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Purpose: To develop and evaluate a novel deep learning-based MRI denoising method using quantitative noise 
distribution information obtained during image reconstruction to improve model performance and generalization. 

Materials and Methods: This retrospective study included a training set of 2885236 images from 96605 cardiac 
cine series acquired on 3T MRI scanners from January 2018 to December 2020. 95% of these data were used for 
training and 5% for validation. The hold-out test set included 3000 cine series, acquired in the same period. Fourteen 
model architectures were evaluated by instantiating each of the two backbone types with seven transformer and 
convolution block types. The proposed SNRAware training scheme leveraged MRI reconstruction knowledge to 
enhance denoising by simulating diverse synthetic datasets and providing quantitative noise distribution information. 
Internal testing measured performance using peak signal-to-noise ratio (PSNR) and structural similarity index 
measure (SSIM), whereas external tests conducted on 1.5T real-time cardiac cine, first-pass cardiac perfusion, brain, 
and spine MRIs assessed generalization across various sequences, contrasts, anatomies, and field strengths. 

Results: SNRAware improved performance on internal tests conducted on a hold-out dataset of 3000 cine series. 
Models trained without reconstruction knowledge achieved the worst performance metrics. Improvement was 
architecture-agnostic for both convolution and transformer models; however, transformer models outperformed their 
convolutional counterparts. Additionally, 3D input tensors showed improved performance over 2D images. The 
best-performing model from the internal testing generalized well to external samples, delivering 6.5 × and 2.9 × 
contrast-to-noise ratio improvement for real-time cine and perfusion imaging, respectively. The model trained using 
only cardiac cine data generalized well to T1 MPRAGE (Magnetization-Prepared Rapid Gradient-Echo) brain 3D 
and T2 TSE (turbo spin-echo) spine MRIs. 



Conclusion: The SNRAware training scheme leveraged data obtained during the image reconstruction process for 
deep learning-based MRI denoising training, resulting in improved performance and good generalization. 

© The Author(s) 2025. Published by the Radiological Society of North America under a CC BY 4.0 license.

SNRAware, a model-agnostic approach for training MRI denoising models that leverages 
information from the image reconstruction process, improved performance and enhanced 
generalization to unseen imaging applications. 
Abbreviations 
SNR = signal-to-noise ratio, PSNR = peak signal-to-noise ratio, SSIM = structural similarity 
index measure 

Key Points 
In this retrospective study including 3000 cine series, the integration of quantitative noise 
distribution information from signal-to-noise ratio unit reconstruction and g-factor augmentation 
improved MRI denoising performance. 
Two backbone types, HRnet and Unet, were instantiated with seven transformer and 
convolutional block types to evaluate 14 architectures. 
Models were trained on a dataset of 96605 cine series and validated extensively on internal and 
external data, showing that the proposed method improved performance and generalization. 
Deep neural networks outperform conventional filtering methods in restoring low signal-to-noise 
ratio (SNR) MRIs (1), benefiting applications such as low-field MRI (2,3), diffusion imaging (4), 
highly accelerated parallel imaging (5), and dynamic cardiac imaging (6). Deep learning-based 
MRI denoising further enhances diagnostic quality and clinical value. 

Deep learning-based denoising can be performed using supervised or self-guided training. 
Supervised learning requires noisy-clean paired data, which can be difficult to acquire, especially 
for inherently low SNR applications. To overcome this limitation, self-guided training (7–10) 
methods that use only noisy images have been proposed. These methods include Noise2Noise 
(8), which learns from paired noisy images, and Noise2Void (9) and Noise2Fast (10), which 
require only one noisy image, and learn to predict blind-spot pixels from surrounding pixels or 
small patches from neighboring patches. These methods are slow at inference and underperform 
compared with supervised learning (11); therefore, recent advances have adopted diffusion-based 
generative training, such as denoising diffusion models (4) or score-based diffusion sampling 
(12), to further enhance image quality. 

Existing training approaches often overlook potential performance gains from noise 
information and are typically trained on limited datasets that include only specific imaging 
protocols and contrasts (4,8,10,12). The resulting models, therefore, may not be robustly 
transferrable to other applications, particularly those with intrinsically low SNR, where the initial 
image quality is poor and denoising is more challenging. However, MRI noise distribution can 
be derived from the image reconstruction process, enhancing model performance and 
generalization. 



 

 

 

To take advantage of noise distribution data, we proposed SNRAware, a novel MRI denoising 
training scheme that leverages noise prewhitening (13) with real g-factor maps to create spatially 
varying noise, noise correlation augmentation to integrate operations such as k-space filters, 
phase oversampling, and image resizing, and SNR unit reconstruction (14) to ensure a unity 
noise level and aid model learning. We also proposed a g-factor augmentation method to 
compute g-factor maps for acceleration factors R = 2 to 8, even when data for a given 
acceleration is unavailable. This method contrasts with prior work typically trained on 
normalized signal, directly integrating noise into training and eliminating the need for paired 
high-and low SNR images. 

We trained models on an extensive dataset and conducted ablations to assess the impact of g-
factor augmentation, realistic MRI noise, and SNR-based training, evaluating 14 architectures for 
model-agnostic improvements. We also aimed to investigate whether noise-centric training 
enhanced generalization to unseen applications across a range of imaging contrasts, sequences, 
field strengths, and anatomies. 

Materials and Methods 
Data Collection 
This retrospective study utilized retrospective-gated cardiac cine MRI data from 3T clinical 
scanners (MAGNETOM Prisma, Siemens AG Health care) with a balanced steady-state free 
precession (B-SSFP) sequence. Consecutive data were acquired with R = 2 acceleration across 
standard cardiac views (two-chamber, three-chamber, four-chamber, and short-axis stack), with 
raw k-space signals saved for reconstruction between January 2018 and December 2020. This 
dataset has not been used in previous publications. 

Data from the National Institutes of Health Cardiac MRI Raw Data Repository, hosted by the 
Intramural Research Program of the National Heart Lung and Blood Institute, were curated with 
the required ethical and/or secondary audit use approvals or guidelines permitting the 
retrospective analysis of anonymized data without requiring written informed consent for 
secondary usage for the purpose of technical development, protocol optimization, and/or quality 
control. The data were fully anonymized and used for training without exclusion. The training 
and test datasets are summarized in Table 1. The training set included 96605 cine series 
(2885236 images) from 7590 patients, with 95% of the scans used for training and 5% for 
validation, and the internal test set included 3000 cine series, with no overlap. 

Four external tests were conducted to evaluate generalization: (i) 10 real-time cine slices with 
B-SSFP contrast but different sequence parameters, (ii) five free-breathing first-pass perfusion 
scans for dynamic contrast changes, (iii) a T1 MPRAGE 3D brain scan (R = 2 × 2), and (iv) a 
high-resolution (0.76 mm2) T2 TSE multislice 2D spine scan (R = 2), all acquired at 1.5T 
(MAGNETOM Aera, Siemens Healthineers, Germany). For 2D + T cases such as the cine series, 
the third dimension is time, while for 3D scans like T1 MPRAGE of the brain it is the second 
encoding dimension or depth and for spine scans with multiple 2D slices, it is the slice 
dimensionPhantom scans were also acquired at 1.5T with R = 2 and 4 acceleration using 
standard FLASH (fast low angle shot) readouts. 



 

 

 

Training Method 
SNRAware was aimed toward improving MRI denoising by generating low SNR data and 
providing noise distribution data to the network. The data generation process is shown in Figure 
1, while Figure 2 outlines the training scheme and model design. 

Training data generation with g-factor augmentation.— 
Training data were acquired with R = 2 undersampling to minimize g-factor-related noise 
amplification. To generalize higher accelerations (R = 3 to 8), we proposed a g-factor based data 
augmentation scheme to compute real g-factor maps at higher accelerations. In parallel imaging, 
noise scales with the g-factor due to the ill-posed inversion of the calibration matrix (15,16); 
however, this noise amplification varies from scan to scan. After reconstruction, the noise 
standard deviation for pixel location  is , where  increases dramatically at higher 
accelerations (Figs 2, 3). 

MRI systems acquire raw signals and store them in k-space, which represents the Fourier 
transform of the image intensities. To accelerate data acquisition, only a portion of the k-space 
data are collected; for instance, acquiring half of the data yields a speedup factor of R = 2. 
Parallel imaging techniques are then used to estimate the missing k-space data to reconstruct the 
full image. This process, however, amplifies the noise present in the acquired signals, leading to 
reconstructed images with reduced SNR. G-factor maps computed during parallel imaging 
reconstruction quantify noise amplification, with each pixel value indicating exactly how much 
the noise has been amplified. Assuming SNR unit scaling has been applied, and the original 
images have unitary noise (noise SD of 1.0), the g-factor directly reflects the postreconstruction 
noise standard deviation. Of note, this noise amplification varies spatially among pixels due to 
the geometry and coupling of the receiver coils, the human body, and the specifics of the 
reconstruction algorithm. Therefore, the g-factor map provides crucial information about where 
noise is present and to what extent (Fig 1). 

The SNRAware training theme (Fig 1A) computed g-factor maps from 2D GRAPPA 
(Generalized Autocalibrating Partial Parallel Acquisition) coefficients derived from auto-
calibrated or fully sampled k-space lines. These coefficients were converted into image domain 
unmixing coefficients (17,18) and g-factor maps were obtained as the sum of their squares. 
Although the original scans used R = 2, g-factor maps for other accelerations were computed 
from corresponding unmixing coefficients. A randomly selected g-factor map was used to 
amplify white, complex noise via pointwise multiplication during training. 

Reconstruction steps such as k-space filtering and zero-filling resizing introduce spatial noise 
correlation to influence spatial noise distribution. To mimic these effects, we developed a 
training data augmentation process that varies noise correlation based on common reconstruction 
techniques by sampling white noise with a randomly selected sigma (ranging from 0 to 32.0) 
from each training image. This noise was amplified by a g-factor map and then modified using a 
k-space filter (Gaussian filter, sigma of 0.8, 1.0, 1.5, 2.0, or 2.25), after which a partial Fourier 
filter was applied with a probability of 0.5 (tapered Hanning filter (19); partial Fourier sampling 
ratio of 1.0, 0.85, 0.7, 0.65, or 0.55). Reduced resolution was mimicked by masking out high 
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frequency samples (ratio: 1.0, 0.85, 0.7, 0.65, or 0.55). Each operation was independently 
applied to readout and phase encoding directions. 

By randomly selecting starting noise sigma, acceleration, and k-space filters, the 
augmentation procedure produced a wide range of spatially varying noise that closely resembles 
what would be observed in clinical imaging. Figure 1B shows noisy samples generated with 
different SNR levels (Supplemental Movie 1). 

Providing noise distribution information to the network.— 
We provided information about the noise distribution to the network to aid in the denoising task 
and used SNR unit (14) reconstruction for all training and test data to carefully scale the noise 
SD to unity and maintain this scaling through the reconstruction process. We aimed to determine 
if this method would aid the denoising model by reducing the variation in noise distributions 
which the model must learn. To perform SNR unit reconstruction, noise-only data were acquired 
before every scan (14). The noise readouts were used to compute the covariance matrix and 
perform noise prewhitening on the imaging readouts (17,20) and the noise SD was scaled to 1.0 
by compensating for the equivalent noise bandwidth for every receiver coil or channel. The 
imaging data with unity noise went through FFT (Fast Fourier Transform), parallel imaging 
GRAPPA reconstruction (16), and coil combination to produce the final complex images, with 
noise scaling was kept constant throughout (14). The complex images were finally resized to the 
target matrix size with zero-filling. 

We utilized similar techniques to keep the noise SD constant when generating synthetic noise 
for our training data. Given a high SNR image , which was reconstructed while maintaining 
unit noise variance scaling through all steps except parallel imaging unmixing, and a 
corresponding native g-factor , the corresponding SNR unit image is . Generated 
correlated noise, , with a selected variance of  and augmented as described above, was 
added to the SNR unit image to create a noisy sample: , where  

is a g-factor map computed by the aforementioned g-map augmentation. The ratio  
accounts for original unity plus added noise and returns the image scaling to unit noise variance 
excluding the noise amplification introduced by parallel imaging unmixing. Every training pair 
consisted of a clean sample, , and noise augmented sample, . The clean image had unity 
noise, whereas the noisy image had spatial varying noise multiplied by . 

The process aforementioned is illustrated in Figure 2A. In addition to providing the network 
images with unity noise, we also provided the g-factor map to the network stacked along the 
channel dimension. This directly provided the network with information about the spatial 
amplification of noise in the image. 

Sample code and detailed explanations can be found in previous publications and tutorials 
(13,17,18,20) for the noise prewhitening, SNR unit scaling, and computation of pixel-wise g-
factor maps from parallel imaging calibration. Gadgetron framework 
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(https://github.com/gadgetron/gadgetron) provided an open-source, high-performance 
implementation. 

Model and Training 
The inputs for all models were 5D tensors—batch, channel, time or slice or depth, height, and 
width (B, C, T/S/D, H, W)—providing the flexibility to support different imaging formats. 

We evaluated 14 model architectures based on two adapted backbone types: HRnet (21) and 
Unet (22) (Fig 2B). The transformer layers were inspired by the Swin (23), ViT (24) and more 
recent CNNT (Convolutional neural network transformer) (11) models, where input tensors are 
split into patches across T/S/D, H, W and attention was computed over patches. Detailed 
backbone configurations can be found in Supplemental Appendix E1. 

The loss was the sum of Charbonnier loss (25), MRI perpendicular loss (26) designed to 
match complex values, VGG (Visual Geometry Group) perceptual loss on magnitude (27), and 
gradient loss, computed as the L1 difference of intensity gradient between reference standard and 
predicted tensors. 

The dataset was split into 95% for training and 5% for validation. Model was trained with the 
Sophia (28) optimizer with the one-cycle learning rate scheduler (29) and cosine annealing. All 
models were implemented using PyTorch (30). 

More information for model training is available in Supplemental Appendix E2. 

Statistical Analysis 
Internal test.— 
Low SNR images were generated for the test dataset of 3000 series using the aforementioned 
process. The resulting data were fed into the trained model, and peak SNR (PSNR; 1

, : mean square difference, : maximal value of image pixels) and 

structural similarity index measure (SSIM) (31) were computed for model outputs against the 
reference standard data. Since the image signals were floating values and noise level was unity, 

 was set to 2048.0, as SNR above this threshold was highly unlikely. 
PSNR and SSIM were reported for 14 tested models (two backbone types; layer types: 

CNNT, CNNT-large, Swin3D, ViT3D, ViT2D, Conv3D, Conv2D). Next, the following ablations 
were performed: 
Without g-factor map: models were trained without the g-factor map as an extra input channel 
and inference did not consider the g-factor map 
Without MRI noise: training included the g-factor map, but the generated noise was not 
transformed by filters; instead, uncorrelated white noise was added to the high SNR images 
Magnitude training without imaging knowledge: as simulation of reconstruction information was 
not available, training was conducted on magnitude images (as found in DICOM (Digital 
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Imaging and Communications in Medicine) images). G-factor maps were excluded, while MRIs 
with realistic noise and magnitude images were used with a channel dimension size of one. 

External tests.— 
High SNR reference standard images were not available for the imaging data acquired with 
higher acceleration; therefore, SNR gain was estimated using the Monte-Carlo simulation 
method (14) by repeatedly adding a fixed amount of noise to the input data for n = 64 times. The 
noise level in the model outputs was measured by computing the SD across repetitions and the 
SNR increase was measured as the reduction of noise standard deviation. Regions-of-interests 
were drawn in the myocardium and blood pool, from which SNR and the CNR (contrast-to-noise 

ratio, as ) were measured. 

A paired t test was performed and a P value < .05 was considered statistically significant. 
Matlab R2022a (Mathworks, USA) was used for statistical computing. 

Results 
Phantom 
Figure 3 presents phantom test results with g-factor maps shown for R = 2 and 4 scans. For R = 
4, noise was elevated in the center of the water phantom. Denoising with HRnet-CNNT and 
Unet-Conv3D improved performance, with the highest SNR achieved when reconstruction 
information was incorporated into model training, and the poorest results observed when 
reconstruction knowledge was excluded. The transformer-based CNNT model outperformed 
Conv3D. 

Internal Tests 
Models trained with SNRAware performed the best, removing g-factor or realistic noise 
knowledge degraded performance. Table 2 summarizes the internal tests and ablation studies. 
Detailed results are given in Supplemental Appendix E3. 

External Tests 
Table 3 presents the SNR and CNR of external tests. 

Figure 4 presents real-time cine results for R = 5, with B-SSFP readout acquired using a 
protocol different from training data. The proposed training approach produced the highest SNR, 
with improvements (P < .001, Table 3). Differences between the model outputs and raw images 
showed that removed noise exhibited a pattern like the g-factor map. When the g-factor map was 
not used in training, amplified noise was removed to a lesser extent (Supplemental Movie 2). 
Across 10 cases, the mean SNR increased by 5.2 × for the blood pool and 3.5 × for the 
myocardium, while CNR improved 6.5×. Additional cine examples appear in Supplemental 
Movie 3. 
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Figure 5 shows the results of perfusion imaging, in which a contrast bolus was passed through 
the heart. Perfusion dynamic contrast changes are different than the cine training data . The 
model trained with the addition of reconstruction knowledge successfully enhanced SNR across 
the field of view, whereas models lacking full imaging information performed worse. The 
proposed method increased the mean SNR by 3.0 × for the blood pool and 3.7 × for the 
myocardium, with a 2.9 × increase in CNR (Table 3). Supplemental Movie 4 shows the 
corresponding videos. 

Figure 6 demonstrates CNNT-large model generalization to unseen anatomies, including head 
and spine imaging. Despite differences in sequence, resolution, and contrast, the model improved 
SNR while preserving details. The white and gray matter contrast remained unchanged (Fig 6A), 
whereas a high-resolution T2 TSE spine scan (0.76 mm2) showed enhanced SNR in the 
vertebrae, discs, spinal cord, and cerebrospinal fluid (Fig 6B). Supplemental Movies 5 and 6 
show brain and spine results, respectively. 

Discussion 
We aimed to develop and evaluate a novel deep learning-based MRI denoising method using 
quantitative noise distribution information obtained during image reconstruction to improve 
model performance and generalization. To this end, this study introduced SNRAware, a new 
training scheme for MRI denoising that integrated knowledge from the image reconstruction 
process into deep learning. Signal-to-noise ratio (SNR) unit reconstruction produced unit noise 
level images, simplifying the task of augmenting training data with realistic noise distributions. 
G-factor maps were added as model input data, providing quantitative information about 
spatially varying noise amplification. The proposed augmentation method subsequently 
computed real g-factor maps for R = 2 to 8, requiring only a single acceleration factor for 
training data. MRI realistic noise was generated on-the-fly to lower the SNR of reference 
standard images, closely resembling the noise distribution in reconstructed images with higher 
acceleration factors and varying k-space filtering effects. This method eliminated the need for 
paired high and low SNR images for every acceleration factor and filter configuration, which is 
impractical for imaging with every acceleration or resolution. The training scheme was tested on 
14 model architectures with two backbone types instantiated with transformer-based layers and 
convolution. Results of testing performed using phantoms, in vivo internal test data of 3000 cine 
series, and four external datasets showed that integrating reconstruction information into the 
training process consistently improved model performance. At higher acceleration factors, such 
as the R = 5 real-time cine test, the proposed method effectively corrected g-factor noise 
amplification, whereas models trained without g-factor maps did not. 

The clinical benefits of denoising models include improved SNR and imaging efficiency. The 
improved SNR enables faster acquisitions with higher acceleration, equating to cost/time savings 
which can shorten scan time and reduce sensitivity to motion, and can also be traded for 
increased spatiotemporal resolution. For example, thinner slice thickness becomes more 
achievable, which reduces through-slice dephasing and suppresses artifacts from implants. In a 
clinical study with inherently poor native SNR, such as low-field MRI, denoising models can 
play a key role in improving image quality for more accurate diagnoses (32). 



 

 

 

The training method was model architecture-agnostic, as shown in the experiment where 
different models were trained with SNRAware. Leveraging quantitative noise distribution 
requires the availability of g-factor map information from the reconstruction process, a limitation 
of this method. The model inference in this method is fully automated and thus can be integrated 
in the clinical setting into the imaging workflow after reconstruction to process complex images 
with g-factor maps. The reproducibility of this method can be studied through the scan-rescan 
studies and expert image reading, enhanced with the quantitative measurement of SNR gain. 
Further analysis of noise characteristics can be found in Supplemental Appendix E4. 
Furthermore, previous studies have proposed using g-factor maps in MRI denoising for CNN 
(Convolutional Neural Network) models (33,34). Supplemental Appendix E5 gives an extended 
review on this topic. 

This study does have some limitations worth mentioning. First, noise prewhitening is required 
for SNR unit scaling, necessitating noise calibration data, and although the Siemens scanners 
used in this study automatically acquire noise readouts, some curated raw datasets (such fastMRI 
data (36)) do not come with noise scans. Therefore, the application of this method to raw datasets 
that lack noise scans is limited. Second, the introduction of new processing steps that alter noise 
distribution augmentation would require an extension of the framework. With some 
generalization tests, therefore, more evaluation is needed for other contrasts, resolutions, and 
anatomies. Third, global image quality metrics were used to measure improvement added by 
introducing imaging and reconstruction knowledge into the model training. Allow this allows the 
comparison of different models, it is not a substitute for clinical evaluation, meaning that 
radiologists’ subjective assessments and diagnostic performance validation are still required to 
integrate models into the imaging workflow. Fourth, a single data source was used in our 
study—all data were acquired using Siemens MRI scanners at one site; therefore, more 
evaluations are needed for a multicenter setup. Fifth, training data diversity was limited, as 
cardiac cine data were the only type of data used for training the network; therefore, we assess 
how the addition of more diverse data for static image volumes improves model generalization 
over other anatomies. Finally, we conducted ablation tests with well-controlled training setups to 
demonstrate the added value of using quantitative noise information in denoising training. 
Although the improvements were agnostic to specific model architecture, we did not attempt 
end-to-end comparisons with other methods and systems, which would be crucial to the 
validation of models deployed into the clinical imaging workflow. In general, limitations such as 
single data source, limited training data diversity and clinical validation, and noise prewhitening 
were acknowledged, and are potential scopes for future studies. 

This study used SSIM and PSNR to compare different training setups and evaluate whether 
integrating noise information from the MRI reconstruction process would boost model 
performance. However, global image quality metrics were used to compare two models, rather 
than validating diagnostic performance. Previous studies (35) showed that SSIM correlated 
positively with the radiologists’ scores, but tended to overlook local degradation, given that it is 
a global quality metric. This study focused on showing that the proposed training scheme would 
improve all model architectures. In future studies, therefore, dedicated radiologist evaluations are 
needed to validate model performance on a per-imaging-task basis. Models trained to recognize 



 

 

 

MRI noise distribution may generalize to unseen imaging applications, supported by experiments 
on perfusion imaging with dynamically contrast and brain and spine scans. 
Author affiliations: 
1 Health Futures, Microsoft Research, 14820 NE 36th St, Bldg 99, Rm 4941, Redmond, WA 
98052 
2 National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md 
3 Institute of Cardiovascular Science, University College London, London, UK 
4 Barts Heart Centre, Barts Health NHS Trust, London, UK 

Received XXX; revision requested XXX; revision received XXX; accepted XXX. 
Address correspondence to: H.X. (email: xueh@microsoft.com). 

Funding: Authors declared no funding for work. 
Author contributions: Guarantors of integrity of entire study, H.X., M.S.H.; study 
concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript 
drafting or manuscript revision for important intellectual content, all authors; approval of final 
version of submitted manuscript, all authors; agrees to ensure any questions related to the work 
are appropriately resolved, all authors; literature research, H.X., S.M.H., J.N., M.S.H.; clinical 
studies, I.P.; experimental studies, H.X., S.M.H., I.P., R.H.D., A.E.C.W., P.K.; statistical 
analysis, H.X., J.N.; and manuscript editing, H.X., S.M.H., I.P., R.H.D., J.N., A.E.C.W., C.M., 
J.C.M., T.A.T., M.S.H., P.K. 
Disclosures of conflicts of interest: H.X. Full-time employee and stockholder, Microsoft 
Research. S.M.H. No relevant relationships. I.P. No relevant relationships. R.H.D. Consulting 
fees and shareholder, Mycardium AI. J.S. Full-time employee and stockholder, Microsoft 
Research. J.N. Full-time employee and stockholder, Microsoft Research. A.E.C.W. Principal 
Investigator on a Cooperative Research and Development Agreement with Siemens 
Healthineers. C.M. Board member, MycardiumAI. J.C.M. No relevant relationships. T.A.T. 
Institutional grant, JenaValve; consulting, AstraZeneca; speakers bureau, Siemens Healthineers; 
stocks, Mycardium AI. M.S.H. Salary and funding for compute infrastructure, Microsoft; stock 
grants as part of compensation, Microsoft; full-time employee; Microsoft; stockholder, 
Microsoft. P.K. No relevant relationships.  
References 
1. Tian C, Fei L, Zheng W, Xu Y, Zuo W, Lin CW. Deep Learning on Image Denoising: An 
overview. Neural Netw 2020;131:251–275. 
2. Campbell-Washburn AE, Keenan KE, Hu P, et al. Low-field MRI: A report on the 2022 
ISMRM workshop. Magn Reson Med 2023;90(4):1682–1694. 
3. Campbell-Washburn AE, Ramasawmy R, Restivo MC, et al. Opportunities in 
interventional and diagnostic imaging by using high-performance low-field-strength MRI. 
Radiology 2019;293(2):384–393. 



 

 

 

4. Xiang T, Yurt M, Syed AB, Setsompop K, Chaudhari A. DDM2: Self-Supervised 
Diffusion MRI Denoising with Generative Diffusion Models. ICLR. 2023. 
https://github.com/StanfordMIMI/DDM2. 
5. Wang X, Uecker M, Feng L. Fast Real-Time Cardiac MRI: a Review of Current 
Techniques and Future Directions. Investig Magn Reson Imaging 2021;25(4):252–265. 
6. Kellman P, Hansen MS, Nielles-Vallespin S, et al. Myocardial perfusion cardiovascular 
magnetic resonance: optimized dual sequence and reconstruction for quantification. J Cardiovasc 
Magn Reson 2017;19(1):43. 
7. Huang T, Li S, Jia X, Lu H, Liu J. Neighbor2Neighbor: Self-Supervised Denoising from 
Single Noisy Images. IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR); 2021. doi:10.1109/CVPR46437.2021.01454. 
8. Lehtinen J, Munkberg J, Hasselgren J, et al. Noise2Noise: Learning Image Restoration 
without Clean Data. arXiv 2018. Preprint posted online March 12, 2018; 
https://arxiv.org/abs/1803.04189. 
9. Krull A, Buchholz TO, Jug F. Noise2Void-Learning Denoising from Single Noisy 
Images. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 
doi:10.1109/CVPR.2019.00223. 
10. Lequyer J, Philip R, Sharma A, Hsu WH, Pelletier L. A fast blind zero-shot denoiser. Nat 
Mach Intell 2022;4(11):953–963. 
11. Rehman A, Zhovmer A, Sato R, et al. Convolutional neural network transformer (CNNT) 
for fluorescence microscopy image denoising with improved generalization and fast adaptation. 
Sci Rep 2024;14(1):18184. 
12. Chung H, Lee ES, Ye JC. MR Image Denoising and Super-Resolution Using Regularized 
Reverse Diffusion. IEEE Trans Med Imaging 2023;42(4):922–934. 
13. Kellman P; ISMRM. Parallel Imaging: The Basics 
https://kellmanp.github.io/webpages/publications.htm. Published 2002. Accessed DATE. 
14. Kellman P, McVeigh ER. Image reconstruction in SNR units: A general method for SNR 
measurement. Magn Reson Med 2005;54(6):1439–1447. 
15. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity encoding 
for fast MRI. Magn Reson Med 1999;42(5):952–962. 
16. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized Autocalibrating Partially 
Parallel Acquisitions (GRAPPA). Magn Reson Med 2002;47(6):1202–1210. 
17. Deshmane A, Gulani V, Griswold MA, Seiberlich N. Parallel MR imaging. J Magn 
Reson Imaging 2012;36(1):55–72. 
18. Breuer FA, Kellman P, Griswold MA, Jakob PM. Dynamic autocalibrated parallel 
imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med 2005;53(4):981–985. 



 

 

 

19. Prabhu KMM. Window Functions and Their Applications in Signal Processing. CRC, 
2014. 
20. Hansen MS. Nuts & Bolts of Advanced Imaging Image Reconstruction-Parallel Imaging. 
ISMRM 2013. https://www.ismrm.org/13/S10.htm. 
21. Wang J, Sun K, Cheng T, et al. Deep High-Resolution Representation Learning for 
Visual Recognition. arXiv 2019. Preprint posted online August 20, 2019; 
https://arxiv.org/abs/1908.07919. 
22. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical 
Image Segmentation. arXiv 2015. Preprint posted online May 18, 2015; 
https://arxiv.org/abs/1505.04597. 
23. Liu Z, Lin Y, Cao Y, et al. Swin Transformer: Hierarchical Vision Transformer using 
Shifted Windows 2021. https://doi.org/10.1109/ICCV48922.2021.00986. 
24. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: 
Transformers for Image Recognition at Scale. arXiv 2020. Preprint posted online October 22, 
2020; https://arxiv.org/abs/2010.11929. 
25. Barron JT. A General and Adaptive Robust Loss Function. arXiv 2017. Preprint posted 
online January 11, 2017; https://arxiv.org/abs/1701.03077. 

26. Terpstra ML, Maspero M, Sbrizzi A, van den Berg CAT. ⊥-loss: A symmetric loss 
function for magnetic resonance imaging reconstruction and image registration with deep 
learning. Med Image Anal 2022;80:102509. 
27. Johnson J, Alahi A, Li FF. Perceptual Losses for Real-Time Style Transfer and Super-
Resolution. arXiv 2016. Preprint posted online March 27, 2016; 
https://arxiv.org/abs/1603.08155. 
28. Liu H, Li Z, Hall D, Liang P, MT. Sophia: A Scalable Stochastic Second-Order 
Optimizer For Language Model Pre-Training. arXiv 2023. Preprint posted online May 23, 2023; 
https://arxiv.org/abs/2305.14342. 
29. Smith LN. A disciplined approach to neural network hyper-parameters: Part 1 – learning 
rate, batch size, momentum, and weight decay. arXiv 2018. Preprint posted online March 26, 
2018; https://arxiv.org/abs/1803.09820. 
30. Paszke A, Gross S, Massa F, et al. PyTorch: An Imperative Style, High-Performance 
Deep Learning Library. arXiv 2019. Preprint posted online December 3, 2019; 
doi:10.48550/arxiv.1912.01703. 
31. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error 
visibility to structural similarity. IEEE Trans Image Process 2004;13(4):600–612. 
32. Xue H, Hooper S, Rehman A, et al. Routine CMR at 0.55T with Standard Spatial 
Resolution Using an Imaging Transformer. J Cardiovasc Magn Reson 2024;26(Supplement 
1):100121. 



 

 

 

33. Pfaff L, Hossbach J, Preuhs E, et al. Self-supervised MRI denoising: leveraging Stein’s 
unbiased risk estimator and spatially resolved noise maps. Sci Rep 2023;13(1):22629. 
34. Dou Q, Wang Z, Feng X, Campbell-Washburn AE, Mugler JP, Meyer CH. MRI 
denoising with a non-blind deep complex-valued convolutional neural network. NMR Biomed 
2025;38(1):e5291. 
35. Mason A, Rioux J, Clarke SE, et al. Comparison of Objective Image Quality Metrics to 
Expert Radiologists’ Scoring of Diagnostic Quality of MR Images. IEEE Trans Med Imaging 
2020;39(4):1064–1072. 
36. Zbontar J, Knoll F, Sriram A, et al. fastMRI: An Open Dataset and Benchmarks for 
Accelerated MRI. arXiv 2018. Preprint posted online November 21, 2018; 
https://arxiv.org/abs/1811.08839. 
37. Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser: Residual 
learning of deep CNN for image denoising. IEEE Trans Image Process 2017;26(7):3142–3155. 
 

 

 
Figure 1: Training sample creation. (A) The training samples are paired clean and noisy image 
series. The noisy images are created by computing the g-factor maps and using them to generate 
noise images. Geometry (G)-factor maps were computed from the auto-calibration k-space. 
GRAPPA (Generalized Autocalibrating Partial Parallel Acquisition) calibration was computed 
for accelerations R = 2 to 8. The GRAPPA k-space kernel was converted to image domain kernel 
and unmixing coefficients were computed by combining image domain kernels and coil maps. 
For data augmentation, a g-factor map is randomly selected and pixel-wise multiplied to the 
white noise. The resulting spatially varying noise further goes through k-space filtering steps to 
introduce correlation. The final noise is added to the clean image and scaled to be unitary, as the 



 

 

 

noisy sample for training. (B) Four noisy samples are created from a clean cine series. The 
original SNR (signal-to-noise ratio) is 95.1 in the region of interest. By randomly selecting a g-
factor map and changing the starting noise level, a wide range of SNRs can be produced. The 
SNR images are computed by dividing the images by the g-factor map. 

 
 
Figure 2: Overview of training scheme and model design. (A) Reconstructed cine images are 
augmented with spatially varying and correlated noise to create noisy samples. The 
corresponding g-factor maps are concatenated to the images and used as input into the model. 
The model predicts high SNR (signal-to-noise ratio) images. (B) All models consist of a preconv 
layer as the shallow feature extractor, a backbone and the output convolution. To simplify the 
evaluation on different models, a cell-block-backbone design is proposed for the backbone. Two 
backbone architectures tested here are HRnet and Unet. Both backbones process tensors through 
blocks which are connected by the downsample/upsample operation. Every block consists of 3 to 
6 cells. Every cell follows the standard design, including normalization, attention or convolution 
layers and skip connections. By changing the module in the cell, different transformers and 
convolution models are instantiated and tested. 



 

 

 

 
 
Figure 3: Phantom test results. (A) The raw images of R = 2 acceleration and g-factor map 
show a very minor noise amplification. (B) Model outputs with one transformer and one 
convolution architecture for proposed training, compared with ablation tests. (C) The images and 
g-factor map for R = 4 acquisition shows lower SNR (signal-to-noise ratio) and spatial noise 
amplification. The g-factor is higher at 2.52 at the center of field of view. The proposed method 
removes noise amplification. Training without g-factor map results in less efficient noise 
removal. For both accelerations, transformer models outperform convolution. Training without 
MR noise distribution further degrades the performance. 

 



 

 

 

 
 
Figure 4: Real-time cine (acceleration R = 5) results produced with the HRnet-CNNT-large 
model. The raw SNR (signal-to-noise ratio) is lower with elevated spatial noise amplification due 
to acceleration. The proposed training method produced the best results. 

 
 
Figure 5: Result for accelerated (R = 4) myocardial perfusion imaging. The contrast passage 
creates dynamically varying contrast which was not seen in the training dataset. Moreover, the 
saturation preparation reduced the base SNR. Despite the challenges, the model generalized well 
to perfusion imaging. Similarly to previous tests, noise reduction is more effective when 
knowledge about noise distribution is included in training. 



 

 

 

 
 
Figure 6: Generalization tests for different anatomies. (A) A R = 2 × 2 MPRAGE 
(Magnetization-Prepared Rapid Gradient Echo) T1 brain scan was acquired, reconstructed and 
processed with trained model. The training dataset did not include any neuro data, yet the model 
generalized well, with noticeable SNR (signal-to-noise ratio) improvement and preserved gray-
white matter contrast. This test was to check whether models can generalize to new anatomies; 
further evaluation is needed to test on more datasets with expert image reading. The gray and 
white matter differentiation appeared. (B) A R = 2 T2 TSE (Turbo Spin Echo) spine scan was 
processed with the trained model. Training data did not include spine scans and did not include 
the high spatial resolution (0.76mm2) of this acquisition. The model generalized well to this 
application regardless. 



 

 

 

Supplemental Data 

 
Movie 1: The movies correspond to the example in Figure 1b. The reference standard 
clean image is the single one on the left.  The first row are the noisy samples. The second 
row are the SNR images.  

 
Movie 2: Corresponding movies to Figure 4 are given here. 



 

 

 

 
Movie 3: More R=5 real-time cine examples are given here. In all cases, proposed 
training noticeably improves performance. The leftover noise amplification is very visible 
without the g-factor map. 



 

 

 

 
Movie 4: Movies of perfusion denoising corresponding to Figure 5 are presented. Model 
generalized well to dynamic contrast and low base SNR. 

 
Movie 5: Movie corresponds to Figure 6a for the T1 MPRAGE neuro test. 



 

 

 

 
Movie 6: Movie corresponds to Figure 6b for the T2 TSE spine test. 

Supplemental Appendices 

Appendix E1. Informa8on for deep learning models  

As shown in Figure 2, the model consists of three components: pre-convolu:on layer, backbone 
and post-convolu:on layer. The input tensors are in the shape of [B, C, T/S/D/Z, H, W]. C is 3 for 
complex inputs (real, imagery and g-factor). Noise in the input images are scaled to 1.0×g-factor, 
as this setup is consistent with reconstruc:on outputs.  

 The pre-convolu:on layer is a shallow feature extractor (37). It is kept being minimal as a 
2D convolu:on to upliU input channel C to 64, encouraging backbone to take on most heavy liUing 
and helping generaliza:on. The post-convolu:on is another CONV layer, conver:ng 𝐶!"#$!%&'  
aUer the backbone to required output channels (2 for complex training and 1 for magnitude 
training). 

 Two well-known backbone architectures, HRnet and Unet, are implemented and tested in 
this study. Both architectures u:lize the mul:-resolu:on pyramid to balance model size, 
expressive power and compu:ng cost. The building components include mul:ple Blocks, 
downsample and upsample layers, channel-wise concatena:on, and skip connec:on. The HRnet 



 

 

 

maintains a longer pipeline on the original tensor size and Unet is smaller in size and less 
compu:ng expensive.  

 

 The input tensors are processed through every block, gaining more channels and reducing 

spa:al resolu:on, which is explained by the backbone plots annotated with tensor sizes. 

 Downsampling was implemented with patch merging (23) followed by a convolu:on to 
format outputs to have the required number of channels. The upsampling was implemented with 
a linear interpola:on followed by a CONV layer. 

 Backbones consist of several blocks. A block is a container of N cells. Every cell has a 
classical setup of two skip connec:ons, layer norms and a_en:on or convolu:on layers. By 
switching the a_en:on methods (e.g. Swin3D, ViT3D or CNNT etc.), we can instan:ate different 
models for experiments. A pure convolu:on model was implemented by replacing a_en:on with 
convolu:on layers. 

 Every block in all models, except CNNT-large, has 3 cells. For CNNT-large, a block holds 6 
blocks. By inser:ng more cells or more blocks, the model can be scaled up or down. 

 As used in other denoising training schemes, models were trained on image patches to 
encourage models to focus on noise distribu:on instead of image content. The patch size was 
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Figure 1. Annotated backbone architectures.



 

 

 

[T/S/D/Z=16, H=64, W=64]. The window size in Swin3D and ViT3D was [16, 8 ,8], where every [2, 
2, 2] neighborhood was processed as a token. The CNNT transformer method computed a_en:on 
between all [H, W] frames without explicit neighborhood tokeniza:on. All convolu:ons had the 
kernel size 3 and padding 1. We note that unlike the original Swin and ViT papers, we re-patch 
and un-patch the tensors before and aUer every opera:on, resul:ng in imaging tensors that can 
be processed by the normaliza:on and convolu:onal mixer layers in every cell. 

 

Appendix E2. Informa8on for model training 

 

The inputs for all models were 5D tensors—batch, channel, :me or slice or depth, height, and 
width (B, C, T/S/D, H, W)—providing the flexibility to support different imaging formats. For 
instance, for the input cine series, the third dimension was :me, whereas for a 3D brain scan it 
was depth or slice. The g-factor map was concatenated to real and imaginary parts of image 
tensors, so C was 3 for complex training, whereas if only the magnitude image was used, C was 
2. The model outputs a tensor with the same shape with a channel dimension of 2 for complex 
and 1 for magnitude images, respec:vely. 
 We evaluated 14 model architectures based on two adapted backbone types: HRnet (21) and 
Unet (22) (Figure 2B), both of which use mul:-resolu:on pyramids to balance computa:onal 
complexity with the ability to recover small image features by maintaining a full resolu:on path. 
Each network consisted of mul:ple blocks containing several cells, with every cell including 
normaliza:on, a compu:ng layer, and a mixer. Different models were instan:ated by configuring 
different compu:ng layers, and both transformer and convolu:on layers were tested. The 
transformer layers were inspired by the Swin (23), ViT (24) and more recent CNNT (Convolu:onal 
neural network transformer) (11) models, where input tensors are split into patches across T/S/D, 
H, W and a_en:on was computed over patches. For Swin, we split the input image into patches 
and applied a_en:on over local and shiUed windows; for ViT, a_en:on was global among all 
patches; and the CNNT cells did not patch the image, instead applying a_en:on in the T/S/D 
dimension. We also tested convolu:on layers (“Conv” blocks), which did not patch the image, 
instead applying standard convolu:on. All cells included three layers except for CNNT-large, with 
six layers. The ViT2D and Conv2D models were further trained through 2D patching and a_en:on 
or 2D convolu:on, opera:ng over height and width rather than across frames. These 
configura:ons enabled us to assess SNRAware over transformer, convolu:onal models, and 
2D/3D models, as well as mul:ple backbone configura:ons (Supplemental Appendix E1). 



 

 

 

The loss was the sum of Charbonnier loss (25), MRI perpendicular loss (26) designed to match 
complex values, VGG (Visual Geometry Group) perceptual loss on magnitude (27), and gradient 
loss, computed as the L1 difference of intensity gradient between reference standard and 
predicted tensors.  

The dataset was split into 95% for training and 5% for valida:on. A fast second order op:mizer, 
Sophia (28), was used with the one-cycle learning rate scheduler (29) and cosine annealing. The 
peak learning rate was 1e-5, betas were 0.9 and 0.999, and epsilon was 1e-8. The training lasted 
80 epoch, and the final model was selected as the one giving the highest performance on the 
valida:on set. All models were implemented using PyTorch (30) and training was performed on a 
cluster of 128 AMD MI300X GPUs (Graphic Processing Unit), each with 192 GB RAM (Random 
Access Memory). Data distributed as used GPU cards to speed up training. 

Our training and model architecture design were generalized over various data 
dimensionali:es by processing tensors in the shape of batch, channel, :me/slice/frame, height 
and width as [B, C, T/S/D, H, W]. The models denoised each of these formats despite being trained 
on only 2D + T data, making it prac:cal to combine different training data (e.g., 2D + T, 3D, and 
mul:-slices) into one model training session, poten:ally improving model generaliza:on. 

 
Appendix E3. Internal and abla8on results 

 

Table 2 summarizes the internal test results. Abla:on studies were conducted for all 3D and 
transformer models, but not for 2D models as they were much less compe::ve. The proposed 
scheme consistently yielded the best PSNR and SSIM. Removing g-factor or realis:c MRI noise 
from model training degraded performance, with the poorest results observed when 
reconstruc:on knowledge was omi_ed.  

Across the various architectures, CNNT-large performed be_er (as the highest scores in 
Table 2), with HRnet-CNNT-large achieving the highest PSNR (54.90) and SSIM (0.71). Comparing 
3D and 2D versions (Hrnet backbone: ViT3D SSIM = 0.63 and PSNR = 51.75 vs. ViT2D SSIM = 0.48 
and PSNR = 46.96, Conv3D SSIM = 0.60 and PSNR = 50.74 vs. Conv2D SSIM = 0.47 and PSNR = 
46.67; Unet: ViT3D SSIM = 0.62 and PSNR = 51.25 vs. ViT2D SSIM = 0.47 and PSNR = 46.53, Conv3D 
SSIM = 0.62 and PSNR = 51.79 vs. Conv2D SSIM = 0.50 and PSNR = 47.43), 3D models showed 
superior performance, and the model with highest scores, Hrnet-CNNT-large, was used in the 
generaliza:on tests. Table 3 presents the SNR and CNR results for cardiac generaliza:on tests. 

 



 

 

 

Appendix E4. More discussion about MR noise characteris8cs 

 

MR noise follows the Gaussian distribu:on in real and imaginary components, aUer the noise pre-
whitening [1]. The noise corrupts the signal as the addi:ve component. The MR SNR will be biased 
higher if magnitude detec:on was applied. This bias decreases with more receiver channels and 
higher signal strength [2]. But in this study, the processing was in the complex domain, and we 
studied the noise distribu:on in the absence of signal as a training augmenta:on. As a result, the 
noise distribu:on was s:ll Gaussian, and simulated noise can be added to the signal.  

 The uncorrelated white noise, however, will become correlated colored noise aUer MR 
reconstruc:on. The g-map noise amplifica:on leads to spa:ally variant SNR, further devia:ng the 
noise distribu:on from the normal Gaussian.   

 Although it is tractable to analy:cally track the change of noise distribu:on, it is much 
easier to set up the deep learning training by sampling the white noise and passing them through 
the same processing steps and adding resul:ng noise to reduce image SNR. This is the approach 
used in this study, u:lizing the addi:ve nature of MR noise corrup:on. 

 The results showed denoising model performance was improved if added noise was 
augmented with g-factor map and processed with the same filters as in the reconstruc:on. As the 
open-source Gadgetron MR reconstruc:on was used in this study, these requirements were 
precisely met in the model training, leading to no:ceable boost in denoising performance. 

 To illustrate how the g-factor amplifica:on and other steps alter the noise distribu:on, we 
sampled white noise and processed it with a real g-factor map and k-space filters. The noise 
power spectrum was plo_ed for the demonstra:on. 

 A noise was sampled for a 256 × 192 matrix. A R=5 g-factor map was sampled to amplify 
the noise. K-space filters were generated with filter width being 1.0 pixel, 1.5pixel and 2.5 pixel. 
Par:al Fourier filters [3] were tapered Hanning with 6/8 sampling along the phase encoding (in 
this example, 192 is the phase encoding length) and a transi:on band of 12, 24 and 48 pixels. The 
power spectrum was computed by repea:ng the noise sampling 256 :mes and taking the 
average. The 1D profile of power spectrum was plo_ed here (along with the phase encoding 
direc:on at the k-space center) for visualiza:on. 

 As shown in Figure 2, the g-map amplifica:on and other processing steps changed the 
noise distribu:on and altered its appearance. Experiments showed model performance degraded 



 

 

 

if model was trained without realis:c noise added. By randomly concatena:ng g-factor maps and 
filters, the training can see a wide range of combina:ons of colored noise, helping model 
differen:ate signal from noise. 
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Appendix E5. Extended review for methods using g-factor maps 

Previous studies have proposed using g-factor maps in MRI denoising. In a recent study (33), 23 
T2 brain scans were collected and used to train a CNN (Convolu:onal Neural Network) model. G-
factor maps were computed and mul:plied with the MRI surface coil inhomogeneity maps, and 
the resul:ng “noise map” was used to scale the white noise to introduce spa:al variance. The 
main difference when compared with SNRAware is that the previous study used g-factor maps 
for training data simula:on with an unknown noise level; therefore, images were not scaled in 
the SNR units.  

Figure E2. Demonstra:on of noise distribu:on aUer g-factor amplifica:on and k-space filters. 
(a) The white noise was sampled to a 256x192 matrix. (b) A R=5 g-factor map was used in this 
demo. (c) A set of k-space filters are plo_ed for different strength. (d) The par:al Fourier 
filters used in Gadgetron was on side Hanning with different transi:on bands. (e) Noise 
pa_ern aUer applying g-factor map and k-space filters. From leU to right: only applying g-
factor map; g-factor map and Gaussian 2.5 filter for both readout and phase encoding; g-
factor map and Gaussian 2.5 filter for readout and PF 6/8 T48 filter for phase. (f) Zoomed-in 
version to visualize differences in noise pa_ern. (g) Power spectrum of noises. Note the flat 
white noise spectrum was altered by g-factor map and filters. Different combina:on of these 
processing steps will alter the noise differently. (h) Corresponding autocorrela:on. 



 

 

 

Another study (34) provided g-factor maps as input for training with low SNR. In that study 
a CNN model was trained with 2000 T2 brain scans and simulated noise. Internal tes:ng was 
performed against other brain images; however, noise pre-whitening with actual noise readouts 
was not performed to get a fixed scaling level, rather the authors of that study es:mated noise 
sigma using a wavelet method from the k-space data. We trained models on larger datasets for 
both transformers and convolu:on architecture, and the impact of noise amplifica:on from the 
g-factor and noise correla:on caused by raw filter and other steps were separately tested with 
more extensive out of distribu:on valida:ons. Our study emphasized that a noise-centric view of 
denoising training can improve the generaliza:on of trained models to unseen imaging 
applica:ons. 



 

 

 

Table 1: Imaging and demographic characteristics for training and test datasets 

Category Imaging 
Application 

Anatomy Typical Sequence Parameters Field 
Strength 

No. Samples And Data 
Format 

Training and 
internal testing 

Retro-gated 
cine 

Heart Data acquisition with breath-holding 
FOV: 360 × 270mm2 

Acquired matrix size: 256 × 144 
Echo time: 1.28 msec 

Bandwidth: 977 Hz/pixel 
Readout: SSFP 

RF Flip angle: 50o 
Echo spacing: 2.97 msec 

Output phases: 30 
Acceleration: R = 2 

3T Training: n = 7590 
patients, 96,605 cine 
series, 2,885,236 images, 
61% male, mean age 54 
years 
 
Testing: n = 231 patients, 
3,000 cine series, 89,899 
images 
 

2D+T time series 
Input tensor: [B, 3, T, H, 
W] 

Testing, external Real-time cine Heart Data acquisition with single-shot 
free-breathing 
FOV: 360 × 270mm2  
Acquired matrix size: 192 × 110 
Echo time: 0.98 msec 

Echo spacing: 2.27 msec 
Bandwidth: 1100 Hz/pixel 

Readout: BSSFP  

1.5T n = 10 patients, one slice 
per patient, 8 males, 
mean age 52 years 

 
2D+T time series  
Input tensor: [B, 3, T, H, 
W] 



 

 

 

RF Flip angle: 50o  
Imaging duration: 39 msec 
Acceleration: R = 5 

Perfusion Heart Data acquisition with single-shot 
free-breathing 
Contrast injection and dynamic 
contrast changes 

Adenosine stress 
FOV: 360 × 270mm2  
Acquired matrix size: 256 × 108 
Echo time: 1.17 msec 

Single-shot TR: 80 msec 
Bandwidth: 850 Hz/pixel 

Readout: BSSFP 
RF Flip angle: 50o 

Acceleration: R = 4 

1.5T n = 5 patients, each had a 
stress and a rest scan, 3 
slices per scan with 60 
heart beats, 2 males, 
mean age 43 years 
 

2D+T time series 
Input tensor: [B, 3, T, H, 
W] 

Neuro Brain T1 MPRAGE sequence 

FOV: 250 × 250mm2 
Acquired matrix size: 256 × 256 
Echo time: 7.2 msec  
Bandwidth: 250 Hz/pixel 

Readout: Turbo spin echo 

1.5T n = 1 male, 45 years old  

 
3D imaging 
Input tensor: [B, 3, D, H, 
W] 



 

 

 

Echo spacing: 3.58 msec 

TI: 200 msec 
Acceleration: R = 2 × 2 

Spine Spine T2 TSE sequence 
FOV: 340 × 340mm2  

Acquired matrix size: 448 × 448  
Echo time: 89 msec 

TR: 3000 msec  
Bandwidth: 260 Hz/pixel 
Readout: Turbo spin echo 
Acceleration: R = 2 

1.5T n = 1 male, 45 years old  
 

2D imaging for 15 slices 
Input tensor: [B, 3, SLC, 
H, W] 

Note.—FOV = field of view, SSFP = Steady-state Free Precession, RF = radiofrequency, MPRAGE = Magnetization-Prepared Rapid 
Gradient Echo, TSE = Turbo Spin Echo. 

Table 2: Results of internal tests for two backbone types 

HRnet Number Of 
Parameters 

Structural Similarity Index (SSIM) Peak Signal-to-noise Ratio (PSNR) 

Proposed Without 
g-factor 

Without 
MR noise 

Without 
recon 
knowledge 

Proposed Without 
g-factor 

Without 
MR noise 

Without 
recon 
knowledge 

CNNT-large 54,678,306 0.70 0.56 0.37 0.38 54.90 48.14 41.31 40.48 

CNNT 27,485,139 0.68 0.58 0.38 0.38 54.14 49.19 41.51 40.38 

Swin3D 54,664,836 0.68 0.59 0.40 0.40 53.78 49.54 42.53 41.23 

ViT3D 27,478,404 0.63 0.60 0.55 0.48 51.75 49.89 47.91 44.00 



 

 

 

Conv3D 22,815,891 0.60 0.57 0.57 0.46 50.74 49.06 48.73 41.52 

ViT2D 17,746,308 0.48 — — — 46.96 — — — 

Conv2D 20,382,867 0.47 — — — 46.67 — — — 

 

Unet Number of 
parameters 

Structural Similarity Index (SSIM) Peak signal-to-noise ratio (PSNR) 

Proposed Without 
g-factor 

Without 
MR noise 

Without 
recon 
knowledge 

Proposed Without 
g-factor 

Without 
MR noise 

Without 
recon 
knowledge 

CNNT-large 48,880,418 0.70 0.55 0.38 0.37 54.70 47.65 41.53 40.32 

CNNT 25,226,195 0.67 0.57 0.38 0.38 54.09 48.93 41.51 40.49 

Swin3D 49,309,316 0.63 0.48 0.51 0.40 51.59 45.23 46.47 41.22 

ViT3D 25,661,828 0.62 0.60 0.58 0.48 51.25 50.49 49.31 44.25 

Conv3D 18,787,475 0.62 0.59 0.49 0.44 51.79 50.02 46.15 40.96 

ViT2D 15,487,364 0.47 — — — 46.53 — — — 

Conv2D 16,206,995 0.50 — — — 47.43 — — — 

Note.—Proposed: training with g-factor map augmentation, realistic noise with the signal-noise-ratio (SNR) unit scaling; Without g-
factor: training and inference without inputting geometry-factor (g-factor) maps; Without MR noise: training with white noise, but still 
adding g-factor maps; Without recon knowledge: training without g-factor maps and adding white noise, the SNR unit scaling was not 
used. P < .001 for proposed method against three ablation tests for CNNT-large, CNNT, Swin3D, ViT3D and Conv3D. SSIM = 
Structural Similarity Index, PSNR = peak signal-to-noise ratio, CNNT = Convolutional neural network transformer, SWIN = shifted 
window transformer, ViT = vision transformer, Conv = convolution. 

Table 3: Results for real-time cine and perfusion generalization tests 



 

 

 

Real-time Cine, R = 5 

Measurements SNR CNR 

ROIs Blood Pool 

G-factor 4.05 ± 1.04 

Myocardium 

G-factor 3.95 ± 0.80 

Blood Pool And Myocardium 

Proposed 70.04 ± 11.70 20.40 ± 3.22 49.65 ± 9.80 

Raw 13.47 ± 4.85  P value: < 
0.001  

5.81 ± 2.20 < 0.001 7.67 ± 2.98 P value: < 
0.001 

Without G-factor 22.19 ± 7.88 < 0.001 7.39 ± 2.70 < 0.001 14.80 ± 5.49 < 0.001 

Without MR noise 19.33 ± 6.78 < 0.001 8.09 ± 2.91 < 0.001 11.24 ± 4.18 < 0.001 

Without recon 
knowledge 

18.43 ± 5.98 < 0.001 7.64 ± 2.73 < 0.001 10.79 ± 3.81 < 0.001 

Perfusion, R = 4 

Measurements SNR CNR 

ROIs Blood pool 

G-factor 1.91 ± 0.52 

Myocardium 

G-factor 1.87 ± 0.44 

Blood pool and Myocardium 

Proposed 74.05 ± 26.32 16.69 ± 5.86 57.37 ± 24.63 

Raw 24.54 ± 14.81 P value: < 
0.001 

4.51 ± 2.69 < 0.001 20.03 ± 12.42 P value:  

<.001 



 

 

 

Without G-factor 70.10 ± 31.54 0.01 12.50 ± 6.25 < 0.001 56.60 ± 27.28 0.84 

Without MR noise 59.05 ± 32.05 < 0.001 9.96 ± 5.53 < 0.001 49.09 ± 27.50 0.001 

Without recon 
knowledge 

46.54 ± 23.58 < 0.001 8.98 ± 5.21 < 0.001 37.56 ± 19.43 < 0.001 

Note.—Statistical significance tests were the proposed method against the raw and three ablation tests. The alpha level for significance 
is adjusted to be 0.05/4 = 0.0125 to count for four tests. The reported format is mean ± SD. Paired t test was performed between 
proposed method and three ablations. SNR = signal to noise ratio, CNR = contrast to noise ratio, ROI = region of interest. 
  



 

 

 

 




