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Abstract 
A speech intelligibility prediction model for hearing impaired 
listeners would be useful in the development of better signal 
enhancement methods and for the fitting of hearing aids. Most 
current prediction models use only information from a pure-
tone audiogram to characterise impaired listeners, although 
evidence suggests that listeners vary in ways not captured by 
pure-tone thresholds. In this paper we evaluate a model in 
which each listener is described by three factors: average pure-
tone thresholds, sensitivity to phonetic distortion and sensitivity 
to word likelihood. We build and evaluate the model using the 
corpus collected by the second Clarity Prediction Challenge, 
which contains over 13,000 intelligibility judgments by 31 
hearing impaired listeners. We describe how the factors were 
estimated and test their independence. We show that 
incorporating the listener-dependent factors into an existing 
intelligibility metric can improve the accuracy of prediction on 
held-out test data with a 9.8% relative improvement in 
prediction error.  
Index Terms: speech intelligibility, hearing impairment, 
speech enhancement, hearing aids 

1. Introduction 
Speech intelligibility prediction metrics provide an automated 
assessment of the likely intelligibility of a speech audio signal. 
Such metrics would be practically useful if they could be 
extended to make predictions for hearing-impaired listeners. 
These measures could then be used to choose the best signal 
enhancement strategy for an impaired listener in a given setting, 
or find the settings of a hearing aid which might maximise 
speech intelligibility. 

Existing speech intelligibility prediction models for hearing 
impaired listeners, such as HASPI [1], focus on the auditory 
level processing of the signal related to pure-tone sensitivity 
and selectivity, and amplitude compression. In HASPI an 
auditory front-end delivers a frequency-time representation of 
the signal amplitude of a target sentence through the impaired 
ear which can be compared to the same representation of a clean 
reference passed through a non-impaired ear. Because hearing-
impaired listeners are typically only assessed in terms of pure-
tone thresholds, the whole model is predicated on the 
assumption that pure-tone thresholds alone are sufficient to 
characterise an impaired listener. 

Analysis of databases of hearing-impaired listeners allow 
the measurement of the degree to which pure-tone thresholds 
can account for variation in speech intelligibility performance. 
For example, [2] show that pure-tone thresholds alone only 
account for 40% of the variance in performance of listeners on 
speech-in-noise intelligibility performance. This is not 

unexpected, as there is evidence that listeners with similar 
audiograms can vary in terms of other cochlear dysfunctions 
[e.g. 3]. Listeners also vary in many other ways unrelated to 
hearing, such as language experience and working memory 
capacity which are known to modulate the performance of 
speech perception [e.g. 4]. However measures of cochlear 
function, language experience and memory are not usually 
available for a given listener, and so far have not yet been be 
incorporated into speech intelligibility metrics for the hearing-
impaired.  

In this study we look into incorporating pragmatic listener 
factors into an intelligibility prediction metric - factors which 
can be estimated from empirical performance of a listener on 
existing intelligibility tests. In particular we develop and 
evaluate a 3-factor model that follows a highly simplified model 
of speech perception shown in Fig.1. 

 
Figure 1. Three factor model of sources of variation in 

speech perception 

In this 3-factor model we describe each listener in terms of three 
abilities: for hearing, for phonetic perception, and for language. 
To keep the model simple, we reduce each of these factors to a 
single parameter that describes the relative ability of the listener 
w.r.t. a population of other listeners. The factors are estimated 
from results of a speech intelligibility test for the listener. These 
three numeric factors can then be incorporated into a logistic 
regression model to predict the proportion of words recognised 
by a given listener from a given spoken sentence given some 
acoustic properties of the sentence and its orthographic 
transcription. 
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In this paper we first describe the data set used to estimate 
the factors of the model for a group of listeners. Next we 
describe how the factors were estimated and show that these 
factors are to some extent independent of one another. We then 
evaluate an intrusive speech intelligibility model based on the 
STOI metric [5] using the 3 factors to optimise the performance 
function relating STOI values to proportion of words correctly 
recognised by a given listener. Finally we discuss how well the 
factors improved the model and what further work is required. 

2. Data Set 
For this modelling work, we are using the corpus collected for 
the second Clarity Prediction Challenge (CPC2) [6]. CPC2 was 
an open competition to compare the performance of speech 
intelligibility metrics on a common dataset. The materials for 
the prediction challenge were generated from previous 
enhancement challenges in which teams competed to process 
noisy speech for known hearing-impaired (HI) listeners. The 
goal of the prediction challenge was to predict the intelligibility 
of some held-out enhanced sentences by these listeners. Results 
of the challenge are available on the workshop website1. 

The CPC2 corpus consists of reference audio recordings of 
English sentences spoken by 6 different speakers, which have 
been subsequently corrupted by added noise and reverberation 
before being enhanced by a number of competitor systems and 
then presented binaurally to a group of moderately hearing-
impaired listeners. Intelligibility models can be constructed 
which are either: intrusive and based on comparing the 
enhanced signal with the reference signal, or non-intrusive and 
based on the enhanced signal only. 

The CPC2 training partition consists of 12243 intelligibility 
measurements built from 921 different sentences/auditory 
scenes, enhanced by 20 different systems and presented to 31 
listeners. The test partition consists of 897 intelligibility 
measurements built from 200 different sentences/scenes, 
enhanced by a subset of 9 systems and presented to a subset of 
15 listeners. 

In this study we use 80% of the training partition as the 
training set for computing the listener factors, and 20% as the 
development set for building models that predict proportion 
correct from STOI values and listener factors. Final evaluation 
is performed on the test partition. Although the same systems 
and listeners were used in both training and testing, we 
performed our final evaluation using leave-one-subject-out 
cross validation to estimate the performance of the model on an 
unseen listener. 

3. Listener Factors 

3.1. Hearing Sensitivity 

We chose to express the sensitivity of the listener to sound in 
terms of the Pure-Tone Average (PTA) calculated as the mean 
of the pure-tone thresholds at 500, 1000, 2000 & 4000Hz 
thresholds expressed in dBHL.  

Fig 2 shows how the mean listener score in terms of 
proportion of words correctly recognised varies with PTA in the 
training set. 

                                                                 
 
1 https://claritychallenge.org/clarity2023-workshop/ 

 
Figure 2. Effect of pure-tone average on word 

intelligibility 

Note that only 20% of the variance in performance in these data 
are captured by differences in PTA. This is less than the 40% 
found in [2], possibly because enhancement systems were 
allowed to take the listeners’ thresholds into account during 
processing. Thus the CPC2 data could be considered “aided 
listening”, and any remaining variation in performance with 
PTA must be due to weaknesses in the equalisation, or because 
of other variations in hearing ability correlated with PTA such 
as loudness recruitment. 

3.2. Phonetic Distortion Sensitivity 

To establish a listener’s sensitivity to distortions in the phonetic 
properties of the signal, we first introduce a phonetic distortion 
score computed by comparing the enhanced corrupted audio 
signal with the reference audio within a phonetic feature space. 
We then investigate how listener performance varies as a 
function of the degree of phonetic distortion. 

To compare the phonetic properties of the reference and 
target sentence, we built a phonetic recogniser trained on 
British English to deliver a lattice of phone posterior 
probabilities for each signal. The phone recogniser is based on 
a publicly available pre-trained DNN model WAV2VEC2-
XLSR [7] which takes an input audio waveform and delivers 
feature vectors every 20ms. These feature vectors have been 
optimised for multi-lingual speech recognition. This model is 
then fine-tuned on the WSJCAM0 corpus of British English [8] 
to deliver softmax outputs over a 45-member phone set.  

For use in the distortion model, the posterior scores for the 
45 phones in each frame are summed into 15 values 
representing Voice, Place and Manner (VPM) features (voice: 
2 features, place: 6 features, manner: 6 features, silence: 1 
feature). This mapping to VPM reduces the dimensionality of 
the feature space and decreases the proportion of zero-valued 
cells. The distortion score is then calculated from the mean 
correlations of the VPM feature time series between the 
reference and target sentences. The correlations are performed 
over non-silent regions in the reference signal only. Thus the 



distortion score is a correlation between -1 and 1, with 1 
corresponding to an unchanged phonetic representation. 

Fig.3 shows the results of a logistic regression between 
phonetic distortion scores of the target sentences and word 
recognition performance on them for each of the listeners in the 
training set. 

 
Figure 3. Effect of phonetic distortion score on word 
intelligibility. Coloured lines are individual listeners, 

dashed line is the group mean. 

The analysis shows that listeners vary considerably in their 
sensitivity to the phonetic distortion score, with two listeners 
achieving 50% correct for distortion scores of 0.1, while one 
listener requiring a score of 0.7 to achieve the same 
performance. 

3.3. Word Probability Sensitivity 

To establish the sensitivity of each listener to word frequency, 
we first estimated the prior probability of each word found in 
each target sentence from a language model. The model is built 
using word trigram frequencies found in the British National 
Corpus [9]. The log probability of each word in the sentences is 
calculated from the frequency of its occurrence in trigrams that 
include the previous and following word in the BNC. 

To analyze the sensitivity of each listener to word 
probability, we perform a logistic regression that relates the 
word probability as found in the language model to whether the 
word was recognised correctly by that listener in their response 
to the target sentence. This is computed over all responses in 
the training set. Fig.4 shows the variation in sensitivity to prior 
word probability across the listeners. 
The analysis shows that intelligibility is better for more frequent 
words, as expected, but also shows considerable variation in 
performance across listeners. 

3.4. Independence of Factors 

From the preceding analysis, we end up with three numeric 
factors that describe each listener: (i) their pure-tone average, 
(ii) the phonetic distortion score which shows a correct 
probability of 0.5, and (iii) the log word probability which 
shows a correct probability of 0.5. 

 

 
Figure 4. Effect of word probability of correct score. 
Coloured lines are individual listeners, dashed line is 

the group mean. 

To investigate whether these three factors are providing 
independent evidence for listener performance, we perform a 
principal components analysis (PCA) and plot the listeners on 
a two–dimensional plot, see Fig.5. The arrows show the 
directions of the loadings on the input factors. The first two 
dimensions capture 84% of variance in the data. 

The PCA shows that the phonetic and language factors are 
to a degree independent of the hearing factor. There is some 
evidence that the phonetic factor and the hearing factor are more 
closely related than the language factor and the hearing factor, 
which is not unexpected. 

 
Figure 5. Principal Components Analysis of the three 
listener factors, showing directions associated with 

each factor independently. 

4. Model Evaluation 

4.1. Methods 

To evaluate the utility of the 3 listener factors in a speech 
intelligibility metric, we constructed a baseline model using the 
standard implementation of the STOI metric [10]. This metric 



takes as input the processed corrupted audio and compares it to 
the reference audio. The comparison is performed in the 
spectral domain in short time windows across 15 frequency 
bands. The output is the mean correlation between the 
amplitude envelopes found in each window over all speech-
active regions and all frequency bands. Thus the STOI value 
provides an acoustic measure of the distortion caused by the 
signal corruption and subsequent enhancement. 

For this study we first time aligned the reference audio and 
the target audio using spectral cross-correlation [11], then 
computed the STOI score for the left ear and right ear 
independently. We then chose the better of the ears as our 
reference STOI value for the model. 

To fit a performance function that relates the better-ear 
STOI value to the proportion of words correct, we compute a 
logistic regression using the listeners’ scores for each sentence. 
This regression is trained using the development set, and the 
performance on both the development set and test set is 
measured in terms of RMS prediction error expressed in percent 
(this is the performance measure used in CPC2). Cross-
validation is applied by building multiple models with each 
listener left out in turn. 

We first model the performance function using the STOI 
values alone and no listener dependent factors using a 
generalised linear model, and then incorporate combinations of 
the 3 listener-dependent factors to determine the influence of 
listener specific information. 

Table 1. Intelligibility Metric Performance 

Listener Factors Included 
Development Test 

RMSE Change RMSE Change 

STOI alone 26.806  26.978  

+PTA 26.641 -0.165 26.551 -0.427 

+PHONETIC 25.013 -1.793 24.386 -2.592 

+WORD 25.839 -0.967 26.964 -0.014 

+PTA+PHONETIC 25.006 -1.800 24.344 -2.634 

+PHONETIC+WORD 24.726 -2.080 24.656 -2.322 

+PTA+WORD 25.869 -0.937 26.971 -0.007 

+PTA+PHONETIC+WORD 24.752 -2.054 24.688 -2.290 

HASPI 29.566 +2.760 28.400 +1.422 

4.2. Results 

A summary of results is shown in Table 1. Using the STOI 
metric alone as the basis for the performance function, 
generates an RMSE value of 27.0% and a correlation of 0.737 
on the prediction of proportion of words correctly recognised in 
sentences of the test set. Incorporating the PTA factor into the 
model, reduces the RMSE by 0.43%, while incorporating the 
phonetic factor reduces the RMSE by 2.59%. The word factor 
reduces the RMSE by 0.97% on the development set, but only 
by 0.01% on the test set. Overall the best performing measure 

on the development set used the phonetic and word factors, but 
the best measure on the test set used the PTA and phonetic 
factors, which showed an absolute RMSE reduction of 2.6% 
equivalent to a relative reduction of 9.8% over the model that 
did not include listener factors. This system also showed an 
improved correlation of r=0.793. For comparison, Table 1 also 
includes the performance of a logistic regression based on 
HASPI calculated using the CPC2 baseline implementation. 
The HASPI metric scores worse than STOI alone on these data 
despite the fact that it incorporates audiometric thresholds of 
the listeners. 

5. Discussion 
In this study we investigated the utility of three listener-specific 
factors on the performance of a speech intelligibility metric. 
The hearing sensitivity factor, estimated from the pure-tone 
audiogram only showed a small improvement, as might have 
been expected given that the audio stimuli had been equalised 
for the listeners. This might also have contributed to the weaker 
performance of the HASPI metric. The phonetic distortion 
sensitivity factor showed the greatest improvement in RMSE, 
suggesting it is capturing some of the interesting variation 
across listeners not yet captured by the PTA. The word 
probability factor showed a useful improvement on the 
development set, but had no effect on the test set. This is 
probably because the development set contained the same 
prompt sentences as the training set, while the test set had 
different ones. This difference probably made the estimates of 
listener sensitivity to words in the test set sentences poorly 
estimated. The word probability factor might be improved by 
incorporating the “recognisability” of words from a model 
trained on a large population of listeners. 

There are a number of limitations in the current study. The 
listeners all have moderate levels of impairment, with the most 
impaired speaker having a PTA of 55dBHL. The PTA might be 
a better predictor for intelligibility at greater levels of 
impairment, where loudness recruitment may play a more 
significant role [12]. Finally, the range of audio qualities found 
in CPC2 were all relatively good, with most listeners achieving 
about 70% words correct overall. A database that included more 
challenging materials might have given more representative 
results. 

In summary, this study has shown one simple way in which 
listener-specific factors could be included in a speech 
intelligibility metric for hearing-impaired listeners. Analyzing 
responses from a speech intelligibility experiment can deliver 
information about the listener’s sensitivity to phonetic 
distortions and to word probability. We have shown that 
incorporating these factors into an intelligibility metric can 
deliver improved metric performance. 

The relative independence of the phonetic and language 
factors from the pure-tone average makes this approach 
promising for building better speech intelligibility prediction 
models for a given hearing-impaired listener. Future work is 
required to investigate whether there are interactions between 
these factors and the best signal enhancement methods for the 
listener. 
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