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Abstract

A speech intelligibility prediction model for hearing impaired
listeners would be useful in the development of better signal
enhancement methods and for the fitting of hearing aids. Most
current prediction models use only information from a pure-
tone audiogram to characterise impaired listeners, although
evidence suggests that listeners vary in ways not captured by
pure-tone thresholds. In this paper we evaluate a model in
which each listener is described by three factors: average pure-
tone thresholds, sensitivity to phonetic distortion and sensitivity
to word likelihood. We build and evaluate the model using the
corpus collected by the second Clarity Prediction Challenge,
which contains over 13,000 intelligibility judgments by 31
hearing impaired listeners. We describe how the factors were
estimated and test their independence. We show that
incorporating the listener-dependent factors into an existing
intelligibility metric can improve the accuracy of prediction on
held-out test data with a 9.8% relative improvement in
prediction error.

Index Terms: speech intelligibility, hearing impairment,
speech enhancement, hearing aids

1. Introduction

Speech intelligibility prediction metrics provide an automated
assessment of the likely intelligibility of a speech audio signal.
Such metrics would be practically useful if they could be
extended to make predictions for hearing-impaired listeners.
These measures could then be used to choose the best signal
enhancement strategy for an impaired listener in a given setting,
or find the settings of a hearing aid which might maximise
speech intelligibility.

Existing speech intelligibility prediction models for hearing
impaired listeners, such as HASPI [1], focus on the auditory
level processing of the signal related to pure-tone sensitivity
and selectivity, and amplitude compression. In HASPI an
auditory front-end delivers a frequency-time representation of
the signal amplitude of a target sentence through the impaired
ear which can be compared to the same representation of a clean
reference passed through a non-impaired ear. Because hearing-
impaired listeners are typically only assessed in terms of pure-
tone thresholds, the whole model is predicated on the
assumption that pure-tone thresholds alone are sufficient to
characterise an impaired listener.

Analysis of databases of hearing-impaired listeners allow
the measurement of the degree to which pure-tone thresholds
can account for variation in speech intelligibility performance.
For example, [2] show that pure-tone thresholds alone only
account for 40% of the variance in performance of listeners on
speech-in-noise intelligibility performance. This is not
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unexpected, as there is evidence that listeners with similar
audiograms can vary in terms of other cochlear dysfunctions
[e.g. 3]. Listeners also vary in many other ways unrelated to
hearing, such as language experience and working memory
capacity which are known to modulate the performance of
speech perception [e.g. 4]. However measures of cochlear
function, language experience and memory are not usually
available for a given listener, and so far have not yet been be
incorporated into speech intelligibility metrics for the hearing-
impaired.

In this study we look into incorporating pragmatic listener
factors into an intelligibility prediction metric - factors which
can be estimated from empirical performance of a listener on
existing intelligibility tests. In particular we develop and
evaluate a 3-factor model that follows a highly simplified model
of speech perception shown in Fig.1.
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Figure 1. Three factor model of sources of variation in
speech perception

In this 3-factor model we describe each listener in terms of three
abilities: for hearing, for phonetic perception, and for language.
To keep the model simple, we reduce each of these factors to a
single parameter that describes the relative ability of the listener
w.r.t. a population of other listeners. The factors are estimated
from results of a speech intelligibility test for the listener. These
three numeric factors can then be incorporated into a logistic
regression model to predict the proportion of words recognised
by a given listener from a given spoken sentence given some
acoustic properties of the sentence and its orthographic
transcription.
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In this paper we first describe the data set used to estimate
the factors of the model for a group of listeners. Next we
describe how the factors were estimated and show that these
factors are to some extent independent of one another. We then
evaluate an intrusive speech intelligibility model based on the
STOI metric [5] using the 3 factors to optimise the performance
function relating STOI values to proportion of words correctly
recognised by a given listener. Finally we discuss how well the
factors improved the model and what further work is required.

2. Data Set

For this modelling work, we are using the corpus collected for
the second Clarity Prediction Challenge (CPC2) [6]. CPC2 was
an open competition to compare the performance of speech
intelligibility metrics on a common dataset. The materials for
the prediction challenge were generated from previous
enhancement challenges in which teams competed to process
noisy speech for known hearing-impaired (HI) listeners. The
goal of the prediction challenge was to predict the intelligibility
of some held-out enhanced sentences by these listeners. Results
of the challenge are available on the workshop website .

The CPC2 corpus consists of reference audio recordings of
English sentences spoken by 6 different speakers, which have
been subsequently corrupted by added noise and reverberation
before being enhanced by a number of competitor systems and
then presented binaurally to a group of moderately hearing-
impaired listeners. Intelligibility models can be constructed
which are either: intrusive and based on comparing the
enhanced signal with the reference signal, or non-intrusive and
based on the enhanced signal only.

The CPC2 training partition consists of 12243 intelligibility
measurements built from 921 different sentences/auditory
scenes, enhanced by 20 different systems and presented to 31
listeners. The test partition consists of 897 intelligibility
measurements built from 200 different sentences/scenes,
enhanced by a subset of 9 systems and presented to a subset of
15 listeners.

In this study we use 80% of the training partition as the
training set for computing the listener factors, and 20% as the
development set for building models that predict proportion
correct from STOI values and listener factors. Final evaluation
is performed on the test partition. Although the same systems
and listeners were used in both training and testing, we
performed our final evaluation using leave-one-subject-out
cross validation to estimate the performance of the model on an
unseen listener.

3. Listener Factors

3.1. Hearing Sensitivity

We chose to express the sensitivity of the listener to sound in
terms of the Pure-Tone Average (PTA) calculated as the mean
of the pure-tone thresholds at 500, 1000, 2000 & 4000Hz
thresholds expressed in dBHL.

Fig 2 shows how the mean listener score in terms of
proportion of words correctly recognised varies with PTA in the
training set.

!https://claritychallenge.org/clarity2023-workshop/
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Figure 2. Effect of pure-tone average on word
intelligibility

Note that only 20% of the variance in performance in these data
are captured by differences in PTA. This is less than the 40%
found in [2], possibly because enhancement systems were
allowed to take the listeners’ thresholds into account during
processing. Thus the CPC2 data could be considered “aided
listening”, and any remaining variation in performance with
PTA must be due to weaknesses in the equalisation, or because
of other variations in hearing ability correlated with PTA such
as loudness recruitment.

3.2. Phonetic Distortion Sensitivity

To establish a listener’s sensitivity to distortions in the phonetic
properties of the signal, we first introduce a phonetic distortion
score computed by comparing the enhanced corrupted audio
signal with the reference audio within a phonetic feature space.
We then investigate how listener performance varies as a
function of the degree of phonetic distortion.

To compare the phonetic properties of the reference and
target sentence, we built a phonetic recogniser trained on
British English to deliver a lattice of phone posterior
probabilities for each signal. The phone recogniser is based on
a publicly available pre-trained DNN model WAV2VEC2-
XLSR [7] which takes an input audio waveform and delivers
feature vectors every 20ms. These feature vectors have been
optimised for multi-lingual speech recognition. This model is
then fine-tuned on the WSJCAMO corpus of British English [8]
to deliver softmax outputs over a 45-member phone set.

For use in the distortion model, the posterior scores for the
45 phones in each frame are summed into 15 values
representing Voice, Place and Manner (VPM) features (voice:
2 features, place: 6 features, manner: 6 features, silence: 1
feature). This mapping to VPM reduces the dimensionality of
the feature space and decreases the proportion of zero-valued
cells. The distortion score is then calculated from the mean
correlations of the VPM feature time series between the
reference and target sentences. The correlations are performed
over non-silent regions in the reference signal only. Thus the



distortion score is a correlation between -1 and 1, with 1
corresponding to an unchanged phonetic representation.

Fig.3 shows the results of a logistic regression between
phonetic distortion scores of the target sentences and word
recognition performance on them for each of the listeners in the
training set.
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Figure 3. Effect of phonetic distortion score on word
intelligibility. Coloured lines are individual listeners,
dashed line is the group mean.

The analysis shows that listeners vary considerably in their
sensitivity to the phonetic distortion score, with two listeners
achieving 50% correct for distortion scores of 0.1, while one
listener requiring a score of 0.7 to achieve the same
performance.

3.3. Word Probability Sensitivity

To establish the sensitivity of each listener to word frequency,
we first estimated the prior probability of each word found in
each target sentence from a language model. The model is built
using word trigram frequencies found in the British National
Corpus [9]. The log probability of each word in the sentences is
calculated from the frequency of its occurrence in trigrams that
include the previous and following word in the BNC.

To analyze the sensitivity of each listener to word
probability, we perform a logistic regression that relates the
word probability as found in the language model to whether the
word was recognised correctly by that listener in their response
to the target sentence. This is computed over all responses in
the training set. Fig.4 shows the variation in sensitivity to prior
word probability across the listeners.

The analysis shows that intelligibility is better for more frequent
words, as expected, but also shows considerable variation in
performance across listeners.

3.4. Independence of Factors

From the preceding analysis, we end up with three numeric
factors that describe each listener: (i) their pure-tone average,
(i) the phonetic distortion score which shows a correct
probability of 0.5, and (iii) the log word probability which
shows a correct probability of 0.5.
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Figure 4. Effect of word probability of correct score.
Coloured lines are individual listeners, dashed line is
the group mean.

To investigate whether these three factors are providing
independent evidence for listener performance, we perform a
principal components analysis (PCA) and plot the listeners on
a two—dimensional plot, see Fig.5. The arrows show the
directions of the loadings on the input factors. The first two
dimensions capture 84% of variance in the data.

The PCA shows that the phonetic and language factors are
to a degree independent of the hearing factor. There is some
evidence that the phonetic factor and the hearing factor are more
closely related than the language factor and the hearing factor,
which is not unexpected.
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Figure 5. Principal Components Analysis of the three
listener factors, showing directions associated with
each factor independently.

4. Model Evaluation

4.1. Methods

To evaluate the utility of the 3 listener factors in a speech
intelligibility metric, we constructed a baseline model using the
standard implementation of the STOI metric [10]. This metric



takes as input the processed corrupted audio and compares it to
the reference audio. The comparison is performed in the
spectral domain in short time windows across 15 frequency
bands. The output is the mean correlation between the
amplitude envelopes found in each window over all speech-
active regions and all frequency bands. Thus the STOI value
provides an acoustic measure of the distortion caused by the
signal corruption and subsequent enhancement.

For this study we first time aligned the reference audio and
the target audio using spectral cross-correlation [11], then
computed the STOI score for the left ear and right ear
independently. We then chose the better of the ears as our
reference STOI value for the model.

To fit a performance function that relates the better-ear
STOI value to the proportion of words correct, we compute a
logistic regression using the listeners’ scores for each sentence.
This regression is trained using the development set, and the
performance on both the development set and test set is
measured in terms of RMS prediction error expressed in percent
(this is the performance measure used in CPC2). Cross-
validation is applied by building multiple models with each
listener left out in turn.

We first model the performance function using the STOI
values alone and no listener dependent factors using a
generalised linear model, and then incorporate combinations of
the 3 listener-dependent factors to determine the influence of
listener specific information.

Table 1. Intelligibility Metric Performance

Development Test

Listener Factors Included

RMSE | Change | RMSE | Change
STOI alone 26.806 26.978
+PTA 26.641 | -0.165 |26.551| -0.427
+PHONETIC 25.013 | -1.793 |24.386| -2.592
+WORD 25.839| -0.967 |26.964| -0.014
+PTA+PHONETIC 25.006 | -1.800 |24.344| -2.634
+PHONETIC+WORD 24.726 | -2.080 |24.656| -2.322
+PTA+WORD 25.869 | -0.937 [26.971| -0.007
+PTA+PHONETIC+WORD | 24.752 | -2.054 |24.688 | -2.290
HASPI 29.566 | +2.760 |28.400| +1.422

4.2. Results

A summary of results is shown in Table 1. Using the STOI
metric alone as the basis for the performance function,
generates an RMSE value of 27.0% and a correlation of 0.737
on the prediction of proportion of words correctly recognised in
sentences of the test set. Incorporating the PTA factor into the
model, reduces the RMSE by 0.43%, while incorporating the
phonetic factor reduces the RMSE by 2.59%. The word factor
reduces the RMSE by 0.97% on the development set, but only
by 0.01% on the test set. Overall the best performing measure

on the development set used the phonetic and word factors, but
the best measure on the test set used the PTA and phonetic
factors, which showed an absolute RMSE reduction of 2.6%
equivalent to a relative reduction of 9.8% over the model that
did not include listener factors. This system also showed an
improved correlation of r=0.793. For comparison, Table 1 also
includes the performance of a logistic regression based on
HASPI calculated using the CPC2 baseline implementation.
The HASPI metric scores worse than STOI alone on these data
despite the fact that it incorporates audiometric thresholds of
the listeners.

5. Discussion

In this study we investigated the utility of three listener-specific
factors on the performance of a speech intelligibility metric.
The hearing sensitivity factor, estimated from the pure-tone
audiogram only showed a small improvement, as might have
been expected given that the audio stimuli had been equalised
for the listeners. This might also have contributed to the weaker
performance of the HASPI metric. The phonetic distortion
sensitivity factor showed the greatest improvement in RMSE,
suggesting it is capturing some of the interesting variation
across listeners not yet captured by the PTA. The word
probability factor showed a useful improvement on the
development set, but had no effect on the test set. This is
probably because the development set contained the same
prompt sentences as the training set, while the test set had
different ones. This difference probably made the estimates of
listener sensitivity to words in the test set sentences poorly
estimated. The word probability factor might be improved by
incorporating the “recognisability” of words from a model
trained on a large population of listeners.

There are a number of limitations in the current study. The
listeners all have moderate levels of impairment, with the most
impaired speaker having a PTA of 55dBHL. The PTA might be
a better predictor for intelligibility at greater levels of
impairment, where loudness recruitment may play a more
significant role [12]. Finally, the range of audio qualities found
in CPC2 were all relatively good, with most listeners achieving
about 70% words correct overall. A database that included more
challenging materials might have given more representative
results.

In summary, this study has shown one simple way in which
listener-specific factors could be included in a speech
intelligibility metric for hearing-impaired listeners. Analyzing
responses from a speech intelligibility experiment can deliver
information about the listener’s sensitivity to phonetic
distortions and to word probability. We have shown that
incorporating these factors into an intelligibility metric can
deliver improved metric performance.

The relative independence of the phonetic and language
factors from the pure-tone average makes this approach
promising for building better speech intelligibility prediction
models for a given hearing-impaired listener. Future work is
required to investigate whether there are interactions between
these factors and the best signal enhancement methods for the
listener.
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