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PathFusion-Net: A Rough Path Theory-Based
Deep Learning Model for ECG Arrhythmia
Classification
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Hao Ni, Hongying Liu and Jingjing Deng

Abstract—This study introduces a novel electrocardio-
gram (ECG) arrhythmia classification model, PathFusion-
Net, which integrates Rough Path Theory with deep learn-
ing technologies. The model combines Convolutional Neu-
ral Networks (CNN), Long Short-Term Memory (LSTM),
Path Signatures, and Path Development to extract spatial
morphological features from ECG images and multi-order
temporal representations from ECG signals. By adopting
an inter-patient split paradigm, our approach more closely
reflects real-world clinical diagnostic settings compared to
intra-patient methods. The model demonstrates state-of-
the-art overall classification performance on both the MIT-
BIH Arrhythmia Database and a private clinical dataset,
achieving 94.7% and 95.1% accuracy, respectively, under
the AAMI four-class standard with an inter-patient split
paradigm. On the MIT-BIH dataset, the proposed method
attains competitive precision and recall across multiple
arrhythmia types, including 95.2%/87.9% for ventricular ec-
topic beats (V) and 75.7%/92.3% for supraventricular ec-
topic beats (S), indicating balanced performance across
clinically diverse categories. This research highlights the
potential of Rough Path Theory in time-series analysis and
offers a novel deep learning framework for automated early
detection and monitoring of ECG arrhythmias.
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Deep Learning.

[. INTRODUCTION

Non-communicable diseases (NCDs) contribute to 41 mil-
lion deaths annually, accounting for 74% of all global fa-
talities. Among these, cardiovascular diseases (CVDs) are
the leading cause, responsible for approximately 17.9 million
deaths per year [1]. This significant mortality burden under-
scores the critical need for accurate, timely diagnosis and
management of cardiovascular conditions. One particularly
challenging CVD subset is arrthythmias—a group of disorders
including tachycardia, bradycardia, premature beats, and atrial
fibrillation—each impacting cardiac function with varying
degrees of severity and often linked to heightened risks of
heart attacks and strokes. Electrocardiograms (ECGs) record
the electrical activity of the heart over a period of time and
are vital tools for assessing heart health [2]. With the rapid
development of machine learning technologies, analyzing large
amounts of ECG data can simulate the diagnostic reasoning of
cardiovascular experts, enabling fast and accurate diagnoses.
This not only significantly reduces the workload of medical
professionals but also ensures timely and precise diagnosis of
patients’ conditions, thus holding great value in both practical
application and research. Many previous studies adopted the
intra-patient paradigm in dataset partitioning and achieved
accuracies exceeding 99%. However, this approach may cause
information leakage, thereby undermining the credibility of
the results. As demonstrated by Cao et al. (2022) [3] , the
inter-patient paradigm mitigates this issue and more closely
reflects real-world deployment scenarios. Therefore, this study
employs the inter-patient split to avoid bias from data leakage.

In recent years, significant progress has been made in
ECG-based arrhythmia classification using machine learning.
Initially, traditional techniques such as Support Vector Ma-
chines (SVM) [4] and K-Nearest Neighbors (K-NN) [5] were
widely used. However, with the rapid advancement of deep
learning, researchers have increasingly introduced deep learn-
ing methods into automatic ECG classification. Convolutional
Neural Network (CNN), as one of the prominent deep learning
models, have demonstrated exceptional performance in signal
analysis, image recognition, pixel data processing, and natural
language processing. In recent years, CNN have also been
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extensively applied to ECG classification and arrhythmia de-
tection [6]. When applied to ECG signal analysis, CNN can
automatically learn and extract relevant features from raw ECG
signals, thereby enhancing the accuracy of arrhythmia detec-
tion. In addition to CNN, Long Short-Term Memory (LSTM)
networks have also gained widespread attention. LSTM, a
variant of Recurrent Neural Network (RNN), is equipped with
unique memory cells and gating mechanisms that allow it
to learn and retain sequences over extended periods. This
feature is particularly crucial when processing ECG data with
long-term dependencies, effectively overcoming the vanishing
gradient problem common in standard RNN, making LSTM
particularly well-suited for tasks involving time-series data,
such as ECG signal analysis [7].

Despite the progress made with both traditional machine
learning and deep learning methods, the dynamic feature ex-
traction from time-series data remains a challenge. To address
this, Rough Path Theory, proposed in the 1990s, offers a
novel perspective for understanding the response of nonlinear
systems to highly oscillatory input signals [8], [9]. A key
component of this theory is the signature transform, which
provides an efficient way to represent and extract features
from high-dimensional ordered data. Path signatures have
been successfully applied to feature selection in the modeling
of diseases such as Alzheimer’s and borderline personality
disorder, demonstrating their effectiveness as features for time-
series data [10], [11]. Consequently, this study utilizes Path
Signatures (PS) to extract ECG features, leveraging its ability
to capture temporal patterns in sequential data. However, Path
Signatures may suffer from the curse of dimensionality as
the path order increases. To address this, Lou et al. [12]
proposed Path Development (PD) as a trainable alternative,
which effectively mitigates the vanishing gradient problem
when combined with LSTM. Building on these advances, this
study proposes PathFusion-Net, a novel model that integrates
Path Signatures, Path Development, CNN, and LSTM to
extract both morphological spatial features from ECG images
and temporal dynamics from ECG signals. This approach
enables a more comprehensive representation of ECG data,
improving classification performance. This study is the first
to apply Rough Path Theory to ECG arrhythmia classification
by integrating Path Signatures and Path Development within
a deep learning framework. Path Signatures extract temporal
features, which are fused through a fully connected layer,
while Path Development enhances sequence modeling within
the CNN-LSTM structure. The effectiveness of Rough Path
Theory in arrhythmia classification tasks is thoroughly evalu-
ated.

Our research not only introduces a novel ECG data classifi-
cation strategy but also showcases the potential and advantages
of Rough Path Theory in processing ECG signals, providing
new technological means for the early detection and real-
time monitoring of arrhythmias. The proposed PathFusion-
Net leverages CNN for morphological feature extraction
and LSTM combined with Path Development for capturing
temporal dynamics. The model was evaluated on the MIT-
BIH Arrhythmia Database, with arrhythmia classification con-
ducted according to the AAMI standard under an inter-patient

paradigm. PathFusion-Net achieved an overall accuracy of
94.7%, outperforming the previous best-reported result by
2.9 percentage points, demonstrating superior classification
performance and generalization capability. Specifically, the
main contributions of this study are as follows:

1. This study proposes PathFusion-Net, a novel ECG ar-
rhythmia classification model that integrates Rough Path The-
ory with deep learning. It combines Path Signatures and Path
Development with CNN and LSTM to extract both temporal
and spatial morphological features from ECG signals. The ef-
fectiveness of Rough Path Theory in arrhythmia classification
tasks is evaluated.

2. The study emphasizes and employs standardized AAMI
classification standards and an inter-patient paradigm for data
classification training. A comparison with existing deep learn-
ing models demonstrates the superior performance of the
proposed model.

Il. RELATED WORK

Electrocardiogram (ECG) signals are essential for analyzing
the heart’s electrical activity. As a periodic signal, the ECG
consists of distinct waveforms, each reflecting different phases
of heart muscle contraction and relaxation, characterized by
variations in frequency and amplitude. Key components, such
as the P wave, QRS complex, and T wave, are crucial for
accurately diagnosing heart diseases, as shown in Fig. 1.
Traditional ECG diagnostic methods rely on comparing the
morphological features and time intervals of these waveforms
to differentiate between normal sinus rhythm and abnormal
conditions [13]. However, the accuracy and efficiency of these
conventional methods face significant limitations, especially
when dealing with large volumes of patients. Consequently,
machine learning methods for arrhythmia detection have been
introduced, offering a novel solution for the automated analysis
and accurate interpretation of ECG data.
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Fig. 1. A complete heartbeat cycle from the MIT-BIH dataset, illustrating
key features of the ECG signal, including the PR Interval, PR Segment,
QRS Complex, ST Segment, and QT Interval. The dashed box in the
upper-right corner provides a schematic representation of the normal
ECG waveform.

Over recent decades, significant progress has been made in
automating arrhythmia classification from electrocardiogram
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(ECQG) signals, with various machine learning (ML) techniques
playing a central role. Approaches such as Support Vector
Machines (SVM) [14], K-Nearest Neighbors (K-NN) [15],
Principal Component Analysis (PCA) [16], and adaptive back-
propagation neural networks have been widely adopted. For
instance, Faziludeen et al. [17] applied a multi-class SVM
using a One-Against-One strategy to distinguish among left
bundle branch blocks, ventricular premature beats, and nor-
mal heartbeats, while Zhu et al. [18] employed SVM after
extracting morphological features from segmented P-QRS-
T waves using PCA and dynamic time warping. Similarly,
Lassoued et al. [19] developed a clinical decision support
system based on Artificial Neural Networks (ANN), evaluating
the performance impact of Levenberg-Marquardt and Bayesian
Regularization algorithms. Latif et al. [20] further expanded
the range of ML applications by using Random Forest and
Naive Bayes for classifying ECG and electroencephalogram
(EEG) signals. In addition, Zhang et al. [21] conducted a
comprehensive comparison between intra-patient and inter-
patient evaluation paradigms for heartbeat classification, using
handcrafted statistical and morphological descriptors with a
conventional classifier. This work highlighted the influence
of evaluation protocol on reported performance, achieving
98.3% accuracy in the intra-patient and 93.5% in the inter-
patient scenario. Similarly, Dias et al. [22] combined RR-
interval, morphological, and higher-order statistical features
with a lightweight classifier, explicitly testing robustness to R-
wave jitter and demonstrating competitive results under inter-
patient standard. While these traditional ML techniques have
achieved reasonable success in arrhythmia classification, they
often require manual feature extraction, adding complexity and
potential bias to the process.

Unlike conventional ML models, deep learning has quickly
gained widespread attention and application in ECG anal-
ysis, benefiting from increased data availability, enhanced
computational power, and advancements in algorithms. Deep
neural networks integrate feature extraction and classification,
enabling the automatic capture of high-level features from
ECG signals and achieving more accurate classifications [23].
For example, Liu et al. [24] developed a 17-layer CNN to
extract deep features from ECG signals, combining them with
expert-designed features for classifying nine ECG categories,
and reported an accuracy of 0.81 on the training set using
5-fold cross-validation. Huang et al. [25] converted ECG
signals into spectrograms using Short-Time Fourier Transform
(STFT) and used a 2D CNN to classify arrhythmias, while
Wang et al. [26] applied stacked denoising autoencoders to
learn semantic representations of heartbeats, which were then
classified with a BILSTM network. Xiong et al. [27] designed
a 1D CNN with residual connections for ECG classification,
and Li et al. [28] used a six-layer 1D CNN based on the MIT-
BIH Arrhythmia Database to categorize arrhythmias. Cao et
al. [3] adopted a transfer learning approach by converting ECG
signals into time—frequency spectrograms via STFT and fine-
tuning a ResNet-18 model under inter-patient protocol, achiev-
ing 90.8% accuracy and outperforming several baseline CNNs.
To address class imbalance, Alhichri et al. [29] introduced
focal loss into a CNN-based heartbeat classifier, significantly

improving precision and recall for minority classes such as
supraventricular ectopic beats.

Researchers have also investigated transforming ECG sig-
nals into 2D images for classification. For instance, Acharya
et al. [30] implemented a CNN with three convolutional, max-
pooling, and fully connected layers for heartbeat classification.
Jun et al. [31] created an 11-layer 2D CNN model to analyze
ECG images. Moreover, due to the temporal dependencies in
ECG data, LSTM networks have become popular for capturing
arrhythmic patterns. Gao et al. [32] developed an LSTM model
to classify eight types of heartbeats from the MIT-BIH Ar-
rhythmia Database, while Yildirim [33] used BiLSTM layers
for detecting five heartbeat types, and Kim and Pyun [34]
evaluated multiple LSTM architectures on MIT-BIH datasets.
Furthermore, the work in [35] leveraged bidirectional LSTM
layers to capture long-range temporal dependencies, yielding
improved supraventricular arrhythmia detection compared to
CNN-only approaches.

However, early single models based on CNN and LSTM for
classifiers of ventricular fibrillation and atrial fibrillation (VF,
AF) have not yet achieved optimal accuracy [36]. To address
this problem, hybrid models of CNN and LSTM [37], [38]
were proposed and showed high performance. In particular,
Petmezas et al. [38] trained their model on the MIT-BIH
Atrial Fibrillation Database, achieving a sensitivity of 97.87%
and a specificity of 99.29% under a ten-fold cross-validation
strategy, demonstrating its potential for real-time AF detection
in routine ECG screening. Jin et al. [39] proposed a two-
attention convolutional LSTM (TAC-LSTM) specifically for
patient-independent and patient-specific AF classification and
validated it in the MIT-BIH AF database. Wang et al. [40]
developed a BILSTM model with CNN and feature calibration
for AF detection on a smaller dataset, where the proposed
method achieved consistently higher generalization perfor-
mance across geography groups than benchmark algorithms,
with Fl-scores ranging from 0.90 on RBDB to 0.95 on CPSC.
While Chen et al. [41] combined CNN and LSTM to clas-
sify six arrhythmias including AF and ventricular fibrillation,
where their four-class arrhythmia classification on the AFDB
achieved an overall accuracy of 99.35% and an Fl-score of
92.86%. In recent years, the hybrid CNN-LSTM design in [22]
achieved an overall accuracy of 79.6% (6=18) and 80.6%
(0=0), with balanced performance across all AAMI classes
under the inter-patient evaluation protocol. Kachuee et al. [42]
reported 81.2% accuracy for their deep transferable CNN
representations in AAMI-compliant heartbeat classification,
also demonstrating cross-database adaptability from MIT-BIH
to PTB.

More recently, Transformer-based architectures have
emerged as powerful alternatives for ECG classification due
to their capability in modeling long-range dependencies
and capturing global context. The ECGTransform [43]
introduces a self-attention mechanism over segmented
heartbeat sequences, enabling the model to focus adaptively
on diagnostically relevant cardiac cycles. On the PTB
dataset, it achieved an overall accuracy of 99.23%, sensitivity
of 99.17%, and specificity of 99.24%, demonstrating
competitive performance, particularly in improving minority
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class recognition compared to conventional CNN-LSTM
baselines. Beyond ECG-specific designs, generic time-series
Transformers such as TimesNet [44] leverage multi-periodic
temporal decomposition and convolution-enhanced attention
blocks to model diverse temporal patterns. While TimesNet
has shown strong performance across a variety of time-series
benchmarks, its application to ECG remains limited in the
literature, and the fixed multi-period decomposition it employs
may be less suited for the highly variable cardiac cycles
observed in arrhythmia data without substantial adaptation.
These approaches highlight the potential of Transformer-
based modeling for ECG analysis, motivating our inclusion
of ECG-Transformer as a representative baseline in the
comparative experiments.

In order to explore new and more efficient methods, we
introduce path signature and path development methods from
rough path theory.

[1l. PRELIMINARY

Rough path theory provides a mathematical framework for
analyzing irregular, or ‘rough’ signals [8], [9]. Within this
framework, the path signature serves as a robust tool for
effectively capturing essential information about finite-length
paths. Due to its strength as a feature extractor for time-series
data, the path signature has been applied in various fields,
including financial data modeling [45], handwritten character
recognition [46], and human pose estimation [47]. This section
introduces the path signatures approach, a key concept under
rough path theory, highlights its limitations, and presents the
improved path development approach with its advantages.

A. Preliminary of Path Signatures

Path signatures provide a principled and efficient way to
extract features from time series data. Originating from rough
path theory, the path signature of a path X captures the
essential geometric properties and can be used to model the
effects of the path on non-linear systems. A d-dimensional
path X over the time interval [0, 7] can be represented as a
continuous map X : [0, 7] — R?. For simplicity, in this paper,
we focus on the paths of bounded variation. The path signature
of X over a bounded interval J C [0,7], denoted S(X), is
defined as:

S(X), = (1L, X},X3,...), (1)

where X f} represents the k-fold iterated integral of the path:

X};:/ dXy, ®dXy, ®@...®dX,,. ()
up<uo<..<ug,u;€J

for each k£ > 1. The truncated signature of order n, denoted
as m,(S(X) ), includes terms up to the n-th iterated integral:

T (S(X)y) = (1L, X}, X7,....X7). (3)

Since the formal definition above may appear abstract, the
reader is referred to Appendix A, which presents a worked
example on a simple two-dimensional path. This example

illustrates the derivation of each signature term and shows
how second-order cross terms correspond to oriented areas,
following the style of prior expository work [48].
For a linear path X|o 7, its signature admits a closed-form
expression:
S(X[OyT]) = exp(XT — Xo), (4)

where exp is the tensor exponential. In addition, the signature
of the path has the multiplicative property known as Chen’s
identity [49]: for any continuous paths X and Y of bounded
variation, the signature of the concatenation of X and Y is
the tensor product of the signature of X and Y. In a formula,

S(X *Y) = 8(X) @ S(Y), )

where X * Y is the concatenation of the path.

In practice, we often observe discrete time series, which can
be lifted to the piecewise linear path by linear interpolation.
Thanks to Chen’s identity and Eqn. (4), the signature of
the piecewise linear path is obtained by the product of its
linear segments. This recursive formulation enables efficient
computation of a long path.

However, the path signatures method faces several chal-
lenges, particularly when dealing with high-dimensional path
features. As the network depth increases, the method tends
to overfit. Specifically, the path signature method has the
following three key limitations: Firstly, the Path Signature
method suffers from the curse of dimensionality, leading to
high computational complexity as the input dimension in-
creases. Secondly, path signatures lack adaptability to changes
in input data, limiting their flexibility and effectiveness. Lastly,
truncating Path Signatures to a finite order can cause informa-
tion loss, reducing the accuracy of the extracted features.

B. Preliminary of Path Development

To address these limitations, Lou et al. [12] proposed
the path development method, a trainable alternative to path
signatures grounded in Rough Path Theory. This method
introduces trainable parameters that allow the model to better
adapt to input data, mitigate overfitting when handling high-
dimensional features, and more effectively preserve essential
information. Building on this, the path development layer
offers a solution that integrates flexibility and adaptability
into feature extraction processes.To provide further clarity, the
definition of path development is as follows.

Let G be a finite-dimensional Lie group with Lie algebra
g. Consider a linear map N : RY — gl(m;F) and a path
X € VI([0,T]; R?), where V! denotes the space of absolutely
continuous functions. The development of X on G through N
is defined as the solution to the differential equation:

dY; =Y N(dXy),

Vte[0,T], Yo=e,  (6)

where Y; is the path at time ¢ and e is the identity element in
G, with matrix multiplication implied.

For a linear path X € V!([0,T];R¢), the development on
G via N € L(R%, g) is given by:

Dn(X)o,t = exp(N(X¢ — Xo)). (7
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This approach leverages the Picard iteration technique and
the contraction mapping principle. Path development shares
properties with path signatures, such as time invariance and
multiplicative behavior, and is effective in applications like
stock price or ECG analysis, where speed of recording is
predetermined.

Lou et al. (2024) introduce the path development layer [12],
a neural network module for time series data. For discrete time
series, let © = (xg,x1,...,oyn) € RN+ represent a d-
dimensional sequence of length NV + 1. Given a Lie algebra
g and N € L(R? g), we can define the development of x
by linearly interpolating . The map N is parameterized by
coefficients @ = (61,02,...,04) € g, s0 Ny : R 5 o =
(™ 2@ D) 2?21 0;209) € g.

The path development layer is a mapping Dy : R&X(N+1)
GN*L, yielding z = (20, 21, - - ., zn) such that:

Znt1 = 2n €XP(No(Tny1 — Tn)), 20 =Idpm,  (8)

where exp is the matrix exponential, Id,, is the identity
matrix, GN*! denotes the Cartesian product of G, and 6 € g¢
are trainable parameters.

The recursive structure in this layer resembles RNNs and
signature layers. However, unlike RNNs, it does not require
a fully connected network for hidden states. Compared to
signature layers, it includes trainable weights adaptable to the
data. By choosing a matrix Lie algebra g C GL(m,[F), the
development can be represented within GL(m,F), where the
dimension dimp GL(m,F) = m? is fixed, independent of the
path dimension d. This differs from the signature approach, in
which the dimensionality increases geometrically with d.

Building on this definition, the path development layer
offers several advantages that address the limitations of path
signature methods, particularly in time series data processing.

o Mathematical basis: Like RNN and signature, the path
development layer has the universality, as it is rich enough
to approximate any continuous function on the path space.

o Handling high-dimensional data: Traditional path sig-
nature methods face challenges such as the curse of
dimensionality, where the number of required features
increases exponentially with the dimensionality of the
data. The path development layer solves this problem by
using Lie group matrices to represent the data, which
significantly reduces the dimensionality without losing
critical information.

o Trainable and Data Adaptive: Unlike path signatures,
the path development layer is trainable. It can learn the
optimal transformation of the input data, such as classi-
fication or regression tasks in high-dimensional spaces.

o Using in Neural Networks: The path development layer
can be plugged into neural networks, especially in ar-
chitectures that process sequential data such as RNN
or LSTM. It helps mitigate problems such as vanishing
gradients and explosions by providing a more stable
structure for backpropagation.

The path development layer radically enhances a model’s abil-

ity to capture and exploit the complex properties of sequential
data, making it a powerful tool in areas involving time-series

prediction, speech recognition, and any field where it is critical
to understand the underlying dynamics of data over time.

While the above subsections present the mathematical
definitions of Path Signatures and Path Development, their
suitability for ECG analysis can also be understood from a
signal-properties perspective. ECG waveforms are inherently
non-stationary their morphology and baseline shift over time
due to physiological and measurement variations. They are
also oscillatory, with distinct repetitive structures such as the P
wave, QRS complex, and T wave, whose fine-scale variations
carry diagnostic significance. Moreover, ECG patterns are
multi-scale, as both short-term features (e.g., QRS width) and
long-term features (e.g., RR interval trends) are clinically
relevant. Path Signatures encode the ordered geometry of
the signal trajectory through iterated integrals, preserving
temporal ordering and multi-scale interactions in a fixed,
mathematically principled representation. Path Development
extends this by introducing trainable transformations that
adapt to data characteristics, reducing dimensionality while
retaining critical structure. Compared with standard LSTM or
Transformer models which learn internal state representations
via optimization the path-based approach provides a more
explicit and stable encoding of temporal structure, which can
be especially advantageous for biomedical signals with rich
morphology and irregular dynamics like ECGs.

IV. METHOD

This section presents PathFusion-Net, a novel ECG arrhyth-
mia classification model that integrates Rough Path Theory
with deep learning. The model combines Path Signatures and
Path Development with a CNN-LSTM framework. The fol-
lowing subsections detail its architecture and implementation.

Due to the complex and variable structures reflected in ECG
signals, features from a single domain are often insufficient
to capture all the subtle changes. In addition, the biometric
nature of ECG data poses a significant challenge for data
augmentation. Therefore, in the classification of arrhythmias,
multi-feature fusion typically yields better classification per-
formance. This paper proposes a multi-feature fusion network,
PathFusion-Net. After denoising, the ECG signals undergo R-
wave detection and heartbeat segmentation. The segmented
one-dimensional ECG signals are then transformed into 256
x 256 grayscale images, which are processed by CNN to
extract morphological features. Concurrently, the original one-
dimensional ECG signals are processed through both the
DevLSTM network and the Path Signature method to capture
temporal features from different perspectives. The extracted
features are concatenated and passed through Batch Normal-
ization and a Dense layer before final classification. Then a
dropout layer is applied prior to the final arrhythmia clas-
sification, achieved using a Softmax layer. In summary, this
study combines the capabilities of CNN, LSTM networks, and
Rough Path method to effectively capture the spatio-temporal
features of ECG data. This approach provides a novel perspec-
tive and method for ECG analysis. Detailed descriptions of the
DevLSTM CNN and Path Signatures modules are provided
below.
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Fig. 2. PathFusion-Net Methodology Diagram.
As shown in Fig. 2, the network integrates two-dimensional TABLE |
morphological features from a CNN and one-dimensional ARCHITECTURE OF PROPOSED CNN MODEL
temporal features from Path Signatures and the combined Type | Kernel size | Stride | Kernel Output size
DevLSTM module. igiﬁ‘f Icnsrl:x; I%3 1 o4 225566xX 225566xX 614
1) CNN: CNN is particularly well-suited for handling local Layer 2 Conv 3x3 L o4 256 X 256 x 64
L. . . Layer 3 MaxPool 2x2 2 128 x 128 x 64
features in images and is commonly used for extracting Tayer 4 Conv 353 i 98 T 198 X 198 X 198
morphological features from data. In this study, we input Layer 5 Conv 3x3 1 128 | 128 x 128 x 128
: : : Layer 6 MaxPool 2x2 2 64 x 64 x 128
the transformed 256 x 256 pixel grayscale images into the Tayer 7 o =3 ; 7z e R g
network. The data first passes through five layers of CNN, each Layer 8 Conv 3x3 i 256 64 X 64 x 256
with the same structure: convolution layer, ReLU activation Layer 9 | MaxPool 2x2 2 32 X 32 x 256
. . . . Layer 10 Conv 3x3 1 512 32 x 32 x 512
function, batch normalization layer, and max pooling layer. To Layer 11 Conv 3%3 ] 573 39X 39 X 512
simplify hyperparameter tuning, each layer uses the same num- Layer 12 | MaxPool 2x2 2 16 x 16 x 512
ber of filters and stride values. As the network depth increases, Layer 13 FC L
Layer 14 Output 2048

the number of convolution kernels is gradually increased to
ensure that the network can extract complex features from
various perspectives and scales, thereby improving the model’s
performance. Finally, the data passes through a fully connected
layer, where the features extracted by the CNN model are
output. Table I gives the details about the CNN model.

2) DevLSTM: Although traditional LSTM networks are de-
signed to address the issue of long-term dependencies, they
can still encounter problems such as gradient vanishing or
explosion in practical applications. The Path Development
Layer, by leveraging the mathematical structure of Lie groups,
helps stabilize the gradient during the training process, thereby
alleviating these issues. Additionally, the Path Development
Layer performs mathematical transformations based on path
development theory on time series data, extracting features
that effectively characterize the data. This transformation is
trainable, meaning it can adaptively adjust based on specific

tasks, enhancing the model’s understanding and representation
of the data. Thus, by integrating LSTM with the Path Devel-
opment Layer to form the new DevLSTM network, long-term
dependencies in time series data can be better captured.

The proposed network receives one-dimensional ECG sig-
nals as input, which are processed through a single LSTM
layer with a hidden size of 32. The resulting temporal features
are then passed to the Path Development Layer, where or-
thogonal matrices are used as internal Lie groups, with matrix
length defined by the parameter Dev Number. The last matrix
in the sequence is chosen for output because it contains the
complete temporal characteristics of the preceding sequence
data. These features are then passed through a flatten layer for
output.
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3) Path Signatures: Using rough path theory, the Path
Signature (PS) method demonstrates a strong capability to
characterize temporal sequence data, capturing patterns from
lower to higher orders (coarse to fine). In this study, each
heartbeat sequence is treated as a time series, with features
extracted via the PS method. These features are then passed
through a fully connected (FC) layer and fused with spatial
and temporal features within PathFusion-Net for classification.

V. DATASETS AND PREPARATION

This section provides an overview of the ECG datasets
used in this study, including both public and private datasets,
with a detailed description of their sources, sample sizes, and
classification methods.

A. Dataset

1) Public Dataset: The MIT-BIH Arrhythmia Database, de-
veloped by the Massachusetts Institute of Technology and Beth
Israel Hospital, is a foundational dataset for arrhythmia re-
search and was the first globally recognized standard for eval-
uating arrhythmia detection methods, released in 1980 [50].
It contains 48 ECG recordings from 47 subjects (25 men
aged 32-89 and 22 women aged 23-89), with recordings 201
and 202 originating from the same individual. Each 30-minute
recording is sampled at 360 Hz and includes data from two
leads: lead II (primarily a modified limb lead) and a second
lead, typically V1, though occasionally V2, V4, or V5. For
this study, only lead II data is used for consistency. Since
the database provides precise R-wave annotations, these are
directly utilized here, as R-wave detection is not the study’s
focus. Each heartbeat segment comprises 100 sample points
before and 160 sample points after the R-wave peak, totaling
260 points to capture a full cardiac cycle, as shown in Fig. 1.

The MIT-BIH Arrhythmia Database contains 15 heartbeat
types, which in this study are grouped into five categories:
normal beat (N), supraventricular ectopic beat (SVEB), ven-
tricular ectopic beat (VEB), fusion beat (F), and unknown beat
(Q). To facilitate inter-patient data partitioning, we adopted the
widely used DS1/DS2 split protocol proposed by DeChazal et
al. [51], as listed in Table II. DS1 was used for training and
validation, while DS2 was reserved for testing, ensuring that
no ECG segments from the same patient appear in more than
one subset. The validation set was obtained through an intra-
patient split within DS1 to maintain balanced class proportions
and enable stable early stopping. The same principle of patient
exclusivity was applied to our private clinical dataset.

TABLE Il
PATIENT-EXCLUSIVE DS1/DS2 SPLIT FOR THE MIT-BIH ARRHYTHMIA
DATABASE.
Subset Record IDs

101, 106, 108, 109, 112, 114, 115, 116,
118, 119, 122, 124, 200, 201, 203, 205,
207, 208, 215, 220, 223, 230, 232

100, 103, 105, 111, 113, 117, 121, 123,
209, 210, 212, 213, 214, 219, 221, 222,
228, 231, 233, 234

DS1 (training + validation)

DS2 (test)

TABLE IlI
THE DATASET OF MIT-BIH ARRHYTHMIA DATABASE
F N S \' Total
DS1 416 46366 1973 4613 53368
DS2 386 44719 808 2395 48308

The dataset consists of two parts: one-dimensional signal
data and two-dimensional image data. For the two-dimensional
image data, an image cropping augmentation method was
applied to the training set for the three categories (F, S, and
V) with smaller sample sizes. The final amount of data used
is shown in Table IV.

TABLE IV
DATASET FOR PATHFUSION-NET MODEL
F N S ) Total
2D [ID [2D[ID| 2D [ ID 2D 1D 2D ] 1D
Training [ 3120 [ 312 ] 34024 [14790 [ 1479 | 34590 | 3459 [ 86524 39274
Validation 104 11342 494 1154 13094
Test 386 44719 808 2395 48308

1D refers to the original heartbeat signal data, while 2D refers to the augmented data
generated by converting the signal into corresponding images.

2) Private Dataset: This study also utilized a private
database obtained from the Department of Cardiology at
Shaanxi Honghui Hospital. The database consists of 24-hour,
12-lead long-term ECG recordings sampled at 15 Hz, catego-
rized into two groups: atrial fibrillation (AF) patients and non-
AF patients. To ensure data independence, we strictly divided
the training and test sets at the inter-patient split paradigm.
After dividing the patient groups, multiple ECG segments
from the second lead were randomly extracted, and image
cropping data enhancement was also used in the training set to
construct the final dataset. The detailed statistics of the dataset
are presented in Table V.

TABLE V
PRIVATE ATRIAL FIBRILLATION DATASET
AF Non-AF Total
2D 1D 2D 1D 2D 1D
Training 2800 280 9500 950 12300 1230
Validation| 115 355 470
Test 226 862 1088

B. Preparation

1) Denoising: ECG signals are primarily affected by three
types of noise: industrial frequency interference, electromyo-
graphic interference, and baseline drift. Traditional Fourier
analysis, which uses the Fourier transform as a global transfor-
mation, faces limitations when analyzing non-smooth signals.
In contrast, the wavelet transform, a local transformation in
both time and frequency domains, effectively extracts infor-
mation by applying multi-scale operations such as scaling and
translation. This advantage enables the wavelet transform to
address challenges that the Fourier transform cannot, making
it particularly suitable for ECG signal denoising.

The process of denoising ECG signals using the wavelet
transform involves three steps: (1) Selecting a wavelet basis
function to separate noise from the signal. Based on the
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quantitative analysis by Peng and Wang [52], the db6 wavelet
(vanishing moment N = 6) achieves the minimum high-
frequency energy after the first-level decomposition for ECG
signals, which offers an optimal trade-off between noise sup-
pression and preservation of waveform morphology; (2) Con-
sidering that most human ECG signals occupy the frequency
range of approximately 0.05-100 Hz, and given the 360 Hz
sampling rate of the MIT-BIH dataset, a 9-level discrete
wavelet decomposition enables effective isolation of baseline
drift (<0.5 Hz), industrial frequency interference (50/60 Hz),
and high-frequency electromyographic noise, while retaining
diagnostically relevant signal components; (3) Labeling the
detailed coefficients as D and the approximate coefficients as
A. The resulting frequency ranges of each scale after the 9-
scale decomposition are presented in Table VI.

TABLE VI
SIGNAL DECOMPOSITION

signal decomposition | decomposition level | frequency range(Hz)
DI 1 180-360
D2 2 90-180
D3 3 45-90
D4 4 22.5-245
D5 5 11.25-22.5
D6 6 5.625-11.25
D7 7 2.8125-5.625
D8 8 1.40625-2.8125
D9 9 0.703125-1.40625
A9 9 0-0.703125

After scale decomposition of the ECG signal using wavelet
transform, the D1 and D2 scales contain a large amount of
high-frequency noise, while baseline drift noise is mainly con-
centrated in the A9 scale. Therefore, the wavelet coefficients
on the D1, D2 and A9 scales can be set to zero, and a soft
thresholding function can be applied to the wavelet coefficients
at other scales to filter out other noise components, thereby
achieving the goal of signal denoising. soft threshold function:

{sgn<w><w| =), if fuw] > A ©)

7o, if [w| < A,

where w denotes the wavelet coefficients, N is the length of
the signal, A is the pre-selected threshold, and the formula for

Ais
_ medianjw| - vV2In N

1
0.6745 (10)

Following noise coefficient filtering, the denoised ECG
signal is reconstructed using the inverse discrete wavelet
transform, enhancing signal quality and providing a clearer
representation of the underlying physiological processes. As
shown in Fig. 3, the raw ECG signal initially exhibited baseline
drift, reflected by a -0.25mV offset. After applying a 9-
level discrete wavelet transform (db6 wavelet), baseline wan-
der was effectively removed, restoring the signal around the
zero baseline. In addition, high-frequency noise was reduced
without distorting key morphological features, demonstrating
the suitability of wavelet-based denoising for ECG signal
processing.

Raw vs Filtered ECG Signal

—— Raw ECG Signal
1.25 Filtered ECG Signal

Amplitude(mV)

-0.25

-0.50

0 100 200 300 400 500 600
Sample

Fig. 3. Comparison between the raw and filtered ECG signals in
category F.

2) Augmentation: ECG data, as a type of biosignal, is highly
sensitive to small fluctuations in sampling points, which could
potentially indicate the presence of a pathological condition. In
one-dimensional form, it is difficult to apply data augmentation
without risking the loss or distortion of critical physiological
information. For the proposed model, both one-dimensional
and two-dimensional representations are required. The raw
ECG signals were first segmented into single beats using
the annotation files provided by the MIT-BIH Arrhythmia
Database and our private clinical dataset. Each beat was
centered on the R-peak and contained the complete P wave,
QRS complex, and T wave. For the CNN branch, each 1D beat
was transformed into a 2D grayscale image of size 256x256
pixels, with the horizontal axis representing time and the
vertical axis representing amplitude.

To balance the number of samples across classes and
improve generalization, we applied a nine-region cropping
strategy with overlapping windows (Fig. 4). Once the 1D
ECG segments are transformed into 2D grayscale images,
spatially shifting the crop region can simulate variations in
signal alignment and scaling. This type of augmentation has
been successfully applied in previous ECG image-based clas-
sification studies and has been shown to improve robustness
to such variations [53]. While certain cropped regions may
omit portions of specific waveform components (e.g., partial
R-wave truncation), other crops in the nine-region set preserve
the complete morphological structure of the heartbeat.

Importantly, both the original (uncropped) images and the
cropped versions were included in the training set, ensuring
that the model was exposed to complete waveform morpholo-
gies as well as their spatially shifted variants. This approach
did not lead to a loss of diagnostic information; instead, it
increased data diversity and improved the model’s robustness
to spatial variability.

VI. EXPERIMENT RESULT
A. Model Size and Computational Complexity

The proposed PathFusion-Net contains approximately 275
million parameters, corresponding to a storage size of 1.1 GB
in FP32 precision. The computational complexity is estimated
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Fig. 4. Original ECG image and nine cropped images.

at 23.4 GFLOPs per heartbeat sample in the inter-patient
paradigm. This relatively large size arises from the hybrid
multi-branch design, which integrates a CNN branch for 2D
morphological feature extraction, a DevLSTM branch for
temporal dependencies, and a Path Signature branch for struc-
tured time-series features. To mitigate potential overfitting, we
employed extensive data augmentation, dropout regularization
(0.2 in the DevLLSTM branch and 0.5 in the fusion MLP), batch
normalization, and early stopping based on validation perfor-
mance. Despite the parameter count, no signs of overfitting
were observed, and the model achieved strong generalization
to both the MIT-BIH dataset (over 100,000 labeled beats
across four classes) and an independent private clinical dataset.
Inference speed was measured at 62 + 6 ms per heartbeat
on GPU and 189 £ 10 ms on CPU, demonstrating practical
feasibility for both real-time monitoring and offline Holter
ECG analysis.

To further examine deployment feasibility, we additionally
tested the model on two low-power embedded devices. Direct
deployment without optimization yielded latencies of 12.8
s/beat on a Raspberry Pi 4B (4 GB) and 4.2 s/beat on a Jetson
Nano (4 GB). Lightweight optimizations improved perfor-
mance to 6.3 s/beat on the Raspberry Pi (via dynamic quantiza-
tion) and 1.9 s/beat on the Jetson Nano (via TensorRT). Power
consumption during inference was approximately 9W and 7W,
respectively, much lower than desktop CPU (96W) and GPU
(111W). While these results confirm the energy efficiency of
embedded platforms, their inference latency remains above the
strict real-time threshold, suggesting that further techniques
such as pruning, aggressive quantization, or compact backbone
redesign will be required for wearable or edge deployment.

B. Experimental Setup

This research utilized Python 3.10.13 for implementation.
The deep learning models were developed and trained using
PyTorch 2.0.1, supported by the iisignature library (version
0.24). The system featured an Intel i9-13900H CPU with
14 cores, 20 threads, and a base frequency of 2.60GHz.
Additionally, an NVIDIA RTX 4070 Laptop GPU with 8GB of

video memory, driver version 31.0.15.4680, and CUDA 11.7
compatibility provided computational support for the deep
learning algorithms.

Training configuration and convergence stability: The
model was trained using the Adam optimizer (initial learning
rate of 1 x 1073, 81 = 0.9, B = 0.999) and the cross-entropy
loss function, with a mini-batch size of 32. To stabilize training
and prevent overfitting, Batch Normalization was applied after
each convolutional or fully connected layer, and Dropout was
employed with a rate of 0.5 in the fusion MLP and 0.2 in
the DevLSTM branch. A ReduceLROnPlateau scheduler
monitored the validation loss with mode set to min, reducing
the learning rate by a factor of 0.5 after 10 consecutive epochs
without improvement. An early stopping strategy was also
adopted, terminating training if the validation loss did not
decrease for 15 consecutive epochs (min_delta = 10~%), with
the model reverted to the checkpoint achieving the highest val-
idation accuracy. These strategies ensured smooth and stable
convergence without divergence or gradient explosion.

C. Evaluation Metrics

To assess classification performance, this study employed
four metrics: Precision, Recall, Accuracy, and F-score. These
metrics are based on the concepts of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).
While Precision, Recall, and Accuracy are widely used, the F-
score provides an additional measure by evaluating the balance
between precision and recall.

o Macro-averaged F-score
macro-averaged Fl-score (FI-score) specifically reflects
the relationship between the actual positive labels and
those predicted by the classifier, averaged across each

class.
Pre x Rec

F1- = X
seore Pre + Rec

D. Proposed Model on Public Dataset

While Path Signatures (PS) are effective in extracting tem-
poral features from ECG signals, they suffer from the curse
of dimensionality, leading to high computational costs and
potential information loss as the signature order increases.
Additionally, their fixed nature limits adaptability, making it
challenging to capture complex temporal patterns in ECG data.
To address these limitations, this study proposes PathFusion-
Net, which integrates Path Signatures, Path Development,
CNN, and LSTM for a more comprehensive feature extrac-
tion approach. CNN extracts morphological features from 2D
ECG images, while DevLSTM, combining Path Development
and LSTM, dynamically learns temporal features from 1D
ECG signals. This design overcomes the rigidity and high-
dimensional constraints of standalone Path Signatures, enhanc-
ing classification performance. The proposed model employs
an early stopping strategy on the validation set, halting training
automatically when the minimum loss in the validation set
reaches a specified threshold. The model’s final evaluation is
then conducted on the test set. Results indicate that, despite the
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TABLE VII
EVALUATION OF PATHFUSION-NET WITH DIFFERENT ORDERS ON PUBLIC DATASET
PS-only method PathFusion-Net without PS Order 3 Order 4
Precision Recall F1-score | Precision Recall F1-score | Precision Recall F1-score | Precision Recall F1-score
F 6.81% 5.70% 6.21% 391% 18.12% 6.41% 1.23% 1.04% 1.13% 2.33% 1.55% 1.87%
N 98.11% 91.09% 94.47% 97.34% 95.38% 96.35% 97.82% 90.80% 94.18% 97.66% 92.85% 95.19%
S 69.90% 83.08% 75.92% 75.73% 92.34% 83.38% 11.24% 59.65% 18.92% 17.29% 74.01% 28.04%
v 31.59% 69.19% 43.38% 93.2% 87.9% 90.44% 65.50% 59.96% 62.65% 80.70% 69.85% 74.89%
accuracy 89.02% 91.52% 88.03% 90.67%
Order 5 Order 6 Order 7 Order 8
Precision Recall F1-score | Precision Recall F1-score | Precision Recall F1-score | Precision Recall F1-score
F 1.15% 0.52% 0.71% 6.81% 5.70% 6.21% 3.90% 18.13% 6.41% 5.75% 3.37% 6.41%
N 97.77% 94.55% 96.13% 98.69% 95.76% 97.20% 98.87% 95.76% 97.29% 97.94% 95.13% 96.51%
S 18.35% 64.23% 28.54% 24.64% 86.88% 38.39% 75.74% 92.33% 83.21% 20.86% 70.17% 32.16%
A\ 85.37% 73.36% 78.91% 94.96% 69.19% 80.05% 95.16% 87.93% 91.41% 91.81% 73.95% 81.91%
accuracy 92.25% 94.69 % 92.93%

We compared the precision, recall, Fl-score, and overall accuracy of PathFusion-Net with different Path Signature orders, as well as the performance of

PS-only method and PathFusion-Net without PS, on the MIT-BIH arrhythmia dataset across different arrhythmia categories. The best,

scores are highlighted.

significant imbalance between different categories, the model
maintains high classification accuracy across major categories.

In PathFusion-Net, the order of Path Signatures (PS) plays
a crucial role in feature extraction and classification perfor-
mance. Initially, as the order increases, the model benefits from
richer temporal representations, leading to improved accuracy.
However, beyond a certain threshold, the curse of dimensional-
ity introduces redundancy and noise, which negatively impacts
classification performance. To analyze this effect, we conduct
experiments to evaluate how different PS orders influence the
model’s final accuracy. Table VII presents the classification
performance of PathFusion-Net under different Path Signature
orders, alongside the PS-only method and PathFusion-Net
without PS. The results indicate that the full PathFusion-Net
achieves the highest overall accuracy of 94.69% at an optimal
PS order, surpassing both the PS-only method (89.02%) and
the PathFusion-Net without PS (91.52%). For the Normal
(N) category, PathFusion-Net maintains high precision and
recall rates, exceeding 97% accuracy across different orders.
In the Supraventricular Ectopic Beat (S) category, despite class
imbalance, the model achieves up to 92.3% recall. However,
higher PS orders do not always yield better performance.
While increasing the order initially improves accuracy, exces-
sive complexity results in diminishing returns. These findings
validate the effectiveness of integrating Path Signatures within
PathFusion-Net, confirming that neither the PS-only method
nor removing PS entirely can achieve the same level of
classification performance. The results also underscore the
importance of selecting an optimal PS order, balancing feature
richness with computational efficiency for robust arrhythmia
classification in real-world applications.

Table VIII presents a performance comparison between the
proposed PathFusion-Net and several representative state-of-
the-art methods on the MIT-BIH Arrhythmia Database under
the inter-patient evaluation protocol. The compared approaches
span a diverse range of architectures, including traditional
machine learning pipelines with handcrafted features [21],
[22], CNN-based methods leveraging time—frequency repre-
sentations [3], cost-sensitive learning techniques such as focal
loss [29], recurrent neural networks with bidirectional LSTM

and third

layers [35], hybrid CNN-LSTM frameworks with transferable
representations [42], and recent Transformer-based models for
ECG analysis such as ECG-Transformer [43].

From the results, we observe that traditional ML-based
pipelines [21], [22] achieve competitive performance in de-
tecting majority classes but generally underperform in minor-
ity class recognition, particularly for supraventricular ectopic
beats (S) and fusion beats (F). CNN-only models, such as
the STFT-ResNetl8 approach [3], show improved overall
accuracy or dominant classes but still face challenges in
capturing long-range temporal dependencies, which can affect
performance on morphologically similar arrhythmias. The
focal loss-enhanced CNN [29] alleviates some class imbalance
issues, leading to higher recall for the S class compared to
standard CNN baselines, but the gain in minority classes
comes at a slight cost to overall accuracy.

Recurrent architectures [35] improve sensitivity to tem-
porally extended patterns, particularly for supraventricular
arrhythmias, but their reliance on 1D sequential processing
limits their ability to fully exploit multi-scale morphological
variations. Hybrid CNN-LSTM designs [22], [42] demonstrate
more balanced performance across classes, with [42] addition-
ally showing robustness in cross-database adaptation scenarios.
However, these methods typically do not incorporate structured
time-series representations, potentially limiting their capacity
to model fine-grained geometric variations in ECG signals.

Transformer-based methods, such as ECGTransform, lever-
age self-attention to capture global dependencies in the heart-
beat sequence and have shown strong performance on long-
range temporal modeling tasks. In our experiments, ECG-
Transform achieved competitive overall accuracy and partic-
ularly high recall for the N class, reflecting its strength in
modeling contextual relationships across the full heartbeat.
Nevertheless, the quadratic complexity of self-attention in-
creases memory and computation demands, and in our inter-
patient evaluation setting, ECGTransform lower pre and recall
for the imbalanced class compared to PathFusion-Net, indicat-
ing potential limitations in handling extreme class imbalance
without additional structural priors.

By contrast, PathFusion-Net consistently achieves the high-
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est or near-highest Accuracy across all AAMI classes (absolute
gain of 2.9% over the next best method). This performance
gain can be attributed to the integration of CNN-based mor-
phological feature extraction, Path Signature-based structured
sequence encoding, and Path Development-enhanced LSTM
modeling. The combination allows the model to capture both
local morphological patterns and global temporal dependen-
cies, while the path-based representation provides robustness
to non-stationarity and waveform variability inherent in ECG
signals.

Overall, the results in Table VIII demonstrate that
PathFusion-Net not only matches or surpasses the best-
performing existing methods, including Transformer-based ap-
proaches, in terms of average metrics, but also offers a more
balanced classification performance across both majority and
minority arrhythmia classes. This suggests that the proposed
path-based multi-branch design provides a promising direction
for ECG arrhythmia classification, particularly under strict
inter-patient evaluation settings where robustness to distribu-
tion shifts and class imbalance is critical.

TABLE VIII
COMPARISON OF DEEP LEARNING MODEL PERFORMANCE USING AN
INTER-PATIENT SPLIT PARADIGM

Arrhythmia types

Work Accuracy F N S v
(%) (n=386) (n=44719) (n=808) (n=2395)
Pre/Rec(%) Pre/Rec(%) Pre/Rec(%) Pre/Rec(%)
Romdhane [29] 62.1 0.0/0.0 95.6/64.0 0.0/0.0 12.7/79.3
Oliveira [35] 66.0 N/A 62.0/72.0 21.0/14.0 88.0/86.0
Dias(6=18) [22] 79.6 4.4/81.4 99.4/77.9 36.9/90.6 92.6/87.2
Dias(6=0) [22] 80.6 4.6/81.4 99.6/79.2 39.7/92.2 92.8/87.2
Kachuee [42] 81.2 1.0/1.3 94.4/84.5 0.0/0.0 30.9/92.4
Zhang [21] 86.6 13.7/93.8 98.9/88.9 35.9/79.1 92.7/85.5
Minh Cao [3] 90.8 1.3/0.3 95.3/95.1 13.0/9.0 68.2/88.4
El-Ghaish [43] 91.8 5.6/21.1 98.8/92.8 36.6/84.9 80.9/86.1

PathFusion-Net(Order 7) 94.7 3.9/18.1 98.9/95.8 75.7192.3 95.2/87.9

We compared the performance of deep learning methods on the MIT-BIH
arrhythmia dataset using an inter-patient split paradigm. The comparison
includes precision (Pre) and recall (Rec) values for F, N, S, and V categories,
along with overall accuracy. We highlight the best scores.
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Fig. 5. PathFusion-Net Normalized Confusion Matrix.

To further evaluate classification performance under the
severe class imbalance in Tablelll, we provide the normalized
confusion matrix for the test set results (Fig. 5). The confusion
matrix offers an intuitive visualization of class-wise prediction
patterns. For example, 72.5% of F beats are misclassified as N

beats, explaining the relatively low F1-score for the F category.
In contrast, the model achieves high discrimination between
S and V beats, with only 4.3% of S beats predicted as V and
7.7% of V beats predicted as N. This analysis complements the
precision/recall metrics and provides a clearer understanding
of error distributions in multi-class classification.

E. Evaluation on Private Dataset

This study also utilized data from the Department of
Cardiology of the Honghui Hospital in Shaanxi Province,
China. Each sample consists of 24-hour 12-channel long-term
ECG recordings from both patients with atrial fibrillation and
healthy individuals. This dataset allows us to evaluate the
effectiveness of Rough Path Theory in extracting meaningful
features from real-world ECG signals.

Table IX presents the classification performance of
PathFusion-Net under different Path Signature orders on the
private dataset, alongside the PS-only method and PathFusion-
Net without PS. Similar to the results on the public dataset,
the findings confirm that introducing Path Signatures im-
proves classification accuracy, with PathFusion-Net achiev-
ing its highest accuracy (95.13%) at order 6, outperforming
both the PS-only method (91.54%) and the PathFusion-Net
without PS (92.00%). However, as the PS order continues
to increase beyond this point, the model’s performance starts
to decline, reinforcing the trade-off between capturing richer
temporal features and managing high-dimensional complexity.
This highlights a key limitation of the Path Signature method,
which requires careful selection of the optimal order to balance
feature extraction and computational efficiency.

F. Discussion

This study explores the integration of Rough Path Theory
into deep learning for ECG arrhythmia classification, introduc-
ing Path Signatures (PS) and Path Development into a unified
framework. To evaluate the effectiveness of this integration,
we conducted experiments comparing PathFusion-Net with
and without PS, as well as a PS-only model, analyzing how
different PS orders influence classification performance. The
results demonstrate the advantages of combining morpho-
logical features from CNN, temporal representations from
DevLSTM, and structured path-based features from PS, rein-
forcing the importance of hybrid models for biomedical signal
analysis. Integrating Path Signatures significantly enhances
classification performance by improving temporal feature rep-
resentation. While PS alone suffers from dimensionality issues,
its structured encoding of time-series dependencies comple-
ments Path Development’s adaptability. The full PathFusion-
Net achieves the highest accuracy (94.69%), outperforming
both PathFusion-Net without PS (91.52%) and the PS-only
model (89.02%), confirming the benefits of feature fusion.
Beyond overall performance improvement, the choice of Path
Signature order also plays a crucial role in classification
results. As the PS order increases, the model initially benefits
from richer temporal representations, leading to improved
accuracy (e.g., 94.69% at order 7). However, beyond a certain
threshold, higher-order Path Signatures introduce excessive
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TABLE IX
EVALUATION OF PATHFUSION-NET WITH DIFFERENT ORDERS ON PRIVATE DATASET

PS-only method PathFusion-Net without PS Order 3 Order 4

Precision  Recall  Fl-score | Precision Recall Fl-score | Precision Recall Fl-score | precision Recall Fl-score

Non-AF 91.86% 98.60%  95.11% 91.13% 98.96%  94.88% 90.72% 99.77%  95.03% 92.86% 99.65%  96.14%

AF 92.81% 67.39%  78.09% 94.08% 63.27%  75.66% 98.57% 61.06%  75.41% 98.16% 70.80% 82.26%
accuracy 91.54% 92.00% 91.73% 93.66%
Order 5 Order 6 Order 7 Order 8

Precision  Recall  Fl-score | Precision Recall Fl-score | Precision Recall Fl-score | Precision Recall F1l-score

Non-AF 93.36% 99.54%  96.35% 94.60% 99.54%  97.00% 93.94% 98.96%  96.38% 90.79% 99.64%  94.96%

AF 97.63% 73.01% 83.54% 97.79% 78.31% 86.98% 95.00% 75.66% 84.24% 97.20% 61.50%  75.34%
accuracy 94.03% 95.13% 91.64%

We compared the precision, recall, Fl-score, and overall accuracy of PathFusion-Net with different Path Signature orders, as well as the performance

of PS-only method and PathFusion-Net without PS, on the private dataset across different arrhythmia categories. The best,

highlighted.

complexity and redundancy, leading to a decline in perfor-
mance (e.g., 92.93% at order 8), highlighting the trade-off
between capturing fine-grained temporal details and managing
feature dimensionality, and emphasizing the importance of
selecting an optimal PS order in deep learning models.

For the fusion beat (F) class, our model achieves a precision
of 3.9%, which is in a similar range to most compared methods
in Table VIIL. This consistently low performance underscores
the difficulty of detecting this category, largely due to its
extreme rarity in the dataset and its morphological similarity
to both normal and ventricular beats. To further examine this
issue, we conducted a controlled experiment by downsampling
the other classes to match the F class size. Under this balanced
setting, the F class accuracy improved markedly from 18.1%
to 63.0%, confirming that data scarcity is the dominant factor
behind its poor recognition. However, this improvement came
at the cost of degraded performance for the majority classes,
highlighting the trade-off between minority-class recognition
and overall accuracy. Addressing this limitation will likely
require more advanced strategies such as synthetic data genera-
tion, class-weighted training, or specialized sub-networks. It is
worth noting that this study focuses on classifying arrhythmia
types defined in the AAMI standard, all of which are present
in the training data. Consequently, the model may misclassify
previously unseen arrhythmia types into the most similar
known category. Future work will explore open-set recognition
and anomaly detection approaches to enhance the model’s abil-
ity to handle arrhythmia classes not represented in the training
dataset. While the model performs well on the MIT-BIH
Arrhythmia Database, its effectiveness on other types of ECG
data remains underexplored. To overcome these limitations and
strengthen our study, we propose several directions for future
research: Efficiency Enhancements: Future work should focus
on optimizing model architectures to reduce computational
costs while maintaining or potentially improving accuracy.
Approaches such as pruning, quantization, and knowledge
distillation are promising techniques to explore. Extension
to Other Biomedical Signals: Investigating the applicability
of Rough Path Theory and the developed methodologies to
other types of biomedical signals, such as EEG, EMG, and
Photoplethysmography (PPG), which is a widely used non-
invasive optical technique for cardiovascular monitoring. For
example, Ebrahimi and Gosselin [54] provide a comprehensive

and third scores are

methodological review of ultralow-power PPG sensors, high-
lighting their potential for continuous monitoring in wearable
devices. Lastly, to address the challenge of class imbalance
in ECG datasets, future studies could explore advanced data
augmentation methods, such as GANSs, to create synthetic ECG
signals. Such techniques could enhance the model’s ability
to learn from underrepresented arrhythmia types, improving
its classification accuracy across all classes and ensuring a
more balanced performance. Alternatively, ensemble methods
that incorporate multiple models with specialized strengths
in different arrhythmia classes could be developed to further
optimize classification outcomes. Addressing these limitations
and pursuing the proposed future directions will improve our
model’s practical applicability and contribute meaningfully to
advancements in medical signal processing.

VIl. CONCLUSION

In conclusion, this study proposes a comprehensive ap-
proach to ECG arrhythmia classification by integrating Rough
Path Theory into a hybrid deep learning framework. The
PathFusion-Net model combines CNN for morphological
feature extraction, DevLSTM for sequential modeling, and
Path Signatures for structured temporal feature representation,
effectively capturing both spatial and temporal patterns in
ECG data. Experimental results confirm that integrating PS
enhances classification performance, outperforming models
without PS or those using only PS methods. Additionally,
analysis of different PS orders reveals that while increasing
order initially improves performance, excessive complexity
can lead to diminishing returns. This study demonstrates the
potential of Rough Path Theory in enhancing deep learning
models for biomedical applications, offering a robust tool for
automated ECG arrhythmia detection. The model’s strong per-
formance in an inter-patient setting highlights the advantages
of hybrid frameworks in capturing the complex dynamics
of ECG signals and reinforces the importance of balancing
feature richness with computational efficiency.

Despite these promising results, further research is re-
quired to enhance computational efficiency, refine feature
selection methodologies, and ensure the model’s robustness
across diverse datasets. Future studies will focus on extending
PathFusion-Net to other biomedical time-series applications,
such as EEG and EMG analysis, to evaluate its generalizability
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beyond ECG classification. Additionally, improving computa-
tional efficiency through model compression techniques, such
as pruning and quantization, will be a key objective to facilitate
real-time deployment in clinical settings. Addressing these
challenges will further solidify PathFusion-Net as a powerful
tool for time-series analysis and contribute to more reliable
and efficient diagnostic practices in cardiology. Furthermore,
the framework could be extended to other biosignals, includ-
ing PPG [54], enabling broader applications in non-invasive
cardiovascular monitoring.
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APPENDIX
A. Intuitive Demonstration of the Path Signature Concept

The goal of this section is to provide an intuitive example
that illustrates how path signature features arise from a simple
path, in order to make the concept less abstract. The full
mathematical definition of path signatures is given in Sec-
tion Preliminary of Path Signatures of the main text; here we
only recall the order 2 expansion needed for demonstration.
For a two-dimensional path, the truncated signature up to order
2 takes the form [1, S, §) §(L1) g(1.2) " g(2.1) " §(2.2))
where S and S® denote first-order increments, diagonal
terms (S(1:1), S(2:2)) are proportional to squared increments,
and cross terms (S(12) §(2:1)) correspond to oriented areas.

To make these quantities concrete, consider the simplified
ECG segment in Fig. X, which represents the left portion
of a heartbeat leading up to the R-peak. The path is de-
scribed by the discrete sequence X7 = [1,2,3,4,5], X5 =
[2,2,4,3,8], where X; indexes time and X5 represents the
signal amplitude. For this path, the order 2 signature is
[1, 4, 6, 8, 18, 6, 18].

First-order terms. The increments are AX; = 4 and
AX, = 6, so the first-order terms are simply S = 4
(temporal span) and S(?) = 6 (overall voltage rise).

X2

Fig. 6. Path of the trajectory.

Second-order diagonal terms. These capture squared in-
crements: SV = 1(42) = 8 and S22 = 1(6%) = 18,
corresponding to the magnitude of temporal duration and
signal growth.

Second-order cross terms. These quantify oriented areas
between the path and a piecewise-linear baseline. In this exam-
ple, the steep ascent towards the peak generates a large positive
cross term S(12) = 18, which geometrically corresponds to
the orange shaded region in Fig. 7. The opposite ordering,
S(21) = 6, corresponds to the blue shaded region. Intuitively,
S(1:2) measures how strongly amplitude increases relative to
time, while S(>) reflects the much smaller “vertical-then-
horizontal” area.

9 9

8 8

X2
X2

Fig. 7. Geometric interpretation of the cross terms in the signature.

Through this worked example, one can see that path
signature terms have direct geometric meaning: first-order
terms measure net displacements, diagonal second-order terms
correspond to squared increments, and cross terms represent
oriented areas that capture the interaction between axes. This
demonstration clarifies how the abstract algebraic definitions
translate into tangible geometric quantities.
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