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ABSTRACT 
Large Language Model (LLM) image recognition is a powerful 
tool for extracting data from images, but accuracy depends on 
providing sufficient cues in the prompt – requiring a domain 
expert for specialized tasks. We introduce Cue Learning using 
Evolution for Accurate Recognition (CLEAR), which uses a 
combination of LLMs and evolutionary computation to generate 
and optimize cues such that recognition of specialized features in 
images is improved. It achieves this by auto-generating a novel 
domain-specific representation and then using it to optimize 
suitable textual cues with a genetic algorithm. We apply CLEAR 
to the real-world task of identifying sustainability data from 
interior and exterior images of buildings. We investigate the 
effects of using a variable-length representation compared to 
fixed-length and show how LLM consistency can be improved by 
refactoring from categorical to real-valued estimates. We show 
that CLEAR enables higher accuracy compared to expert human 
recognition and human-authored prompts in every task with error 
rates improved by up to two orders of magnitude and an ablation 
study evincing solution concision. 
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1 Introduction 
Large Language Models (LLMs) are the leading approach today 
for image interpretation [1]. With appropriate prompts, LLMs 
trained on images and text can generate detailed textual 
descriptions of new images. This enables a new type of 
application: using LLMs to extract meaningful data from images. 
In e-commerce applications this might be to extract implicit 
attributes from a product image to improve search and user 
experience [2]. In medical applications this might be to describe 
the type of skin lesion an in attempt to identify melanoma early 
[3]. Here we focus on a new real-world application: the 
identification of sustainability data from images of buildings. 

As the world becomes increasingly aware of the challenges 
presented by global warming, there is an urgent need to 
understand our existing buildings so that we can upgrade them to 
be more sustainable [4]. This is the challenge posed by our 
industrial partner, TheSqua.re Group – a global accommodation 
marketplace specializing in medium-term rentals all over the 
world.  They have five data items of interest: building age, 
lighting, heating, windows, energy. Determining building age is 
often helpful to estimate likely construction methods and details 
such as insulation [5]. They must find structures that have 
inefficient lighting and heating so that they can be upgraded. They 
need to identify buildings with inefficient single glazed windows 
so that the latest thermally efficient double or triple glazing can be 
installed [6]. An overall estimation of energy kWh/m2 enables the 
calculation of likely CO2 emissions – often requested by corporate 
customers when booking accommodation. 

In some European countries, modern buildings might have 
such information readily available for some, but not all properties 
[7]. For much of the world there is simply no available data at all 
about buildings [7]. However, while precise sustainability or 
energy related data may be sparse or non-existent, photographs 
and satellite imagery are plentiful. In the rental industry, it is the 
norm to take regular photographs not just to list the properties, but 
also to act as evidence against inventory loss or damages. Our 
industrial partner holds thousands of such images. https://doi.org/10.1145/3712256.3726317 
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Figure 1. Cue Learning using Evolution for Accurate Recognition (CLEAR) algorithm. 

Despite having image data available, the task of prompting an 
LLM to extract the required data from images is non-trivial [8]. 
One cannot simply prompt the LLM to list architectural features 
relating to energy usage – the answer is too generic and non-
specific to be of value. Equally one cannot prompt the LLM to 
describe the type of heating or lighting from images – we receive 
non-specific and generic estimates as results. For this application 
we need the LLM to behave as a detective. It must collate several 
distinct features and use them to make a judgement. For example, 
an older building in Europe could be estimated if one considers 
cues such as ceiling height, coving, fireplaces, construction 
material visible as brickwork and size of windows. But these cues 
would be very different for images in other regions of the world 
that do not share such architectural traditions and practices. 

So how best to determine the cues required in prompts? Our 
industrial partner needs an approach that does not depend on 
expert domain knowledge for each country, for this is not scalable 
and may not be available. All necessary information must be 
derived from the building images or general knowledge within an 
LLM. This paper proposes the solution: Cue Learning using 
Evolution for Accurate Recognition (CLEAR), see Figure 1. 
CLEAR uses a combination of LLMs and evolutionary 
computation to generate and optimize cues such that recognition 
of specialized features in images is improved. 

This work makes the following contributions: 
• Invention of the concept of prompt cues for LLMs. 
• Introduction of CLEAR: a novel approach for improving 

the performance of LLMs by optimizing cues. 
• Novel approach in EC that enables dynamic generation of 

representation for a genetic algorithm using LLMs. 
• Application of CLEAR to a challenging real-world task. 
• Demonstration of the effectiveness of CLEAR by 

comparison of our method with human-authored prompts 
and expert human evaluation. 

• In-depth analysis of the algorithm, providing evidence that 
variable length operators and non-categorical encoding 
provide the best results. 

• Demonstration that evolved solutions are coherent and 
concise through textual analysis and ablation studies. 

The rest of the paper is organized as follows. We provide a 
background in the next section and give the method in Section 3. 
We describe empirical experiments in Section 4 and conclude in 
Section 5. 

2 Background 
The task of enhancing prompts is an area of extensive research, as 
generative systems are highly sensitive to exact wording, 
necessitating careful prompt engineering [9]. Techniques of 
improving prompts through text modifiers [10] or involving a 
human in the loop [11] are being developed. 

Evolutionary approaches have been used with LLMs in various 
areas, such as game level generation [12] and neural architecture 
search [13]. Previous research has demonstrated how an LLM can 
optimize an objective function through prompt optimization [14], 
and how LLMs can be used for crossover operations [15]. 
Researchers have also demonstrated the use of LLMs as a means 
of initialization, crossover and mutation to evolve prompts that are 
then used to generate architectural images [16]. 

In the area of vision models, there is increasing use of vision 
models to understand and extract data, e.g., using LLMs for chart 
understanding by converting data-filled visuals into textual 
summaries [17] and previous work using LLMs to extract data 
from images of buildings [8], which demonstrated that the 
performance of LLMs in such scenarios are sensitive to the exact 
prompt used, hence justifying the approach in this paper. 

The combination of EC with LLMs is becoming more 
common. Pluhacek et al. used LLMs to enhance the Self-
Organizing Migrating Algorithm (SOMA), demonstrating that 
LLMs can be used to create distinctive and effective algorithmic 
strategies [18]. Morris et al. introduced the concept of “Guided 
Evolution” (GE), which is a novel framework that uses LLMs for 
a supervised evolutionary process, guiding mutations and 
crossovers [19],  using the LLM to help maintain genetic diversity 
and augment decision-making in model evolution. Nasir et al. 
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proposed merging the code-generating abilities of LLMs with the 
diversity and robustness of Quality-Diversity (QD) solutions [20] 
to create diverse and high-performing networks. Liu et al. 
proposed an LLM-driven EA (LMEA), where each generation of 
the evolutionary search, LMEA instructs the LLM to select parent 
solutions from current population and perform crossover and 
mutation to generate offspring solutions [21]. EAs have also been 
used to explore the prompt space of LLMs, e.g., Saletta and 
Ferretti’s grammar-based evolutionary approach [22] and Guo et 
al.’s EvoPrompt, which combines LLMs with EAs to 
automatically improve prompts  [23].  

3 Method 

3.1 Overview 
In this work we define a prompt cue to mean: a signal or piece of 
information used to aid in the interpretation of an input by an 
LLM. An example of a cue might be “window height”, typically 
used within a prompt for the LLM in the form, “pay specific 
attention to window height.” 

CLEAR evolves cues in order to achieve accurate recognition 
of features by LLMs. It iteratively optimizes the behavior of an 
LLM by optimizing sets of textual cues. It makes use of a genetic 
algorithm with a dynamic LLM-generated representation, where 
each individual in the population is represented by a set i of n 
chromosomes, where n is determined by an LLM: 
i = { ch1, ch2, ch3, …, chn } 
and each chromosome chx comprises a list of up to mx cues, where 
the allowable cues are also determined by an LLM: 
chx : [ cue1, cue2,…, cuemx ] 

Thus, each chromosome is a group of cues (grouped in terms 
of semantic or application-specific similarity), with its exact 
composition optimized by the GA. For example, the chromosome 
representing the set of “internal architectural features” might 
contain the cues “high ceilings” and “ceiling rose”, with the 
prompt instructing the LLM to focus on the presence or absence 
of the cues high ceilings and ceiling rose. 

We choose a genetic algorithm because LLM image 
interpretation is inconsistent with extremely noisy results – 
something GAs are particularly well-suited to handle. 

While this work focusses on the real-world application of 
extracting sustainability data from images of buildings, CLEAR is 
a general technique that could be used to improve any prompt for 
LLM interpretation of an input. Figure 1 illustrates the technique. 

3.3 Automated Representation 
Before the GA can evolve cues, we must first generate the 
chromosomes and their associated allowable cues, i.e., we must 
create a representation for the GA to evolve. Traditionally this is 
crafted by hand. Here we introduce an automated approach using 
an LLM (gpt-4o). We do this to reduce bias caused by limited 
knowledge of a single expert and enable scalability. 
 

Table 1. Cue Generation LLM Prompts (Windows) 

Purpose LLM Prompt  

Extract 
feature list 

You are a surveyor. You are given a set of images that 
belong to the same building. 
    { feature-extraction-prompt } 
The building is located in UK. Return the features as a 
list. 

{ feature-
extraction-
prompt }: 
windows 

Your task is to provide a detailed label of every 
architectural feature for the building that will help 
determine whether the glazing in the windows is single, 
double, or high efficiency. List 50 detailed visible 
features that are significant for window types. 

Duplicate 
removal and 
clustering 

I have a list of features: {raw_feature_list}. First, 
remove duplicated items, including features 
semantically similar. Then cluster these features based 
on the type of feature. Aim to produce 8 clusters. 

Formatting Given this list {categories}, first clean the list to contain 
text only, then produce a python array, each subarray 
for each category. 

 
We first cluster the image training set with respect to the data 

item of interest (using an LLM where necessary, e.g. for Building 
Age (see Supplementary materials for prompt details). We then 
select three representative buildings, randomly choosing one from 
each cluster. Next, the LLM is given each image separately and 
prompted to return a list of features, using a prompt specific to the 
data item. See Table 1 for an example prompt when the data item 
of interest is windows (Supplemental materials provide prompts 
for all data items). This results in 150 image features – our 
potential cues. We then ask the LLM to remove duplicates, cluster 
the features and format the output appropriately for our GA. 

Our GA chromosomes are the categories created by the LLM 
during clustering. The possible values or genes within each 
chromosome are the cues within each cluster. For example, for 
windows we obtained n=7 chromosomes including ch0 and ch2: 

Material and Construction, comprising m0=14 cues including 
"Window Frame Material", "Window Thickness", "Frame 
Insulation", "Frame Color",…, "Depth of Window Frame" 

Functionality and Usability, comprising m2=18 cues including 
"Integrated Blinds/Shades", "Presence of Mullions or 
Muntins",…, "Glazing Pattern and Divisions" 
and so on. 

This auto-representation using an LLM is able to produce 
many possibly useful cues for the optimizer to consider. Some are 
clearly derived from the images provided, some appear to be 
generated using its built-in general knowledge. However, the 
utility of them can be highly variable. For example, using the 
“Frame Color” cue from the chromosome Material and 
Construction is unlikely to help in the determination of energy 
efficiency. But using "Visual Consistency of the Glass Surface" 
instead might be useful – very old single glazed windows have 
distortions visible in their hand-made glass. 

This illustrates the optimization problem for the genetic 
algorithm. With approximately eight chromosomes of up to 30 
possible cues, which combination should be used in the prompt to 
maximize interpretation accuracy? It may be necessary to allow 
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multiple cues per chromosome in case more than one in that 
category is important; equally we may need to allow zero cues in 
case that category is irrelevant. 

3.4 Genetic Algorithms 
We use two genetic algorithms: CLEARx (fixed length), and 
CLEARv (variable length), the latter having more complex 
crossover and mutation operators. This enables us to investigate 
whether CLEAR benefits from the ability to add more cues to the 
same category or even remove entire categories. 

Our genetic algorithms manipulate cues (genes). Once the 
representation has been auto-generated, for every individual, for 
every chromosome, we initialize with a single random cue chosen 
from the corresponding LLM-generated cluster of possible cues. 

To evaluate individual i, each chx is extracted as a list of 
textual cues: cue_list and concatenated. These are then passed to 
the image interpretation LLM (gpt-4o) using the task-specific 
prompt (e.g., see Table 2). Chain-of-thought reasoning is 
encouraged by prompting the LLM to consider each cue in turn 
and give explanations before estimating. This is applied to each 
image. The interpreted result from the LLM is then cleaned (its 
textual output can be variable in formatting despite the prompt) 
and compared with the ground truth for each image to produce a 
fitness score (application-specific details in Section 4.2). 

Our GAs permit elites. Should any individual in the population 
already have a fitness score, it is re-evaluated and the worst score 
is used for the individual. We also cache all past solutions and 
their fitnesses in a run; if a previously-seen combination of cues is 
recreated then it is also re-evaluated and the worst score amongst 
the cached copy and new score is used. This method, first used in 
evolutionary robotics [24], encourages solutions to be more 
consistent (robust against noise). Once all members of the 
population have been evaluated, we copy the best two into the 
next generation as elites. We then choose parents from the best s% 
of the population and generate the remainder of the next 
generation using crossover and mutation operators. 

Crossover for the GA with fixed-length representation 
allocates a randomly chosen cue from either parent for each 
chromosome (uniform crossover). Mutation in a chromosome 
switches the cue with another randomly chosen from the same 
category. Thus, there is always the same number of chromosomes, 
each with mx=1 cue. 

Our crossover for the GA with variable-length representation 
operates as follows. Given parents Parent1 and Parent2, we build 
each chromosome in turn for the child solution. Cues are 
iteratively randomly chosen from Parent1’s chromosome or 
Parent2’s chromosome until we reach the maximum number of 
cues of both parents. Should one parent have more cues in a 
chromosome, then the child has a probability of 0.5 of inheriting 
each additional cue in turn. Once complete, duplicate, or 
overspecified [25] cues are removed from the child. (If both 
parents share identical cues in a chromosome but in different 
orders then the child can be built with duplicates.) For example, if 
Parent1 = { ch1:[brick, concrete, wood] } and Parent2 = { 
ch1:[laminate, brick] } then one child could become Child1 = { 

ch1:[brick, brick] }, corrected to Child1 = { ch1:[brick] } while 
another could become Child2 = { ch1:[laminate, concrete, wood] } 

Mutation for the variable-length representation can perform 
three operations, randomly chosen: swap, delete or add. First a 
random chromosome is chosen within the child solution. When 
swapping, mutation picks a random cue of that chromosome and 
swaps it with another allowable cue. If there is no cue in the 
chromosome, a new cue is added instead. When deleting, if a 
random cue can be chosen, it is deleted. When adding, another 
allowable cue is added to the chromosome. After mutation, 
duplicates are removed. For example, if both Child1 and Child2 
were mutated they could become: Child1 = { ch1:[brick, steel] } 
and Child2 = { ch1:[laminate, concrete] } 

Using these operators we permit the GA with variable-length 
representation to explore any possible combination of cues for 
each chromosome from zero to the full allowable set. Once the 
new population has been created, we re-evaluate and continue 
until the termination criteria is met (either a perfect fitness 
achieved, or the maximum number of generations has been 
reached), see Figure 1. 

4 Experiments 
Our experiments focus on the following four research questions: 

R1. Validity of approach: Can cues be evolved from an LLM-
generated representation that improve the accuracy of 
image interpretation? 

R2. Assessment of algorithm: How does a GA with fixed-
length representation compare with a GA using variable-
length representation?  

R3. Assessment of encoding: Can results be improved if 
categorical encoding is replaced with real encoding? 

R4. Validity of solutions: Do the evolved sets of cues 
represent coherent, concise sets? 

We first describe data preparation and application-specific 
details of fitness evaluation. 

4.1 Data 
This work is performed in collaboration with the global 
accommodation marketplace TheSqua.re. With their support we 
prepared a ground truth dataset of 47 apartments each with 
confirmed data (accurate sustainability data is rare). Our first step 
was the preparation of this dataset. For each of the 47 properties 
there were between 8 and 50 images provided. From these, four 
image subsets were chosen representing: 

1. Building images: photographs of the exterior of the building 
if available, also wide-angle photographs showing as much 
of the interior as possible. (Used for Building Age and 
Energy data items) 

2. Heating images: photographs that include objects that could 
be used for heating such as radiators, boilers or vents. 

3. Window images: photographs that include windows, ideally 
showing features of frames, handles or other design 
characteristics. 
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4. Lighting images: photographs that include lights, including 
ceiling or wall mounted and free-standing, ideally showing 
details of bulbs. 

While these were chosen manually in this work, the image 
selection stage could be automated by an LLM in future work. 
Our ground truth dataset also contains the true features contained 
by that apartment (laboriously collated from construction, owner, 
and surveyor documentation): 
[D1] Building age, which may comprise: an exact year, e.g., 2014, 

a range, e.g., 2007-2011, or text depicting a time period, e.g., 
19th century => cleaned to ‘1801-1900', before 1900 => 
cleaned to '1000-1899'. 

[D2] Lighting, which comprises the percentage of lighting rated as 
low energy, e.g. 20% or 86%. 

[D3] Heating, which comprises one of: underfloor heating, warm 
air, water radiators, electric panels or electric storage heaters. 

[D4] Windows, comprising single glazed, double glazed, or high 
efficiency (triple glazed or high efficiency double glazing). 

[D5] Energy kWh/m2: an integer typically between 35 and 450. 
This dataset was split 60:40 for training and test respectively, 

ensuring that the distribution of data remained similar (in some 
cases there are very few samples, e.g. of very old buildings, so we 
ensure both training and test contain at least one). 

4.2 Evaluation 
For each of our five data items of interest: Building age, Lighting, 
Heating, Windows and Energy kWh/m2 we have a corresponding 
evaluation function to compare the image interpretation LLM 
output with the ground truth. Supplemental material provides all 
prompts used; here we give an example of the prompts for 
Windows (Table 2). For Building age, the LLM returns a range. 
Eqn (1) is used to calculate error if there is an exact ground truth 
value for the age, while Eqn (2) is used if there is a range. For 
Lighting, the fitness score per building is simply the difference 
between estimated percentage of low energy and actual 
percentage Table 3 and Table 4 describe error calculations for 
Heating and Lighting respectively. For Energy the fitness is the 
absolute difference between estimated kWh/ m2 from the LLM and 
actual kWh/m2 of the building. If the LLM estimates a range, Eqns 
(1) and (2) is used. Final fitness scores comprise the sum of errors 
per building in the dataset. 
 

𝐸𝑟𝑟𝑜𝑟(𝑠𝑡𝑎𝑟𝑡𝐴, 𝑒𝑚𝑑𝐴, 𝑝𝑜𝑖𝑛𝑡𝐵) =

3
0, 𝑖𝑓	(𝑠𝑡𝑎𝑟𝑡𝐴 ≤ 𝑝𝑜𝑖𝑛𝑡𝐵 ≤ 𝑒𝑛𝑑𝐴)

min ;|𝑝𝑜𝑖𝑛𝑡𝐵 − 𝑠𝑡𝑎𝑟𝑡𝐴||𝑝𝑜𝑖𝑛𝑡𝐵 − 𝑒𝑛𝑑𝐴| > , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (1) 

 

𝐸𝑟𝑟𝑜𝑟(𝑠𝑡𝑎𝑟𝑡𝐴, 𝑒𝑛𝑑𝐴, 𝑠𝑡𝑎𝑟𝑡𝐵, 𝑒𝑛𝑑𝐵) =

3
(𝑠𝑡𝑎𝑟𝑡𝐵 − 𝑒𝑛𝑑𝐴), 𝑖𝑓	(𝑒𝑛𝑑𝐴 < 𝑠𝑡𝑎𝑟𝑡𝐵)
(𝑠𝑡𝑎𝑟𝑡𝐴 − 𝑒𝑛𝑑𝐵), 𝑖𝑓	(𝑒𝑛𝑑𝐵 < 𝑠𝑡𝑎𝑟𝑡𝐴)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (2) 

 

Table 2. Cue Evaluation LLM Prompts for Windows 

Purpose LLM Prompt  

Evaluate 
cues 

The images below belong to the same apartment. The 
building is located in UK.  
    {prompt-question} 
    Make your judgement focusing on the presence of the 
following features: {cue_list} 
    For each feature, say yes if it is visible, no if it is not 
visible or n/a if it is not applicable, then provide a short 
explanation. 
    {instructions}.  
    {final-instructions} 

prompt-
question: 
windows 

“What type of windows does this apartment have?” 

instructions: 
windows 

“Finally, select one option: (1) single glazed, (2) double 
glazed, (3) high efficiency double or triple glazed” 

final-
instructions 

“You can only use one of these, do not modify or invent 
your own options. Put the selected option in between ### 
and ###” 

Table 3. Heating Error (LLM Estimate vs Ground Truth) 

 under 
floor 

warm 
air 

water 
rads 

electric 
panel 

electric 
storage 

underfloor 0 1 2 2 2 

warm air 1 0 2 2 2 

water rads 2 2 0 2 2 

electric panel 2 2 2 0 1 

electric storage 2 2 2 1 0 

Table 4. Windows Error (LLM Estimate vs Ground Truth)  

 Single glazed Double glazed High Efficiency 

Single glazed 0 1 2 

Double glazed 1 0 1 

High Efficiency 2 1 0 

 

4.3 Experimental Setup 
We perform four experiments to investigate our research 
questions: 

E1. Validity of approach. We test all five data items of 
interest: Building age, Lighting, Heating, Windows and 
Energy kwh/m2 and compare the result from CLEAR with 
the result from using the same image recognition LLM 
using a prompt written by a domain expert, and with the 
result of using another human domain expert to perform 
the recognition task manually on the same images. 

E2. Assessment of operators. We test both versions of the 
GA: fixed length and variable length. 

E3. Assessment of encoding. We compare the performance of 
CLEAR using categorical vs real encodings. 
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Figure 2. Population fitness (raincloud plots), best fitness, and average number of cues (y-axis) over generations (x-axis), for each 
experiment. Final column shows result for experiment using U-Values for Windows in place of categorical values. 

Building Age Lighting 

  

Figure 3. Example images from the test dataset with cues of best evolved individuals by CLEARv shown below. Relevant evolved 
cues highlighted for each data item of interest. (The LLM is presented with multiple images per dwelling to make its assessment.) 

Heating Windows Energy 
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Table 5. Comparison of direct human image interpretation (Hu), expert-written prompt (Pr), and CLEAR using fixed 
representation (CLRx) and variable-length representation (CLRv). Lower values indicate better performance, best shown in bold, 

second best underlined. Ablation study shows new error for CLRv on test data after removal of each cue in turn, averaged. 

 Training error   Testing error   Ablation study 

 Hu Pr CLRx CLRv   Hu Pr CLRx CLRv   CLRv σ 

Building age 147 86 7 1   129 49 20 9   18.9 19.99 

Lighting 776 514 528 368   474 430 464 350   355 30.2 

Heating 16 10 6 8   6 6 9 6   8 1.83 

Windows 11 13 10 9   7 9 10 7   8.2 1.79 

Energy kWh/m2 1311 959 990 796   984 916 1034 665   852 73.77 

 
 

E4. Validity of solutions: We examine the cues in the final 
solutions to assess the quality of the cues with respect to 
the application. We also perform ablation studies, 
removing each cue in turn from the solution and 
observing if there is any change in error. 

CLEARx (fixed length), and CLEARv (variable length) were 
both initialized with a population of 15 and run for 20 generations 
for each data item. s=33% of best parents were chosen as parents; 
the best two were duplicated into the new generation as elites. 
While larger population sizes, more generations and multiple runs 
are likely to produce superior results and enable statistical 
analysis, here we aim to prove the viability of the technique while 
using a modest time and compute budget (free LLM alternatives 
currently have insufficient quality output). As described in the 
previous section, LLM prompts are adjusted to construct relevant 
representations for each experiment. 

4.4 Results 
Table 5 and Figure 2 provide our results. Overall, for all 

experiments, CLEARv outperforms or equals the performance of 
the other methods in both training and testing. CLEARx can 
sometimes match the performance of direct human interpretation 
or expert-written prompts; in only one case it performs best 
(training dataset for Heating, but not for the test dataset). We 
revisit the research questions to understand the results in more 
detail. 

4.4.1 Validity of approach (R1). CLEARv (variable-length GA) 
successfully improves fitness scores over time. In several cases 
(Age, Lighting, Energy) its results are substantially better than 
direct human image interpretation and expert-written prompts 
(Table 5). It shows a clear pattern of changing the number of cues 
in chromosomes over time, occasionally removing all cues from 
some. Its approach varies according to the data item of interest. 
Runs where CLEARv strongly outperforms other methods often 
show an evolution towards higher numbers of cues after an initial 
drop (Figure 2, bottom row). This may indicate initial pruning 
away of harmful or unneeded cues (and entire categories of cues) 
before adding new useful cues to the other chromosomes. This 
can be seen in the final solutions, which reveal that some 
chromosomes have zero cues while others have multiple (Figure 

3). Results where CLEAR merely equals the performance of other 
methods show a reduction in cues, perhaps indictive of the noise 
and difficulty inherent in the problems: for some problems it may 
be easier to remove distractions that cause LLM variability than 
find useful new cues that improve accuracy. 

4.4.2. Assessment of operators (R2). While CLEARv 
successfully evolved high quality solutions, results for CLEARx  
show far less coherence, see Table 5 and Figure 2. For most runs 
there is still evolutionary progression towards better accuracy, but 
(apart from Heating, training) final solutions are always worse 
compared to using a GA with variable-length representation. Final 
solutions still appear to contain cues that have limited utility. For 
this problem there appears to be a substantial advantage in having 
the ability to alter the number of cues. 

4.4.3 Assessment of encoding (R3). CLEARv works effectively 
for all data items of interest. However, it seems that it is more 
difficult to evolve cues for some data items compared to others. 
Heating and Windows show less improvement over time, with 
Windows showing a trend towards fewer cues over time, but some 
of the cues remaining still questionable, e.g. “Compliance with 
Fire-rated Standards” and “Visible Brand or Certification Labels” 
(none are visible). While CLEARv equals or outperforms the other 
approaches, there remains a question: why is it easier to evolve 
cues for some data items compared to others? 

Problem difficulty is likely an important factor, and only 
solvable with improved data and better LLMs. But another reason 
may be noise. The use of nondeterministic LLMs for image 
interpretation, combined with the difficult identification task, 
results in inconsistent results from the LLM for the same set of 
cues. The level of noise may also be correlated with the precise 
cues presented to the LLM. To understand this better we 
presented the LLM with the same single cue ten times for the 
same image. For cue “Evidence of Recent Installation” the mean 
difference in output for categories was 0.4 (40% were reported as 
a different type out of the three options) with coefficient of 
variation (CV) of 1.29. This is perhaps a relatively good cue, but 
inconsistently good – there is high variation. In contrast the same 
LLM with cue “Historical Building Integration” had difference of 
output 0.9, CV 0.35 – an example of a much worse cue, but less 
variation: it is more consistently worse. 
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Figure 4. Coefficient of Variation during evolution comparing 
categorical Window estimates and fitness (blue) with 
continuous U-value estimates and fitness (orange). 

It has been demonstrated in Bayesian Optimization of noisy 
problems that categorical and integer values (often via one-hot 
encoding or rounding) produce suboptimal results [26]. It is also 
evident that a stepped fitness function as we used for Windows 
(Table 4) will amplify variation – a minor error receives a large 
penalty – compared to a real-valued fitness function where a small 
error receives a correspondingly small penalty in fitness. 

With this in mind, we modified our implementation for the 
Windows data item, asking it to estimate the real-valued U-value 
(a measure of insulator effectiveness) of the windows, low for 
efficient, high for inefficient. When we present the same single 
cues to the LLM interpreting the same image, now cue “Evidence 
of Recent Installation” produces a CV of 0.23 compared to cue 
“Historical Building Integration” which produces CV of 0.20. 
Now our unreliable cue has similar variation as the more reliable 
one. Pushing the change through to CLEAR and re-evolving cues 
for Windows, the new fitness function simply takes the difference 
in U-values between the LLM estimate and 0.5 (single glazed), 
2.0 (double glazed) and 4.8 (efficient double or triple glazed). 
Evolution clearly shows a more stable optimization progression 
over time, with the number of cues no longer being minimized 
(Figure 2 rightmost column). Figure 4 shows the reduction in 
variation resulting from the change from categorical to real-valued 
estimates and shows a downwards trend suggesting that the GA 
can reduce this variation over time (caused by our approach of re-
evaluating repeated individuals and always keeping the worst 
fitness scores, described earlier). 

While final fitness scores cannot be directly compared because 
of the change in output and fitness function, this approach, which 
provides a much smoother gradient to follow, appears more 
promising for the optimizer. However, while it was possible to 
modify this data item, for Heating the different categories of 
heating cannot be so easily converted to a real-valued gradient. 

4.4.4 Validity of Evolved Solutions (R4). When we examine the 
evolved solutions from CLEARv, it is apparent that the evolved 
cues appear relevant and tailored to the data item in question. 
Taking Energy kWh/m2 as an example of an evolved solution: this 
data item is extremely difficult to estimate from photographs 
alone, even for domain experts. CLEAR performed better than the 
other approaches for both training and test datasets (Table 5) and 
showed a clear improvement over time (Figure 2) with the number 

of cues first falling as low as 5 or 6 and then increasing to around 
10. Figure 3 (bottom right) shows the cues of the best individual 
from the final generation, which provides a useful set relating to 
energy efficiency, building design, energy-hungry appliances, 
modernity and quality of décor and presence of central heating. 
One category was discarded: “Heating and Ventilation” which 
contained seemingly useful cues such as "High-efficiency boiler", 
"Radiant floor heating", "Smart radiator valves", and "Underfloor 
heating controls". But such features are not visible in our dataset 
of images so they were unlikely to be useful for the LLM.  

Relevance does not mean optimality, however. If CLEAR 
suffered from bloat then it is possible that our final solutions may 
contain many superfluous or unnecessary cues – or even cues that 
harm accuracy. To test for this, we performed ablation studies, 
removing each cue in turn from the five best solutions shown in 
Figure 3 and testing the new prompt with the image interpretation 
LLM to see if there is any change in error. Table 5 (far right) 
shows the results: in every case a removal of an evolved cue 
resulted in worse performance by the LLM when interpreting the 
images. It would appear that CLEAR evolves high quality and 
concise sets of cues. 

5 Conclusions 
The use of LLMs to derive useful data from photographs could be 
transformational as we strive to understand existing building stock 
to improve long-term sustainability. But an LLM must be given 
highly specific prompts in order to achieve accurate interpretation. 
With building styles and practices varied around the world, this 
makes the application of LLMs time-consuming and costly – local 
domain experts would need to engineer new prompts for every 
new region. Our task, set by the industrial partner, was to solve 
this accuracy and scalability problem. 

We introduced an automated approach for specialized LLM 
image-to-data applications. Cue Learning using Evolution for 
Accurate Recognition (CLEAR) generates and optimizes textual 
cues such that the accuracy of deriving specific data (such as 
building age, heating type, energy kWh/m2), for a given set of 
input data, is improved. LLMs optimized by CLEAR outperform 
human-authored prompts and expert human recognition by up to 
two orders of magnitude difference in error. Best results are 
achieved by using variable-length chromosomes to enable the 
number of cues to be changed over time. Real-valued estimates 
and corresponding fitness functions reduce noise and further 
improve accuracy compared to categorical estimates and stepped 
functions. An ablation study of final solutions provides evidence 
of concision, with the removal of any cue detrimental to accuracy. 

This work has used image data of buildings in the UK. Future 
work will investigate the use of CLEAR for data from other 
regions. It is also possible that CLEAR may have utility for 
optimizing agentic LLM tasks and for other application domains. 
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