboptimal 
solutions, simultaneous approaches for addressing the integrated plan-
ning and scheduling problem via mixed integer linear programming 
(MILP) models can be time-consuming. Their computational complexity 
stems from the combinatorial nature of the underlying formulations as 
well as the inherent multi-scale coordination that is sought.

In recent years, there has been considerable research interest in the 
effective integration of planning and scheduling within process indus-
tries. Many studies in the literature aim to reduce the computational 
complexity and derive more computationally efficient frameworks. Pre-
vious studies by Erdirik-Dogan and Grossmann (2006, 2008) and Sung 
and Maravelias (2007) introduced several decomposition-based ap-
proaches to mitigate the exponential increase in computing effort as 
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instance size grows. Liu et al. (2008) and Charitopoulos et al. (2017, 
2019) proposed a hybrid time representation approach that circum-
vents the direct handling of continuous-time formulation within each 
period when the planning horizon expands.

To navigate dynamic industrial environments effectively, timely 
and reactive responses are crucial to managing various uncertainties, 
such as equipment malfunctions and rush order arrivals. Nevertheless, 
existing exact methods encounter challenges in accommodating re-
optimisation to address the evolving information promptly, thereby 
hindering their industrial applicability. For one, as suggested by Baker 
(1977), we inevitably need to address an infinite real-time process using 
decisions derived from a finite horizon planning model. The passive 
re-optimisation of models triggered by individual events is inherently 
difficult and inefficient in managing an ongoing system operating in-
definitely, where the conditions and parameters influencing optimality 
can shift significantly over time (Harjunkoski et al., 2014). Further-
more, computational complexity associated with exact methods limits 
the feasibility of re-optimising and generating entire new solutions 
from scratch whenever new uncertainties arise. This complexity not 
only demands substantial computational resources but also introduces 
potential delays that can hinder the timely implementation of optimal 
decisions (Li and Ierapetritou, 2008).

Consequently, the shortcomings of traditional decision-making ap-
proaches underscore the need for an automated online system that 
can bolster decision-making efficiency to handle large datasets amidst 
rapid modifications based on uncertainties unfolding in a sequential 
and timely manner.

Many pertinent studies on online scheduling have been conducted 
that incorporate re-optimisation to address real-time information in 
critical characteristics such as demand and time uncertainties in an 
efficient manner. Framinan et al. (2019) highlighted the significance 
of frequently updating and maintaining the decision-making process 
based on event-driven rescheduling policies. Gupta and Maravelias 
(2019), Kopanos and Pistikopoulos (2014) and McAllister et al. (2019) 
demonstrated that carefully designed models and efficient algorithms 
with lower processing times can significantly enhance the implemen-
tation of the online decision-making system. However, their proposed 
models remain MILP, posing limitations in terms of practicality, par-
ticularly for problems that require rapid decision determination and 
updates when compared to LP.

1.2. Machine learning-based process scheduling

In recent years, the integration of machine learning (ML) into 
process scheduling has received increasing attention (Hubbs et al., 
2020a), with recent studies showing very promising advancements and 
developments of the ML applications in the chemical industry (Chi-
ang et al., 2022; Fuentes-Cortés et al., 2022). Reinforcement learning 
(RL), a branch of ML that learns optimal strategies to map system 
states to the optimal actions through trial-and-error by interacting with 
an uncertain and dynamic environment, demonstrates the potential 
for reactive online scheduling with lower computational costs (Hubbs 
et al., 2020b). Unlike traditional rule-based learning systems, RL is 
a popular training approach that exhibits the potential to discover 
decision-making strategies generalised from its learned experiences. 
Recent years have witnessed a notable surge in the application of RL 
techniques within the process industry to optimise complex industrial 
processes characterised by dynamic and stochastic behaviours. We refer 
the interested readers to Lee et al. (2018) and Nian et al. (2020) for 
reviews of RL applications within the field of industrial process systems.

Deep reinforcement learning (DRL) leverages the strengths of arti-
ficial neural networks to handle high-dimensional complex problems. 
The DRL models can be broadly categorised into policy-based methods 
and value-based methods. Many works with policy-based methods for 
process systems that directly estimate the probability of selecting a 
particular action from a given state, include actor–critic (Liu et al., 
2 
2020) advantage actor–critic (Hubbs et al., 2020a), deep deterministic 
policy gradient (Ma et al., 2019), and policy gradients (Petsagkourakis 
et al., 2020). In contrast to policy-based RL algorithms that optimise the 
agent’s policy to guide its action, value-based RL algorithms focus on 
approximating the value of each action or particular state to maximise 
the expected reward function.

Deep Q-learning (DQN) is a popular value-based off-policy algo-
rithm within the RL framework that utilises experience replay and 
target networks to ensure stable learning by estimating the quality 
of a selected action at each time step. It demonstrates strong end-to-
end learning capability to learn from experiences generated by differ-
ent policies and effectively handle high-dimensional state spaces with 
discrete action spaces.

The reasons for us to consider DQN are two-fold: firstly, our problem 
involves a finite set of possible actions corresponding to the selection of 
which products to schedule next in a production sequence, which forms 
a discrete action space that fits the architecture and algorithm designs 
of DQN. Secondly, DQN as an off-policy algorithm, owns greater sample 
efficiency compared to policy gradient methods due to its ability to 
utilise off-policy samples (Gu et al., 2016), thereby eliminating the 
necessity for on-policy sample collection.

Existing studies applying Q-learning to the scheduling problem 
include the work of Zheng and Chen (2024) on developing a DQN 
framework with an actor–critic architecture to optimise model policies 
for job sequencing and adjusting batch speeds in a single-machine 
batch scheduling problem. Pan et al. (2021) proposed an oracle-assisted 
constrained Q-learning algorithm to optimise a controller policy and 
ensure that a given set of chance constraints is satisfied with a high 
probability in a nonlinear stochastic optimal control system. More 
generally, Karimi-Mamaghan et al. (2022) integrated Q-learning into 
the iterated greedy metaheuristic as an efficient operator selection 
mechanism for the permutation flow-shop scheduling problem. Their 
results illustrate the superior performance of the proposed Q-learning 
framework that can effectively surpass the performance of heuris-
tic methods in enhancing solution quality and commercial solvers in 
reducing computational time.

1.3. Contributions of this work

This work introduces a novel hybrid learning-based decomposition 
framework that integrates RL with a planning and scheduling reduced 
MILP model to actively and recurrently optimise the online reschedul-
ing of production sequences for manufacturing processes. The proposed 
framework focuses on a single-machine, single-line continuous process 
setting. In scenarios where multiple identical parallel lines are assumed 
to operate independently with no inter-line interactions (e.g., material 
transfers between lines), the same learning-based algorithm can be 
deployed concurrently across the parallel lines. This configuration ef-
fectively forms a set of single-stage multi-product continuous machines 
that operate under no material transfers, each optimising its operations 
in isolation as noted by Liu et al. (2010). We employ RL and decompose 
the entire problem into two interdependent decision-making steps, 
ensuring a feasible computational time frame and allowing for timely 
updates to the solution as new data or uncertainties arise.

The proposed hybrid decomposition framework can be divided into 
two stages: model training and model implementation. During the 
model training stage, we opt for DQN to identify optimal produc-
tion sequences for each period in a single-unit multi-product planning 
and scheduling problem. We frame the production sequencing as a 
Markov decision process (MDP), a mathematical model of decision-
making characterised by discrete time steps involving states, actions 
and rewards that form the foundation of RL. The DQN agent, after 
constructing a production sequence, is rewarded proportionally for the 
enhancement of the solution quality. A more detailed description of the 
problem formulation can be found in Section 2.2.2.
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Fig. 1. A conceptual representation of the planning and scheduling problem. 
During the subsequent model implementation stage for real-time 
rescheduling, the trained agent based on its refined strategy gener-
ates production sequences in an offline manner to support the online 
rescheduling of production sequences. For each round of reschedul-
ing, the identified sequence is utilised as input for a linear program-
ming (LP) model to determine the remaining decisions on production 
amount, backlog and inventory levels, and schedule length. The whole 
set of decisions is updated continuously as new information becomes 
available.

We demonstrate the effectiveness of our hybrid decomposition 
framework in the context of a multi-product continuous manufacturing 
process over multiple periods (weeks). Our findings reveal that the 
computational time is approximately halved compared to conventional 
MILP formulations with limited loss of optimality compared to the 
MILP global solution. Through a series of case studies, the DQN-based 
agent also demonstrates better performance on average in producing 
sequences with a higher profit than the random learning baselines and 
heuristic approach. By bridging the gap between RL and traditional 
optimisation techniques, this study provides an efficient and scalable 
decision-making framework for real-time continuous manufacturing 
processes.

To summarise, the primary contributions of this work are:

• We propose a novel hybrid decomposition framework that in-
tegrates DQN with MILP to efficiently handle decision-making 
on the re-optimised production sequence and process scheduling 
length in dynamic environments.

• We demonstrate the efficiency and flexibility of the proposed 
framework by implementing it to planning and scheduling prob-
lems with varying product counts under both single-period and 
multi-period scenarios in industrial process control.

• We benchmark the proposed framework against established meth-
ods, including random learning baselines, a heuristic approach, 
and state-of-the-art MILP solvers, showcasing competitive per-
formance in both computational efficiency and solution quality 
provided by our approach.

The remainder of the article is structured as follows: Section 2 
introduces the methodology and problem formulation of the MILP and 
DQN models. Section 3 presents the two case studies and describes 
relevant results. Lastly, Section 4 concludes the work and outlines 
future research directions.

2. Methodology

2.1. TSP-based MILP integrated planning and scheduling model

We consider a continuous-time representation with the total plan-
ning horizon divided into discrete periods (weeks). Production de-
mands arrive at the beginning of each planning period (𝑝). As shown 
in Fig.  1, the planning and scheduling problem involves determin-
ing the set and amount of products to be manufactured at the plan-
ning level, followed by constructing a production sequence, establish-
ing production durations, inventory levels, backlogs, and inter-period 
changeovers within each subsequent period at the scheduling level.

To investigate the planning and scheduling problem, we present the 
complete MILP formulation outlined in the Appendix, which is derived 
from the framework introduced by Liu et al. (2008). 
3 
2.2. DQN framework for online scheduling

2.2.1. Markov decision process
RL is a learning method that maps states to actions to maximise 

the expected future rewards (Sutton and Barto, 2018). MDPs are a fun-
damental mathematical framework that model a sequential decision-
making process, based on which we can apply the RL techniques. An 
MDP can be represented by a tuple (𝑆,𝐴, 𝑃 ,𝑅, 𝛾), containing the state 
space, action space, transition function, reward function and discount 
factor. A state 𝑠 ∈ 𝑆 is a representation of the specific time step 
within an environment that the agent is in. At each non-terminal 
state 𝑠, the agent selects an action 𝑎 ∈ 𝐴(𝑠) from the set of actions 
available at this state and receives a reward 𝑟 according to a given 
reward function 𝑅(𝑠, 𝑎), which is the immediate benefit for selecting 
the state–action pair. Then, the agent reaches a new state based on the 
transition probability that describes the likelihood of moving from one 
state to another given an action. The key defining feature of a MDP is 
the Markov property, i.e. that the future state of the system is solely 
dependent on the preceding state–action pair, rendering the history of 
events irrelevant.

The agent engages with the environment through episodes, each of 
which encapsulates the agent’s interactions over time as a sequential 
chain of states, actions, and rewards. Each episode of the agent–
environment interaction can be defined as a trajectory in the form 
of 𝑠𝑡 → 𝑎𝑡 → 𝑟𝑡 → 𝑠𝑡+1 that terminates with a terminal state 𝑠+. A 
conceptual representation of MDP is depicted in Fig.  2. By receiving 
feedback in the form of rewards from the environment, the agent 
is trained to refine its strategy with actions in dynamic states and 
formulate an optimal policy 𝜋(𝑎|𝑠) that dictates the agent’s behaviour 
to maximise the cumulative future rewards. Central to this learning is 
the state–action value function 𝑄(𝑠, 𝑎), also denoted as Q-values, which 
quantifies the expected rewards associated with taking any particular 
state–action pair by following 𝜋.

2.2.2. Online scheduling formulation via MDP
We make several key assumptions to streamline the analysis of 

the online planning and scheduling problem. Firstly, we focus on a 
continuous manufacturing process with a single production unit that 
handles multiple products over a single or multiple periods, where 
each period is equivalent to one week. The single period setting can 
be treated as a special case of the multi-period setting. Demands for 
different sets of products become available at the beginning of each 
period. Each product can be produced at most once in each period, 
with a known changeover time to any other product and associated 
transition costs for switching between products.

The proposed hybrid decomposition framework utilises DQN to de-
velop a learning-based decision system for online production sequence 
scheduling. The problem configuration that the hybrid framework is 
designed to handle is presented in Fig.  1. Specifically, our goal is 
to employ DQN to identify sequences of products that maximise the 
objective function (3a). The constructed sequence is subsequently in-
corporated into a simplified LP model, derived from the full MILP 
formulation (3), to determine the remaining decisions on production 
quantity and duration. The complete decision framework iteratively 
generates the production sequence determined by DQN and uses it 



S.-N. Johnn and V.M. Charitopoulos Computers and Chemical Engineering 204 (2026) 109415 
Fig. 2. A conceptual representation of MDP.
to calculate the production duration via the simplified LP model. To 
develop the learning-based framework, it is essential to first transform 
the production scheduling into a MDP for each period. The process for 
achieving this is outlined below.

The production scheduling task is episodic, each of which involves 
the agent completing a sequence of product selections. In this prob-
lem, each episode comprises a fixed number of periods indexed as 
𝑃 = {1,… , 𝑝}, with each period consisting of multiple time steps 
represented as 𝑇 = {1,… , 𝑡}, where the number of time steps can differ 
between periods within the same episode. Each period is formulated as 
a MDP starting with an initial state 𝑠0, which corresponds to the initial 
solution where no production sequence has yet been formed, along with 
a predefined sequence length limit, which is capped at the total number 
of products with nonzero demand that can be chosen and added to the 
sequence.

The agent is provided with two types of discrete actions that alter-
nate sequentially within each period: (1) picking an available product 
with a nonzero demand to add to the end of the sequence during 
the product selection phase, and (2) making a binary choice of either 
continuing to include new product at the end of production sequence or 
terminating the product selection process during the process termination
phase. Visualised in Fig.  3, the agent alternates between these two types 
of actions until either all the available products have been included in 
the sequence, or when the agent decides to quit and hence ends the 
sequence with only a subset of demanded products, thus defining the 
terminal state.

After an action is selected, the agent receives a reward based 
on the improvement in the objective function. Upon completion, the 
environment provides a reward and transitions the agent to a new state, 
updating its stored information accordingly to reflect the sequential 
progression. For the single-period scenario, when a terminal state is 
reached, the environment resets and the same process repeats with 
another randomly generated initial state 𝑠0. For the multi-period setting 
in which each episode includes a fixed number of periods 𝑝1, 𝑝2,… , 𝑝𝑛, 
the terminal state of any non-final period 𝑝𝑖 ≠ 𝑝𝑛 transitions the agent 
to the initial time step of the subsequent period 𝑝𝑖+1 within the same 
episode. This transition entails updating the inventory, backlog, and 
product demand for the sequential period while keeping the episode-
based information including inter-product transition time and product 
sale price unchanged. At the end of the last period 𝑝𝑛 within the 
episode, the agent transitions to begin a new episode, prompting a reset 
of the environment.

The production scheduling problem for each period can be rep-
resented as a directed complete graph 𝐺 = (𝑉 ,𝐸) where each node 
represents a product and each directed arc as the transition between a 
pair of products (Charitopoulos et al., 2017). A production sequence is 
represented by a path comprising nodes and arcs, where the stopping 
time at each node denotes the production time, and each arc represents 
the inter-product changeover time. Each MDP state can be represented 
by a feature matrix comprising a list of features either dependent 
or independent of the current production sequence. The independent 
features contain relevant information about each node, such as the 
product index, production demand, unit price, inventory level, and 
backlog level, regardless of whether this node has been included in the 
production sequence or not. Moreover, a list of additional static features 
captures state-independent information such as the transition time and 
cost between any pair of nodes. These features remain static throughout 
4 
the period and are unaffected by the extension of the production 
sequence during execution. Conversely, the dynamic features of a state 
change as different products are selected, indexed by the time step 𝑡
of each period within an episode. A detailed description of the feature 
matrix for the planning and scheduling problem is given in Table  1.

We denote the existing partial solution at state 𝑠𝑡 as 𝐹𝑡, which 
contains the production sequence up to the most recently selected 
product. Additionally, a boolean indicator 𝜑𝑡 specifies the action phase: 
𝜑𝑡 = 0 when the agent is at the product selection phase expanding the 
production sequence, and 𝜑𝑡 = 1 when it is at the process termination 
phase determining whether to continue or terminate the selection 
process. Furthermore, 𝑏𝑡 indicates the remaining action capacity that 
is available to the agent at each step 𝑡. The total number of steps can 
assume any integer value between 1 and twice the product sizes and 
may vary across different periods within the same episode. 

We now formulate each element of the MDP within the context of 
the production scheduling problem with the details below:

• States 𝒮 : each state 𝑠𝑡 is a tuple (𝐺,𝐗𝐧,𝐗𝐞, 𝐹𝑡, 𝑏𝑡, 𝜑𝑡, 𝜂𝑡), wherein 
the graph 𝐺 and feature set 𝐗𝐧 and 𝐗𝐞 contain all the node and 
edge features, respectively. 𝐹𝑡 represents the solution formed as a 
sequence of products at time 𝑡. The available action budget 𝑏𝑡 is 
a non-negative integer not exceeding the total number of nodes. 
Boolean variable 𝜑𝑡 indicates the action phase at step 𝑡, whether 
it is permissible to select an additional product, or to choose 
to terminate the process or not. Boolean variable 𝜂𝑡 indicates 
whether an episode reaches a terminal state.

• Actions A encompasses both the selection of an available product 
and the determination of whether to continue or terminate the 
selection process, together determined by the binary phase indi-
cator 𝜑𝑡 of the state. When 𝜑𝑡 = 0, the available set of actions is 
the available products and are defined by the set 𝐴(𝑠𝑡) = {𝑖 ∶ 𝑖 ∉
𝐹𝑡, 𝐷𝑖 + 𝐵𝑖 > 0}, where 𝐷𝑖 and 𝐵𝑖 corresponding to the demand 
and backlog level for the given period this time step 𝑡 belongs to. 
When 𝜑𝑡 = 1, the action is to decide whether or not to terminate 
the process, with two available actions 𝐴(𝑠𝑡) = {𝐶, 𝑇 }.

• Transitions 𝑃 : when 𝜑𝑡 = 0, an available product not yet attached 
to the sequence is selected, decreasing the action budget 𝑏𝑡 by 
1. The selected product 𝑖𝑡 is appended to the current production 
sequence 𝐹𝑡−1 = {𝑖1, 𝑖2,… , 𝑖𝑡−1}, updating it to 𝐹𝑡 = {𝑖1, 𝑖2,… , 𝑖𝑡}. 
The product 𝑖𝑡 is then masked as unavailable within the feature set 
𝑋2 during the remaining steps until the environment resets to the 
sequential period or initiates a new episode if the current period 
is the last. Subsequently, 𝜑𝑡 assumes the value of 1 to start the 
process termination decision phase, during which the transition 
based on the chosen action either terminates the process, marking 
the state as terminated by setting 𝜂𝑡 = True, or continues the 
process and alternates to the sequential product selection phase, 
setting 𝜑𝑡 = 0. 𝜑𝑡 alternates cyclically between the two values 0
and 1, with each value corresponding to the phase that follows 
immediately to the completion of the preceding phase.

• Rewards 𝑅 are provided, either when the last available product 
has been inserted so that the action budget is exhausted with 
𝑏𝑡 = 0 at 𝜑𝑡 = 0, or when the ‘‘terminate’’ option is picked at 𝜑𝑡 = 1
so that a state becomes the terminal state and a reward is given. 
The reward takes the value of the improvement in solution quality 
that can be assessed via an objective function 𝑓 . Concretely, 𝑅𝑡 =
𝑓 (𝑠𝑡) is computed using (3a) and equals 0 otherwise for all the 
non-terminal states.



S.-N. Johnn and V.M. Charitopoulos Computers and Chemical Engineering 204 (2026) 109415 
Fig. 3. Sequential decision process alternating between product selection and process termination phases, where the former phase provides an action set including 
products 1 to 5 and the latter includes only two actions ‘‘continue’’ and ‘‘terminate’’. Products without demand and previously selected products are excluded 
from the action set. Auxiliary start node S and end node E are included for clarity. The final production sequence is formed as 2 → 4 → 3 with the MDP process 
terminated at the third iteration of the process termination phase, during which the agent terminates further selection process, leaving product 1 unselected for 
this particular period. A reward is given at the end point E.
Fig. 4. Proposed hybrid decomposition framework to tackle the planning and scheduling problem. The upper row of graphs refers to the product selection phase, 
and the lower row to the process termination phase.
2.2.3. Motivational example
Fig.  4 showcases the visualisation of a MDP episode with a single 

period, which begins with a starting state 𝑠0 and ends at the terminal 
state 𝑠+, which is reached either when the agent selects the termination 
option at 𝜑𝑡 = 1 or when the selection budget is exhausted at 𝜑𝑡 = 0. 
We assume an initial state 𝑠0 based on a randomly generated initial 
set of parameters, and all products 1 to 6 are associated with positive 
demands. For simplicity, each state does not explicitly display the phase 
indicator 𝜑𝑡.

From the top left-hand graph in the figure, the agent starts at state 
𝑠0 with an initial budget 𝑏0 = 6. The value of 𝜑0 is initialised to 0
to reflect the product selection phase, during which the agent selects 
from the action set (marked in white) its first action 𝑎0 = ‘‘product 
1’’ (marked in red) according to its trained strategy to add to the 
production sequence and transitioned to the sequential state 𝑠1 in the 
bottom left graph. All infeasible actions in this state are marked in grey. 
In the subsequent state 𝑠1, the indicator 𝜑1 assumes the value 1, and 
the agent selects 𝑎1 = ‘‘Continue’’, thereby maintaining the sequencing 
process with 𝜂1 = False and transitioning to the next state with phase 
indicator updated to 𝜑2 = 0. Moving to state 𝑠2, the agent selects 
𝑎2 = ‘‘product 3’’ from the available actions, updating the production 
sequence to 𝐹2 = {1, 3}. The product selection process continues as the 
agent iteratively selects actions 𝑎4 = ‘‘product 4’’, 𝑎6 = ‘‘product 6’’ 
and 𝑎8 = ‘‘product 2’’, after choosing in their preceding states 𝑎3 =
𝑎 = 𝑎 = ‘‘Continue’’ during the process termination phase. Eventually, 
5 7

5 
the agent chooses 𝑎9 = ‘‘Terminate’’, thereby terminating the process 
and forming a sequence 𝐹8 = {1, 3, 4, 6, 2} with 5 products scheduled 
inside the sequence, leaving product 5 unselected for the episode. The 
newly constructed production sequence 𝐹8 is then integrated into the 
MILP model, with the discrete decision variables treated as redefined 
inputs, simplifying the MILP model into an LP problem on determining 
the remaining continuous decisions. This will be further described 
in Section 2.3.2.

2.3. Proposed hybrid learning framework

2.3.1. Deep Q-network
Q-learning (Watkins and Dayan, 1992) is a popular model-free RL 

approach employed to solve MDPs by iteratively updating the Q-values 
according to the rule: 

𝑄(𝑠, 𝑎) ← (1 − 𝛼L) ⋅𝑄(𝑠, 𝑎) + 𝛼L ⋅
(

𝑟 + 𝛾 ⋅ max
𝑎′∈(𝑠′)

𝑄(𝑠′, 𝑎′)
)

(1)

where 𝑄(𝑠, 𝑎) is the previous Q-value for the (𝑠, 𝑎) pair, the term 
max𝑄(𝑠′, 𝑎′) denotes the maximum Q-value amongst all the possible 
actions in the subsequent state 𝑠′, and 𝑟 represents the immediate 
reward the agent receives by performing the particular state–action 
pair. The discount factor 𝛾 balances immediate rewards against future 
rewards, influencing the agent’s preference for short-term gains versus 
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long-term benefits. Through the iterative refinement in the MDP, the 
agent refines its policy to estimate the optimal Q-values.

Deep neural networks are frequently utilised as function approxi-
mators for the 𝑄(𝑠, 𝑎) function, which facilitates the generalisation of 
Q-values across states that share common characteristics and therefore 
may consequently yield similar future rewards. Function approxima-
tion is particularly advantageous for problems with large state spaces, 
which contrasts with the traditional Q-table approach: Unlike Q-tables 
that explicitly record Q-values for every state–action combination, 
DQN provides a more scalable and efficient means of approximating 
the Q-values by bypassing the memory challenges associated with 
maintaining extensive records.

We employ the DQN algorithm (Mnih et al., 2015) for agent train-
ing, incorporating key techniques including the replay buffer and target 
network. The replay buffer is an embedded memory replay mecha-
nism that stores the agent’s past interactions with the environment 
as (𝑠, 𝑎, 𝑟, 𝑠′,done) tuples inside a memory tank. During training, the 
agent samples mini-batches from the memory tank to update the main 
network parameters, enabling the utilisation of transition tuples drawn 
from various historical time points stored inside the buffer, thereby 
enhancing training stability compared to learning solely from the most 
recent transition tuples in an online manner. The main and target 
networks are function approximators, with the former responsible for 
estimating the predicted Q-values and the latter for providing the target 
Q-values. The target network is a duplicate of the main network that 
is updated periodically by copying the main network’s parameters. 
Common optimisation methods, such as stochastic gradient descent, are 
employed to minimise the mean squared error between the predicted 
and target Q-values.

During training, the DQN algorithm samples iterative batches of pre-
viously taken actions from the replay buffer to train the main network. 
In this step, the algorithm takes the current state of the environment 
as input and outputs a vector of Q-values corresponding to the list 
of available actions. The main network parameters are periodically 
transferred to the target network at a certain number of episodes to 
stabilise the training process. The target network remains consistent 
over this certain interval and is used to predict the future Q-values for 
state–action pairs.

2.3.2. Hybrid decomposition framework
The proposed hybrid decomposition framework, depicted in Fig.  5, 

begins with training the production sequencing agent within the DQN 
framework marked in the blue dotted box. The production sequencing 
process is cast into a MDP for the DQN agent to iteratively learn to 
select products and form a production sequence until reaching a termi-
nal state for each period. The agent needs to determine the sequence 
based on randomly generated historical product demands that optimise 
the overall production profit while minimising the penalty costs.

The proposed framework adopts an open-loop optimisation ap-
proach. During training, the DQN agent’s policy is re-evaluated pe-
riodically for each sample batch, where environmental feedback is 
applied to adjust future actions. Once the training is finished, the neural 
network parameters are fixed and utilised for evaluation.

During the DQN training, the agent forms experience replay and 
stores the agent–environment interaction as tuples of (𝑠, 𝑎, 𝑟, 𝑠′,done) in 
the replay buffer. Next, a sample batch of transition tuples is utilised 
to estimate the predicted Q-value 𝑄𝜃(𝑠, 𝑎) as the output of the main 
network, given the specific state–action pair and under the current 
main network parameter set 𝜃. The target Q-value is computed using 
𝑦 = 𝑟 + 𝛾 ⋅ max𝑎′ 𝑄𝜃(𝑠′, 𝑎′) ⋅ (1 − done), which the main network learns 
to predict. Subsequently, the main network parameters 𝜃 are updated 
using the Adam optimiser, which aims to minimise the discrepancy 
between the two networks, guided by the loss function computed 
according to (𝑦 − 𝑄𝜃(𝑠, 𝑎))2. Finally, the target network is periodically 
updated by copying from the main network over the MDP dynamics. 
6 
After the DQN agent is trained, it is embedded into the hybrid 
framework and determines the production sequence in an offline man-
ner whenever new information, such as product demands, becomes 
available and deteriorates the current decision. When a new produc-
tion sequence is formed, the sequence order is converted into the 
corresponding set of discrete decisions, specifically the product indices 
𝑂𝑖,𝑝, the first and last products 𝐹𝑖,𝑝 and 𝐿𝑖,𝑝 inside the sequences, 
and the procession relationships between products 𝑍𝑖,𝑗,𝑝 and ZF𝑖,𝑗,𝑝. 
Those sequencing-related discrete decision variables are then treated as 
known inputs and passed onto the MILP model, which is simplified to 
be an LP formulation presented below as (2). The simplified LP model 
resolves the remaining continuous decisions that include the produc-
tion amount, time, sales, inventory, and backlog decisions, which are 
addressed with the chosen optimisation solver.

max
∑

𝑖∈𝐼

∑

𝑝∈𝑃
PS𝑖 ⋅ 𝑆𝑖,𝑝 −

∑

𝑖∈𝐼

∑

𝑝∈𝑃
CB𝑖 ⋅ 𝐵𝑖,𝑝 −

∑

𝑖∈𝐼

∑

𝑝∈𝑃
CI𝑖 ⋅ 𝑉𝑖,𝑝 (2a)

subject to
(3m), (3n), (3o), (3p), (3q), (3r)

Since all discrete decision variables are predetermined based on the 
production sequences generated by the DQN agent, the MILP formu-
lation is simplified by treating all binary (𝐸𝑖,𝑝, 𝐹𝑖,𝑝, 𝐿𝑖,𝑝, 𝑍𝑖,𝑗,𝑝, 𝑍𝐹𝑖,𝑗,𝑝)
and integer (𝑂𝑖,𝑝) decision variables as parameters. This reduction 
transforms the original MILP model into an LP model that can be 
operated efficiently and solved significantly faster online compared to 
the original combinatorial problem. 

2.3.3. Bayesian optimisation
We employ Bayesian optimisation (BO) (Frazier, 2018) for hy-

perparameter tuning for the DQN framework to optimise algorithm 
performance. BO builds a probability model of the objective function, 
using it to guide the hyperparameter selection process to evaluate the 
true objective function of the underlying problem. The advantage of 
BO lies in its ability to efficiently converge to near-optimal solutions 
within a relatively small set of samples. The algorithm is outlined in 
the following Algorithm 1.
Algorithm 1 Bayesian Optimisation for DQN Hyperparameters
1: Input: Objective function 𝑓 (𝑥), random sample domain 𝐷 =

{(𝑥𝑖, 𝑓 (𝑥𝑖)}𝑖∈𝑁
2: Define surrogate model 𝑆 and acquisition function 𝐴
3: for 𝑡 ∈ {1, ...𝑇 } or until convergence: do 
4: Find 𝑥∗ = max𝑥 𝐴(𝑥, 𝑆𝑡−1)
5: Evaluate current objective 𝑓 (𝑥∗)
6: Update sample domain 𝐷 ← 𝐷 ∪ (𝑥∗, 𝑓 (𝑥∗))
7: Fit new surrogate model 𝑆𝑡 to updated sample domain 𝐷
8: end for
9: Output: return 𝑥𝑏𝑒𝑠𝑡 = max𝑥∈𝐷 𝑓 (𝑥) as best hyperparameter set
We select Gaussian processes as the surrogate model for its ease 

of optimisation and wide application to functions, and expected im-
provement as the acquisition function. The two functions are com-
monly chosen for their advantageous trade-off between exploration and 
exploitation (Bergstra et al., 2011).

We apply BO to optimise on 5 DQN model hyperparameters that 
include the learning rate 𝛼𝐿 and the discount factor 𝛾 governing the 
trade-off between short-term and long-term rewards from (1), the initial 
exploration rate 𝜖0 and the decay rate 𝜖 in the epsilon-greedy policy, 
and the maximum batch size 𝑏𝑎𝑡𝑐ℎ which controls the sample size for 
the replay buffer. We establish a boundary for each hyperparameter, 
wherein BO identifies its optimal value during the search. Once the best 
set of hyperparameters is determined by BO, the set is subsequently 
treated as inputs for the training and evaluation of the DQN agent 
within the hybrid decomposition framework.
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Fig. 5. Proposed hybrid decomposition framework to tackle the planning and scheduling problem as a sequential problem by DQN agent and an LP problem by 
linear programming solvers.
3. Computational experiments

This section showcases several evaluation case studies conducted 
using the trained DQN agents under single-period and multi-period 
scenarios. The solution quality and efficiency of the proposed DQN-
LP decomposition framework are analysed by comparison to other 
baselines and the optimal MILP solutions. Section 3.1 discusses the 
experimental design and parameter setup. Section 3.2 and Section 3.3 
present case studies to analyse the DQN-LP framework performance 
in single-period and multi-period scenarios, respectively. Section 3.4 
examines the profit and a range of penalty costs across various in-
stance sizes, and investigates the number of constraints and variables 
encountered by the original MILP model and the proposed hybrid 
framework. 

3.1. Experiment configurations

3.1.1. Planning and scheduling problem setup
For the single-period scenarios, we evaluate the performance of the 

hybrid decomposition framework over a predetermined instance size 
(fixed number of products) and one week that encompasses 168 h. For 
the multi-period scenarios, in which each episode encompasses multiple 
periods (weeks), the DQN agent iteratively predicts the production 
sequence of each period before proceeding to the subsequent period 
of the same episode. Each episode begins with a reset of parameter 
values that remain static throughout the duration of the episode and 
are updated only when the current episode completes. Consequently, 
the parameter updates for multi-period are consistent with those in the 
single-period scenario.

The parameters are generated from the given distributions below. 
Within each period of a particular episode, the unit of demand gen-
erated for each product follows a uniform distribution within the 
range [0, 20]. The sales quantity is constrained by the sum of each 
product’s total demand and any backlog from the previous period. The 
production level is not restricted by the demand constraints, but once a 
product is selected and sequenced, it must have a minimum production 
of at least 1 unit to allow sufficient warm-up and cool-down time for 
the machine.

At the beginning of each episode, the sale price for all products 
(𝑃𝑆𝑖) is generated according to a uniform distribution within the range 
of [5, 20] per unit. The inventory and backlog costs in each episode 
are adhered to 10% and 20% of the generated sale price for each 
7 
unit of product, respectively. The inventory and backlog levels at the 
initial state that signify the start of the first period in each episode 
are both initialised to 0. For the multi-period scenario in which an 
episode contains multiple periods, the inventory and backlog levels 
are calculated based on information from the preceding period via 
constraints (3p) and (3q), respectively. The production rate, following 
a conversion metric of 0.7 units per hour, dictates the conversion scale 
between the quantity produced and the time required for production. 
Lastly, the inter-product changeover times are generated from a range 
of [30, 100] minutes for each pair of different products within each 
episode. For the single-period setting, only inter-product changeover 
times are considered and referred to as ‘‘inner transitions’’. In the 
multi-period setting, both inter-product and inter-period changeovers 
are accounted for, where the latter is referred to as ‘‘outer transitions’’. 
The outer transitions in a multi-period setting can be treated as the 
changeover time from the last product of the previous period to the 
first product in the subsequent period, which is generated using the 
same range of changeover time parameters.

3.1.2. DQN agent setup and evaluation
During the model training phase, a random seed is utilised for 

each episode to determine the parameter generation. The DQN agent 
undergoes 10,000 episodes, which is equivalent to approximately 5 h 
of training time. Throughout the training, validation of the agent’s 
performance occurs every 25 steps. At each validation step, the cur-
rent network is used to predict outcomes for a designated set of 64 
validation scenarios, each associated with an individual random seed 
not utilised during training. The total objective value is calculated to 
assess whether the current network demonstrates sufficiently strong 
prediction accuracy to replace the previous network as the best model 
with its corresponding parameters stored in the system.

We define the domain of learning rate to be 𝛼L ∈ [0.00001, 0.001] and 
employ the stochastic gradient method with the Adam optimiser to it-
eratively update the neural network parameters using sampled batches. 
We set the maximum batch size of the replay buffer to be between 
[128, 1024] and a dynamical sample batch size equal to 20% of the 
maximum size. The agent employs an epsilon-greedy policy, generating 
a random number between 0 and 1 at each time step. Any number 
smaller than epsilon results in a random selection of action from the 
action set. Otherwise, the agent greedily selects the action associated 
with the highest Q-value as estimated by the network. The exploration 
rate governs the balance between exploration and exploitation: towards 
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Table 1
Features used by DQN agent to represent state.
 Feature Type Rescale Description  
 decision step global onehot indicate whether 𝜑𝑡 = 0 or 1  
 sequence length global maxabs sequence length at current step  
 product index indep maxabs all product indices in current episode  
 product demand indep maxabs all product demands in current episode  
 inventory level indep maxabs all product inventory levels in current episode  
 backlog level indep maxabs all product backlog levels in current episode  
 unit price indep maxabs all product prices in current episode  
 in-or-not dep onehot if a product is included or not in sequence  
 position index dep maxabs the position of a product in sequence  
 pairwise distance dep maxabs changeover time between current and previous products  
 cumul distance dep maxabs total changeover times between all products in sequence 
 is-last-action dep onehot whether current product is the last chosen  
Fig. 6. Training progression graphs for problems with 10 products (left) and 20 products (right).
the beginning of training, the agent is given a much larger epsilon 
value to allow the exploration of more actions with similar probability, 
whereas a decrease in the rate leads towards the exploitation of actions 
with the highest Q-value. We set the initial exploration rate 𝜖0 to be 
between [0.1, 1.0] with a decay rate between [0.0001, 0.01]. Lastly, the 
discount factor 𝛾 is set within the boundary [0.9, 0.999] to be optimised 
via BO.

During the model implementation phase, the trained DQN agent 
is embedded into the hybrid framework and its offline performance 
is assessed based on 50 distinct evaluation rounds. To benchmark the 
performance of the proposed hybrid DQN-LP framework, it is compared 
against three baseline approaches: a random baseline agent (RAN) with 
a uniform random strategy that selects all possible actions at each 
state with equal probability, a travelling salesman algorithm (TSP) that 
utilises a local search-based heuristic to iteratively construct sequence 
while ensuring the total time capacity is satisfied and simultaneously 
tracking the best sequence achieved so far, and a full MILP model 
solved using the CPLEX optimizer (MIP). This comparison aims to 
highlight the effectiveness of the DQN-LP framework in optimising 
process scheduling with stochasticity in instance parameters.

The neural network model is implemented and executed using 
Python 3.8.5 and PyTorch 2.3 (Paszke et al., 2019), while the MILP 
model was coded using Pyomo 6.7 (Hart et al., 2011) and solved using 
IBM ILOG CPLEX 20.1 optimizer with Python interfaces. All models are 
developed and run on a workstation with a 2 GHz Quad-Core Intel Core 
i5 processor and 32 GB memory.

3.1.3. State representation features
Now we introduce the features for representing the DQN states. 

The feature matrix includes the following information given in Table 
1, in which the node-based features can be categorised into global 
features and local features, where the latter can be further grouped 
into sequence-dependent (‘‘dep’’) and sequence-independent (‘‘indep’’) 
features. The sequence-dependent features are only included when 
the corresponding product has been selected and placed inside the 
8 
sequence, otherwise the corresponding position has a value of 0. On the 
contrary, the sequence-independent features will be included despite 
the selection status of the product.

We adapt different encoding and normalisation techniques to dif-
ferent features based on their types and scales. One-hot encoding 
(‘‘onehot’’) is applied to convert categorical information to binary 0 
and 1 before feeding into the network. Maximum absolute scaling 
(‘‘maxabs’’) is applied to numerical data to scale the data using its 
global maximum value.

3.2. Case study 1: Single-period planning and scheduling

For the single-machine planning and scheduling problem with single-
period scenarios, Fig.  6 showcases the training progressions of the DQN 
agent. Fig.  7 and Fig.  8 illustrate the performance of the proposed 
hybrid DQN-LP framework from the evaluation set for 10 and 20 
product instances, respectively.

From the top left figure from Fig.  7, we observe comparable perfor-
mance levels in terms of objective values amongst the TSP, MIP and 
the hybrid DQN-LP framework. We also observe that these methods 
consistently outperform the RAN approach. Specifically, the optimality 
gap between the MIP solution and the solution derived by the proposed 
hybrid DQN-LP framework is less than 4% on average. This difference 
is primarily influenced by the inner-transition costs associated with 
product changeovers, as illustrated in the lower left figure. The reason 
is that in most of the 10 product scenarios, the accumulated demands 
fit within the single period without exceeding time capacity, ensuring 
that regardless of the production sequence, all products are ultimately 
produced. For this small-scale instance, the TSP heuristic identifies a 
production sequence with near-optimal inner-transition time by ex-
haustively enumerating an extensive set of possible sequences in a 
brute-force manner. This is reflected in the highly similar profit levels 
shown in the upper middle figure in Fig.  7. Such scenarios favour 
the use of TSP and its embedded complete enumeration mechanism, 
allowing for filtering optimal sequences with minimal penalty costs, 
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Fig. 7. Evaluation summary for a single-period instance with 10 products.
Fig. 8. Evaluation summary for 20 products single period instance. 
provided there is sufficient computational power. The top right figure 
demonstrates the significant computational efficiency of our hybrid 
DQN-LP framework, as evidenced by a notable reduction of over 66% 
in average computational time compared to the MIP method.

The summary of the 20 product instances in Fig.  8 showcases 
a similar trend, where the DQN agent achieves performance levels 
comparable to the MIP but surpasses both the TSP and RAN. Notably, 
an optimality gap of 5.8% is observed compared to the exact solution 
provided by MIP. Additionally, the DQN agent demonstrates more than 
50% reduction in average computational time compared to MIP. The 
transition costs associated with inter-product changeovers, as illus-
trated in the lower left figure, demonstrate that the DQN-LP framework 
captures a more efficient production sequence with smaller inner-
transition costs and higher computational efficiency compared to the 
TSP heuristic. While the exhaustive enumeration approach employed 
by the TSP heuristic ensures competitive performance for small-scale 
instances, it tends to exhibit limitations as the computing time increases 
with the instance size. 

Since nearly all scenarios fail to accommodate the accumulated 
demands in a single period without exceeding the total time capac-
ity, we conduct additional analysis focusing on the actual solution 
9 
corresponding to the median-performance scenario from the 50 eval-
uation. Fig.  9 illustrates the decision levels associated with total sales, 
production and backlog, where inventory is not shown, as both plots for 
all products have no inventory planned. Particularly, we observe a high 
resemblance amongst the production decisions made by the DQN agent 
and MIP, with the primary differences arising from an additional 1 unit 
of production on product 10 and 2 units on product 16 performed by 
the hybrid framework. Due to time capacity, the DQN agent is required 
to reduce its production on product 15. Overall, the total objective 
value difference for this specific scenario is 3.9% between the DQN and 
MIP.

3.3. Case study 2: Multi-period planning and scheduling

In this second case study, we extend the scope of the hybrid DQN-LP 
framework to encompass multiple time periods. Within each episode, 
the agent utilises observed information from the outset of each period 
to generate predictions for subsequent periods. For the single-machine 
planning and scheduling problem with multi-period scenarios, we in-
clude another random baseline ‘‘RAN-b’’ as a benchmark approach that 
shuffles the order of all products with demand within a period and 
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Fig. 9. Evaluation performance for the DQN agent (above) versus MILP optimal solution (below) with median performance scenario for 20 product single period 
instance. Note that inventory levels are not displayed, as all inventory values are zero.
Fig. 10. Evaluation summary for 20 products and 2 periods within each episode.
forms a random sequence. This approach aims to evaluate whether the 
inclusion of more products in the production sequence, despite incur-
ring higher inter-product transition costs, can help reduce the backlog 
costs and enhance the solution quality in a multi-period scenario.

Fig.  10 presents the evaluation summary for instances with 20 
products over a two-week period for each episode. The top left graph of 
objective value shows that both TSP and the hybrid framework achieves 
competitive performance compared to MIP, with optimality gaps of 
13.2% and 15.3%, respectively. Both methods consistently outperform 
the RAN and RAN-b benchmarks in delivering higher average objective 
values. Additionally, our framework exhibits superior computational 
efficiency compared to the exact method, reducing the time required 
to generate solutions by over 92%. The DQN-LP framework generates 
production sequences that yield competitive performance in terms of 
inner-transition costs, as shown in the bottom left graph in Fig.  10. 
Due to the presence of multiple periods within each episode, the 
outer transition cost associated with product changeovers between two 
consecutive periods is also computed, as depicted in the second graph 
in the bottom row. This indicates that the proposed hybrid frame-
work outperforms the TSP heuristics and RAN-b benchmark.  We also 
measure the time utility across all periods and rescale the percentage 
between 0 and the number of periods. As shown in the right-most 
graph in the top row, the hybrid DQN-LP framework achieves a higher 
utilisation of production time during each period than the TSP and 
both random baselines. Similar tendencies are observed inside the 20 
product instances with 3 periods as shown in Fig.  11.

We select the evaluation scenario with the median set of perfor-
mance and visualise the specific production schedules using Gantt 
charts for each period generated by the DQN agent, TSP and MIP in Fig. 
10 
12 for the 20-product 2-period instances, and in Fig.  13 for the 20-
product 3-period instances. Analysis of both charts reveals that the 
DQN agent effectively identifies and prioritises products that conclude 
at the end of the previous period. This strategy minimises changeover 
times between the two periods, demonstrating the agent’s capability in 
optimising scheduling decisions.

3.4. Study on larger-scale instances

In this section, we investigate the scalability of the proposed lear-
ning-based approach by applying it to larger-scale instances. Specifi-
cally, we evaluate its performance in scenarios involving 40, 50, 60, 
70 and 80 products and an extended planning horizon with number of 
periods up to 8 weeks. Each value inside the graph is averaged from 5 
evaluation rounds.

In the backlog level plots (left column) presented in Fig.  15 and Fig. 
17, we observe that the DQN agent demonstrates better performance 
in terms of producing lower backlog than the TSP heuristic, RAN and 
RAN-b methods across the evaluated scenarios. The only exceptions oc-
cur in the 40-product instance with 2, 3, 5 and 6 periods and 80-product 
instance with 3 periods, where the backlog created by the DQN agent 
is slightly higher than any of the 3 benchmark methods. The average 
difference between the DQN backlog levels and the optimal solution 
is 15% on average across all periods. In the inventory plots (middle 
column) presented in Fig.  15 and Fig.  17, we observe a relatively stable 
trend for DQN across instances with 40 and 50 products involving 
different periods. In the scenarios with 60, 70 and 80 products, the 
DQN-generated inventory levels appear slightly elevated, which is due 
to one seed giving poor performance and reducing the profit. Both 
the TSP heuristic and RAN-b methods result in less inventory levels, 
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Fig. 11. Evaluation summary for 20 products and 3 periods within each episode.

Fig. 12. Gantt chart for the median performance scenario with 20 products and 2 periods.

Fig. 13. Gantt chart for the median performance scenario with 20 products and 3 periods. 
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Fig. 14. Averaged total production sequence length summed across up to 8 periods generated by different methods, averaged over 40, 50, 60, 70 and 80 products 
instances.
Fig. 15. Backlog level (left column) inventory level (middle column) and profit (right column) for instance sizes 40, 60 and 80 products (from top to bottom row) 
with 1 to 8 periods in each subplot. Each subplot compares performance level between MIP, TSP, DQN, RAN and RAN-b methods averaged from 5 evaluation 
rounds.
primarily due to longer sequence lengths they generate that lead to 
higher changeover times and demand backlog. The RAN method creates 
higher inventory level as it creates shorter sequence lengths on average.

In the inner transition plots (middle column) presented in Fig.  16 
and Fig.  18, we observe that the DQN agent consistently gives better 
performance compared to the TSP heuristic and RAN-b method in 
generating lower inner transition cost across various instance sizes. 
Moreover, from the production sequence average length analysis de-
picted in Fig.  14, it shows that the TSP heuristic and RAN-b method 
generate longer production sequences than the DQN agent, leading 
to higher changeovers and inner transition costs. On the contrary, 
12 
the RAN method creates a relatively shorter sequence length, which 
causes significant backlog amount but lower inner transition costs 
between product changeovers. Similar trend can be observed in the 
outer transition plots (middle column) in Fig.  16 and Fig.  18, where the 
DQN agent produces lower outer changeover costs between consecutive 
periods compared to the TSP heuristic.

The right-most column of subplots in Fig.  15 and Fig.  17 showcase 
the overall objective in profit. Given the computational complexity with 
exact solvers for larger size instances, a 1-hour CPU limit was imposed 
on the solution of each instance. The computational time for different 
instance sizes is shown in the right-most column in Fig.  16 and Fig. 
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Fig. 16. Computational time [s] (left column), inner transition cost (middle column) and outer transition cost (right column) for instance sizes 40, 60 and 80 
products (from top to bottom row) with 1 to 8 periods in each subplot. Each subplot compares performance level between MIP, TSP, DQN, RAN and RAN-b 
methods averaged from 5 evaluation rounds.
18. The plots present a comparative efficiency analysis that reveals 
a balance point at which the computational complexity is significant 
for the exact solver. We observe that the computating time begins to 
rise significantly when 5 or more periods are involved in the scenario. 
Overall, the general trend illustrates that the DQN agent generates 
production sequences of good quality associated with better profit level, 
contributing to a strong overall performance. As a result, the DQN 
agent outperforms the TSP heuristic, RAN and RAN-b methods for large 
instance sizes up to 80 products, compared to the optimal solution 
provided by the Full-MIP model. 

Lastly, we conduct a comparative analysis of the number of con-
straints and variables generated by the full MILP model in contrast to 
the reduced LP model utilised within the decomposition framework. 
We also compare the number of decisions made by the DQN and RAN 
agents. As illustrated in Fig.  3, we observe that an increase in the 
length of decision process contributes to a more extensive set of agent 
decisions, resulting in the formation of a longer production sequence. 
This trend is reflected in Table  4, where the DQN’s formed sequence 
is longer than RAN, and that the total number of decisions increase 
as the number of period increases. Moreover, Table  2 and Table  3 
show that both the number of constraints and variables from the 
MILP model are substantially higher than those from the reduced LP 
model. Consequently, our proposed hybrid framework operates on a 
smaller formulation size compared to the original MILP model, thereby 
enhancing computational efficiency. 

4. Conclusions and future work

In this work, we introduced a hybrid DQN-LP decomposition frame-
work that recurrently optimises the production decisions for continuous 
manufacturing processes. The proposed framework decomposes the 
problem into two parts, containing an online rescheduling of pro-
duction sequences tackled by the DQN agent after converting the 
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problem into a MDP, and the remaining decisions representable by 
a much smaller simplified LP model that can be efficiently tackled 
using state-of-the-art solvers. For the model training, we employed 
DQN to determine the optimal production sequences for a single-unit, 
multi-product planning and scheduling problem, considering both the 
single-period and multi-period scenarios. By integrating DQN deci-
sions based on the identified sequences into the MILP formulation, 
we have significantly enhanced computational efficiency to achieve 
competitive solution quality and enabled fast calculation of production 
quantities and scheduling durations. This advancement underscores the 
effectiveness of bridging the gap between RL and traditional optimisa-
tion techniques to streamline and accelerate complex decision-making 
processes for real-time dynamic manufacturing problems.

A key direction for future expansions will focus on extending the 
current framework to a multi-machine, multi-line setting, enabling 
inter-line operations and collaboration among machines to collectively 
produce toward a unified manufacturing objective. This effectively 
forms a multi-agent learning system, with the aim of further enhancing 
the accuracy and flexibility of the production scheduling decision-
making processes in addressing more complex and dynamic industrial 
scenarios. Another future work direction is to incorporate a more gen-
eralised convolution neural network architecture, such as Graph Neural 
Network, to better generalise the training process on graph-structured 
data for different instance sizes. 
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Table 2
Number of constraints for instance sizes 40, 50, 60, 70 and 80 products with 1 to 8 periods in each subplot. Comparison between 
MILP and reduced LP formulation.
 Products Method 1 2 3 4 5 6 7 8  
 40 Full-MIP 3733 5938 8143 10348 12553 14758 16963 19168 
 Reduced-LP 328 610 892 1174 1456 1738 2020 2302  
 50 Full-MIP 5663 8918 12173 15428 18683 21938 25193 28448 
 Reduced-LP 408 760 1112 1464 1816 2168 2520 2872  
 60 Full-MIP 7993 12498 17003 21508 26013 30518 35023 39528 
 Reduced-LP 488 910 1332 1754 2176 2598 3020 3442  
 70 Full-MIP 10723 16678 22633 28588 34543 40498 46453 52408 
 Reduced-LP 568 1060 1552 2044 2536 3028 3520 4012  
 80 Full-MIP 13853 21458 29063 36668 44273 51878 59483 67088 
 Reduced-LP 648 1210 1772 2334 2896 3458 4020 4582  
Table 3
Number of variables for instance sizes 40, 50, 60, 70 and 80 products with 1 to 8 periods in each subplot. Comparison between 
MILP and reduced LP formulation.
 Products Method 1 2 3 4 5 6 7 8  
 40 Full-MIP 3566 7126 10686 14246 17806 21366 24926 28486  
 Reduced-LP 1806 3606 5406 7206 9006 10806 12606 14406  
 50 Full-MIP 5456 10906 16356 21806 27256 32706 38156 43606  
 Reduced-LP 2756 5506 8256 11006 13756 16506 19256 22006  
 60 Full-MIP 7746 15486 23226 30966 38706 46446 54186 61926  
 Reduced-LP 3906 7806 11706 15606 19506 23406 27306 31206  
 70 Full-MIP 10436 20866 31296 41726 52156 62586 73016 83446  
 Reduced-LP 5256 10506 15756 21006 26256 31506 36756 42006  
 80 Full-MIP 13526 27046 40566 54086 67606 81126 94646 108166 
 Reduced-LP 6806 13606 20406 27206 34006 40806 47606 54406  
Table 4
Number of trained DQN agent decisions for instance sizes 40, 50, 60, 70 and 
80 products with 1 to 8 periods in each subplot. Comparison between DQN 
and RAN agents.
 Products Method 1 2 3 4 5 6 7 8  
 40 DQN 40 76 112 160 206 248 270 284 
 RAN 4 6 36 26 12 20 28 28  
 50 DQN 46 90 146 166 232 262 328 366 
 RAN 2 4 8 18 10 30 22 36  
 60 DQN 48 92 146 218 250 318 342 394 
 RAN 4 8 8 14 20 18 28 42  
 70 DQN 48 98 160 206 260 308 374 430 
 RAN 2 8 12 16 18 24 42 34  
 80 DQN 48 116 162 238 288 380 400 498 
 RAN 8 4 18 8 32 32 40 42  
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Appendix A. TSP-based MILP formulation

Let 𝑖 ∈ 𝐼 be the set of products on the processing unit and 𝑝 ∈
𝑃  as the set of planning periods. Following the notation given in 
Charitopoulos et al. (2017), we define the list of model parameters 
in Table  5 and the list of decision variables in Table  6 for the complete 
MILP formulation given in (3).
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Table 5
MILP parameters summary.
 Symbol Category Description  
 𝐷𝑖 real demand of product 𝑖 at the end of period 𝑝  
 𝜏𝑖,𝑗 real changeover time from product 𝑖 to 𝑗  
 PS𝑖 real sale price of product 𝑖  
 CI𝑖 real unit inventory cost of product 𝑖  
 CB𝑖 real unit backlog cost of product 𝑖  
 CC𝑖,𝑗 real changeover cost from product 𝑖 to 𝑗  
 𝑟𝑖 real processing rate of product 𝑖  
 𝜃𝑙𝑜𝑤𝑝 real lower bound on processing rate in period 𝑝  
 𝜃𝑢𝑝𝑝 real upper bound on processing rate in period 𝑝  
 𝑉 𝑚𝑖𝑛

𝑖 real lower bound on inventory level for product 𝑖  
 𝑉 𝑚𝑎𝑥

𝑖 real upper bound on inventory level for product 𝑖  
 𝑀 integer large number, takes the value of the cardinality of set I 

The complete MILP formulation for the planning and scheduling 
problem is presented below.

max
∑

𝑖∈𝐼

∑

𝑝∈𝑃
PS𝑖 ⋅ 𝑆𝑖,𝑝 −

∑

𝑖∈𝐼

∑

𝑗∈𝐼
𝑖≠𝑗

∑

𝑝∈𝑃
CC𝑖,𝑗 ⋅𝑍𝑖,𝑗,𝑝

−
∑

𝑖∈𝐼

∑

𝑗∈𝐼
𝑖≠𝑗

∑

𝑝∈𝑃
𝑝≥2

CC𝑖,𝑗 ⋅ ZF𝑖,𝑗,𝑝 −
∑

𝑖∈𝐼

∑

𝑝∈𝑃
CB𝑖 ⋅ 𝐵𝑖,𝑝 −

∑

𝑖∈𝐼

∑

𝑝∈𝑃
CI𝑖 ⋅ 𝑉𝑖,𝑝

(3a)

subject to
∑

𝑖∈𝐼
𝐹𝑖,𝑝 = 1 𝑝 ∈ 𝑃 (3b)

∑

𝑖∈𝐼
𝐿𝑖,𝑝 = 1 𝑝 ∈ 𝑃 (3c)

𝐹𝑖,𝑝 ≤ 𝐸𝑖,𝑝 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3d)

𝐿𝑖,𝑝 ≤ 𝐸𝑖,𝑝 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3e)
∑

𝑍𝑖,𝑗,𝑝 = 𝐸𝑖,𝑝 − 𝐹𝑖,𝑝 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, 𝑝 ∈ 𝑃 (3f)

𝑖∈𝐼
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Table 6
MILP decision variables summary.
 Symbol Category Description  
 𝐸𝑖,𝑝 binary whether product 𝑖 is scheduled for production in period 𝑝  
 𝐹𝑖,𝑝 binary whether product 𝑖 is the first product in the sequence in period 𝑝 
 𝐿𝑖,𝑝 binary whether product 𝑖 is the last product in the sequence in period 𝑝  
 𝑍𝑖,𝑗,𝑝 binary whether product 𝑖 precedes product 𝑗 in period 𝑝  
 ZF𝑖,𝑗,𝑝 binary whether product 𝑖 precedes product 𝑗 in periods 𝑝 and 𝑝 + 1  
 𝑂𝑖,𝑝 integer order index of product 𝑖 in the sequence in period 𝑝  
 Pr𝑖,𝑝 real amount of product 𝑖 produced in period 𝑝  
 𝑆𝑖,𝑝 real sales of amount of product 𝑖 in period 𝑝  
 𝑇𝑖,𝑝 real processing time of product 𝑖 in period 𝑝  
 𝑉𝑖,𝑝 real inventory level of product 𝑖 in period 𝑝  
 𝐵𝑖,𝑝 real backlog level of product 𝑖 in period 𝑝  
Fig. 17. Backlog level (left column) inventory level (middle column) and profit (right column) for instance sizes 50 and 70 products (from top to bottom row) 
with 1 to 8 periods in each subplot. Each subplot compares performance level between MIP, TSP, DQN, RAN and RAN-b methods averaged from 5 evaluation 
rounds.
∑

𝑗∈𝐼
𝑍𝑖,𝑗,𝑝 = 𝐸𝑖,𝑝 − 𝐿𝑖,𝑝 𝑖 ∈ 𝐼, 𝑖 ≠ 𝑗, 𝑝 ∈ 𝑃 (3g)

∑

𝑖∈𝐼
ZF𝑖,𝑗,𝑝 = 𝐹𝑗,𝑝 𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 , 𝑝 ≥ 2 (3h)

∑

𝑗∈𝐼
ZF𝑖,𝑗,𝑝 = 𝐿𝑗,𝑝−1 𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 , 𝑝 ≥ 2 (3i)

𝑂𝑗,𝑝 − (𝑂𝑖,𝑝 + 1) ≤ −𝑀(1 −𝑍𝑖,𝑗,𝑝) 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, 𝑝 ∈ 𝑃 (3j)

𝑂𝑖,𝑝 ≤ 𝑀 ⋅ 𝐸𝑖,𝑝 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3k)

𝐹𝑖,𝑝 ≤ 𝑂𝑖,𝑝 ≤
∑

𝑖∈𝐼
𝐸𝑖,𝑝 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3l)

𝜃𝑙𝑜𝑤𝑝 𝐸𝑖,𝑝 ≤ 𝑇𝑖,𝑝 ≤ 𝜃𝑢𝑝𝑝 𝐸𝑖,𝑝 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3m)
∑

𝑖∈𝐼
𝑇𝑖,𝑝 +

∑

𝑖∈𝐼

∑

𝑗∈𝐼∶𝑖≠𝑗
𝜏𝑖,𝑗 (𝑍𝑖,𝑗,𝑝 +𝑍𝐹𝑖,𝑗,𝑝) ≤ 𝜃𝑢𝑝 𝑝 ∈ 𝑃 (3n)

Pr𝑖,𝑝 = 𝑟𝑖𝑇𝑖,𝑝 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3o)

𝐵𝑖,𝑝 = 𝐵𝑖,𝑝−1 +𝐷𝑖,𝑝 − 𝑆𝑖,𝑝 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3p)

𝑉𝑖,𝑝 = 𝑉𝑖,𝑝−1 + Pr𝑖,𝑝 − 𝑆𝑖,𝑝 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3q)

𝑉 min
𝑖 ≤ 𝑉𝑖,𝑝 ≤ 𝑉 max

𝑖 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 (3r)

where the objective function (3a) represents an optimisation that max-
imises the total production revenue while simultaneously minimising 
the penalties that include the internal products changeover costs, the 
external products changeover costs between two consecutive periods, 
the demand backlog costs, and the additional production inventory 
costs.

Constraints (3b) and (3c) specify that in any given planning period, 
only one product can be produced first and only one product can be 
produced last, respectively. Constraints (3d) and (3e) ensure that a 
15 
product cannot be scheduled as the first or last in a period unless it 
is assigned to that period, thereby maintaining the feasibility of the 
numerical index for each product. Constraints (3f) and (3g) specify 
that if a product is assigned to a planning period, it will result in a 
changeover with another assigned product unless it is either the first 
or the last to be processed in that period. Similarly, constraints (3h) 
and (3i) model the changeovers across adjacent periods.

The following set of symmetric-breaking constraints (3j)–(3l) ex-
clude infeasible production sub-cycles via the introduction of proces-
sion order index 𝑂𝑖,𝑝, thereby avoiding the enumeration of symmet-
ric solutions. Specifically, constraints (3j) indicate the order index 
of any product 𝑗 that is processed after 𝑖 must be bigger than 1. 
Constraints (3k) suggest that if a product 𝑖 is not assigned to a planning 
period, then its order index should be set to 0. Constraints (3l) specify 
the upper and lower bounds of the order index.

To track timing within each period, we use constraints (3m) to 
set the minimum and maximum processing time thresholds that can 
be dedicated to any product scheduled inside the sequence. Con-
straints (3n) provide an upper bound for each period on the total 
allowed time, consisting of both the total production time, the internal 
changeover time, and the changeover time between two periods. For 
the remaining continuous variables, constraints (3o) specify the pro-
duction rate and link the production amount to the production time 
variables. Constraints (3p) ensure the conservation of backlog balance 
for any product in any period. Similarly, constraints (3q) ensure the 
inventory balance for any product in any period. Lastly, constraints (3r) 
limit the inventory level of any product within a specified range of 
upper and lower bounds.
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Fig. 18. Computational time in [s] (left column), inner transition cost (middle column) and outer transition cost (right column) for instance sizes 50 and 70 
products (from top to bottom row) with 1 to 8 periods in each subplot. Each subplot compares performance level between MIP, TSP, DQN, RAN and RAN-b 
methods averaged from 5 evaluation rounds..
Appendix B. Additional plots

See Figs.  17 and 18.

Data availability

Data will be made available upon request by the corresponding 
author.
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