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ABSTRACT Sustainability Data Extraction In Proceedings of the Genetic and

Large Language Model (LLM) image recognition is a powerful
tool for extracting data from images, but accuracy depends on
providing sufficient cues in the prompt — requiring a domain
expert for specialized tasks. We introduce Cue Learning using
Evolution for Accurate Recognition (CLEAR), which uses a
combination of LLMs and evolutionary computation to generate
and optimize cues such that recognition of specialized features in
images is improved. It achieves this by auto-generating a novel
domain-specific representation and then using it to optimize
suitable textual cues with a genetic algorithm. We apply CLEAR
to the real-world task of identifying sustainability data from
interior and exterior images of buildings. We investigate the
effects of using a variable-length representation compared to
fixed-length and show how LLM consistency can be improved by
refactoring from categorical to real-valued estimates. We show
that CLEAR enables higher accuracy compared to expert human
recognition and human-authored prompts in every task with error
rates improved by up to two orders of magnitude and an ablation
study evincing solution concision.
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1 Introduction

Large Language Models (LLMs) are the leading approach today
for image interpretation [1]. With appropriate prompts, LLMs
trained on images and text can generate detailed textual
descriptions of new images. This enables a new type of
application: using LLMs to extract meaningful data from images.
In e-commerce applications this might be to extract implicit
attributes from a product image to improve search and user
experience [2]. In medical applications this might be to describe
the type of skin lesion an in attempt to identify melanoma early
[3]. Here we focus on a new real-world application: the
identification of sustainability data from images of buildings.

As the world becomes increasingly aware of the challenges
presented by global warming, there is an urgent need to
understand our existing buildings so that we can upgrade them to
be more sustainable [4]. This is the challenge posed by our
industrial partner, TheSqua.re Group — a global accommodation
marketplace specializing in medium-term rentals all over the
world. They have five data items of interest: building age,
lighting, heating, windows, energy. Determining building age is
often helpful to estimate likely construction methods and details
such as insulation [5]. They must find structures that have
inefficient lighting and heating so that they can be upgraded. They
need to identify buildings with inefficient single glazed windows
so that the latest thermally efficient double or triple glazing can be
installed [6]. An overall estimation of energy kWh/m? enables the
calculation of likely CO, emissions — often requested by corporate
customers when booking accommodation.

In some European countries, modern buildings might have
such information readily available for some, but not all properties
[7]. For much of the world there is simply no available data at all
about buildings [7]. However, while precise sustainability or
energy related data may be sparse or non-existent, photographs
and satellite imagery are plentiful. In the rental industry, it is the
norm to take regular photographs not just to list the properties, but
also to act as evidence against inventory loss or damages. Our
industrial partner holds thousands of such images.
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Figure 1. Cue Learning using Evolution for Accurate Recognition (CLEAR) algorithm.

Despite having image data available, the task of prompting an
LLM to extract the required data from images is non-trivial [8].
One cannot simply prompt the LLM to list architectural features
relating to energy usage — the answer is too generic and non-
specific to be of value. Equally one cannot prompt the LLM to
describe the type of heating or lighting from images — we receive
non-specific and generic estimates as results. For this application
we need the LLM to behave as a detective. It must collate several
distinct features and use them to make a judgement. For example,
an older building in Europe could be estimated if one considers
cues such as ceiling height, coving, fireplaces, construction
material visible as brickwork and size of windows. But these cues
would be very different for images in other regions of the world
that do not share such architectural traditions and practices.

So how best to determine the cues required in prompts? Our
industrial partner needs an approach that does not depend on
expert domain knowledge for each country, for this is not scalable
and may not be available. All necessary information must be
derived from the building images or general knowledge within an
LLM. This paper proposes the solution: Cue Learning using
Evolution for Accurate Recognition (CLEAR), see Figure 1.
CLEAR wuses a combination of LLMs and evolutionary
computation to generate and optimize cues such that recognition
of specialized features in images is improved.

This work makes the following contributions:

e Invention of the concept of prompt cues for LLMs.
Introduction of CLEAR: a novel approach for improving
the performance of LLMs by optimizing cues.

Novel approach in EC that enables dynamic generation of
representation for a genetic algorithm using LLMs.
Application of CLEAR to a challenging real-world task.
Demonstration of the effectiveness of CLEAR by
comparison of our method with human-authored prompts
and expert human evaluation.

In-depth analysis of the algorithm, providing evidence that
variable length operators and non-categorical encoding
provide the best results.
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Demonstration that evolved solutions are coherent and
concise through textual analysis and ablation studies.
The rest of the paper is organized as follows. We provide a
background in the next section and give the method in Section 3.
We describe empirical experiments in Section 4 and conclude in
Section 5.

2 Background

The task of enhancing prompts is an area of extensive research, as
generative systems are highly sensitive to exact wording,
necessitating careful prompt engineering [9]. Techniques of
improving prompts through text modifiers [10] or involving a
human in the loop [11] are being developed.

Evolutionary approaches have been used with LLMs in various
areas, such as game level generation [12] and neural architecture
search [13]. Previous research has demonstrated how an LLM can
optimize an objective function through prompt optimization [14],
and how LLMs can be used for crossover operations [15].
Researchers have also demonstrated the use of LLMs as a means
of initialization, crossover and mutation to evolve prompts that are
then used to generate architectural images [16].

In the area of vision models, there is increasing use of vision
models to understand and extract data, e.g., using LLMs for chart
understanding by converting data-filled visuals into textual
summaries [17] and previous work using LLMs to extract data
from images of buildings [8], which demonstrated that the
performance of LLMs in such scenarios are sensitive to the exact
prompt used, hence justifying the approach in this paper.

The combination of EC with LLMs is becoming more
common. Pluhacek et al. used LLMs to enhance the Self-
Organizing Migrating Algorithm (SOMA), demonstrating that
LLMs can be used to create distinctive and effective algorithmic
strategies [18]. Morris et al. introduced the concept of “Guided
Evolution” (GE), which is a novel framework that uses LLMs for
a supervised evolutionary process, guiding mutations and
crossovers [19], using the LLM to help maintain genetic diversity
and augment decision-making in model evolution. Nasir et al.
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proposed merging the code-generating abilities of LLMs with the
diversity and robustness of Quality-Diversity (QD) solutions [20]
to create diverse and high-performing networks. Liu et al.
proposed an LLM-driven EA (LMEA), where each generation of
the evolutionary search, LMEA instructs the LLM to select parent
solutions from current population and perform crossover and
mutation to generate offspring solutions [21]. EAs have also been
used to explore the prompt space of LLMs, e.g., Saletta and
Ferretti’s grammar-based evolutionary approach [22] and Guo et
al’s  EvoPrompt, which combines LLMs with EAs to
automatically improve prompts [23].

3 Method

3.1 Overview

In this work we define a prompt cue to mean: a signal or piece of

information used to aid in the interpretation of an input by an
LLM. An example of a cue might be “window height”, typically
used within a prompt for the LLM in the form, “pay specific
attention to window height.”

CLEAR evolves cues in order to achieve accurate recognition
of features by LLMs. It iteratively optimizes the behavior of an
LLM by optimizing sets of textual cues. It makes use of a genetic
algorithm with a dynamic LLM-generated representation, where
each individual in the population is represented by a set i of n
chromosomes, where 7 is determined by an LLM:
i={chy, chy, chs, ..., ch,}
and each chromosome c/, comprises a list of up to m, cues, where
the allowable cues are also determined by an LLM:
chy : [ cuer, cues, ..., cuepy |

Thus, each chromosome is a group of cues (grouped in terms
of semantic or application-specific similarity), with its exact
composition optimized by the GA. For example, the chromosome
representing the set of “internal architectural features” might
contain the cues “high ceilings” and “ceiling rose”, with the
prompt instructing the LLM to focus on the presence or absence
of the cues high ceilings and ceiling rose.

We choose a genetic algorithm because LLM image
interpretation is inconsistent with extremely noisy results —
something GAs are particularly well-suited to handle.

While this work focusses on the real-world application of
extracting sustainability data from images of buildings, CLEAR is
a general technique that could be used to improve any prompt for
LLM interpretation of an input. Figure 1 illustrates the technique.

3.3 Automated Representation

Before the GA can evolve cues, we must first generate the
chromosomes and their associated allowable cues, i.e., we must
create a representation for the GA to evolve. Traditionally this is
crafted by hand. Here we introduce an automated approach using
an LLM (gpt-40). We do this to reduce bias caused by limited
knowledge of a single expert and enable scalability.
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Table 1. Cue Generation LLM Prompts (Windows)

Purpose LLM Prompt

You are a surveyor. You are given a set of images that
belong to the same building.

{ feature-extraction-prompt }
The building is located in UK. Return the features as a
list.

Extract
feature list

{ feature- Your task is to provide a detailed label of every
extraction- architectural feature for the building that will help
prompt }: determine whether the glazing in the windows is single,
windows double, or high efficiency. List 50 detailed visible
features that are significant for window types.
Duplicate I have a list of features: {raw feature list}. First,
removal and remove  duplicated items, including features
clustering semantically similar. Then cluster these features based
on the type of feature. Aim to produce 8 clusters.
Formatting Given this list {categories}, first clean the list to contain

text only, then produce a python array, each subarray
for each category.
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We first cluster the image training set with respect to the data
item of interest (using an LLM where necessary, e.g. for Building
Age (see Supplementary materials for prompt details). We then
select three representative buildings, randomly choosing one from
each cluster. Next, the LLM is given each image separately and
prompted to return a list of features, using a prompt specific to the
data item. See Table 1 for an example prompt when the data item
of interest is windows (Supplemental materials provide prompts
for all data items). This results in 150 image features — our
potential cues. We then ask the LLM to remove duplicates, cluster
the features and format the output appropriately for our GA.

Our GA chromosomes are the categories created by the LLM
during clustering. The possible values or genes within each
chromosome are the cues within each cluster. For example, for
windows we obtained n=7 chromosomes including chy and ch>:

Material and Construction, comprising my=14 cues including
"Window Frame Material", "Window Thickness", "Frame
Insulation", "Frame Color",..., "Depth of Window Frame"

Functionality and Usability, comprising m,=18 cues including
"Integrated  Blinds/Shades", "Presence of Mullions or
Muntins",..., "Glazing Pattern and Divisions"
and so on.

This auto-representation using an LLM is able to produce
many possibly useful cues for the optimizer to consider. Some are
clearly derived from the images provided, some appear to be
generated using its built-in general knowledge. However, the
utility of them can be highly variable. For example, using the
“Frame Color” cue from the chromosome Material and
Construction is unlikely to help in the determination of energy
efficiency. But using "Visual Consistency of the Glass Surface"
instead might be useful — very old single glazed windows have
distortions visible in their hand-made glass.

This illustrates the optimization problem for the genetic
algorithm. With approximately eight chromosomes of up to 30
possible cues, which combination should be used in the prompt to
maximize interpretation accuracy? It may be necessary to allow
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multiple cues per chromosome in case more than one in that
category is important; equally we may need to allow zero cues in
case that category is irrelevant.

3.4 Genetic Algorithms

We use two genetic algorithms: CLEAR* (fixed length), and
CLEARY (variable length), the latter having more complex
crossover and mutation operators. This enables us to investigate
whether CLEAR benefits from the ability to add more cues to the
same category or even remove entire categories.

Our genetic algorithms manipulate cues (genes). Once the
representation has been auto-generated, for every individual, for
every chromosome, we initialize with a single random cue chosen
from the corresponding LLM-generated cluster of possible cues.

To evaluate individual i, each chy is extracted as a list of
textual cues: cue list and concatenated. These are then passed to
the image interpretation LLM (gpt-40) using the task-specific
prompt (e.g., see Table 2). Chain-of-thought reasoning is
encouraged by prompting the LLM to consider each cue in turn
and give explanations before estimating. This is applied to each
image. The interpreted result from the LLM is then cleaned (its
textual output can be variable in formatting despite the prompt)
and compared with the ground truth for each image to produce a
fitness score (application-specific details in Section 4.2).

Our GAs permit elites. Should any individual in the population
already have a fitness score, it is re-evaluated and the worst score
is used for the individual. We also cache all past solutions and
their fitnesses in a run; if a previously-seen combination of cues is
recreated then it is also re-evaluated and the worst score amongst
the cached copy and new score is used. This method, first used in
evolutionary robotics [24], encourages solutions to be more
consistent (robust against noise). Once all members of the
population have been evaluated, we copy the best two into the
next generation as elites. We then choose parents from the best s%
of the population and generate the remainder of the next
generation using crossover and mutation operators.

Crossover for the GA with fixed-length representation
allocates a randomly chosen cue from either parent for each
chromosome (uniform crossover). Mutation in a chromosome
switches the cue with another randomly chosen from the same
category. Thus, there is always the same number of chromosomes,
each with m,=1 cue.

Our crossover for the GA with variable-length representation
operates as follows. Given parents Parent! and Parent2, we build
each chromosome in turn for the child solution. Cues are
iteratively randomly chosen from Parentl’s chromosome or
Parent2’s chromosome until we reach the maximum number of
cues of both parents. Should one parent have more cues in a
chromosome, then the child has a probability of 0.5 of inheriting
each additional cue in turn. Once complete, duplicate, or
overspecified [25] cues are removed from the child. (If both
parents share identical cues in a chromosome but in different
orders then the child can be built with duplicates.) For example, if
Parentl = { chy:[brick, concrete, wood] } and Parent2 = {
chy:[laminate, brick] } then one child could become Childl = {
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chy:[brick, brick] }, corrected to Childl = { ch;:[brick] } while
another could become Child2 = { ch,:[laminate, concrete, wood] }

Mutation for the variable-length representation can perform
three operations, randomly chosen: swap, delete or add. First a
random chromosome is chosen within the child solution. When
swapping, mutation picks a random cue of that chromosome and
swaps it with another allowable cue. If there is no cue in the
chromosome, a new cue is added instead. When deleting, if a
random cue can be chosen, it is deleted. When adding, another
allowable cue is added to the chromosome. After mutation,
duplicates are removed. For example, if both Childl and Child2
were mutated they could become: Childl = { ch;:[brick, steel] }
and Child2 = { ch;:[laminate, concrete] }

Using these operators we permit the GA with variable-length
representation to explore any possible combination of cues for
each chromosome from zero to the full allowable set. Once the
new population has been created, we re-evaluate and continue
until the termination criteria is met (either a perfect fitness
achieved, or the maximum number of generations has been
reached), see Figure 1.

4 Experiments

Our experiments focus on the following four research questions:

R1. Validity of approach: Can cues be evolved from an LLM-
generated representation that improve the accuracy of
image interpretation?

R2. Assessment of algorithm: How does a GA with fixed-
length representation compare with a GA using variable-
length representation?

R3. Assessment of encoding: Can results be improved if
categorical encoding is replaced with real encoding?
Validity of solutions: Do the evolved sets of cues
represent coherent, concise sets?

We first describe data preparation and application-specific
details of fitness evaluation.

R4.

4.1 Data

This work is performed in collaboration with the global
accommodation marketplace TheSqua.re. With their support we
prepared a ground truth dataset of 47 apartments each with
confirmed data (accurate sustainability data is rare). Our first step
was the preparation of this dataset. For each of the 47 properties
there were between 8 and 50 images provided. From these, four
image subsets were chosen representing:

1. Building images: photographs of the exterior of the building
if available, also wide-angle photographs showing as much
of the interior as possible. (Used for Building Age and
Energy data items)

2. Heating images: photographs that include objects that could
be used for heating such as radiators, boilers or vents.
3. Window images: photographs that include windows, ideally

showing features of frames, handles or other design
characteristics.
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4. Lighting images: photographs that include lights, including
ceiling or wall mounted and free-standing, ideally showing
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Table 2. Cue Evaluation LLM Prompts for Windows

details of bulbs.

Purpose LLM Prompt

While these were chosen manually in this work, the image
selection stage could be automated by an LLM in future work.
Our ground truth dataset also contains the true features contained
by that apartment (laboriously collated from construction, owner,
and surveyor documentation):

[D1] Building age, which may comprise: an exact year, e.g., 2014,
arange, e.g., 2007-2011, or text depicting a time period, e.g.,
19th century => cleaned to ‘1801-1900', before 1900 =>
cleaned to '1000-1899'.

[D2] Lighting, which comprises the percentage of lighting rated as
low energy, e.g. 20% or 86%.

[D3] Heating, which comprises one of: underfloor heating, warm
air, water radiators, electric panels or electric storage heaters.

[D4] Windows, comprising single glazed, double glazed, or high
efficiency (triple glazed or high efficiency double glazing).

[D5] Energy kWh/m?: an integer typically between 35 and 450.

The images below belong to the same apartment. The
building is located in UK.

{prompt-question}

Make your judgement focusing on the presence of the
following features: {cue_list}

For each feature, say yes if it is visible, no if it is not
visible or n/a if it is not applicable, then provide a short
explanation.

{instructions}.

{final-instructions}

Evaluate
cues

prompt- “What type of windows does this apartment have?”
question:

windows

instructions: ~ “Finally, select one option: (1) single glazed, (2) double
windows glazed, (3) high efficiency double or triple glazed”

final- “You can only use one of these, do not modify or invent
instructions ~ your own options. Put the selected option in between ###

and ##H”

This dataset was split 60:40 for training and test respectively,
ensuring that the distribution of data remained similar (in some
cases there are very few samples, e.g. of very old buildings, so we
ensure both training and test contain at least one).

4.2 Evaluation

For each of our five data items of interest: Building age, Lighting,
Heating, Windows and Energy kWh/m? we have a corresponding
evaluation function to compare the image interpretation LLM
output with the ground truth. Supplemental material provides all
prompts used; here we give an example of the prompts for
Windows (Table 2). For Building age, the LLM returns a range.
Eqn (1) is used to calculate error if there is an exact ground truth
value for the age, while Eqn (2) is used if there is a range. For
Lighting, the fitness score per building is simply the difference
between estimated percentage of low energy and actual
percentage Table 3 and Table 4 describe error calculations for
Heating and Lighting respectively. For Energy the fitness is the
absolute difference between estimated kWh/ m? from the LLM and
actual kWh/m? of the building. If the LLM estimates a range, Eqns
(1) and (2) is used. Final fitness scores comprise the sum of errors
per building in the dataset.

Error(startA,emdA, pointB) =
0,if (startA < pointB < endA)
. (|pointB — startA|
( |[pointB — endA|

(M

) ,otherwise

Error(startA, endA, startB, endB) =
(startB — endA), if (endA < startB)
(startA — endB), if (endB < startA) 2
0, otherwise
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Table 3. Heating Error (LLM Estimate vs Ground Truth)

under warm water electric electric

floor air rads panel storage
underfloor 0 1 2 2 2
warm air 1 0 2 2 2
water rads 2 2 0 2 2
electric panel 2 2 2 0 1
electric storage 2 2 2 1 0

Table 4. Windows Error (LLM Estimate vs Ground Truth)

Single glazed Double glazed High Efficiency

Single glazed 0 1 2
Double glazed 1 0 1
High Efficiency 2 1 0

4.3 Experimental Setup

We perform four experiments to investigate our research
questions:

El. Validity of approach. We test all five data items of
interest: Building age, Lighting, Heating, Windows and
Energy kwh/m’ and compare the result from CLEAR with
the result from using the same image recognition LLM
using a prompt written by a domain expert, and with the
result of using another human domain expert to perform
the recognition task manually on the same images.

E2. Assessment of operators. We test both versions of the
GA: fixed length and variable length.

E3. Assessment of encoding. We compare the performance of
CLEAR using categorical vs real encodings.
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Figure 3. Example images from the test dataset with cues of best evolved individuals by CLEAR" shown below. Relevant evolved
cues highlighted for each data item of interest. (The LLM is presented with multiple images per dwelling to make its assessment.)
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Table 5. Comparison of direct human image interpretation (Hu), expert-written prompt (Pr), and CLEAR using fixed
representation (CLR*) and variable-length representation (CLR"). Lower values indicate better performance, best shown in bold,
second best underlined. Ablation study shows new error for CLR" on test data after removal of each cue in turn, averaged.

Training error

Testing error Ablation study

Hu Pr CLR* CLR" Hu Pr CLR* CLR" CLR’ 4
Building age 147 86 7 1 129 49 20 9 18.9 19.99
Lighting 776 514 528 368 474 430 464 350 355 30.2
Heating 16 10 6 8 6 6 9 6 8 1.83
Windows 11 13 10 9 7 9 10 7 8.2 1.79
Energy kWh/m’ 1311 959 990 796 984 916 1034 665 852 73.77

E4. Validity of solutions: We examine the cues in the final
solutions to assess the quality of the cues with respect to
the application. We also perform ablation studies,
removing each cue in turn from the solution and
observing if there is any change in error.

CLEAR* (fixed length), and CLEARY (variable length) were
both initialized with a population of 15 and run for 20 generations
for each data item. s=33% of best parents were chosen as parents;
the best two were duplicated into the new generation as elites.
While larger population sizes, more generations and multiple runs
are likely to produce superior results and enable statistical
analysis, here we aim to prove the viability of the technique while
using a modest time and compute budget (free LLM alternatives
currently have insufficient quality output). As described in the
previous section, LLM prompts are adjusted to construct relevant
representations for each experiment.

4.4 Results

Table 5 and Figure 2 provide our results. Overall, for all
experiments, CLEAR" outperforms or equals the performance of
the other methods in both training and testing. CLEAR* can
sometimes match the performance of direct human interpretation
or expert-written prompts; in only one case it performs best
(training dataset for Heating, but not for the test dataset). We
revisit the research questions to understand the results in more
detail.

4.4.1 Validity of approach (R1). CLEARY (variable-length GA)
successfully improves fitness scores over time. In several cases
(Age, Lighting, Energy) its results are substantially better than
direct human image interpretation and expert-written prompts
(Table 5). It shows a clear pattern of changing the number of cues
in chromosomes over time, occasionally removing all cues from
some. Its approach varies according to the data item of interest.
Runs where CLEARY strongly outperforms other methods often
show an evolution towards higher numbers of cues after an initial
drop (Figure 2, bottom row). This may indicate initial pruning
away of harmful or unneeded cues (and entire categories of cues)
before adding new useful cues to the other chromosomes. This
can be seen in the final solutions, which reveal that some
chromosomes have zero cues while others have multiple (Figure
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3). Results where CLEAR merely equals the performance of other
methods show a reduction in cues, perhaps indictive of the noise
and difficulty inherent in the problems: for some problems it may
be easier to remove distractions that cause LLM variability than
find useful new cues that improve accuracy.

4.4.2. Assessment of operators (R2). While CLEARY
successfully evolved high quality solutions, results for CLEAR*
show far less coherence, see Table 5 and Figure 2. For most runs
there is still evolutionary progression towards better accuracy, but
(apart from Heating, training) final solutions are always worse
compared to using a GA with variable-length representation. Final
solutions still appear to contain cues that have limited utility. For
this problem there appears to be a substantial advantage in having
the ability to alter the number of cues.

4.4.3 Assessment of encoding (R3). CLEARY works effectively
for all data items of interest. However, it seems that it is more
difficult to evolve cues for some data items compared to others.
Heating and Windows show less improvement over time, with
Windows showing a trend towards fewer cues over time, but some
of the cues remaining still questionable, e.g. “Compliance with
Fire-rated Standards” and “Visible Brand or Certification Labels”
(none are visible). While CLEARY equals or outperforms the other
approaches, there remains a question: why is it easier to evolve
cues for some data items compared to others?

Problem difficulty is likely an important factor, and only
solvable with improved data and better LLMs. But another reason
may be noise. The use of nondeterministic LLMs for image
interpretation, combined with the difficult identification task,
results in inconsistent results from the LLM for the same set of
cues. The level of noise may also be correlated with the precise
cues presented to the LLM. To understand this better we
presented the LLM with the same single cue ten times for the
same image. For cue “Evidence of Recent Installation” the mean
difference in output for categories was 0.4 (40% were reported as
a different type out of the three options) with coefficient of
variation (CV) of 1.29. This is perhaps a relatively good cue, but
inconsistently good — there is high variation. In contrast the same
LLM with cue “Historical Building Integration” had difference of
output 0.9, CV 0.35 — an example of a much worse cue, but less
variation: it is more consistently worse.
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Figure 4. Coefficient of Variation during evolution comparing
categorical Window estimates and fitness (blue) with
continuous U-value estimates and fitness (orange).

It has been demonstrated in Bayesian Optimization of noisy
problems that categorical and integer values (often via one-hot
encoding or rounding) produce suboptimal results [26]. It is also
evident that a stepped fitness function as we used for Windows
(Table 4) will amplify variation — a minor error receives a large
penalty — compared to a real-valued fitness function where a small
error receives a correspondingly small penalty in fitness.

With this in mind, we modified our implementation for the
Windows data item, asking it to estimate the real-valued U-value
(a measure of insulator effectiveness) of the windows, low for
efficient, high for inefficient. When we present the same single
cues to the LLM interpreting the same image, now cue “Evidence
of Recent Installation” produces a CV of 0.23 compared to cue
“Historical Building Integration” which produces CV of 0.20.
Now our unreliable cue has similar variation as the more reliable
one. Pushing the change through to CLEAR and re-evolving cues
for Windows, the new fitness function simply takes the difference
in U-values between the LLM estimate and 0.5 (single glazed),
2.0 (double glazed) and 4.8 (efficient double or triple glazed).
Evolution clearly shows a more stable optimization progression
over time, with the number of cues no longer being minimized
(Figure 2 rightmost column). Figure 4 shows the reduction in
variation resulting from the change from categorical to real-valued
estimates and shows a downwards trend suggesting that the GA
can reduce this variation over time (caused by our approach of re-
evaluating repeated individuals and always keeping the worst
fitness scores, described earlier).

While final fitness scores cannot be directly compared because
of the change in output and fitness function, this approach, which
provides a much smoother gradient to follow, appears more
promising for the optimizer. However, while it was possible to
modify this data item, for Heating the different categories of
heating cannot be so easily converted to a real-valued gradient.

4.4.4 Validity of Evolved Solutions (R4). When we examine the
evolved solutions from CLEARY, it is apparent that the evolved
cues appear relevant and tailored to the data item in question.
Taking Energy kWh/m’ as an example of an evolved solution: this
data item is extremely difficult to estimate from photographs
alone, even for domain experts. CLEAR performed better than the
other approaches for both training and test datasets (Table 5) and
showed a clear improvement over time (Figure 2) with the number
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of cues first falling as low as 5 or 6 and then increasing to around
10. Figure 3 (bottom right) shows the cues of the best individual
from the final generation, which provides a useful set relating to
energy efficiency, building design, energy-hungry appliances,
modernity and quality of décor and presence of central heating.
One category was discarded: “Heating and Ventilation” which
contained seemingly useful cues such as "High-efficiency boiler",
"Radiant floor heating", "Smart radiator valves", and "Underfloor
heating controls". But such features are not visible in our dataset
of images so they were unlikely to be useful for the LLM.

Relevance does not mean optimality, however. If CLEAR
suffered from bloat then it is possible that our final solutions may
contain many superfluous or unnecessary cues — or even cues that
harm accuracy. To test for this, we performed ablation studies,
removing each cue in turn from the five best solutions shown in
Figure 3 and testing the new prompt with the image interpretation
LLM to see if there is any change in error. Table 5 (far right)
shows the results: in every case a removal of an evolved cue
resulted in worse performance by the LLM when interpreting the
images. It would appear that CLEAR evolves high quality and
concise sets of cues.

5 Conclusions

The use of LLMs to derive useful data from photographs could be
transformational as we strive to understand existing building stock
to improve long-term sustainability. But an LLM must be given
highly specific prompts in order to achieve accurate interpretation.
With building styles and practices varied around the world, this
makes the application of LLMs time-consuming and costly — local
domain experts would need to engineer new prompts for every
new region. Our task, set by the industrial partner, was to solve
this accuracy and scalability problem.

We introduced an automated approach for specialized LLM
image-to-data applications. Cue Learning using Evolution for
Accurate Recognition (CLEAR) generates and optimizes textual
cues such that the accuracy of deriving specific data (such as
building age, heating type, energy kWh/m?), for a given set of
input data, is improved. LLMs optimized by CLEAR outperform
human-authored prompts and expert human recognition by up to
two orders of magnitude difference in error. Best results are
achieved by using variable-length chromosomes to enable the
number of cues to be changed over time. Real-valued estimates
and corresponding fitness functions reduce noise and further
improve accuracy compared to categorical estimates and stepped
functions. An ablation study of final solutions provides evidence
of concision, with the removal of any cue detrimental to accuracy.

This work has used image data of buildings in the UK. Future
work will investigate the use of CLEAR for data from other
regions. It is also possible that CLEAR may have utility for
optimizing agentic LLM tasks and for other application domains.

ACKNOWLEDGMENTS

We thank our industry partner TheSqua.re Group for providing
their data and expertise for this research.



CLEAR: Cue Learning using Evolution for Accurate Recognition

REFERENCES

[1] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, "Minigpt-4: Enhancing
vision-language understanding with advanced large language models," arXiv
preprint arXiv:2304.10592, 2023.

H. P. Zou, G. H. Yu, Z. Fan, D. Bu, H. Liu, P. Dai, D. Jia, and C. Caragea,

"EIVEN: Efficient implicit attribute value extraction using multimodal LLM,"

arXiv preprint arXiv:2404.08886, 2024.

A. G. Marques, M. V. C. de Figueiredo, J. J. da Costa Nascimento, C. T. de

Souza, C. M. J. de Mattos Dourado, V. H. C. de Albuquerque, and L. F. de

Freitas Souzal, "New Approach Generative Al Melanoma Data Fusion for

Classification in Dermoscopic Images with Large Language Model," in 2024

37th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI),

2024, pp. 1-6.

T. Hékkinen and K. Belloni, "Barriers and drivers for sustainable building,"

Building Research & Information, vol. 39, no. 3, pp. 239-255, 2011.

M. Aksoezen, M. Daniel, U. Hassler, and N. Kohler, "Building age as an

indicator for energy consumption," Energy and Buildings, vol. 87, pp. 74-86,

2015.

E. Cuce and S. B. Riffat, "A state-of-the-art review on innovative glazing

technologies," Renewable and sustainable energy reviews, vol. 41, pp. 695-714,

2015.

P. J. Bentley, R. Mathur, S. L. Lim, and S. Narang, "Address-specific

sustainable accommodation choice through real-world data integration," in The

International Conference on Intelligent Data Science Technologies and

Applications (IDSTA2024), in press, 2024.

P. J. Bentley, S. L. Lim, R. Mathur, and S. Narang, "Automated Real-World

Sustainability Data Generation from Images of Buildings," /IEEE International

Conference on Electrical, Computer, Communications and Mechatronics

Engineering (ICECCME), pp. 1-6, 2024.

[9] S. Witteveen and M. Andrews, "Investigating prompt engineering in diffusion
models," arXiv preprint arXiv:2211.15462, 2022.

[10] J. Oppenlaender, "A taxonomy of prompt modifiers for text-to-image
generation," Behaviour & Information Technology, pp. 1-14, 2023.

[11] N. Pavlichenko and D. Ustalov, "Best prompts for text-to-image models and
how to find them," in Proc. 46th Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval, 2023.

[12] S. Sudhakaran, M. Gonzalez-Duque, C. Glanois, M. Freiberger, E. Najarro, and
S. Risi, "MarioGPT: open-ended text2level generation through large language
models," Advances in Neural Information Processing Systems 36 (NeurlPS),
2023.

[13] A. Chen, D. M. Dohan, and D. R. So, "EvoPrompting: Language models for
code-level neural architecture search," in Advances in Neural Information
Processing Systems 36,2023, pp. 7787-7817.

[14] C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen, "Large
language models as optimizers," arXiv preprint arXiv:2309.03409, 2023.

[15] E. Meyerson, M. J. Nelson, H. Bradley, A. Gaier, A. Moradi, A. K. Hoover, and
J. Lehman, "Language model crossover: Variation through few-shot
prompting," arXiv preprint arXiv:2302.12170, 2023.

[16] S. L. Lim, P. J. Bentley, and F. Ishikawa, "SCAPE: Searching Conceptual
Architecture Prompts using Evolution," IEEE Congress on Evolutionary
Computation (CEC'24), 2024.

[17] Y. Han, C. Zhang, X. Chen, X. Yang, Z. Wang, G. Yu, B. Fu, and H. Zhang,
"Chartllama: A multimodal 1lm for chart understanding and generation," arXiv
preprint arXiv:2311.16483, 2023.

[18] M. Pluhacek, J. Kovac, A. Viktorin, P. Janku, T. Kadavy, and R. Senkerik,
"Using LLM for Automatic Evolvement of Metaheuristics from Swarm
Algorithm SOMA," in Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2024, pp. 2018-2022.

[19] C. Morris, M. Jurado, and J. Zutty, "Llm guided evolution-the automation of
models advancing models," in Proceedings of the Genetic and Evolutionary
Computation Conference, 2024, pp. 377-384.

[20] M. U. Nasir, S. Earle, J. Togelius, S. James, and C. Cleghorn, "LLMatic: neural
architecture search via large language models and quality diversity
optimization," in proceedings of the Genetic and Evolutionary Computation
Conference, 2024, pp. 1110-1118.

[21] S. Liu, C. Chen, X. Qu, K. Tang, and Y.-S. Ong, "Large language models as
evolutionary optimizers," in 2024 IEEE Congress on Evolutionary Computation
(CEC), 2024, pp. 1-8.

[22] M. Saletta and C. Ferretti, "Exploring the prompt space of large language
models through evolutionary sampling," in Proceedings of the Genetic and
Evolutionary Computation Conference, 2024, pp. 1345-1353.

[23] Q. Guo, R. Wang, J. Guo, B. Li, K. Song, X. Tan, G. Liu, J. Bian, and Y. Yang,
"Connecting large language models with evolutionary algorithms yields
powerful prompt optimizers," arXiv preprint arXiv:2309.08532, 2023.

[24] I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi, "Evolutionary
robotics: the Sussex approach," Robotics and autonomous systems, vol. 20, no.
2-4, pp. 205-224, 1997.

[2]

[3]

[4]
[3]

[6]

[7]

[8]

1336

GECCO’25, July 14-18, 2025, Malaga, Spain

[25] D. E. Goldberg, B. Korb, and K. Deb, "Messy genetic algorithms: Motivation,
analysis, and first results," Complex systems, vol. 3, no. 5, pp. 493-530, 1989.

[26] E. C. Garrido-Merchan and D. Hernandez-Lobato, "Dealing with categorical
and integer-valued variables in bayesian optimization with gaussian processes,"
Neurocomputing, vol. 380, pp. 20-35, 2020.



