Genetic Diagnosis of Familial Hypercholesterolemia in Residual Newborn Dried Blood Spots

Amy L. Peterson MD MS¹, Vanessa Horner PhD^{2,3} Michael R. Lasarev MS⁴, Xiao Zhang PhD¹, Stephen E Humphries PhD⁵, Robert D. Steiner MD⁶, Megan Benoy MGCS CGC⁷, Jessica Tumolo PhD², Patrice K. Held PhD⁸, Xiangqiang Shao PhD^{2,6}

¹Department of Pediatrics, Division of Pediatric Cardiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA

²Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA

³Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA

⁴Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA

⁵Institute for Cardiovascular Science, Rayne Building, 5 University Street, University College London, London, United Kingdom, WC1E 6JJ.

⁶Department of Pediatrics, Division of Genetics and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA and Marshfield Clinic Health System, Marshfield, Wisconsin, USA

⁷Pediatric Specialty Clinics, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, USA

⁸Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA and the Oregon State Public Health Laboratory, Oregon Health Authority, Hillsboro, Oregon, USA

Short Title: Familial hypercholesterolemia in newborns

Corresponding Author:

Amy L. Peterson MD MS H6/528 CSC MC 4108 600 Highland Ave. Madison, WI 53792 USA

Ph: 608-262-5024 Fax: 608-265-8065

apeterson@pediatrics.wisc.edu

Total word count: 1407

Revision date: 7/23/2025

Key Points

Question: Can familial hypercholesterolemia be identified through newborn screening?

Findings: In this cross-sectional study, residual newborn screening dried blood spots were tested for low-density lipoprotein cholesterol and apolipoprotein B followed by familial hypercholesterolemia genetic testing for specimens with the highest levels of the two biomarkers, with 1 in 625 newborns genetically confirmed with familial hypercholesterolemia.

Meaning: Newborn screening for familial hypercholesterolemia is feasible with first-tier biochemical testing followed by reflex genetic testing though further refinement and validation are needed.

Abstract:

Importance: Newborn screening for familial hypercholesterolemia (FH) would dramatically increase diagnosis of a common, potentially fatal, but highly treatable genetic condition in newborns and relatives.

Objective: To report the results of genetic testing of residual newborn screening dried blood spots with biomarkers suggesting high risk for FH as an initial step towards development of multi-tier newborn screening for FH.

Design: A cross-sectional study design from July 2021 to July 2022 was used to test residual dried blood spots for total cholesterol, low-density lipoprotein cholesterol, and apolipoprotein B. Principal component analysis identified biomarker combinations that accounted for the

greatest variance. Mahalanobis distance was calculated to generalize the idea of a standardized Z-score of a single variable to several correlated variables; approximately 8% of samples with the greatest positive Mahalanobis distance were selected for genetic FH testing.

Setting: Population-based screening for newborns in Wisconsin.

Participants: Residual, deidentified dried blood spots from newborns with sample collection between 24 and 72 hours of life.

Main Outcomes and Measures: Prevalence of pathogenic variants for FH in a population-based sample of newborn screening dried blood spots.

Results: From 10,004 specimens tested, principal component analysis demonstrated the combination of low-density lipoprotein cholesterol and apolipoprotein B accounted for the greatest variance, and 768 specimens were selected for genetic testing. A pathogenic variant for FH was found in 16 samples yielding a population-based prevalence of 1 in 625 (1.6 per 1000, 95% CI: 0.91 – 2.60 per 1000) newborns. Pathogenic variants were distributed throughout the entire range of Mahalanobis scores selected for genetic testing.

Conclusions and Relevance: Screening newborns for FH using first tier biochemical testing with reflex second tier genetic testing is feasible and, in this population, identified 1 in 625 newborns with FH. Further refinement and validation is needed prior to implementation in newborn screening. Routine newborn screening for FH would substantially increase diagnosis of this common, potentially fatal, yet readily treatable condition while providing opportunities for cascade screening.

Introduction:

Familial hypercholesterolemia (FH) causes lifelong elevated low-density lipoprotein cholesterol (LDL-C), resulting in high risk for premature onset of atherosclerotic cardiovascular disease (ASCVD). Approximately 1 in 300 people across all populations exhibit the FH phenotype (1). Early treatment can directly prevent premature ASCVD and death (2), yet FH remains profoundly underdiagnosed (3). Both universal and selective cholesterol screening strategies during childhood in order to diagnose FH are recommended (4), but implementation is low (5). Newborn screening is a highly successful public health program that provides near-universal population coverage. Screening newborns for FH is an opportunity to significantly increase diagnosis rates for FH at the beginning of life and cascade screen potentially affected relatives who are likely unaware of their diagnosis. Our team evaluated a novel FH screening algorithm measuring total cholesterol (TC), LDL-C, and apolipoprotein B (apoB) in residual deidentified newborn screening dried blood spot (DBS) specimens (6) and described elevations in LDL-C and apoB suggestive of FH (7). Herein, we report the results of genetic testing of newborn screening dried blood spots with LDL-C and apoB levels suggesting high risk for FH as an initial step towards development of multi-tier newborn screening for FH. The ultimate purpose of these and future validation studies is to demonstrate the feasibility of newborn screening for FH using first-tier biochemical testing with reflex second-tier genetic testing of specimens with the highest LDL-C and apoB levels, and determine if this strategy can identify newborns with genetically-confirmed FH.

Methods:

This cross-sectional study was granted a waiver of informed consent from the institutional review board which permitted use of de-identified, residual newborn screening DBS specimens collected in Wisconsin between July 2021 and July 2022. Simulations indicated a sample size of 10,000 specimens would provide adequate precision for detection of FH pathogenic variants. A minimal demographic data set was acquired from each DBS card including birth weight, gestational age, and sex. Only samples collected between 24 and 72 hours after birth were included.

TC, LDL-C, and apoB were measured using previously described methods (6). We previously demonstrated both significant seasonal variability in TC, LDL-C, and apoB levels throughout the calendar year and variability across different 96-well plates on which specimens were run (7). Therefore, use of absolute threshold values (in original units of mg/dL) for genetic testing was not appropriate. Concentrations for each biomarker were normalized to the median within each 96-well plate to produce multiples of the median (MoM), exhibiting less seasonal and interplate variation. As TC, LDL-C, and apoB are interrelated variables, principal component analysis was performed to identify combinations of the three biomarkers that accounted for the greatest variance. Mahalanobis distance, a multivariate distance metric that measures the distance between a point and any defined measure of center for a distribution (median), was calculated to generalize the idea of a standardized Z-score (which would be for a single variable) to a collection of interrelated variables. Specimens were ranked by Mahalanobis distance with the largest positive values (i.e., the highest LDL-C and apoB levels) selected for genetic testing.

DNA was isolated from DBS using Maxwell RSC DNA FFPE kit (Promega, Madison, WI). Targeted next-generation sequencing was performed using a panel that included *LDLR*, *APOB*, *PCSK9*, *LDLRAP1*, *APOE*, *LIPA*, *ABCG5*, and *ABCG8*. Sanger sequencing confirmation was carried out and Infinium Global Diversity Array with Cytogenetics-8 (Illumina, San Diego, CA) confirmed large deletion and duplication events in *LDLR*. Variant interpretation and classification followed guidelines from the American College of Medical Genetics and Genomics and the Association of Molecular Pathologists (8).

Results:

Specimens were collected from 10,004 residual newborn screening DBS specimens, with demographic and biochemical results reported previously (7). Principal component analysis indicated ~93% of variability in TC, LDL-C, and apoB was captured by LDL-C and apoB, with TC having a relatively small contribution to total variability. Therefore, TC was not used in any further analyses and a composite Mahalanobis distance from LDL-C and apoB was calculated for specimens in each batch, with the most extreme 192 distances in each batch (192×4=768; 7.68% of all specimens) selected for genetic testing.

A total of 16 pathogenic or likely pathogenic variants were identified (Table 1); thus, the prevalence of pathogenic variants for our cohort of 10,004 newborns is 1 in 625 (95% CI: 1/1094 to 1/385). Mahalanobis distance from the combination of LDL-C and apoB identified the most variants, followed by individual ranking for apoB alone, and then LDL-C alone (Table 2). There were 48 variants of uncertain significance (VUSs) identified and they are shown in Supplemental

Table 1. Figure 1 shows the distribution of absolute values of LDL-C and apoB by status of genetic testing and the 16 samples with pathogenic or likely pathogenic variants overlaid.

Discussion:

This study demonstrates that screening dried blood spot specimens for FH using first-tier biochemical testing for LDL-C and apoB followed by second-tier genetic testing identifies newborns with genetically-confirmed FH at rates consistent with studies of FH screening in older children. Our prevalence (1 in 625 or 1.6 per 1000, 95% CI 0.91-2.60) is lower than 1 in 300 people, but is consistent with the prevalence of monogenic FH variants reported in universally screened pediatric populations in Slovenia (1.4 per 1000, 95% CI 1.2-1.6) (9) and Japan (2.6 per 1000, 95% CI 1.9-3.5) (10).

Our approach offers several advantages over alternative methods for FH screening. Firstly, this approach should detect all newborns with homozygous FH, which causes cardiac events beginning in childhood when left untreated (11, 12), as those newborns will have the most extreme elevations in LDL-C and apoB. Secondly, some individuals with FH variants have LDL-C levels within the normal range (13, 14) resulting in a "false negative" test result. These individuals likely have variants with lower expressivity and/or a polygenic etiology, with lower ASCVD risk. As morbidity from FH is directly related to LDL-C levels the approach we use would avoid identifying such individuals as newborns and potentially introducing harm, although all children with LDL-C above the threshold may benefit from ongoing monitoring of their LDL-C levels Even if our approach only identifies 50% of individuals with FH this will raise current FH

diagnosis rates (currently 5-10%) tremendously. Thirdly, biochemical testing has substantially lower cost than genetic testing.

Limitations to this study include the use of deidentified specimens which does not permit longitudinal prospective study of LDL-C and apoB levels. While use of a single biochemical marker for screening would be simpler, using apoB or LDL-C alone would have missed 4/16 or 8/16, respectively, of the pathogenic variants. In newborn screening, it is common practice to use multiple biomarkers (e.g., screening for phenylketonuria includes both phenylalanine and tyrosine, and congenital hypothyroidism uses both thyroid stimulating hormone and thyroxine assayed by separate methods). We did identify one potentially pathogenic copy number variant that could not be confirmed due to insufficient residual sample, and no genetic testing was performed on specimens with Mahalanobis distances below the established cutoff. Wisconsin has a high prevalence of individuals who claim Northern European ancestry, potentially limiting generalizability of these results to more diverse populations. Additionally, this study focuses on detection of 'genotypically confirmed' FH and thus our diagnostic criteria are more stringent than 'phenotypic FH' definitions. If newborn screening for FH is implemented clinically, a multipronged approach would likely be adopted to ensure that newborns with high LDL-C and apoB levels but negative genetic testing results are still investigated and monitored as high risk. If any VUSs are later reclassified as pathogenic or if a larger proportion of specimens underwent genetic testing, this would increase our 'genotypically-confirmed' FH prevalence. Finally, this study tested specimens in batches, which limits translatability in the real world. In order to validate our approach a prospective study is needed to test DBS in real time, with follow-up LDL-C and apoB values in those above a pre-determined threshold being reflexed for genetic testing.

This is consistent with general newborn screening practice, where confirmatory testing is

routinely performed.

In conclusion, these results show newborn screening for FH using first-tier LDL-C and apoB

testing with reflex second-tier genetic testing is feasible and, in this cohort, identified 1 in 625

(1.6 per 1000, 95% CI: 0.91 – 2.60 per 1000) newborns with FH. Routine newborn screening for

FH would substantially increase diagnosis of this common, potentially fatal, yet readily treatable

condition while providing opportunities for cascade screening. It is noteworthy that newborn

screening for FH is intended to complement, rather than replace, universal pediatric lipid

screening as this algorithm may miss potentially half of cases.

Acknowledgements: none

Sources of Funding: Dr. Peterson is supported by a grant from the Eunice Kennedy Shriver

National Institute of Child Health and Human Development (1R21HD102793-01A1). Dr.

Humphries is an Emeritus British Heart Foundation (BHF) Professor and acknowledges funding

from the BHF (PG08/008), and the National Institute for Health Research and University College

London Hospitals Biomedical Research Centre.

Author Disclosures:

Dr. Peterson serves on a steering committee for Novartis pharmaceuticals and is a consultant for

Mirum. She receives no compensation for these roles.

10

Dr. Horner is an employee of Exact Sciences. She receives compensation via salary and stock.

Dr. Zhang has no disclosures.

Mr. Lasarev is a statistical consultant for National Acoustic Laboratories, Australia.

Dr. Humphries is the Medical Director of a University College London spin-off company

(StoreGene) that offers genetic testing for cardiovascular risk including for familial

hypercholesterolemia. He also reports payment for expert testimony from Verve Therapeutics.

Dr. Steiner is a consultant for Exact Sciences, Mirum, PTC, and Ultragenyx. He holds equity in

Exact Sciences and reports travel support from Astellas.

Ms. Benoy has no disclosures.

Dr. Tumolo is an employee of PreventionGenetics LLC, an Exact Sciences company.

Dr. Held has no disclosures.

Dr. Shao was a consultant for PreventionGenetics LLC, an Exact Sciences company.

References:

- 1. de Ferranti SD, Rodday AM, Mendelson MM, Wong JB, Leslie LK, Sheldrick RC. Prevalence of Familial Hypercholesterolemia in the 1999 to 2012 United States National Health and Nutrition Examination Surveys (NHANES)CLINICAL PERSPECTIVE. Circulation. 2016;133(11):1067-72.
- 2. Luirink IK, Wiegman A, Kastelein JJ, Hutten BA. Statin Initiation during Childhood in Patients with Familial Hypercholesterolemia and Cardiovascular Risk after 20 Years of Follow-up (Preliminary Results). Atherosclerosis Supplements. 2018;32:5-6.
- 3. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34(45):3478-90a.
- 4. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128 Suppl 5:S213-56.
- 5. Vinci SR, Rifas-Shiman SL, Cheng JK, Mannix RC, Gillman MW, de Ferranti SD. Cholesterol testing among children and adolescents during health visits. JAMA. 2014;311(17):1804-7.
- 6. Held PK, Campbell K, Wiberley-Bradford AE, Lasarev M, Horner V, Peterson A. Analytical Validation of Familial Hypercholesterolemia Biomarkers in Dried Blood Spots. Int J Neonatal Screen. 2022;8(1).
- 7. Held PK, Lasarev M, Zhang X, Wiberley-Bradford AE, Campbell K, Horner V, et al. Familial Hypercholesterolemia Biomarker Distribution in Dried Blood Spots. The Journal of Pediatrics. 2023;259.
- 8. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-23.
- 9. Sustar U, Kordonouri O, Mlinaric M, Kovac J, Arens S, Sedej K, et al. Universal screening for familial hypercholesterolemia in 2 populations. Genet Med. 2022.
- 10. Matsunaga K, Mizobuchi A, Ying Fu H, Ishikawa S, Tada H, Kawashiri MA, et al. Universal Screening for Familial Hypercholesterolemia in Children in Kagawa, Japan. Journal of atherosclerosis and thrombosis. 2022;29(6):839-49.
- 11. Cuchel M, Lee PC, Hudgins LC, Duell PB, Ahmad Z, Baum SJ, et al. Contemporary Homozygous Familial Hypercholesterolemia in the United States: Insights From the CASCADE FH Registry. J Am Heart Assoc. 2023;12(9):e029175.
- 12. Luirink IK, Braamskamp M, Wiegman A, Hartgers ML, Sjouke B, Defesche JC, et al. The clinical and molecular diversity of homozygous familial hypercholesterolemia in children: Results from the GeneTics of clinical homozygous hypercholesterolemia (GoTCHA) study. J Clin Lipidol. 2019;13(2):272-8.
- 13. Zhang Y, Dron JS, Bellows BK, Khera AV, Liu J, Balte PP, et al. Familial Hypercholesterolemia Variant and Cardiovascular Risk in Individuals With Elevated Cholesterol. JAMA Cardiology. 2024;9(3):263-71.
- 14. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219-24.

Table 1: Pathogenic and likely pathogenic variants in familial hypercholesterolemia genes found

Sample	LDL-C (mg/dL)	ApoB (mg/dL)	Gene (Transcript)	Variant Info	Classification
22-0311	119	88		c.420G>C (p.Glu140Asp)	Pathogenic
22-0271	132	95		c.662A>G (p.Asp221Gly)	Pathogenic
22-0250	126	79		c.1359-1G>A	Pathogenic
22-0251	70	73			
22-0670	83	45	LDLR	c.1775G>A (p.Gly592Glu)	Pathogenic
22-0300	154	38	(NM_000527.5)	c.343C>T (p.Arg115Cys)	Likely Pathogenic
22-0254	136	34		c.542C>G (p.Pro181Arg)	Likely Pathogenic
22-0252	122	58		c.907C>T (p.Arg303Trp)	Likely Pathogenic
22-0439	127	46		c.2026G>C (p.Gly676Arg)	Likely Pathogenic
23-0042	136	13		duplication of exons 9-10	Likely Pathogenic
22-0047	145	19		c.10580G>A (p.Arg3527Gln)	Pathogenic
22-0267	126	98			
22-0361	125	74	АРОВ		
22-0368	141	79	(NM_000384.3)		
22-0524	77	68			
22-0699	64	30			

in 10,004 newborns

Table 2: Ranking* of specimens with pathogenic or likely pathogenic variants for familial hypercholesterolemia

Sample	ApoB/LDL-C ¹	ApoB only ²	LDL-C only ²	TC only ²
22-0047	115	109	214	346
22-0250	20	21	66	547
22-0251	77	47	2413	506
22-0252	156	200	110	760
22-0254	70	1512	28	710
22-0267	2	1	10	799
22-0271	24	23	107	17
22-0300	191	1476	77	140
22-0311	68	41	561	1186
22-0361	23	12	396	355
22-0368	14	7	328	810
22-0439	186	451	82	1559
22-0524	56	22	542	1756
22-0670	51	25	1662	2362
22-0699	33	21	429	31
23-0042	41	91	23	103

- 1. Rank number of combined ApoB/LDL-C is based on Mahalanobis distance (which generalizes the idea of a standardized Z-score to a collection of interrelated variables).
- 2. Rank number of a specimen based on its individual rank within a batch.

^{*}Specimens with a low rank number reflect higher levels of ApoB, LDL-C, and TC. Specimens with ranks 1-192 were selected for genetic testing.

Figure 1. Distribution of ApoB (left) and LDL-C (right) in mg/dL by status of genetic testing

Sixteen specimens submitted for testing found to have pathogenic/likely pathogenic variants are
shown as solid black circles. The box within each distribution shows the median (solid black
horizontal line) and 25th/75th percentiles as the lower/upper box edges.