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Abstract—The growing use of large language models (LLMs)
has increased the importance of natural language (NL) in soft-
ware engineering. However, ambiguity of NL can harm software
quality, as unclear problem descriptions may lead to incorrect
program generation. Detecting and resolving such ambiguity
is challenging, motivating our introduction of the automated
repair of ambiguous NL descriptions, which we approach by
reducing code generation uncertainty and better aligning NL
with input-output examples. Ambiguity repair is difficult for
LLMs because they must understand how their interpretation
of a description changes when the text is altered. We find that
directly prompting LLMs to clarify ambiguity often produces
irrelevant or inconsistent edits. To address this, we decompose
this task into two simpler steps: (1) analyzing and repairing
the LLM’s interpretation of the description — captured by the
distribution of programs it induces — using traditional testing
and program repair, and (2) refining the description based on
distribution changes via a method we call contrastive specification
inference. We implement this approach in a tool called SPEC-
F1X and evaluate it using four state-of-the-art LLMs (GPT-4o,
GPT-40-mini, DeepSeek-V3, and Qwen2.5-Coder-32B-Instruct)
on three popular code generation benchmarks (HumanEval+,
MBPP+ and LiveCodeBench). Without human intervention or
external information, SPECFIX modified 43.58% of descriptions,
improving Pass@1 on the modified set by 30.9%. This yields
a 4.09% absolute improvement across the entire benchmark.
Repairs also transfer across models: descriptions repaired for
one model improve other models’ performance by 10.48%.

I. INTRODUCTION

Natural language (NL) has assumed an important role in
software development due to the powerful capabilities of
large language models (LLMs). LLMs use NL inputs, such
as prompts or chat-based interactions, as a form of soft-
ware requirements to generate code. However, the inherent
ambiguity and susceptibility to misinterpretation in NL can
impact the quality of generated code — introducing bugs or
resulting in implementations that deviate from the intended
purpose. For example, Vijayvargiya et al. [1]] observed that the
use of ambiguous task descriptions reduced the performance
of models by 20%. Previous work [2] analyzed semantic
discrepancies in programs sampled from an LLM to quantify
the description’s ambiguity, and then prompted the LLM to ask
user clarifying questions. However, our experiments demon-
strate that LLMs’ clarifying questions are often redundant,
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i.e. irrelevant to LLMs’ own interpretation of the problem,
leading to verbose and ineffective descriptions and imposing
an additional cognitive burden on the users.

To overcome the above limitations, this paper introduces the
problem of automated repair of ambiguous natural language
problem descriptions, defining it as the task of systematically
modifying descriptions to ensure adherence to predefined qual-
ity criteria. Although in some cases human input is required
to fix ambiguity, our insight is that many ambiguities can be
resolved fully-automatically based on two key observations.
First, we can modify problem descriptions to reduce LLM’s
code generation uncertainty by increasing the probability that
the LLM generates the most likely interpretation of ambiguous
language. Second, while humans often use input-output exam-
ples to clarify their intent [3]], state-of-the-art (SOTA) LLMs
struggle to interpret these examples in the presence of ambigu-
ous language. In this context, we can automatically remove the
ambiguity by aligning the natural language with the clarifying
examples to facilitate the model’s correct interpretation.

Our experience shows that SOTA LLMs struggle with
directly repairing ambiguous problem descriptions, often pro-
ducing irrelevant or inconsistent changes. We hypothesize that
this is because for an LLM it is hard to reflect on how changes
to natural language text affect the programs it would generate
based on the altered text. To overcome this problem, we
propose SPECFIX, an approach to repair problem description
that addresses this challenge by decomposing the task into
simpler subtasks: it first repairs the distribution of programs
this description induces and then maps back the change to the
description via contrastive specification inference.

When repairing the program distribution, SPECFIX uses
two quality criteria. To lessen LLM’s code generation uncer-
tainty, SPECFIX aims to reduce semantic entropy [4l], which
is computed on the distribution of equivalence classes of
programs clustered based on their input-output behavior, since
high semantic entropy implies a high number of different
interpretations. To align a problem description with clarifying
examples, SPECFIX aims to increase example consistency,
our novel measure that indicates to what degree programs
in the distribution satisfy the examples. When all sampled
programs exhibit behavior contradictory to the examples,
SPECFIX applies automated program repair [5] to fix programs
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r I —
From a graph defined via a list of connections between nodes, remove
all connections that repeat between the same nodes. Keep order of
remaining ones the same as in the input.
assert remove_connections([(1, 2), (2, 3), (2, 1)]) == [(2, 3)]

Original Description

\§ J

e I SpecFix-repaired Description I—\

From a graph defined via a list of connections between nodes,
remove all connections that appear more than once (considering
both (a,b) and (b,a) as the same connection).
Only keep connections that appear exactly once in the input,
preserving their original order.

\assert remove_connections([(1, 2), (2, 3), (2, 1)]) ==[(2, 3)]

= Semantic Cluster(P=1, EC=0) I—\

(def remove_connections(nodes):
seen = set()
return [pair for pair in nodes if tuple(sorted(pair)) not in seen
and not seen.add(tuple(sorted(pair)))]

remove_connections([(1, 2), (2, 3), (2, 1)])

L

| Semantic Cluster(P=1, EC=0) I—\

(def remove_connections(nodes):
count = {}
for a, b in nodes:
key = tuple(sorted((a, b)))
count[key] = count.get(key, 0) + 1
return [(a, b) for a, b in nodes if count[tuple(sorted((a, b)))] == 1]

remove_connections([(1, 2), (2, 3), (2, 1)])

>>> [(1,2),(2, 3)] # Contradict to example output in description

(>>>[2,3)]

Fig. 1: The requirement to delete “repeating” connections, highlighted with

, is ambiguous: it can be interpreted as either (1)

deleting all connections that appear more than once, or (2) deleting all occurrences starting from the second one. Despite the
presence of a clarifying example supporting the first interpretation, DeepSeek-V3 consistently outputs the second interpretation.

A SpecFix-generated repair, highlighted with

in the distribution. The natural language description is then
iteratively improved by SPECFIX’s contrastive specification
inference prompt, which minimally modifies the text to pri-
oritize desirable interpretations over undesirable ones.

We conducted a comprehensive evaluation of SpecFix using
problem descriptions from there widely used code generation
benchmarks: HumanEval+, MBPP+ and LiveCodeBench, and
four SOTA LLMs: GPT-40, GPT-40-mini, DeepSeek-V3 and
Qwen2.5-Coder-32b-Instruct. Our results reveal that solely
based on the examples embedded within these descriptions —
without relying on any external information or user feedback
— SpecFix modifies 43.58% of the descriptions, leading to
a 30.9% improvement in model Pass@1 on the modified
descriptions. Across the entire benchmark, this corresponds to
an absolute increase of 4.09% in overall Pass@ 1. Importantly,
we demonstrate cross-model generalizability: repairs generated
by one model boost the performance of other models by
10.48%. Finally, we found that the SPECFIX ’s repairs result
in only modest increases in description length.

In summary, the paper makes the following contributions:

o The first approach to automated repair of natural language
problem descriptions for LLM-based code generation.

o A novel problem description quality criterion, example-
consistency, motivated by LLM’s inability to extract the
latent intent of clarifying input-output examples.

o A repair mechanism via reflection on the problem distri-
bution using contrastive specification inference.

o An extensive evaluation showing the effectiveness of
description repairs, and their cross-model generalizability.

All code, scripts, and data necessary to reproduce this work

are available at https://github.com/msv-lab/SpecFix.

II. MOTIVATING EXAMPLES

In this section, we present three motivating examples to
illustrate problems of ambiguous problem descriptions: (1)

, enables a consistent generation of the interpretation conforming to the example.

LLMs’ inability to extract the latent intent of input-output
examples to clarify ambiguous language, (2) limitations of
existing LLM-based approaches that prevent them from rec-
tifying ambiguity, and (3) the distinction between problem
description repair and reasoning methods.

To characterize an LLM’s interpretation of a problem de-
scription, we analyze the distribution of programs this descrip-
tion induces. Following previous work [6], [2], we compute
this interpretation by sampling programs and partitioning them
into equivalence classes based on their input-output behavior.
We refer to these classes as semantic clusters.

A. Natural Language Ambiguity Degrades LLM Performance

Consider the problem description in Figure [} which speci-
fies to remove all edges that repeat between nodes in a graph.
This natural language description is ambiguous, admitting
two interpretations: (1) delete all connections that appear
more than once, or (2) delete all occurrences starting from
the second one. Although the example provided with this
description clearly illustrates the first interpretation, when we
sampled 20 programs generated by DeepSeek-V3 [7]] for this
description, all the programs fell into a single semantic cluster
(i.e., they exhibited the same behavior) aligning with the
second interpretation, which is wrong. One of such programs
is shown at the bottom left of Figure [T] as representative of the
20 programs. Despite matching one another (P = 1), every
program failed the embedded example, consistently adopting
the second interpretation and thus disregarding the clarifying
I/O example. We measure this phenomenon using example
consistency (EC)—the fraction of I/O examples that programs
in a cluster satisfy. Here, the cluster’s EC is 0, indicating
a complete mismatch between the model’s behavior and the
intended semantics.

This example demonstrates that subtle ambiguity can dom-
inate the model’s performance, which was also observed
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- I Original Description |—\
Write a function that takes a message, and encodes in such a way that

LLM

('TeSt WiTh MiXeD CaSe’),

led Programs

def encode(message: str) -> str:
def swap_case(char: str) -> str:

it swaps case of all letters, replaces all vowels in the message with the
letter that appears 2 places ahead of that vowel in the english alphabet,
Assume only letters.

>>> encode('test’)
'"TGST”
__ ---# One example omitted

HumanEval/93

Generate

A\ 4

("Hello World"), ('AEIOU"),
('bedfghjklmnpgrstvwxyz")...

Code Clustering by Test Outputs

def replace_vowel(char) -> str:
(‘for char in :

1 Cluster2 |-
if char in “aeiouAEIOU:

new_char = replace_vowel(char)
else:
new_char = swap_case(char)

)
~ Cluster1 I-‘
for char in 1
if char in “aeiouAEIOU:
new_char = swap_case(new_char)
new_char = replace_vowel(char)
else:
new_char = swap_case(char)

[\ gy g

I Probability and Example Consistency

Cluster1: Probability = 0.1 (2/20), Example Consistency =1 (2/2)
Cluster2: Probability = 0.9 (18/20), Example Consistency = 0 (0/2)

Select the Largest
Example-consistent Cluster

1
1 —| Program in Selected Cluster
1

1| if char in "aeiouAEIOU:
1
1
1
1

Program in Rejected Cluster |—~

if char in “aeiouAEIOU":
new_char = replace_vowel(char)
else:

new_char = swap_case(new_char)
new_char = replace_vowel(char)

I Repaired Description l—

Write a function that takes a message, and encodes it by swapping the
case of all letters.

Additionally, replace all vowels in the message with the letter that
appears 2 places ahead of that vowel in the English alphabet.

SpecFix

* Original description: 0.1
* Original description with clarifications: 0.0

A}
1
1
1
1
1

7

- I Clarifying Questions |—\

1. Should the case swapping and vowel replacement be applied
independently, or should the case of the replaced vowel be determined by
the original character's case?

2. Is it acceptable for the function to modify the case of the replaced vowel, or
should the case of the replaced vowel match the original character's case

...# Three clarifying questions omitted

Clarifications |—~

...# Original description omitted
Clarifications:
1. The case swapping and vowel replacement should be applied
independently. The case of the replaced vowel should be determined
by the original character's case.
2. The case of the replaced vowel should match the original
character's case.
3. The input will only contain letters, so there is no need to handle
non-alphabetic characters.
4. For vowels near the end of the alphabet (e.g., 'y’ or 'Y'), the function
should wrap around to the beginning of the alphabet when adding 2
places ahead.
... # One clarification omitted

ClarifyGPT-auto

Generate Clarifications

Fig. 2: A straightforward application of an LLM to repair ambiguity with ClarifyGPT-auto results in inconclusive (marked with
) or irrelevant clarifications. SPECFIX decomposes the problem into program distribution repair and contrastive specification

inference to produce a correct, minimal disambiguation highlighted with

in previous work [1]]. Our solution to the automated repair
problem, SPECFIX, resolved the above ambiguity by explicitly
stating: “Only keep connections that appear exactly once in the
input.” Under this disambiguated specification, DeepSeek-V3
generates the correct implementation with P = 1.

Observation 1: Subtle ambiguities in natural language
problem descriptions can lead LLMs to generate incorrect
code, even when clarifying I/O examples are present.
Aligning the natural language description with the exam-
ples enables automatic, precise disambiguation.

B. Limitations of Existing LLM-Based Approaches

LLMs are obvious candidates for addressing the ambiguity
repair problem. One prominent approach is ClarifyGPT [2],
which marks a problem description as ambiguous whenever an
LLM’s interpretation of this description contains at least two
semantic clusters of programs, and asks clarifying questions
to differentiate programs from these clusters. Although this
approach was not designed for automated repair, it can be
adapted for repair by using its “user simulation prompt”

. The responses are generated with DeepSeek-V3.

to answer the generated clarifying questions based on the
examples embedded in the problem description, and adding
the resulting clarifications to the original description. We refer
to this approach as ClarifyGPT-auto.

Figure [2] shows that the lack of a conjunction such as “and”,
“or” or “then” in the sentence “swap cases of all letters, replace
all vowels” (top left) confuses DeepSeek-V3. It generates the
correct interpretation, first swap cases of all letters and then
replace vowels, only in 10% of samples, corresponding to
the Cluster 1, and in 90% of samples swaps case of only
consonants, despite the fact that the clarifying example clearly
indicates the first interpretation. When applying ClarifyGPT-
auto to repair this ambiguity, it asks five questions, four
of which are redundant, as they do not lead to alternative
interpretations, and answers the only relevant question about
operation dependency inconclusively. Consequently, the pass
rate for the problem description after clarification drops to 0.

This example shows the challenge of reasoning about am-
biguity. To overcome it, SPECFIX first analyses and repairs
LLM’s interpretation of a problem description embodied in the
distribution of semantic clusters. It measures the probability



I Original Description

Write a python function to find the surface area of a square pyramid
with a given base edge and height.

assert surface_Area(3,4) == 33 Mbpp/264

I Probability and Example Consistency |—~
Cluster1: Probability = 1 (20/20), Example consistency = 0 (0/1)

Patch |—

Repair Program via Existing Method

import math

def surface_Area(b: float, s: float) -> float:

- slant_height = math.sqrt((b / 2) ** 2 + s ** 2)
base_area=b *b
lateral_area=2*b *s
return base_area + lateral_area

Contrastive Specification Inference ! |
3 | Repaired Description |—

Write a python function to find the surface area of a square pyramid
with a given base edge and slant height.
assert surface_Area(3,4) == 33

SpecFix

I uFix-Formatted Prompt |—~

(1) assert surface_Area(3,4) == 33
# Instruction: Let's analyze the test cases step by step. You MUST
follow the format:

"(<?>) assert <?> == <?>

The input is <?>.

The output is <?>.

Analysis: <7>.

Therefore, the expected output is <?>

uFix Prompting

I Example Analysis |—~

Write a python function to find the surface area of a square pyramid
with a given base edge and height.

... # 33 lines of analysis omitted

The slant height 'I" can be calculated using the Pythagorean theorem:
'1=sqrt((b/2)? + s?)°

For'b=3"and 's=4"

*1 = sqrt((3/2)% + 4%) = sqrt(2.25 + 16) = sqrt(18.25) ~ 4.272"
‘base_area=3%=9

‘lateral_area =2 *3 *4.272 ~ 25.632°

‘Surface Area =9 + 25.632 ~ 34.632"

However, the expected output is "33", which suggests a discrepancy in
the formula or rounding.

Therefore, the expected output is "33".

|.-- # 37 lines of analysis omitted

* Original description: 0.0 !
* Original description with example analysis: 0.0 |
SpecFix-repaired description: 1.0 ,

Fig. 3: SPECFIX repairs the description ambiguity by first using the example to repair programs in the distribution, and then
applying contrastive specification inference on the programs before and after repair; puFix fails to correctly analyze examples.

marks the incorrect example analysis, while

(P) and example consistency (EC) for each cluster, and based
on that repairs the distribution. In this example, the repair
aims to increase the probability of the largest cluster that is
fully consistent with the examples (EC = 1). Second, SPEC-
F1x employs contrastive specification inference by prompting
the LLM to generate the minimal revision to the problem
description which enables the selected cluster and disables
the rejected cluster. This process results in a repair that
adds a simple clarification “Additionally”, showing that the
two operations are sequential. Using the repaired description,
DeepSeek-V3 generates a correct program in 100% of cases.

Observation 2: LLMs struggle with ambiguity repair,
which results in redundant or misleading clarifications.
By decomposing the task into simpler subtasks, SPECFIX
achieves small, intent-aligned problem description repairs.

C. Problem Description Repair vs. Reasoning

Some issues described above can be addressed by enhancing
LLMs’ reasoning capabilities. For example, pFix, a state-
of-the-art reasoning approach for code generation “repairs”
its reasoning by analyzing why generated code fails pro-
vided examples [8]]. Although problem description repair and
reasoning are complementary problems, we observe pFix

marks the correct disambiguation. This example uses DeepSeek-V3.

also struggles to reason correctly in the presence of natural
language ambiguity.

Figure [3] shows an ambiguous problem description that
does not specify if the input height is vertical height or slant
height of a pyramid. Although it can be inferred from the
clarifying example that the input is slant height, it is non-
trivial as it requires “reverse engineering” various versions
of the algorithm. To reason about these descriptions, pFix
first constructs a structured analysis prompt, intended to elicit
a step-by-step derivation of how to transform the given test
inputs into the expected outputs. If the model fails to gen-
erate correct programs using the original description and the
analysis, puFix revises its analysis by summarizing incorrect
code and derives an updated description. In this example, it
correctly identifies that the total surface area equals the base
area plus the lateral surface. However, when the computed
results diverge slightly from the target values for the provide
IO example, pFix mistakenly attributes the discrepancy to
“rounding” rather than questioning its understanding of the
height parameter. As a result, the generated programs pass the
tests in 0% of cases.

SPECFIX addresses this limitation by repairing the program
distribution. Specifically, sampling programs from DeepSeek-
V3 and partitioning them into semantic clusters results in a



single cluster with the example consistency 0, i.e. failing the
example test. Inspired by Fan et al. [9], SPECFIX applies
program repair to fix a program from this cluster using the
example as the correctness criteria. Next, SPECFIX employs
contrastive specification inference to concisely modify the
problem description so that it mirrors the behavior of the
repaired program while diverging from the original program.
Here, the repaired description explicitly states that the height is
the slant height. With the repaired description, DeepSeek-V3
generates a correct program in 100% of cases.

Observation 3: The SOTA approach for reasoning about
problem descriptions struggles in the presence of natural
language ambiguity, as it is hard to “reverse engineer” the
clarifying example for an ambiguously defined problem.
SPECFIX resolves by repairing programs in the distribution
so that they align with the clarifying examples.

III. BACKGROUND AND NOTATION

A specification (or requirement) is defined as “the author-
itative description of the behaviors, properties, or results that
the automatically-generated program must satisfy” [10]. In
practice, specifications may be expressed via formal logics,
natural-language docstrings, or sets of input/output examples.
In this work we focus exclusively on functional specifica-
tions (i.e., observable program behavior) for LLM-based code
generation prompts, abstracting away from non-functional
concerns such as performance, resource usage, or coding style.
Henceforth we use the term “problem descriptions”.

Let D denote the space of problem descriptions and P
the set of all programs in a chosen programming language.
An LLM can be formalized as a conditional probability
distribution that, for given problem description D € D, assigns
probabilities to various programs m(- | D) : P — [0,1].
supp(m(- | y)) is the support of this distribution, i.e. the set
of values with non-zero conditional probability.

In practice, this distribution is not given explicitly, but it can
be approximated by sampling N programs {p; }}¥ LLd m(- |
D) and using their frequencies to approximate probabilities.
We denote such an approximated distribution as 1.

To factor out superficial syntactic variation, we use semantic
equivalence relation = on P: programs P and () are equivalent
if they produce identical outputs on all valid inputs.

Definition 1 (Semantic Cluster): Let P be a set of programs
sampled from an LLM. Semantic clusters are equivalence
classes of the sampled programs denoted as P/ =, where for
each P € P its semantic cluster is denoted as

Pl2{QeP|Q=P}.

Since the LLM induces a distribution over individual pro-
grams, it also induces a distribution over equivalence clusters:

m=(IP}| D) £ Y m(Q| D).
Qe(P]
Example 1: 1In Figure [2} there are two semantic clusters:

one, [P;], contains programs that first swap cases of all letters,

and the second, [P], contains programs that swaps case of
only consonants. Based on the generated sample, the estimated
distribution of equivalence classes is

m=([P])| D) =0.1 m—([Ps]| D) = 0.9

A specification is ambiguous if it admits multiple plausible
semantic interpretations [11]. Previous work demonstrated that
task ambiguity increases model’s uncertainty [12]. A popular
measure of uncertainty is the semantic entropy, which is the
entropy over the meaning-distribution:

Definition 2 (Semantic Entropy [4l]]): Let m be an LLM,
= be a semantic equivalence relation over responses, Mm=
be the corresponding conditional distribution over equivalence
classes. The semantic entropy is defined as

SE(m=(-|z)) £ - Zm (y| z)logm=(y | x).

ClarifyGPT [2] proposed to classify problem descriptions
as ambiguous if their semantic entropy is above zero, as it
means having more than one semantic clusters of programs:

=(-[R)) >

Example 2: For the distribution in Example [T} the semantic
entropy is —(0.11og(0.1) + 0.910g(0.9)) = 0.469. Since it is
positive, ClarifyGPT classifies the description as ambiguous.

ambiguousgy,irygpr (D) = SE(m

IV. SPECFIX

SPECFIX is a framework for automatically repairing am-
biguous NL problem descriptions to enhance code generation
performance. Inspired by ClarifyGPT’s ambiguity measure,
SPECFIX aims to eliminate code generation uncertainty by
reducing the semantic entropy SE. Motivated by our obser-
vation that ambiguous language may result in the generation
of programs inconsistent with input-output examples embed-
ded in the description, which may encode latent intents not
explicitly stated in the text (Section [[I-A), SPECFIX also
maximizes alignment with example via a new measure of
example consistency EC:

Definition 3 (Example Consistency): Let m be an LLM,
D be a problem description with embedded input-output
examples {(z;,vy;)}",, and m=(- | D) be the correspond-
ing distribution of semantic clusters. For a program P €
supp(m=(- | D)), the example consistency is defined as

ZH

where I(-) is the indicator function. For a distribution of
clusters m=(- | D), the example consistency is defined as

EC(m=(-[ D), {(zi,4:)}i21) =
Y m=([P]| D)EC(P, {(zi,y:)}i%)

[Plem=(-|D)

(P {(‘rzayz i= 1 = —yz

Example 3: Consider clusters in Figure [2] for which we
defined the distribution in Example [1} Programs in [P;] pass
2 out of 2 tests, while those in [P>] pass 0 out of 2 tests.



Thus, the example consistency of this distribution is EC =
0.1%(2/2) +0.9%(0/2) =0.1.

Given the above measures, we formally define problem
description repair as follows:

Definition 4 (Problem Description Repair): Let D be a
problem description with embedded input-output examples
EX, m be an LLM. The goal of automated problem description
repair is to find a description D’ such that

SE(m=(-| D')) < SE(m=(- | D))
A EC(m=(- | D), EX) > EC(m=(- | D), EX)

and the difference between descriptions diff(D,D’) < 7
for some predefined threshold 7. For descriptions without
embedded input-output examples, the EC is omitted.

The ultimate goal is to find a description with SE = 1
— meaning the LLM interpretation forms a single semantic
cluster — and EC = 0 — meaning all generated programs
pass the embedded examples. Since achieving such a perfect
repair may not always be possible, we instead aim to improve
these measures within k iterations. We call SpecFix’s mini-
mally edited output a repaired description, since improving
these measures helps to resolve ambiguity.

SPECFIX’s key innovation is in decomposing this task into
simpler subtasks. First, it analyzes and repairs the distribution
of programs the problem description induces. Second, it maps
the change to the distribution back into the problem description
via contrastive specification interference.

A. Distribution Repair

Algorithm |I| summarizes the workflow of SPECFIX. It
accepts four arguments: a problem description D, an LLM m,
the iteration bound K, and the sample size N. It first starts
with extracting examples from problem descriptions using
the function Extract_Examples, which we implement by
prompting the same LLM m.

A key part of this algorithm is repairing the distribution
of programs that D induces, as this distribution characterizes
LLM’s interpretation of the problem description. The algo-
rithm approximates the distribution m=(- | D) by sampling
N programs and partitioning them into semantic clusters
using the function Interpret. In the body of this function,
the partitioning algorithm is encapsulated by the functions
Generate_Inputs and Partition. In our implementa-
tion, we realize them by prompting the same LLM to generate
test inputs {¢;}/_, with the aim of covering all functionality.
Then, we partition programs based on the outputs they pro-
duce on these inputs — programs with identical outputs are
grouped into the same cluster, indicating equivalent behavior.
Alternative implementations such as differential fuzzing [13]]
or symbolic execution [14] can also be applied in this context.

To resolve ambiguities, SPECFIX employs two repair strate-
gies: probability-guided repair and program repair based prob-
lem description repair. If one or more clusters pass all exam-
ples (EC = 1), SPECFIX invokes the probability-guided repair
strategy; otherwise — when no cluster can pass all examples
— it resorts to the program repair based description repair.

Algorithm 1: SPECFIX Algorithm
Input : Problem description D, LLM m, iteration
bound K, sample size N
Output: Repaired problem description D’

1 Function Interpret (m, D, N):

2 | ApitL ~m(- | D);
3 {t:}]_, < Generate_Inputs(D);
4 m=(-| D) < partition({p;},, {t:}_,):
5 return m=(- | D)
6 Function SpecFix (D,m,K,N):
7 {(zi,yi)}l_; + Extract_Examples(D);
8 m=(-| D) < Interpret(m,D,N);
9 se < SE(m=(-|D));
w0 | ece ECU=(- | D), {(zu)}y);
1 for : < 1 to K do
12 if se =0 A ec =1 then
13 | return D ; // D is unambiguous
14 C < supp(m=(- | D));
15 if 3c € C s.t. EC(c) = 1 then
16 [Prelect] <= argmax cc g EC(c)=1 lcl;
17 Preject — U(C \ [Pselect]);
18 else
19 [Preject] ¢ argmax, ¢ |c|;
20 Pselect —
Proqram_Repair(Preject; {(CE“ yz)}i:l)
21 D’ + Contrast_Infer(D, Psect, Preject);
22 m=(-|D’) + Interpret(m, D', N);
23 s¢/ <~ SE(rh=(-| D"));
w || e ECOo(- | D), {(miui) iy
25 if ec’ > ec A se’ < se then
26 ‘ D < D’ ec + ec’,se < se’;
27 return D;

Probability-guided Repair: To reduce semantic entropy,
SPECFIX prioritizes the most likely interpretation. First, it pri-
oritizes semantic clusters that pass all examples (EC = 1) over
other clusters. The process is described in Algorithm [T]in lines
15-17, and is illustrated in Figure [2] where the low-probability
cluster (0.1) is prioritized over the high-probability cluster
(0.9), because the former has higher example consistency. If
there are multiple clusters with EC = 1, the algorithm selects
one with the highest probability, treating all others as rejected
clusters, which is influenced by previous research on program
selection via majority voting such as CodeT [15], which
demonstrate that, in the absence of additional information,
selecting the solution with the highest estimated probability
improves the likelihood of passing the tests.

Program Repair Based Description Repair: If no se-
mantic cluster matches all input-output examples, SPECFIX
applies program repair to fix faulty programs, using the given
example inputs and outputs. Specifically, we employ the self-
refine method [[16]], which utilizes incorrect programs, together



with the runtime feedback (e.g. test failures, expected output
and actual output), and automatically generate a corrected
program. SPECFIX selects programs from the most probable
cluster for repair, as this cluster represents the predominant
interpretation by the LLM. SPECFIX treats the faulty program
as a rejected program, and the repaired program that is
example consistent as a selected program. This process is
provided in Algorithm 1| in lines 19-20, and is illustrated in
Figure [3] where a representative of the cluster with EC = 0 is
repaired by removing the slant height computation so that it
is consistent with the example, and then this change informs
the necessary edit of the problem description.

B. Contrastive Specification Inference

Once SPECFIX has identified a selected program and one or
more rejected programs, it applies our contrastive specification
inference prompt to disambiguate a given problem descriptions
via a minimal natural language change. Contrastive specifica-
tion inference leverages the insight that an explanation is most
informative when it highlights why outcome A occurs instead
of outcome B rather than describing outcome A in isolation.
By contrasting the behavior of the selected program with that
of rejected programs, the repaired description is prone to align
with the selected program while intentionally diverge from the
rejected ones. SPECFIX realizes this objective by prompting
an LLM with both the supporting evidence (selected program
& outputs) and the contradicting evidence (rejected programs
& outputs), and asking the model to (i) diagnose the sources
of ambiguity and (ii) rewrite the specification so that only the
intended behavior remains admissible. All prompts used by
SPECFIX are given in the supplementary materials.

V. EVALUATION

Our study addresses the following research questions:

o RQI1: To what extent do SPECFIX-repaired descriptions
improve code generation compared to baseline methods?

e« RQ2: Do problem descriptions repaired by SPECFIX
enable cross-model improvement in code generation?

« RQ3: How much does SPECFIX change problem descrip-
tions in comparison with baseline methods?

A. Experimental Setup

Models: We selected four widely-used LLMs: GPT-
40, GPT-40-mini, DeepSeek-V3 and Qwen2.5-Coder-32b-
Instruct. GPT-4o0 [17] is OpenAl’s advanced commercial
model with high accuracy across diverse tasks, and GPT-
4o-mini is its smaller variant. DeepSeek-V3 [7] is an open-
source, efficiency-focused model optimized for mathematics
and coding. Qwen2.5-Coder-32B-Instruct [18]], developed by
Alibaba, is a smaller model that specializes in multilingual
code generation, debugging, and software development with
robust problem solving capabilities. For brevity, we refer
to DeepSeek-V3 and Qwen2.5-Coder-32b-Instruct simply as
“DeepSeek” and “Qwen2.5”.

Benchmarks: We selected three widely-used code genera-
tion benchmarks: HumanEval+, MBPP+ and LiveCodeBench.
HumanEval+ consists of 164 programming problems, each
including a function signature, docstring, canonical solu-
tions, and several test cases. These problems are designed
to evaluate language comprehension, algorithms, and simple
mathematics. MBPP+ includes 378 hand-verified Python pro-
gramming problems, each with a task description, canonical
solutions, and multiple test cases. These problems cover
programming fundamentals and standard library functional-
ities. HumanEval+ and MBPP+ are enhanced versions of
the original HumanEval [19] and MBPP [20] benchmarks
augmented by the EvalPlus framework [21]]. Humaneval+
includes 2.81 examples per problem on average and 161
problem descriptions embed at least one example. MBPP+
includes one example in each problem. LiveCodeBench [22]]
is a dynamic, contamination-aware benchmark that continu-
ously harvests recent competitive-programming problems from
LeetCode, AtCoder, and Codeforces. To minimize the risk of
data leakage, we select livecodebench_v6, which contains 175
problems released between January 2025 and May 2025. The
hidden tests used to assess generated programs are different
from the examples in the problem descriptions.

Following prior work [2], we fix the model temperature
at O for all tasks to ensure deterministic outputs, except for
program sampling, where the temperature is set to the default
value specified by each LLM to encourage diversity. Since our
approach, just like most works on uncertainty estimation, relies
on diversity in the output, it requires non-zero sampling tem-
perature. To avoid suggesting that disambiguation was always
successful, we use the term “modified” rather than “repaired”
in certain descriptions. To account for generation variability,
we repeated all experiments three times and reported the
average performance.

To estimate entropy, we sampled N programs, thus it is
necessary to choose N that provides a reliable estimate. We
conducted an experiment on a subset of problems with various
N € 5, 10, 15, ..., 40, which showed that entropy increases
rapidly from 0.096 (N=5) to 0.1123 (N=20), after which
additional samples result only in small fluctuations. Therefore,
we adopt N=20 as our default configuration, ensuring both
statistical reliability and computational efficiency.

B. Evaluated Approaches

To the best of our knowledge, SPECFIX is the first approach
designed specifically for repairing problem descriptions for
LLM-based code generation in a fully-automated fashion.
Thus, for our evaluation, we adapted the following approaches
to problem description repair to serve as baselines:

Vanilla Repair is a baseline problem description repair ap-
proach: an LLM first classifies each description as ambiguous
or unambiguous. If a description is judged as ambiguous, the
model is prompted to resolve the ambiguity by adopting the
most likely interpretation.

ClarifyGPT-auto adapts ClarifyGPT [2] for fully auto-
mated problem description repair. Whereas the original ap-



TABLE I: The effect of repairing problem descriptions from HumanEval+, MBPP+, and LiveCodeBench on code generation
performance of four LLMs. Each approach is denoted as “{description repair method} + {code generation method}”. “Original”
refers to the descriptions before repair. SPECFIX consistently outperforms other approaches in code generation metrics and
uncertainty reduction. “Mod%” refers to the ratio of modified descriptions.

Model Approach HumanEval+ MBPP+ LiveCodeBench
Mod% Pass@l APR NZP@1 M@20 SE Mod% Pass@l APR NZP@1 M@20 SE Mod% Pass@l APR NZP@1 M@20 SE
Original - 878% 94.1% 939% 89.6% 0.1 - 794% 88.9% 83.6% 80.2% 0.1 - 37.5% 653% 44.6% 40.0% 0.5
Original + pFix - 889% 94.6% 933% 89.0% 0.1 - 79.1% 89.4% 81.7% 79.7% 0.1 - 374% 657% 38.9% 315% 0.1
DeepSeek Vanilla Repair ~ 34.2% 84.8% 922% 89.0% 86.6% 0.1 444% 79.1% 88.5% 81.2% 79.4% 0.1 33.5% 352% 60.6% 423% 37.7% 0.5
ClarifyGPT-auto 17.7% 89.0% 952% 90.9% 89.8% 0.1 12.7% 79.9% 89.9% 81.7% 80.0% 0.1 61.7% 38.1% 67.1% 47.0% 40.0% 0.4
SPECFIX 20.1% 92.0% 959% 93.3% 92.7% 0.0 193% 821% 91.8% 832% 822% 0.0 663% 40.8% 69.9% 47.0% 419% 0.3
Original - 84.4% 92.7% 81.7% 852% 0.1 - 792% 89.7% 81.5% 79.4% 0.1 - 294% 543% 40.0% 314% 0.5
Original + pFix - 839% 93.1% 85.0% 843% 0.0 - 79.0% 89.1% 79.7% 789% 0.0 - 29.6% 54.9% 33.5% 30.1% 0.3
Qwen2.5 Vanilla Repair ~ 152% 83.3% 923% 86.0% 84.1% 0.1 36.8% 76.1% 86.8% 77.8% 762% 0.1 18% 293% 54.1% 39.4% 309% 0.5
ClarifyGPT-auto 159% 85.2% 93.9% 869% 85.6% 0.1 135% 792% 89.5% 803% 79.1% 0.0 69.1% 289% 54.5% 37.3% 31.0% 0.5
SPECFIX 20.7% 81.7% 96.5% 88.6% 81.7% 0.0 169% 823% 919% 83.5% 827% 0.0 77.1% 331% 60.1% 40.6% 349% 0.4
Original - 82.0% 93.0% 91.5% 835% 02 - 782% 88.9% 849% 788% 02 - 323% 542% 41.1% 33.1% 0.6
Original + pFix - 822% 93.0% 88.6% 839% 02 - 78.0% 88.7% 81.1% 784% 02 - 30.5% 52.9% 35.0% 31.0% 0.3
GPT-40 Vanilla Repair ~ 62.8% 80.1% 91.5% 84.1% 79.3% 0.2 825% 76.0% 81.5% 82.0% 77.0% 02 42.1% 320% 547% 40.6% 32.6% 0.5
ClarifyGPT-auto  36.0% 82.3% 92.7% 878% 83.7% 0.1 302% 77.6% 889% 80.7% 78.0% 0.1 76.0% 322% 55.0% 40.6% 33.7% 0.5
SPECFIX 39.6% 87.6% 964% 902% 874% 0.0 31.8% 80.6% 91.2% 827% 80.8% 0.0 82.3% 35.6% 585% 41.7% 379% 0.3
Original - 81.6% 92.0% 92.7% 81.7% 02 - 75.8% 86.6% 80.4% 76.7% 02 - 28.6% 53.6% 39.4% 314% 0.6
Original + pFix - 802% 90.4% 86.4% 81.7% 0.1 - 76.0% 86.7% 79.0% 76.5% 0.1 - 282% 53.3% 32.0% 29.0% 0.4
GPT-40-mini  Vanilla Repair ~ 11.8% 81.5% 91.6% 91.5% 81.5% 02 313% 755% 864% 79.6% 765% 02 26% 287% 534% 394% 314% 0.6
ClarifyGPT-auto  30.5% 80.1% 91.6% 86.0% 81.1% 0.1 31.0% 751% 87.1% 713% 757% 0.1 77.1% 282% 53.3% 38.5% 303% 0.6
SPECFIX 34.1% 87.6% 953% 93.5% 88.0% 0.1 33.1% 785% 89.5% 805% 792% 0.1 81.7% 32.6% 57.7% 40.8% 354% 0.4

proach simulates human clarifications using hidden test cases,
we replace this mechanism with examples drawn directly from
the problem descriptions to eliminate data-leakage risks. The
resulting “repaired” description is formed by concatenating the
original specification with the model’s clarifications. Semantic
clustering again uses [N = 20 samples.

uFix [8] analyzes program failures on input—output exam-
ples and generates reasoning chains to iteratively refine its
interpretation of problem descriptions. Although pFix does
not produce explicit description edits, its focus on improving
problem understanding is relevant to SPECFIX.

C. Evaluation Metrics

We apply five measures to comprehensively evaluate the
correctness and interpretive clarity of repaired descriptions.

Pass@1 is the probability that a generated program passes
all tests. We estimate Pass@1 by sampling ten independent
programs per problem according to the best practices [19].

AvgPassRate (APR) measures the expected ratio of tests
passed across generated programs. APR provides a more
granular view of how disambiguating problem descriptions
improves partial correctness.

% Pass@1>0 (NZP@1) denotes the proportion of problems
for which Pass@1 exceeds zero. An increase in NZP@1
when comparing original versus repaired problem descriptions
indicates that repair enables the model to produce at least one
fully correct program for cases previously unsolvable.

Majority @20 (M@20) measures the accuracy of the most
frequent correct program within 20 generated samples (i.e. the
majority vote) [15], [23]. This metric evaluates the model’s
consistency in converging on a consensus solution.

Semantic Entropy (SE) [4] quantifies the distribution of
generated programs across distinct semantic clusters. Higher
semantic entropy suggests greater ambiguity [2].

D. RQI: Repair Effectiveness of SPECFIX

To evaluate the effectiveness of generated repairs, we mea-
sured how problem descriptions modified by an LLM affect the
same LLM’s performance. Table [[] presents the ratio of modi-
fied descriptions and performance metrics on all problems in
benchmarks. For every model-benchmark pairing, SPECFIX
achieves the highest Pass@1 score among all approaches.
For instance, on the HumanEval+ benchmark with DeepSeek,
SPECFIX achieves a Pass@1 of 92.0% surpassing the perfor-
mance of the original descriptions (87.8%), and the results of
ClarifyGPT-auto (89.0%). Similar improvements are observed
for Qwen2.5, GPT-40 and GPT-40-mini. In addition, SPECFIX
achieves the highest average pass rate, with DeepSeek/Hu-
manEval+ yielding an AvgPassRate of 95.6%. This suggests
SPECFIX repairs guide models toward outputs passing a higher
ratio of tests. Notably, SPECFIX also substantially reduces
semantic entropy, showing that repaired descriptions yield
less semantically diverse code. Finally, SPECFIX is the only
approach that consistently improved Majority @20, showing
that SPECFIX not only increases the probability of generating a
correct program but also enhances the consistency with which
a consensus solution emerges under repeated sampling.

An alternative to improving the quality of problem de-
scriptions is enhancing LLM’s code generation capabilities
to alleviate shortcomings of the problem descriptions. Thus,
we investigate how the performance improvement due to
descriptions repaired by SPECFIX in the context of zero-
shot code generation compares to the performance of original
descriptions with a SOTA code generation method, pFix,
which employs advanced reasoning techniques. Table I present
the comparative results. Since pFix reasons about all of the
benchmark problems, it does not modify a subset of them,
hence no “Modified%” is shown for this method in Table [l



TABLE II: For each baseline (Vanilla Repair, ClarifyGPT-auto and pFix), this table compares performance of SPECFIX’s
repairs with the baseline’s performance on the subset of problem descriptions that both SPECFIX and the baseline modified.
“#” denotes the number of such descriptions. Since pFix does not modify descriptions, the corresponding subsets includes all
descriptions SPECFIX modified. SPECFIX-repaired descriptions outperform baselines on most subsets.

HumanEval+ MBPP+ LiveCodeBench

Model Baseline # Pass@1 # Pass@1 # Pass@1
Original Baseline SPECFIX Original Baseline SPECFIX Original Baseline SPECFIX
Vanilla Repair 17 34.12% 29.41% 51.76 % 48  38.75%  39.58% 46.74% 40 9.06% 7.00% 12.93%
Deepseek ClarifyGPT-auto 29  48.62%  55.63% 71.15% 64  42.66% 45.83% 52.08% 108 15.53% 16.81% 20.28 %
Original + pFix 33 45.76%  54.34% 66.57 % 73 37.67% 43.47% 52.05% 116 16.08% 16.50% 21.09 %
Vanilla Repair 8 36.25%  35.00% 29.17% 29  5321%  42.50% 62.02% 3 6.67% 0.00% 22.22%
Qwen2.5 ClarifyGPT-auto 26  49.66%  54.23% 64.36% 51 50.20%  50.63% 57.89% 121 13.01% 12.36% 18.30%
Original + pFix 34  4797%  63.91% 64.71 % 64  4051%  51.30% 60.17% 135 12.41% 13.57% 17.23%
Vanilla Repair 50 50.82%  53.76% 70.20% 104  54.93%  53.45% 61.15% 60 14.41% 12.96% 21.07 %
GPT-40 ClarifyGPT-auto 59 61.21% 62.08% 73.61% 114  55.46%  53.37% 61.05% 133 18.19% 18.94% 22.98 %
Original + puFix 65 58.17%  63.81% 7230% 120  52.69%  52.53% 60.03% 144  21.33% 19.74% 25.43%
Vanilla Repair 7 4571%  44.29% 61.43% 25  3280%  30.00% 46.40 % 2 35.00%  50.00% 50.00 %
GPT-40-mini  ClarifyGPT-auto 50  57.36%  52.46% 7456% 117 47.01% 44.44% 53.68% 135 16.64% 16.12% 21.82%
Original + pFix 56  56.75%  58.33% 74.54% 125 44.00%  47.70% 52.16% 143 16.29% 15.76% 21.10%

TABLE III: Pass@1 (%) on HumanEval+, MBPP+, and Live-
CodeBench before (“Orig.”) and after (“Repair”) ambiguity
repair. Rows are the description-repair models that perform
the repair; columns are the models used for evaluation. Each
cell shows Orig./Repair. Underlined cells indicate the same
model is used for both repair and evaluation. “#” is the number
of modified descriptions. Underlined cells indicate the same
model performed both repair and evaluation.

HumanEval+
Repair Model # DeepSeek Qwen2.5 GPT-40 GPT-40-mini
DeepSeek 33 45.76/66.57 51.55/61.10  44.88/56.18  45.69/60.71
Qwen2.5 34 60.59/65.00 43.86/59.12  49.15/58.05 46.11/52.65
GPT-40 65 72.62/71.13  67.88/74.04 58.17/72.30  61.20/69.44
GPT-40-mini 56 71.79/72.26  66.69/73.14  65.91/73.34  56.75/74.54
MBPP+
Repair Model # DeepSeek Qwen2.5 GPT-40 GPT-40-mini
DeepSeek 73 37.67/52.05 49.95/46.68 46.30/49.96 42.05/46.58
Qwen2.5 64 47.03/54.74 40.00/58.12  46.45/54.72  44.69/46.30
GPT-40 120 55.75/60.03 58.41/61.51 52.69/60.03 48.58/55.36
GPT-40-mini 125 55.36/51.03 57.11/51.42 52.10/48.70 44.00/52.16
LiveCodeBench
Repair Model # DeepSeek Qwen2.5 GPT-40 GPT-40-mini
DeepSeek 116 16.08/32.09  9.82/12.91  12.60/15.13  9.14/11.61
Qwen2.5 135 22.35/23.00 12.26/17.06 17.80/18.29 12.66/15.28
GPT-40 144 26.91/27.39 18.73/23.52 21.33/25.43  17.68/20.62
GPT-40-mini 143 27.64/28.17 17.28/20.86 22.12/20.96 16.29/21.10

SPECFIX outperformed pFix in most settings. Moreover, pFix
showed only minimal enhancements in code generation mea-
sures compared to the zero-shot approach. We attribute this
to the fact that benchmarks like HumanEval and MBPP are
reaching their saturation [24], where SOTA models already
exhibit high success rate, making additional improvements
through prompt tuning challenging. SPECFIX’s repaired de-
scriptions demonstrated substantial performance gains, show-
ing that problem description repair is a promising pathway for

further pushing the boundaries of code generation.

We also investigated Pass@1 only on the modified problem
descriptions shown in Table On average, 43.58% of
descriptions are modified by SPECF1X. The underlined values
illustrate the Pass@1 results when the same model performs
both repair and evaluation. All models exhibit improvements,
with an average Pass@1 increase of 30.9%.

Since each method uses a different heuristic to detect
ambiguity, they operate on partly disjoint sets of problem
descriptions. Meanwhile, Monperrus [25]] argued that an objec-
tive comparison of repair methods needs to consider the classes
of defects the methods address. In order to eliminate the
influence brought by different ambiguity detection strategies,
we performed pairwise evaluations of SPECFIX against each
baseline, restricted to the intersection of problem descriptions
they both modify. Table [lI| shows the Pass@1 on these subsets
of problem descriptions. SPECFIX yields higher Pass@1 than
both the original description and the baseline repair methods
on all subsets except for the descriptions jointly repaired with
Vanilla Repair on HumanEval+ with Qwen2.5. We attribute
this to the fact that the set is very small (8 cases) and the
performance drop might be the result of statistical noise.

SPECFIX’s average repair time is 36.7 seconds, and the
average token cost is 6770.7 tokens per description.

RQ1: Across benchmarks, SPECFIX yields a 30.9% av-
erage improvement in Pass@1 on the modified subset,
corresponding to a 4.09% improvement over complete
benchmarks. Baseline methods commonly decreased per-
formance or produced negligible gains (<0.5%).

E. RQ2: Cross-Model Generalization

To show that SPECFIX addresses inherent problems of
problem descriptions rather than merely model-specific misun-
derstandings, we evaluate how descriptions repaired using one
model affect another model’s code generation performance.
Table shows the results of our experiments. Although in



few instances, which are highlighted in red, the other model’s
performance dropped after repair, specifically MBPP+ repaired
by GPT-40-mini, on average using a different model to repair
problem descriptions increases performance by 10.48%.

TABLE IV: Relative increment in description length between
before-repair and after-repair for HumanEval+, MBPP+ and
LiveCodeBench. LCB refers to LiveCodeBench.

RQ2: Problem descriptions repaired by SPECFIX using
one model improve another model’s Pass@1 by 10.48% on
average, showing that its repairs generalize across models.

F. RQ3: Comparing Lengths of Repaired Descriptions

To further illustrate the limitations of baseline methods
in repairing ambiguous problem descriptions, we measured
the relative increase in specification length induced by each
method. Table [[V]reports the average percentage growth of the
repaired problem descriptions. ClariftyGPT-auto’s clarification
and pFix’s reasoning chains both significantly increased the
descriptions length. When using GPT-40 on MBPP+, the post-
repair descriptions generated by ClarifyGPT-auto and pFix
respectively increased by 576.61% and 425.56% compared
to the original ones. Although Vanilla Repair yields the
smallest length increase, it also achieves the weakest repair
effectiveness. In contrast, SPECFIX achieves the best repair
performance while also ensuring the description simplicity
after the repair. ClarifyGPT-auto generates irrelevant clarify-
ing questions so the repaired problem descriptions include
redundant clarifications. pFix’s format-specific prompts embed
full reasoning chains in the repaired descriptions. Introducing
too many explanations will not only reduce the model’s
understanding of the original problem, but also may lead to
the model overfitting to clarifications or examples.

RQ3: SPECFIX ’s repairs result in only modest increases in
description length compared with ClariftyGPT-auto’s clari-
fications and pFix’s reasoning chains, while still achieving
superior repair effectiveness.

G. Ablation Study

SPECFIX uses two measures to guide repair: semantic en-
tropy (SE) and example consistency (EC). To investigate their
contributions, we compared SPECFIX with SPECFIX,,.sE
(removing SE) and SPECFIX,,,gc (removing EC). Because
SPECFIX and its two variants modify different descriptions
under their own criteria, we report the Pass@1 over the entire
datasets. Table [V] reports the Pass@1 across 3 datasets and
4 models in terms of Pass@1. First, SPECFIX consistently
outperforms both SPECFIX,,,5r and SPECFIX,,,rc, indicat-
ing both two components is beneficial. On average, SPECFIX
improves 2.2% and 0.92% higher Pass@1 than SPECFIX o5
and SPECFIX,,,rc, respectively.

Finally, SPECFIX involves one hyperparameter & (the num-
ber of repair iteration), for which we investigated different
settings (k € 1, 2,..., 10) on LiveCodeBench and Qwen2.5.
Pass@1 increases from 31.17% (k=1) to 36.51% (k=3), after
which further iterations produce only minor fluctuations.

Model Method HumanEval+ MBPP+ LCB
Vanilla Repair —3.9% 57.4% —46.4%
DeepSeek ClarityGPT-auto 158.8% 360.7%  64.4%
P pfix 255.0% 354.0% 339.9%
SPECFIX 12.8% 120.2% 0.7%
Vanilla Repair —44.9% —31.5% —62.5%
Qwen2.5 ClarifyGPT-auto 82.5% 184.8%  32.9%
’ pfix 405.3% 795.2% 339.3%
SPECFIX 9.0% 58.4% 8.0%
Vanilla Repair —3.9% 2.2% —37.7%
GPT-40 ClarityGPT-auto 262.2% 576.6%  94.3%
pfix 298.6% 426.6% 375.8%
SPECFIX 65.8% 237.4%  43.9%
Vanilla Repair 13.3% 10.2% —58.0%
. . ClarifyGPT-auto 114.0% 281.1%  23.1%
GPT-do-mini 6 263.5%  317.4% 243.4%
SPECFIX 22.0% 113.7%  10.9%

H. Analysis and Mitigation of Repair Errors

We conducted an analysis of cases where SPECFIX gen-
erated incorrect modifications. Table reports the incorrect
modification ratio (IMR), i.e. the fraction of modifications that
reduce Pass@1, and their corresponding Pass@1. On average,
IMR is 3.23%, and Pass@1 on incorrectly modifications is
20.93%. Manual inspection shows most errors arise due to
majority voting: when a correct and an incorrect clusters have
similar probabilities, majority vote often selects an incorrect
one, leading to faulty modifications. As a mitigation strategy,
we apply modified z-score for majority voting: a cluster
is selected only if its probability substantially exceeds all
others [26]. Otherwise, SPECFIX defers to user input. In
comparison to ClarifyGPT that required the user to answer
clarifying questions for each description, we only ask user to
choose between two programs in 10.8% of modifications. We
simulated the user using hidden tests by selecting the cluster
that passes more hidden tests. This resulted in IMR’s drop to
1.58% and Pass@1’s rise to 47.93%.

Apart from the limitation of majority-voting, SPECFIX
operates under the assumption that the input—output exam-
ples are correct, which is a standard assumotion in test-
based automated program repair research. In HumanEval+
and MBPP+, we identified 5 out of 542 instances where
the examples conflicted with the reference solutions (< 1%),
causing SPECFIX to produce incorrect clarifications. This is
small relative to the description modified by SpecFix (24%).

VI1. THREATS TO VALIDITY

SPECFIX assumes that code generated from problem de-
scriptions can be independently executed, and that some can-
didate programs are correct or near-correct. However, this as-
sumption may not hold, e.g. when this code is a part of a larger
system or when the task’s complexity prevents the model



TABLE V: Contribution of semantic entropy (SE) and example
consistency (EC) to Pass@1 (%) of SPECFIX’s repairs.

Dataset Model SPECFIX,,,5 ESPECFIX ,,gc SPECFIX
DeepSeek-V3 90.55 89.95 91.99
Qwen2.5 87.23 86.77 87.74
H Eval
umanEvalt Gprdo 86.57 84.07 87.62
GPT-40-mini 86.22 84.33 87.65
DeepSeek-V3 81.53 79.87 82.14
Qwen2.5 81.06 78.02 82.31
MBPP+ GPT-40 80.22 78.28 80.56
GPT-40-mini 77.41 76.98 78.54
DeepSeek-V3 39.80 38.77 40.84
LCB Qwen2.5 32.88 32.14 33.12
GPT-40 34.84 34.23 35.62
GPT-40-mini 31.34 30.63 32.55

TABLE VI: Incorrect-Modification Rate (IMR) and corre-
sponding Pass@1 (%) across models and benchmarks. Entries
are reported as before mitigation—after mitigation; arrows
indicate the direction of change after mitigation (| = lower
IMR, 1 = higher Pass@1). IMR is the fraction of modified
descriptions that are incorrect.

Model Benchmark IMR Pass@1
HumanEval  3.0% — 2.4% |  0.0% — 10.0% 1
DeepSeek-V3 ~ MBPP 3.3% — 2.9% | 3.8% — 24.8% 1t
LCB 2.5% — 1.3% | 31.1% — 50.3% 1
HumanEval  3.4% — 0.9% | 17.3% — 64.5% 1
GPT-40 MBPP 72% —4.7% | 9.0% — 31.4% *
LCB 2.3% — 1.4% | 33.3% — 51.6% 1T
HumanEval  2.2% — 0.8% | 33.3% — 53.6% *
GPT-40-mini MBPP 2.6% — 1.6% | 20.1% — 36.6% 7T
LCB 3.0% — 1.0% | 40.0% — 57.4% 1
HumanEval 3.9% — 0.7% | 10.4% — 60.0% 1
Qwen2.5 MBPP 2.3% — 0.0% | 25.7% — 91.7% *
LCB 3.0% — 1.2% | 27.1% — 43.3% T

from producing meaningful solutions. In such cases, ambiguity
could instead be detected through behavioral proxies, such as
formal models, which requires further investigation.

Construct validity may be threatened by our operationaliza-
tion of ambiguity and its repairs in terms of various metrics,
such as Pass@1, semantic entropy, example consistency, etc.
We adopted this approach because our goal was to investigate
a fully-automated method of ambiguity resolution. However,
resolving some ambiguities might require human input. In
future research, we will investigate how to efficiently involve
humans in the SpecFix workflow.

External validity is limited by our focus on HumanEval+,
MBPP+ and LiveCodeBench, and relying on the input-output
examples embedded in their problem descriptions. These
benchmarks are well-established and representative, and us-
ing input-output examples is a common practice, e.g. in
programming-by-example [3], in Stack Overflow posts [27]
and GitHub issues [28]. However, studying ambiguities in
real-world applications such as in interactions with Al coding
assistants remains an important future research direction.

VII. RELATED WORK

LLM Reasoning About Problem Descriptions: pFIX [8]]
focuses on enhancing problem description understanding by
integrating thought-eliciting prompting with feedback-based
code generation. Fan et al. [29] applies LLM reasoning to elab-
orate the meaning of low-frequency keywords in problem de-
scriptions. In contrast, SpecFix aims to disambiguate the prob-
lem descriptions themselves so that the models interpret them
correctly. Our experiments show that SpecFix is more effective
than pFIX in interpreting non-trivial input-output examples.
Li et al. [30] proposed maintaining equivalent representations,
such as natural language comments and pseudocode, that
preserve semantics, using a reflection mechanism with two
LLMs. This approach may enhance SpecFix’ reflection prompt
used for contrastive inference. CodeMind [31] introduces a
“specification reasoning” task that evaluates model’s ability
to reason about combinations of NL specifications and test
execution. Our study reveals that SOTA LLMs often perform
poorly on this task, often generating program contradicting to
explicitly specified examples.

Detecting NL Ambiguity with LLMs: Ambiguity in prob-
lem descriptions undermines downstream performance and has
long attracted attention. A problem description for LLM-based
code generation is a special case of software requirements.
Pre—ChatGPT work includes NLP-based detection of inconsis-
tency and vagueness [32], [33], [34], [35] in software require-
ments, while recent efforts address semantic uncertainty in the
ChatGPT era [36]. Vijayvargiya et al.[l] quantify the impact
of ambiguous LLM inputs, showing up to a 20% degradation
in LLM performance. ClarifyGPT[2] measures uncertainty
in generated code to trigger clarifying questions; although
promising, it often produces irrelevant queries and fails to
incorporate embedded examples. SPECFIX overcomes these
shortcomings by repairing the induced program distribution
first and then inferring concise description edits via contrastive
specification inference.

Prompt Optimization: Prompt optimization is closely re-
lated to problem descriptions repair. Ma et al. [37] demonstrate
that reflection-based prompt tuning frequently fails to identify
the root causes of prompt errors. SpecFix addresses this
limitation by analyzing and repairing program distributions.

Confidence and Uncertainty: Hou et al. [12]] show con-
nection between task ambiguity with aleatoric uncertainty,
i.e. uncertainty resulting from inherent randomness in the
data-generating process. The uncertainty can be estimated via
semantic entropy [4], which in code generation can measured
by partitioning generated program into equivalence classes via
differential testing [[14], [6]], [2], a method adapted by SpecFix.

Specification Inference with LLMs: SpecRover [38] in-
fers program specification expressed in natural language to
generate bugfixes. Multiple approaches apply LLMs to infer
formal specifications from text [39]], [40]. The key novelty
of SpecFix in comparison with these techniques is in its
contrastive specification inference that infers specification that
differentiates two programs.



Automated Program Repair: Program repair [5] aims to

modify a given program to meet given correctness criteria. It is
embodied in heuristics-based [41]], semantics-based [42], and
more recently in ML/LLM-based techniques [43], [44]], [45].
Our innovating is in repairing problem descriptions instead of
programs, however, inspired by Fan et al. [9]], we use program
repair as a part of our algorithm.

VIII. CONCLUSION

This paper introduces the problem of automated repair of
ambiguous problem descriptions for LLM-based code gener-
ation. It shows that descriptions can be repaired in a fully-
automated fashion by aligning natural language with input-
output examples and reducing uncertainty of code generation.
SPECFIX accomplishes this by analyzing and repairing the
distribution of programs the description induces, and then
mapping the change back to the description. Our experimental
evaluation shows that repaired problem descriptions signifi-
cantly improve code generation performance of SOTA LLMs.
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