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Abstract

®

CrossMark

X-ray microtomography is a versatile tool allowing the measurement of the 3D structure of
optically thick samples. As a non-destructive technique, it is readily adapted to 4D imaging,
where a sample can be monitored over time, and especially in conjunction with the application
of external stimuli. To apply this technique with the limited x-ray flux available at a
conventional laboratory source, we leverage the contrast enhancement of free-space propagation
phase-contrast imaging, achieving an increase in contrast-to-noise ratio (CNR) of 5.8x.
Furthermore, we combine this with iterative reconstruction, using regularisation by a
structure-based prior from a high-quality reference scan of the object. This combination of
phase-contrast imaging and iterative reconstruction leads to a 29.2x improvement in CNR
compared to the conventional reconstruction. This enables fully dynamic x-ray
microtomography, with a temporal resolution of 9 s at a voxel size of 10.5 pm. We use this to
measure the movement of a waterfront in the fine vessels of a wooden skewer, as a
representative example of dynamic system evolving on the scale of tens of seconds.

Supplementary material for this article is available online
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1. Introduction

The penetrating power of hard x-rays makes them a versat-
ile tool for imaging the structure of non-transparent materials
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across a range of length scales. In combination with tomo-
graphy, this enables the reconstruction of 3D volumes and
the recovery of complex internal sample morphology [1].
Being a non-destructive technique, x-ray tomography is read-
ily extended to 4D (3 spatial + temporal dimension) ima-
ging. This capability enables longitudinal in-situ testing of
the same sample as it evolves with time, often examining the
response of the test object to an external stimulus. Rather than
acquiring separate 3D snapshots at intermediate time points,
high temporal resolution systems allow fully dynamic ima-
ging, in which data is continuously acquired while the test
object evolves [2]. A range of fields have benefitted from in-
situ and dynamic x-ray tomography, including food science
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[3, 4], additive manufacturing [5, 6], and biomedical sciences
[7-9].

Achieving sufficient contrast-to-noise ratio (CNR) for
tomographic reconstruction and subsequent analysis typic-
ally requires high x-ray flux to reduce scan times and enable
the capture of fast dynamic processes. Specially designed
synchrotron radiation facilities (SRFs) generate extremely
bright x-ray beams by the acceleration of electron bunches.
In addition to high x-ray flux, SRFs also deliver a coherent
beam, allowing users to benefit from phase effects [10], rather
than just x-ray attenuation. This enables the imaging of low-
attenuation objects, and increases CNR compared to the equi-
valent attenuation only image [11]. These factors enable the
highest temporal resolution at SRFs, with tomography acquis-
ition times down to a few milliseconds [12—-14].

Despite a growing number of facilities worldwide, the need
for regular longitudinal access makes the development of
dynamic x-ray tomography using laboratory x-ray sources an
attractive prospect [15]. With peak x-ray brilliances (a meas-
urement of the coherent flux) 610 orders of magnitude lower
than those at SRFs, it is a challenge to obtain sufficient CNR
for valuable analyses. Nevertheless, a number of demonstra-
tions with temporal resolution on the order of 10s [16-18],
and even sub second [19-22] have been demonstrated. Similar
to SRFs, x-ray phase-contrast imaging (XPCI) can also be
employed at laboratory sources. A range of techniques have
been developed to allow XPCI with their lower coherent flux
by using optical elements in the beam [23-26]. These meth-
ods often provide the possibility for multi-contrast imaging,
which can give unique insights into the sample, with dynamic
applications in monitoring tissue freezing protocols [27] and in
additive manufacturing [28]. However, these techniques often
require multiple movements of optical elements, which com-
plicates fast and dynamic imaging. Some techniques, particu-
larly beam-tracking [25] and speckle-based imaging [26], can
be set up to obtain multi-contrast (including phase) images
with a ‘single-shot’. However, the inclusion of optical ele-
ments still results in a decrease in x-ray flux, and single-shot
modes typically also require a sacrifice in spatial sampling
(and thus resolution).

It is for this reason that dynamic XPCI based on free-space
propagation (FSP) [29] is particularly promising for lower bril-
liance sources. With this optics-less approach, the CNR boost
of phase-contrast can be achieved with no loss of flux com-
pared to the purely attenuation-based counterpart. It is interest-
ing to note that the CNR improvement associated with XPCI
is not constant with dose [11]. The CNR boost is more pro-
nounced for shorter exposures, particularly with tomography,
making XPCI an incredibly valuable tool for fast dynamic
tomography. Outside of large-scale facilities, time-resolved
FSP XPCI has been utilised for dynamic XPCI radiography
of mouse lung motion using an inverse Compton scattering
source [30]. Extending to 4D, regional lung function of a cystic
fibrosis mouse model has been measured using a liquid metal-
jet source with a respiratory-gated acquisition [7].

A key development in the enabling of fast and dynamic
tomography is the advancement of reconstruction algorithms.
Compared to analytical methods, iterative algorithms [31]

such as the simultaneous iterative reconstruction technique
[32] perform well with the undersampled and noisy projection
data that are typical of dynamic imaging. Self-supervised deep
learning methods such as noise2inverse [33] also offer prom-
ising results for handling noisy data, yet suffer when applied
to undersampled data. Algorithms that utilise spatio-temporal
[34] or structure-based [35] priors are particularly capable
of generating useful reconstructions for time-resolved exper-
iments, by exploiting mutual information between the target
reconstruction and some other prior data.

We present dynamic x-ray microtomography with a labor-
atory source, achieving a temporal resolution of 9 s at a voxel
size of 10.5 um. We demonstrate this through the measure-
ment of water uptake in a birch wood skewer, proving quant-
itatively the CNR gain from applying XPCI to this low-
attenuation material. Furthermore, to cope with the relatively
low brilliance of the laboratory source, we apply a reconstruc-
tion method utilising a structure-based prior, to enable quality
reconstruction from fast and undersampled datasets.

2. Methods

2.1. FSP XPCI

For x-rays passing through a thin, weakly refracting object,
the near-field image intensity recorded by a detector down-
stream of the object is well described by Fresnel diffraction
[36]. Thus, the intensity at the detector plane z = z; can be
approximated by the transport of intensity equation (TIE) as
[29]
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where R, is the propagation distance from the object plane
z =z, to the detector plane, M = (R; + R,)/R; is the geomet-
ric magnification of the image (with R, being the source-to-
object distance), A is the wavelength of the incident radiation,
and Vi(j)(x, y;A) is the transverse Laplacian of the object-
induced phase shift projected onto the xy-plane. It can there-
fore be shown that for R, =0, the image recorded is simply
the pure attenuation contact image I(x,y,z =z,) = I(x,y,z =
0)exp (—fo w(x,y,z; A) dz), where I(x,y,z=0) is the x-ray
intensity in the absence of the object, and fo w(x,y,z;A)dz
is the integral along the beam path of the 3D distribution of
the linear attenuation coefficient of the material. For a poly-
chromatic x-ray source, as is typically used in laboratory ima-
ging, I(x,y,z = z,) is instead replaced by the weighted integral
across . As the distance R, is extended, the Laplacian term
becomes significant and the image intensity becomes depend-
ent not only on the amplitude of the wave at the object exit
plane, but also on its phase. While in the near-field, the phase
term grows linearly with increasing R,. However, for finite x-
ray source size and detector point spread function (PSF), the
resultant measured image is given by the convolution of the
total system PSF with the input image intensity, thus the fringe
contrast depends also on the spatial resolution of the system.
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Assuming that the detector PSF and the source spot are well
described by Gaussian functions, the spatial resolution of the
imaging system can be described by the total system PSF with

width o as
2 2
1 1
a:\/<1—> a§+ﬁ°‘2, 2)

where oy is the width of the source spot distribution and o4 is
the width of the detector PSF. Thus it can be shown that for
a fixed system length R; + R,, there exists an optimum mag-
nification M,y for which phase fringe contrast is maximised,
by balancing the amplification of the Laplacian term and the
system spatial resolution. This optimum is dependent only on
the ratio of the source width and detector PSF [37, 38], and is
given by

Moy =1+ 22, 3)
Os

The dependence of the measured intensity on the sys-
tem resolution makes it necessary to employ x-ray sources
with some combination of small source spots [39] or high-
resolution detectors [40] in order to make the phase fringes
detectable.

Under the assumption of a monochromatic, paraxial, scalar
x-ray field incident upon a homogenous object, the induced
phase-shift may be retrieved from the mixed image as

14
P (x,y) = 23
«log [ |7~ f(l(xgle:zi)/l(zx,y,z=0)) 7
i B (2 +v)+1
“
where % is the ratio of the real to imaginary parts of the

object’s complex refractive index, F and F ! are the Fourier
and inverse Fourier transform operators respectively, and (u, v)
are the spatial frequency coordinates corresponding to the
real space (x,y) detector pixel coordinates [41]. Violating the
stated assumptions by replacing A with the mean polychro-
matic wavelength g, and applying the technique to real non-
homogenous objects, a high-contrast non-quantitative approx-
imation of the phase-shift is retrieved.

2.2. Tomographic reconstruction

The aim of tomographic reconstruction is to solve the linear
inverse problem

Au=b, 5)

where A is the x-ray forward projection operator, u is the
volume to be recovered, and b is the measurement data [42].
For well-sampled and low-noise measurement data, analyt-
ical reconstruction based on methods such as the Feldkamp—
Davis—Kress (FDK) algorithm [43] yields satisfactory recon-
structions of u. For the reconstruction of noisy or under-
sampled data, analytical methods may not be sufficient, thus
iterative methods become powerful alternatives.

In the case of dynamic x-ray tomography, it may be pos-
sible to obtain a high-quality reference scan of the sample
before the initiation of the dynamic process. If the sample
remains structurally similar to its initial state throughout the
duration of the dynamic imaging, then the reconstruction v
of the high quality reference can be used as a structure-based
prior for regularisation of the iterative reconstruction [35, 44—
46].

We justify this by considering some initial volume that
transforms through some dynamic process into a new state,
illustrated by the slices shown in figures 1(a) and (b). This
could be representative of the filling of structures with a fluid,
or changes in density of a structure. Despite containing some
mutual information, there is no longer a 1:1 correspondence
between the two states. To capture the existing mutual inform-
ation, we examine the gradients of the two images. The result-
ant normalised direction of image gradients effectively cap-
tures this information, and is equal for both images, under the
assumption that the shape of the structures remains constant.
We quantify this for the illustrated example by the change
in Pearson’s correlation coefficient of 0.886 between the two
images, versus 1.000 for their gradient directions.

It has been shown that this vectorial information can be har-
nessed to regularise certain inverse problems, by capturing this
mutual information [47]. To apply this to tomography, we aim
to solve the inverse problem

1
u(t) = argmin = ||Au (t) — b||* + adTV (u(t),v), (6)
u(t)>0 2

where u(f) > 0 enforces non-negativity of the solution of
u at time ¢, o controls the strength of the regularisation,
and dTV (u(z),v) is the directional total variation regulariser,
defined as [35]

TV := D, Vu ()l = Y (IDVu@) ), .- D

X,¥52

The weight matrix D, captures the orthogonal compon-
ents of the normalised gradient field Vv, incorporating a
Tikhnonov regularisation parameter 7 to ensure numerical sta-
bility. Thus dTV regularisation encourages the solution to
align with the edges and features present in the reference
image v. To separately handle the smooth data fidelity term
and the non-smooth dTV term, the inverse problem can be effi-
ciently solved using the primal-dual hybrid gradient (PDHG)
method.

2.3. Experiments

The experiment was carried out at the National research
facility for lab-based x-ray computed tomography (NXCT)
multi-contrast x-ray micro-CT system [48], utilising a Rigaku
MicroMax 007-HF rotating molybdenum anode x-ray source.
The source was operated at 50kV tube voltage and 24 mA
current, without additional filtration. A custom detector based
on a scintillator and lens-coupled sCMOS camera with a
pixel size of 15 um was placed at a total distance R| + R, =
460 mm away from the source. For a source of effective width
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Figure 1. Numerical example showing a slice through an initial volume (a) that transforms through some dynamic process into a new state
(b). The corresponding vectors describing the absolute direction of the image gradients in a and b are illustrated in ¢ and d respectively. The
modulo 27 direction of the vector is encoded in the image hue, which is described by the corresponding colour wheel. Because of the
temporal evolution, the slices through the volume in (a) and (b) appear different, however the mutual information encoded in the normalised

gradient directions remains constant.

70 um x 70 um and a detector with line spread function (LSF)
of ~30 um, M,y according to equation (3) is 1.43 and thus
R, was set to 140 mm (resulting in R; = 320 mm). This geo-
metry resulted in an effective pixel size at the sample plane of
10.5 pm.

Water uptake in a thin birch wood skewer was used as a
dynamic process to test the system. This process involves the
filling of vessels in the wood via capillary action, in analogy to
the uptake of water and nutrients in living plants. This process
does not impact the overall structure or shape of the sample,
thus making it a good candidate for reconstruction using a
structure-based prior.

A high-quality reference scan was acquired using 1001
projections of 1s equally distributed through 360°. Dark and
flat frame corrected projections were retrieved using the TIE-
based equation (4). Due to the polychromatic x-ray source and
the complex chemical structure of the wood, determining the

correct % ratio for retrieval is an ambiguous task. In such cir-

cumstances, it is commonplace to empirically determine %

[39, 49, 50]. This process generally entails using an approx-
imation of the material composition as a starting point, before
manually adjusting to find the value that removes fringes and
reduces noise, without over smoothing the image. Using cellu-
lose at 1.5 gcm ™3 density as an approximation for the wood,
we find % = 1896 at 19keV, from tabulated values. We note
however that the wood is highly porous below the resolution of
the system (see figures 6(e) and (f), and thus this density should
be taken as an upper bound estimate. This value was used as
an order of magnitude starting point, which was heuristically
refined to % = 1000 by visual inspection. The high-quality ref-
erence volume v was reconstructed analytically using the FDK
algorithm implemented in the core imaging library (CIL) [42].

The dynamic scans were acquired under continuous sample
rotation at an angular velocity of 20°s~!, with the detector
operating in continuous acquisition mode with an exposure
time of 50 ms. While this was simple to implement, a fast
triggered step-and-shoot scan may be required to avoid motion
blur with more complex samples. Projections were retrieved
using the same parameters as for the high-quality reference
scan. Reconstruction from each set of 180 projections results
in a temporal resolution of 9s per full CT scan. While the
temporal resolution is set by the time required to acquire an

adequately sampled dataset, if required, the temporal sampling
can be increased by using a sliding window reconstruction
method [17, 51].

To effectively utilise the dTV regularisation, it is vital that
the reference scan v is well aligned with the dynamic data.
As the dynamic scan was operated in a flyscan mode, it was
necessary to find the angular offset between the start angle
of the two scans to ensure alignment of the reconstructions.
This was accomplished by minimising the /> norm between
v and u(t), across some range of angular offsets (see supple-
mentary material 1). A number of frames (16) were skipped
by the detector around the midway point of the scan, leading
to a change in the offset. Thus the alignment step was taken
for each u(¢) to ensure consistent alignment with v across all 7.
A similar process was also used to estimate the correct angu-
lar step between projections, to account for the finite detector
readout and dead time (see supplementary material 2).

Reconstruction of the dynamic data was accomplished by
solving equation (6) using the PDHG method in CIL [35, 42]
for each time step ¢. For each 7, u(f) was initialised with an
FDK reconstruction ugpk () to speed convergence, followed
by 10 PDHG iterations with o = 5 x 10~ and edge parameter
n=75x10"", both chosen by visual inspection to optimise
the CNR. We will present reconstructions acquired by dir-
ect analytic reconstruction of attenuation data, direct analytic
reconstruction of phase-retrieved data, and dTV regularised
reconstruction of phase-retrieved data, which will be hence-
forth referred to as conventional, analytical phase-retrieved,
and regularised phase-retrieved respectively.

3. Results and discussion

3.1. Demonstration of phase-contrast edge enhancement

To demonstrate the potential of FSP XPCI using the lab-based
system, the same birch skewer sample was imaged with R, =
140 mm, and compared to the equivalent contact image with
R, ~0mm, resulting in effective pixel sizes of 10.5 um and
15 pm respectively. We note that despite the increased mag-
nification, source induced blur results in a very similar spa-
tial resolution between the two cases, of 29.7 um and 30.0 pm
respectively, according to equation (2). Despite this, much
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Figure 2. Comparison of the same birch wood skewer imaged with a propagation distance of R, ~ 0 mm (a) and R, = 140 mm (b). Plotted
line profiles (c) illustrate increased structure and phase fringes at the sample edges. We highlight how despite similar noise levels in the
background (ci), the signal features much larger oscillations (cii) due to phase effects in b. Both images are the average of 5 x 3 s exposures,

indicating an increase in feature visibility at the same exposure.
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Figure 3. Axial slices of the reconstructed wooden skewer during the 9 s temporal resolution dynamic scan, conventional (a), analytical
phase-retrieved (b), and regularised phase-retrieved (c). Axial slice of the high-quality reference reconstruction, which was used as a
structure-based prior for the regularisation (d). Line profiles (e) from the slices in (a) and (c) demonstrate the much greater CNR of the
regularised phase-retrieved reconstruction, despite using the same raw data as the conventional reconstruction.

more structure is visible in the wood in the FSP image in
figure 2(b) compared to the contact image in figure 2(a). The
line profiles plotted in figure 2(c) show clear edge enhance-
ment in regions of the skewer that appear relatively homo-
genous in the contact image. It is important to note that both
images were obtained from the average of 5 x 3s expos-
ures acquired with the same source-to-detector distance, with
the only difference being the propagation distance R,. Phase
effects and edge enhancement were therefore obtained without
any loss of flux or change in the acquisition process, thus mak-
ing FSP XPCI an efficient method for dynamic imaging.

3.2. Effect of phase-retrieval and regularised reconstruction

Figure 3 shows the same axial slice of the conventional 3(a),
analytical phase-retrieved 3(b), and regularised phase-
retrieved 3(c) reconstructions. All slices were reconstructed

using the same 9s of input data, immediately after begin-
ning dynamic micro-CT acquisition. Figure 3(d) shows the
same axial slice of the same sample in a dry state, before
initiating the dynamic experiment. This was reconstructed
from ~16 min of well sampled data, providing a high-quality
reconstruction to act as a structure-based prior for dTV reg-
ularisation. Line profiles plotted in figure 3(e) corresponding
to the conventional and the regularised phase-retrieved recon-
struction illustrate the much superior CNR achieved using the
same dataset with appropriate data processing and advanced
reconstruction methods. In figure 3(a), only the approximate
shape of the sample can be made out, with no structure visible.
In figure 3(b), after phase-retrieval, the structure of the vessels
start to appear but are largely obscured by noise. Finally, in
figure 3(c), the air filled vessels are well delineated from the
wood, and the water filled vessels now become visible.

To demonstrate quantitatively the practical impact of the
phase-retrieval and regularised reconstruction, figure 4(a)
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Figure 4. Segmented axial slice of the regularised phase-retrieved reconstruction (a). Red-bordered regions indicate unfilled vessels, while
blue-bordered regions indicate water filled vessels. The green rectangles indicate regions of the wood used to measure the distribution of
grey-values. Histograms of voxels falling into the water, air, or wood categories are shown for the conventional (b), the analytical
phase-retrieved (c), and the regularised phase-retrieved reconstruction (d).

Table 1. Comparison of conventional, analytical phase-retrieved,
and regularised phase-retrieved grey-values (mean + standard
deviation) for each material category. The p values represent the
reconstructed linear attenuation coefficient, while the § values
represent the unitless real part of the complex refractive index. Care
should be taken in the interpretation of the ¢ values, which are
non-quantitative due to the assumptions of the phase-retrieval
method.

Conventional Analytical PR Regularised
Material p(em™h 5 [x1077] PR 6 [x1077]
Air —0.02+£0.28 0.81+1.85 0.97+£0.35
Birch 0.08 £0.28 4.00 £ 1.65 3.98+0.24
Water 0.10+0.28 5.14+1.62 5.11+0.31

shows an axial slice complete with an overlaid segmentation
of air-filled and water-filled vessels. Some of the vessels fea-
ture intermediate grey-values (and are thus excluded from the
following analysis), indicating that the waterfront reached this
vertical position during the finite acquisition time of this time
point. Using the segmented vessel voxels and the represent-
ative wood regions indicated on figure 4(a) by the green rect-
angles, histograms of each category were computed for each of
the reconstructed slices. With each additional processing step,
moving from figures 4(b)—(d), it is seen that the grey-values
belonging to each category become more separated. The mean
values and standard deviations of voxels categorised as air,
birch, and water are tabulated in table 1. Care should be taken
in the interpretation of the § values, which are non-quantitative
due to the broken assumptions (multi-material sample, poly-
chromatic source) of the phase-retrieval method. We note how
the increasing separation of the histograms is also reflected in
the decrease in the relative size of the standard deviations in
table 1.

Both the analytical and regularised reconstructions of the
phase-retrieved data yield comparable grey-values. This is par-
ticularly insightful for the reconstruction of the water, indicat-
ing that the reconstruction does not become biased when reg-
ularised by a reference which did not contain water. Having
initially segmented vessels using the high-quality reference
volume, it is important for further analysis that voxels within

the vessels can subsequently be accurately categorised as
water or air. To enable a direct comparison of each method
(despite the change in units), the CNR of water compared to air
was calculated, where CNR = (water — air)/c, with o defined
as the mean standard deviation of the two categories. These
calculations were made using the tabulated values in table 1,
extracted from the regions indicated on figure 4. The result-
ant CNR opy = 0.43, CNRpgr = 2.50, and CNRpg,ee = 12.55
indicate the much improved category separation after phase-
retrieval (a factor of 5.8x) and after regularised reconstruction
(a factor of 29.2x).

3.3. Spatial resolution

Figure 5(a) shows a coronal slice of the volume u(t = 9s)
reconstructed using the regularised phase-retrieval method.
To characterise the spatial resolution of the reconstructions,
edge response functions (ERFs) were taken at a number
of locations. From each of these, the Gaussian equivalent
full-width-at-half-maximums (FWHMSs) were calculated. An
ERF taken at a vessel edge represents a static region of
the sample, in which no water transport has yet occurred,
and thus the gradients of v and u(t = 9s) are very well
aligned. A zoom of this region is shown for the regularised
phase-retrieved volume 5(b) and the analytical phase-retrieved
volume 5(e). Both the regularised (29.0 um) and analytical
(30.8 um) reconstructions yielded FWHMs consistent with
the 29.7 um system resolution estimated using equation (2).
Another location examined the dynamically changing water
level 5(c) and (f), as here the gradients of v and u(r = 9s)
are no longer parallel. In fact, the total lack of gradient in
v at this location causes the regularisation term to penalise
anything but flat structure in this region. While motion blur
already slightly reduces the resolution of the analytical phase-
retrieved volume (70.0 um), the regularised phase-retrieved
result is severely reduced (204.9 um). We note that the motion
blur component here could be reduced by faster scanning,
highlighting the correlation between temporal and spatial res-
olution. A final region examined the static water-wood inter-
face 5(d) and (g). Despite the change of interface materials
from those in v, the image gradients are still parallel, and
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Figure 5. A coronal slice of the regularised phase-retrieved volume u(t = 9s).Zoomed regions are indicated on the figure, illustrating static
air-filled structures within the skewer (b), the dynamically changing water level within the container (c), and the static wood-water interface
(d). Panels, (e), (f), and (g) respectively show the corresponding zooms from the analytical phase-retrieved volume. Each panel is
accompanied by the extracted edge response function at the position indicated by the coloured blocks. The highest spatial-resolution is
observed in the static case, where both the analytical (e) and regularised (b) results matched the theoretical resolution of the imaging system.
Regularisation vastly improves on the CNR of dynamic regions (c), however with a threefold compromise on the achieved spatial resolution.
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Figure 6. The progression of water up a single vessel of the skewer is visualised throughout the duration of the scan (a). The ratio R of
water thickness to total vessel thickness is overlaid in blue at intervals of 27 s. The progression of the waterfront in the vessel shown in (a) is
plotted with red markers in (b), error bars are included but are smaller than the markers. In dark grey is the median waterfront height, while
the light grey filled region indicates the standard deviation across all vessels. A sharp jump in the waterfront height at around 100 s
corresponds to the branching from joined vessels (c), into separated vessels (d). The approximate locations of (c) and (d) are indicated by
the colour matched asterisks on (a). A higher resolution scan of a similar sample shows the structure in greater detail, where two vessels are
joined by a thin membrane (e), but later separate to become independent (f).

thus a resolution of 32.0 um is retrieved for the regularised
phase-retrieved volume, comparable to the static case. The
very low CNR of the water-wood interface in the analytical
phase-retrieved image precluded the extraction of a reasonable
EREF, further highlighting the impressive gains in the regular-
ised reconstruction.

While the spatial resolution loss on the dynamic water
level region indicates a potential limitation of the method,
we emphasise that this impacts only the region of the recon-
struction in which the reference and target gradients are
not parallel. Figure 5(d) highlights how the parallel gradi-
ents enforce accurate reconstruction of the vessels, with
crisp interfaces, despite the filling of the vessel with a new
material.

3.4. Capillary uptake of water in birch vessels

The progression of the waterfront up the skewer was
characterised for each vessel independently. Voxels within
the vessels were classified as containing water when the dif-
ference in voxel grey-value d,()—0, was greater than the
halfway point between the classes, (dwater — Oair) /2 = 2.07 X
10~7. Following this, R was calculated as the ratio of the
projected thickness in the coronal plane of water containing
voxels to the projected thickness of the vessel. The progres-
sion of the waterfront up the skewer is visualised for a single
vessel in figure 6(a).

The waterfront height in a given vessel was subsequently
extracted by finding the height at which the total ratio of water
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to vessel thickness drops below 0.1, and remains below this
threshold for a distance of 20 pixels (210 um). The evolution
of the waterfront height in the vessel in figure 6(a) is plotted
with red markers in figure 6(b). Note that error bars were cal-
culated by varying the ratio threshold between 0.05 and 0.15,
but are smaller than the markers and thus are not visible. The
small measurement error can be explained by the extraction of
the 1D metric R from the sum of many voxels across the ves-
sel cross section, as well as the 20 pixel persistence threshold
suppressing noise due to air inclusions or rogue water droplets.
The dark grey line on the same plot indicates the median water-
front height across all vessels, while the light grey filled region
indicates the standard deviation across all vessels. A large part
of the variance in waterfront height across vessels comes from
differences in the initiation time of water entering a given ves-
sel, as well as branching structures causing an uneven flow rate
for some vessels.

In particular, the individually plotted vessel shows a sharp
jump in waterfront height at around 100 s. Closer examination
in figure 6(c) shows that this corresponds to the water flow
shifting from movement through a joined vessel pair, which
then separates, with the water only continuing to move in a
single vessel, illustrated in figure 6(d). Figure 6(e) and (f) illus-
trate this structure in a higher resolution scan (see supplement-
ary material 3) of a similar sample. Initially, two vessels are
connected by a thin membrane, through which water may per-
meate allowing joint movement of the waterfront through a
large effective vessel diameter. These vessels then separate,
and it is possible that water may continue to flow through only
one vessel, taking the path of least resistance. As the capillary
rise is inversely proportional to the vessel radius, this results in
arapid advancement of the waterfront height. There are indic-
ations that the exact grouping of vessels within a network are
an adaption to reduce the risk of embolism [52, 53], allowing
fluids to continue undisrupted through interconnected vessels
even in the presence of obstructions. This suggests that our
methodology may be suitable for the measurement and mon-
itoring of such processes, providing time-resolved insights at
the microscale.

We applied our system and methodology to the measure-
ment of water flow through a wooden skewer via capillary
action, which was chosen as representative of a class of exper-
iments in the study of fluid transport. In particular, the method
proposed here could be applied to the measurement of water
flow in and around plants using both x-ray [54, 55] and neutron
tomography [56, 57]. Similarly, the measurement of fluid flow
through multi-phase materials and pore networks is an active
research area for which the structural similarity of image fea-
tures throughout the course of a scan could be leveraged to
improve CNR [18, 58, 59].

Potential clinical uses for the methodology include estim-
ation of blood flow or airflow in animal models of health
and disease [60—62]. Labelled radiodense particles could for
example be used to measure flow perturbation at different
severities of tissue damage in various organs of interest. In the
pharmacological domain, such methods could also be used to
estimate the distribution and mechanics of inhaled substances
in the airways following deposition of therapeutic compounds,

as has been demonstrated using radiography [63, 64]. This
could help determine whether active molecules are reaching
their desired target location, as well as providing an experi-
mental framework with which to optimise drug delivery using
aerosol or nebulised routes of administration.

In applications such as in-vivo biological imaging where
larger sample structure change is encountered, a single ref-
erence scan would not be sufficient to capture the expected
image gradients. In such cases, the demonstrated improve-
ment in CNR associated with phase-retrieval would be an
important advantage. Alternatively, future work could invest-
igate other reconstruction methods based on mutual informa-
tion shared between time-points [34], without utilising a high-
quality reference.

4. Conclusion

We have presented an experimental setup and data processing
methodology for dynamic x-ray phase-contrast microtomo-
graphy on the seconds timescale with a compact setup. The use
of a detector with sufficient spatial resolution to resolve phase
fringes, in conjunction with phase-retrieval, allowed substan-
tial (5.8x) improvements in the CNR. This was based on FSP
of the x-ray beam and did not require additional optical ele-
ments, with the benefit of exploiting all of the available flux.
The absence of optical elements simplifies the data acquisition
by removing potential constraints linked to their alignment
or stepping.Furthermore, we have shown iterative reconstruc-
tion using structure-based dTV regularisation. The combina-
tion of these two techniques generated a notable increase in the
contrast to noise ratio of ~29x, allowing accurate segment-
ation and classification of voxels despite the relatively fast
exposures. We demonstrated that in regions where the gradi-
ents of the reference and dynamic reconstruction are aligned,
the achievable spatial resolution is consistent with theoretical
predictions, despite using undersampled data. We envisage a
range of potential applications for the demonstrated approach,
including, for example plant research, pore-scale flow experi-
ments, and flow estimation in animal models.
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