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A personalized time-resolved 3D mesh 
generative model for unveiling normal  
heart dynamics
 

Mengyun Qiao    1,2  , Kathryn A. McGurk3,4, Shuo Wang2,5, 
Paul M. Matthews    1,6,7, Declan P. O’Regan3 & Wenjia Bai    1,2,8

Understanding the structure and motion of the heart is crucial for diagnosing 
and managing cardiovascular diseases, the leading cause of global death. 
There is wide variation in cardiac shape and motion patterns, influenced 
by demographic, anthropometric and disease factors. Unravelling normal 
patterns of shape and motion, and understanding how each individual 
deviates from the norm, would facilitate accurate diagnosis and personalized 
treatment strategies. Here, to this end, we developed a conditional generative 
model, MeshHeart, to learn the distribution of shape and motion patterns 
for the left and right ventricles of the heart. To model the high-dimensional 
spatio-temporal mesh data, MeshHeart uses a geometric encoder to represent 
cardiac meshes in a latent space and a temporal transformer to model 
the motion dynamics of latent representations. Based on MeshHeart, we 
investigate the latent space of 3D + t cardiac mesh sequences and propose a 
distance metric, latent delta, which quantifies the deviation of a real heart from 
its personalized normative pattern. Here, 3D + t refers to three-dimensional 
data evolving over time. In experiments using a large cardiac magnetic 
resonance image dataset of 38,309 participants from the UK Biobank, 
MeshHeart demonstrates high performance in cardiac mesh sequence 
reconstruction and generation. Latent space features are discriminative for 
cardiac disease classification, whereas latent delta exhibits strong correlations 
with clinical phenotypes in phenome-wide association studies.

The heart is one of the most important and vital organs within the human 
body1. It is composed of four morphologically distinct chambers that 
function in a coordinated manner. The shape of the heart is governed 
by genetic and environmental factors2,3, as well as a remodelling process 
observed in response to myocardial infarction, pressure overload and car-
diac diseases4,5. The motion of the heart follows a periodic nonlinear pat-
tern modulated by the underlying molecular, electrophysiological and 
biophysical processes6. Unveiling the complex patterns of cardiac shape 
and motion will provide important insights for assessing the status of 
cardiac health in both clinical diagnosis and cardiovascular research7–10.

The current state of the art for assessing cardiac shape and motion 
is to perform analyses of cardiac images, for example, cardiac magnetic 
resonance (MR) images, and extract imaging-derived phenotypes 
of cardiac chambers9,11. Most imaging phenotypes, such as chamber 
volumes or ejection fractions, provide a global and simplistic measure 
of the complex three-dimensional (3D)–temporal (3D + t) geometry 
of cardiac chambers11,12. However, these global volumetric measures 
may not fully capture the dynamics and variations of cardiac func-
tion across individuals. Recent studies have shown that mesh-based 
cardiac shape and motion analyses can provide more detailed and 
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vector z of the model and propose a distance metric (latent delta Δz), 
which measures the deviation of the input heart from its personalized 
normative pattern (Fig. 1c). We demonstrate that the latent vector and 
latent delta have a highly discriminative value for the disease classifi-
cation task, and they are associated with a range of clinical features in 
phenome-wide association studies (PheWAS).

Results
MeshHeart learns spatio-temporal mesh characteristics
We first assessed the reconstruction capability of MeshHeart for 3D + t 
cardiac mesh sequences. The experiments used a dataset of 4,000 test 
participants, with details of the dataset described in Supplementary 
Table 1. Each input mesh sequence was encoded into latent represen-
tation and then decoded to reconstruct the mesh sequence. Recon-
struction performance was evaluated using two metrics, the Hausdorff 
distance (HD) and the average symmetric surface distance (ASSD), 
which measure the difference between the input and reconstructed 
meshes. The HD metric quantifies the maximum distance between 
points in two sets, highlighting the maximum discrepancy between the 
original and reconstructed heart meshes. ASSD computes the average 
distance between the surfaces of two meshes, providing a more holistic 
evaluation of the model’s accuracy. Evaluation was performed for three 
anatomical structures: the left ventricle (LV), the myocardium (Myo) 
and the right ventricle (RV). We compared the performance of Mesh-
Heart with three baseline mesh generative models: Action2Motion47, 
ACTOR27 and CHeart42. Supplementary Table 2 presents the architecture 
comparison.

Figure 2a and Supplementary Table 3 report the reconstruction 
accuracy of MeshHeart, compared with other generative models. The 
metrics are reported as the average across all time frames, as well as 
at two representative time frames of cardiac motion: the end-diastolic 
(ED) frame and the end-systolic (ES) frame. Overall, MeshHeart achieves 
the best reconstruction accuracy, outperforming other generative 
models, with the lowest HD of 4.163 mm and ASSD of 1.934 mm aver-
aged across the time frames and across anatomical structures. In 
addition, Fig. 2b visualizes examples of the reconstructed meshes, 
with vertex-wise reconstruction errors overlaid, at different frames 
of the cardiac cycle (t (time) = 0, 10 and 19 out of 50 frames in total). 
MeshHeart achieves lower reconstruction errors compared with the 
other models and maintains the smoothness of reconstructed meshes. 
We further conducted ablation studies to assess the contribution of 
each component to the model performance. These components are 
described in the Methods, and the detailed results are reported in 
Supplementary Table 6. Replacing GCN by linear layers results in an 
increased HD from 4.163 mm to 5.707 mm, while replacing GCN by 
convolutional neural network results in a HD of 5.268 mm, highlight-
ing GCN’s superiority in encoding mesh geometry. Substituting the 
transformer with gated recurrent units (GRUs) or long short-term 
memory networks (LSTMs) leads to an increased HD of 4.720 mm or 
5.015 mm, respectively, which demonstrates the advantage of using the 
transformer for modelling long-range temporal dependencies. Other 
components such as the smoothness loss term and the distribution 
parameter tokens also contribute to the model performance. These 
results highlight MeshHeart’s capability in learning spatial–temporal 
characteristics of cardiac mesh sequences.

MeshHeart resembles real data distribution
Utilizing the latent representations learned by MeshHeart, we assessed 
the ability of the model to generate new synthetic cardiac mesh 
sequences that mimic real heart dynamics. To evaluate the fidelity 
and diversity of the generation, we calculated the similarity between 
the distributions of real meshes and generated synthetic meshes. For 
each real heart in the test set (n = 4,000), we applied MeshHeart to gen-
erate synthetic mesh sequences using the same clinical factors (age, 
sex, weight and height) as the individual as the model input. During 

clinically relevant insights13–16. For example, Piras et al.14 proposed to 
use spatio-temporal motion analysis to identify myocardial infarction. 
Gilbert et al.15 highlighted stronger associations between cardiac risk 
factors and mesh-derived metrics in the UK Biobank dataset. Mauger 
et al.16 showed that mesh-based motion metrics could independently 
predict adverse cardiac events. This underscores the importance of 
establishing a precise computational model of cardiac status to define 
what a normal heart looks like and moves like. Nevertheless, it is a 
non-trivial task to describe the normative pattern of the 3D shape or 
even 3D + t motion of the heart, due to the complexity in representing 
high-dimensional spatio-temporal data.

Recently, machine learning techniques have received increasing 
attention for cardiac shape and motion analysis6,17,18. Most existing 
research focuses on developing discriminative machine learning mod-
els, that is, training a model to perform classification tasks between 
different shapes or motion patterns6,8,19,20. However, discriminative 
models offer only classification results and do not explicitly explain 
what the normative pattern of cardiac shape or motion looks like21. By 
contrast, generative machine learning models provide an alternative 
route. Generative models are capable of describing distributions of 
high-dimensional data, such as images22–24, geometric shapes25–27 or 
molecules28,29, which allow the representation of normative data pat-
terns in the latent space of the model. In terms of generative modelling 
of the heart, recent developments focus on shape reconstruction and 
virtual population synthesis13,30–34. For example, Xia et al. proposed a 
method that integrates statistical shape priors with deep learning for 
four-chamber cardiac shape reconstruction from images35. Gaggion 
et al. introduced HybridVNet, which combines convolutional neural 
networks with graph convolutions to perform shape reconstruction 
from multiview images36. Dou et al. proposed a conditional flow-based 
variational autoencoder (VAE) for synthesizing virtual populations 
of cardiac anatomy37 and later developed a compositional generative 
model for multipart anatomical structures38. Beetz et al. introduced 
a variational mesh autoencoder that models population-wide varia-
tions in cardiac shapes with a hierarchical structure39 and investigated 
the interpretability of the latent space extracted from a point-cloud 
VAE40. Although generative models have been explored for cardiac 
shape reconstruction35,36, shape modelling3,37–39, image and video 
generation41–43 and data augmentation44, their application to person-
alized normative modelling of the heart from population data remains 
underexplored.

Here, we provide an endeavour to create a personalized normative 
model of 3D + t cardiac shape and motion, leveraging deep generative 
modelling techniques. Cardiac shape and motion are represented by 
a dynamic sequence of 3D surface meshes across a cardiac cycle. A 
geometric deep generative model, named MeshHeart, is developed 
to model the distribution of 3D + t cardiac mesh sequences. Mesh-
Heart uses a graph convolutional network (GCN)45 to learn the latent 
features of the mesh geometry and a transformer to learn the temporal 
dynamics of the latent features during cardiac motion. This integration 
enables MeshHeart to model the distributions across both spatial and 
temporal dimensions. MeshHeart functions as a conditional generative 
model, accounting for major clinical variables such as sex and age as 
the generation factor. This enables the model to describe personal-
ized normative patterns, generating synthetic healthy cardiac mesh 
sequences for a specific patient or a specific subpopulation.

We train the proposed generative model, MeshHeart (Fig. 1a), on a 
large-scale population-level imaging dataset with 38,309 participants 
from the UK Biobank9,46. After training the model, for each individual 
heart, we can generate a personalized 3D + t cardiac mesh model that 
describes the normative pattern for this particular subpopulation that 
has the same clinical factors as the input heart, as shown in Fig. 1c. In 
qualitative and quantitative experiments, we demonstrate that Mesh-
Heart achieves high accuracy in generating the personalized heart 
model. Furthermore, we investigate the clinical relevance of the latent 
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the generation stage, we chose 20 random samples from the Gauss-
ian distribution of the latent space and generated the corresponding 
mesh sequences. For both real and synthetic meshes, clinically relevant 
metrics for cardiac structure and function were derived, including left 
ventricular ED volume (LVEDV), left ventricular ES volume (LVESV), 
left ventricular ejection fraction (LVEF), left ventricular myocardial 
mass (LVM), right ventricular ED volume (RVEDV), right ventricular 
ES volume (RVESV) and right ventricular ejection fraction (RVEF). For 
each metric m, its probability distributions against age P(m∣c = age) 
and against sex P(m∣c = sex) were calculated. The similarity between 
real and synthetic probability distributions was quantified using the 
Kullback–Leibler (KL) divergence48 and the Wasserstein distance 
(WD)49, with a lower value denoting a higher similarity, that is, better 
generation performance. KL divergence is a metric from informa-
tion theory that evaluates the dissimilarity between two probability 
mass functions. Similarly, WD measures the dissimilarity between two 
probability distributions. MeshHeart’s ability to replicate real data 
distributions is quantitatively demonstrated in Fig. 3a. MeshHeart 

achieves lower KL and WD scores compared with existing methods, 
as shown by radar plots with the smallest area, suggesting that the 
synthetic data generated by the proposed model align closely with the 
real data distribution for clinically relevant metrics. Supplementary 
Tables 4 and 5 report the detailed KL divergence and WD scores for 
different methods.

For qualitative assessment, Fig. 3b shows four instances of syn-
thetic cardiac mesh sequences for different personal factors (age, 
sex, weight and height). For brevity, only two frames (t = 0 and 20) are 
shown. The figure demonstrates that MeshHeart can mimic authentic 
cardiac movements, showing contractions across time from diastole 
to systole. Figure 3c compares a real heart with a synthetic normal 
heart, at different time frames (t = 0, 5, 15 and 19), demonstrating the 
capability of MeshHeart in replicating both the real cardiac structure 
as well as typical motion patterns.

We also examined the latent representation learnt by MeshHeart 
using t-distributed stochastic neighbour embedding visualization50 
as illustrated in Supplementary Fig. 1. The t-distributed stochastic 
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Fig. 1 | An overview of the MeshHeart model. a, Model architecture: MeshHeart 
encodes a sequence of cardiac meshes using a mesh encoder Menc and encodes 
clinical factors using a conditional encoder Cenc. The encoder outputs across 
the time frames and along with distribution tokens μtoken and Σtoken are processed 
by a temporal transformer encoder Tenc. A transformer decoder Tdec and a mesh 
decoder Mdec generate a 3D cardiac mesh sequence based on clinical factors. 

b, Given a set of clinical factors, an example of the generated mesh sequence 
across time frames. c, Conceptual framework: MeshHeart constructs a normative 
cardiac mesh sequence using personal information including age, sex, weight 
and height. A real heart can be compared with its personalized norm by the latent 
vector. The latent delta Δz is a distance defined between the latent vector of a 
synthetic normal heart (dark-blue dot) and that of the real heart (red dot).
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neighbour embedding plot projects the 64-dimensional latent repre-
sentation of a mesh, extracted from the last hidden layer of the trans-
former encoder Tenc, onto a two-dimensional space, with each point 
denoting a mesh. It shows ten sample sequences. For each sample, the 
latent representations of the meshes across time frames form a circular 
pattern that resembles the rhythmic beating of the heart51.

Latent vector aids cardiovascular disease classification
After demonstrating the generative capability of MeshHeart, we 
explore its potential for clinical applications, in particular using its 
latent space, which provides a low-dimensional representation of car-
diac shape and motion. The latent feature analyses were conducted on 
17,309 participants. More than half (58.5%) had a reported diagnosis of 
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Fig. 2 | Evaluation of the mesh reconstruction accuracy of MeshHeart, 
compared with three other methods; Action2Motion, ACTOR and CHeart. 
a, Plots of the HD and ASSD metrics. The metrics are calculated as the mean 
across all time frames, as well as at the ED frame and the ES frame. They are 
reported for the LV, the Myo and the RV and averaged across the anatomical 
structures. Lower values indicate better performance. Each boxplot represents 
results over n = 4,000 UK Biobank participants from the held-out test set, 
treated as biological replicates. Each participant contributes one sample per 

method; no technical replicates were used. The unit of analysis is the individual 
participant. Box plots represent the distribution of the data as follows: the centre 
line indicates the median; box limits represent the 25th and 75th percentiles 
(interquartile range); whiskers extend to 1.5× the interquartile range from the 
box limits; and points beyond this range are plotted individually as outliers. 
b, Visualization of the reconstructed cardiac mesh sequence, coloured by the 
reconstruction error (in red) between the input mesh and reconstructed mesh. 
The mesh is visualized in three different imaging planes.
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at least one disease. We use the latent vector z of each mesh sequence, 
a 64-dimensional vector, as the feature for correlation analysis and for 
cardiovascular disease classification. Figure 5a shows that the latent 
vector exhibits strong correlations with conventional imaging phe-
notypes, such as LVM, LVEDV and RVEDV. Figure 4 and Supplementary 
Table 7 compare the classification performance of six cardiac diseases 
when using different feature sets. The three evaluated feature sets 
include ‘phenotypes + confounders (age, sex, weight, height)’, ‘latent 
vector + confounders’ and ‘phenotypes + latent vector + confounders’. 
The classification performance is evaluated using the area under the 
curve (AUC) scores for three different classifiers: AdaBoost, linear 
discriminant analysis (LDA) and support vector machine (SVM). The 
six cardiovascular diseases include myocardial infarction (ICD-10 
code I21), ischaemic heart diseases (I24), paroxysmal tachycardia 
(I47), atrial fibrillation and flutter (I48), hypertension (I10) and cardiac 
disease (I51). Figure 4 shows that using imaging phenotypes alone led 
to moderate AUC scores (for example, 0.8361 and 0.8201 for myocar-
dial infarction and ischaemic heart diseases using with AdaBoost). 
Using the latent vector resulted in increased AUC scores (0.8557 and 
0.8453). Combining both imaging phenotypes and the latent vector 
further improved the AUC scores (0.8762 and 0.8472), indicating the 
usefulness of the latent vector for cardiovascular disease classification. 

These results demonstrate the model’s ability to discriminate not only 
between normal and abnormal cardiac states but also among specific 
disease conditions.

For the AdaBoost classifier, using feature sets comprising the 
latent vector, as well as the combination of phenotypes and the latent 
vector, consistently outperformed the performance of the phenotypes 
set alone (for example, 0.8291 and 0.8316 for cardiac disease using 
latent vector and combined feature sets), implying that incorporating 
the latent vector improved the classification accuracy. The trend was 
particularly noticeable for myocardial infarction, hypertension and 
cardiac diseases, where the combined phenotypes and latent vector 
feature set substantially improved the AUC scores (0.8762, 0.7738 and 
0.8316 for myocardial infarction, hypertension and cardiac disease). 
While the model was trained using a normal healthy heart dataset, it 
has learned a rich latent representation to encode diverse shape and 
motion patterns for different subpopulations in this large dataset. 
The resulting latent vector captures deviations in the latent space 
that are indicative of specific disease outcomes, as demonstrated by 
the experimental results. The LDA and SVM classifiers demonstrated 
that, among the three feature sets, the combined phenotypes and 
latent vector feature set achieved the highest AUC scores (for example, 
0.6728 and 0.6479 for hypertension with LDA and SVM). However, 
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Fig. 3 | Evaluation of the generation performance of MeshHeart. a, Spider 
charts for the WD and the KL divergence metrics, which quantify the distance 
between the generated and real data distributions. The data distribution is 
calculated as the histogram of a cardiac imaging phenotype (LVEDV, LVESV, 
LVEF, LVM, RVEDV, RVESV and RVEF) against a clinical factor (age or sex). The 
metrics are plotted over a polar coordinate system, colour-coded by different 

methods. The smaller the metric (closer to the centre), the greater the similarity 
between the generated and real data distributions. b, Examples of generated 
3D + t cardiac meshes with different generating factors, including age (a), sex 
(f and m for female and male, respectively), weight (w) and height (h). c, A side-
by-side comparison of a real heart versus the generated synthetic heart and the 
difference map between them.
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for certain diseases such as ischaemic heart disease, classifiers using 
only phenotypes (for example, 0.7381 and 0.7123 for ischaemic heart 
diseases with LDA and SVM) outperformed those that used only the 
latent vector (0.7277 and 0.6975) but still fell short of their combination 
(0.7492 and 0.7214). Overall, the results show that, integrating imaging 
phenotypes, the latent vector along with confounders provides the 
best discriminative feature set for classification.

Latent delta for PheWAS
For each individual heart, we use MeshHeart to generate a normal syn-
thetic heart using the same clinical factors as this individual. This syn-
thetic heart can be regarded as a personalized normative model learned 
from a specific subpopulation. We define the latent delta Δz to be the 
difference between the latent vectors of an individual heart and its 
personalized norm, quantified using the Euclidean distance. The latent 
delta characterizes the deviation of the shape and motion patterns of 
an individual heart from the normal pattern for a subpopulation with 
the same clinical factors (Fig. 1c). A PheWAS was performed to explore 
the clinical relevance of Δz, as shown in Fig. 5b. The PheWAS revealed 
notable associations between the latent delta Δz and an unbiased set 
of clinical outcomes, including circulatory system diseases, endocrine 
and metabolic diseases, genitourinary diseases, musculoskeletal dis-
eases and neoplasms.

The latent delta has been shown to correlate with phenotypes 
such as LVM and LVEF (Fig. 5a), which serve as indicators of cardiac 
structure and function. Conditions such as hypertension, lipid and 
cholesterol abnormalities and diabetes can induce changes in these 
cardiac phenotypes. For example, hypertension probably results in an 
increased LVM and may be linked to a reduced LVEF due to the heart’s 
adaptation to prolonged high blood pressure. In a similar vein, diabe-
tes can exert metabolic stress on the heart, which can lead to changes 
in cardiac volume and ejection fraction. These modifications in the 
structure and motion patterns of the heart, as captured by the latent 
delta, provide a mechanistic explanation for the associations observed 
in the PheWAS results.

In Fig. 5b, the direction of effect shows the relationship between 
Δz and the clinical outcome. A positive effect indicates that an increase 
in Δz is associated with a higher probability of the outcome. By con-
trast, a negative effect indicates that a higher Δz reduces the likeli-
hood of the outcome. For example, a negative effect for birth trauma 
suggests that a higher Δz is associated with a reduced likelihood 
of birth trauma. These directional effects provide insight into how 

deviations in cardiac structure and function relate to specific clinical 
outcomes, highlighting potential associations for further in-depth 
clinical investigation.

Discussion
This work contributes to the growing field of generative artificial intel-
ligence for science, with a specific application in cardiac imaging. The 
proposed MeshHeart model is a generative model that can facilitate 
improved understanding of the complexities of 3D + t cardiac shape 
and motion. In this study, we made four major contributions. First, 
we developed MeshHeart using a dataset of 38,309 participants from 
a large UK population46, capturing the variation in cardiac structures 
and clinical characteristics. Second, we demonstrated MeshHeart’s 
capability to generate a normal heart, accounting for clinical factors 
such as age, sex, weight and height. This established a personalized 
normative model for cardiac anatomy. Third, we investigated the latent 
vector of MeshHeart and demonstrated its associations with conven-
tional imaging phenotypes and usefulness for enhancing disease clas-
sification performance. Finally, we propose a latent delta (Δz) metric. 
This metric provides a way for quantifying the difference between an 
individual heart and the normative model, as well as for investigating 
the associations between the spatial–temporal characteristics of the 
heart and various health outcomes.

MeshHeart’s reconstruction capability was assessed using HD 
and ASSD metrics. Using these two metrics, we compared the model 
with other models along with an ablation study. Using geometric con-
volutions and a temporal transformer, the model reconstructed more 
accurate cardiac mesh sequences compared with other state-of-the-art 
models. This is is due to the reason that geometric convolutions are 
proficient in encoding mesh geometry, and the transformer is effective 
in capturing long-range temporal dependencies. The ablation study 
confirms the essential role of geometric convolutions and the temporal 
transformer in increasing the performance of the model, as detailed 
in Supplementary Table 6. We also compared MeshHeart against a 
previous work CHeart42. CHeart uses segmentation as a representation 
method for the cardiac structure, whereas MeshHeart uses the mesh 
representation. The results show that mesh provides a powerful repre-
sentation for modelling the 3D geometry as well for tracking temporal 
motion, as it essentially allows the movement of each individual point 
to be monitored over time.

The generative capabilities of MeshHeart, as illustrated by the 
results in Fig. 3 and Supplementary Tables 3 and 4, demonstrate its 
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AUC scores, when different feature sets are used. The three feature sets being 
compared include ‘phenotypes + confounders (age, sex, weight, height)’, ‘latent 
vector + confounders’ and ‘phenotypes + latent vector + confounders’, with each 
feature set represented by a unique colour in the plot. The three subplots show 
the performance of three different classifiers, AdaBoost, LDA and SVM. The  
x axis denotes the disease type, and the y axis denotes the AUC score. AUC values 

are averaged across five random train–test splits. For the three feature sets, 
each feature set is compared with one of the other two features sets using the 
two-sided DeLong’s test. A single asterisk denotes a notable difference (P < 0.05), 
indicating that a feature set outperforms another feature set markedly, while a 
double asterisk indicates that a feature set outperforms both of the other two 
feature sets substantially. Exact P values are provided in Supplementary Table S7. 
No multiple testing correction was applied.
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proficiency as a generative model, able to replicate a normal heart on 
the basis of certain clinical factors including demographics (age and 
sex) and anthropometrics (weight and height). These four factors have 
shown strong correlations with heart structure and function across 
various individuals9,52,53. They form a reliable basis for constructing a 
normal heart model for an individual, as shown in Fig. 3b. Our analysis 
in Fig. 3a and Supplementary Tables 3 and 4 focused on age and sex, 
using WD and KL divergence to assess the similarity between the real 
and synthetic data distributions. Lower WD and KL metrics suggest that 
MeshHeart effectively represents demographic diversity, making the 
synthetic data beneficial for potential clinical and research purposes. 
The incorporation of additional clinical variables in the future, such as 
blood pressure and medical history, could improve the representation 
of cardiac health and diseases, thus enabling more potential applica-
tions for downstream tasks.

The latent vector obtained from the MeshHeart demonstrated its 
discriminative power for disease classification tasks. Incorporating 
the latent vector as feature substantially improves the classification 
accuracy for a range of cardiovascular conditions, as illustrated in 
Fig. 4. Although conventional imaging phenotypes can also be used 

as a feature set for the classification model, their classification perfor-
mance was surpassed by the augmented feature set that also includes 
the latent vector, suggesting that the latent vector may contain some 
information not provided by the imaging phenotypes. Combining 
imaging phenotypes with the latent vector and confounders consist-
ently achieved the best classification performance, regardless of the 
classification model used, demonstrating the benefit of integrating 
multiple data sources to represent the status of the heart. Some dimen-
sions of the latent vector exhibit high correlations with conventional 
cardiac phenotypes, which are essential for assessing cardiovascular 
disease risk. The high correlation with the latent vector underscores 
their clinical analysis potential.

PheWAS uses a data-driven approach to uncover unbiased associa-
tions between cardiac deviations and disease diagnoses. Our analysis 
found that greater deviations in heart function are linked to increased 
risks of endocrine, metabolic and circulatory diseases. These cardiac 
diseases suggest underlying metabolic problems such as insulin resist-
ance or metabolic disturbances observed in diabetes and obesity, 
which affect the structure and performance of the heart54,55. Likewise, 
they indicate wider circulatory conditions such as hypertension and 
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Fig. 5 | Association studies for the latent vector and the latent delta with 
imaging-derived phenotypes and clinical features. a, A heatmap of the Pearson 
correlation coefficients between imaging phenotypes and the 64-dimensional 
latent vector. The intensity of the colour reflects the magnitude and direction of 
the correlation, where blue signifies negative (Neg) correlations and red signifies 
positive (Pos) correlations. Darker shades indicate a stronger correlation 
between the vector and the phenotypes. b, PheWAS between the latent delta Δz 
and unbiased categories of clinical features. The y axis lists the clinical outcomes 

where a signficiant association was identified. The x axis uses different colours 
to represent different disease categories. Each triangle denotes a notable 
PheWAS association, adjusted for multiple comparisons using the Bonferroni 
correction for 1,163 clinical features analysed. These clinical features encompass 
both clinical outcomes (for example, diseases and diagnoses) and phenotypes, 
covering a wide range of characteristics and measurements. The shape of each 
triangle indicates the direction of the effect. This analysis included 17,000 
participants.
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atherosclerosis, which can lead to heart failure and ischaemic heart 
disease56. Understanding these relationships is crucial for risk stratifi-
cation, personalized medicine and prevention strategies, highlighting 
the need for thorough cardiac evaluations in clinical management57.

Although this work advances the science in personalized cardiac 
modelling, there are several limitations. First, the personalized norma-
tive model relies on a restricted range of generating factors, including 
age, sex, weight and height, as we aim to develop a standard healthy 
heart. Including additional elements in the future such as diseases or 
environmental factors such as air pollution and noise58 could improve 
our understanding of their impacts on cardiac anatomy and function. 
Second, the model uses a cross-sectional dataset from the UK Biobank 
for both training and testing purposes. However, it does not include 
a benchmark for the progression of cardiac ageing, which could be 
addressed by using a longitudinal dataset to evaluate the model. 
Repeated scans are expected in the near future from the UK Biobank. 
Third, this study focuses on modelling the dynamic mesh sequence to 
describe cardiac shape and motion. It does not aim to model the under-
lying electrophysiology or biomechanics of the heart, which are also 
essential for cardiac modelling and understanding cardiac function59,60. 
In addition, the explainability of latent vectors could be explored, as 
understanding the specific information each latent dimension captures 
is crucial for clinical interpretation and validation. Finally, our method 
does not incorporate long-axis images, which limits its ability to capture 
the mitral, tricuspid or aortic valves for assessing valvular function. 
Mauger et al.61 used two-chamber and four-chamber long-axis images to 
identify tricuspid and mitral valve points, so that the motion of the valve 
points can be tracked and modelled using principal component analysis.

In conclusion, this study presents MeshHeart, a generative model 
for cardiac shape modelling. By training and evaluating the model on 
a population-level dataset from the UK Biobank, we demonstrate that 
MeshHeart not only achieves a high reconstruction accuracy but also 
excels in generating synthetic cardiac mesh sequences that closely 
resemble the real heart. The latent vector of the generative model and 
the latent delta metric provide new avenues of research to improve 
disease classification and personalized healthcare. These findings 
pave the way for future research on cardiac modelling and may inspire 
the development of generative modelling techniques for other types 
of biomedical data.

Methods
Generative model architecture
Figure 1a illustrates the architecture of the proposed generative model, 
MeshHeart. Given a set of clinical conditions c, our goal is to develop 
a model that can generate a dynamic 3D cardiac mesh sequence, 
X0:T−1 = {x0, x1, ⋯, xT−1}, where T denotes the number of time frames, 
that corresponds to the conditions c. Figure 1b shows an example of 
the input conditions and the generated mesh sequence. Without losing 
generality, we take age, sex, weight and height as conditions c in this 
work. Age, weight and height are continuous variables, whereas sex is 
a binary variable. Each cardiac mesh xt = (vt, et) is a graph with a set of 
vertices v and a set of edges e connecting them.

The proposed generative model consists of a mesh encoder Menc, 
a transformer encoder Tenc, a condition encoder Cenc, a transformer 
decoder Tdec and a mesh decoder Mdec. These components are designed 
to work together to learn the probability distribution pθ(x∣zc) of the 
cardiac mesh sequence conditioned on clinical attributes, where θ repre-
sents the decoder parameters and zc denotes the condition latent vector. 
The condition encoder Cenc, implemented as a multilayer perceptron 
(MLP), maps the clinical conditions c into a condition latent vector zc.

The mesh encoder Menc, implemented as a GCN, processes the 
input cardiac mesh sequence x0:T−1. It extracts latent representations 
z0:T−1, where each vector zt corresponds to a latent representation of the 
cardiac mesh at time frame t. These latent vectors serve as intermediate 
representations of the cardiac mesh sequence.

The latent vectors z0:T−1 from the mesh encoder are concatenated 
with the condition latent vector zc to form a sequence of input tokens 
to the transformer encoder Tenc. The transformer encoder Tenc captures 
temporal dependencies across the sequence, which comprises L layers of 
alternating blocks of multihead self-attention (MSA) and MLP. To ensure 
stability and effective learning, LayerNorm (LN) is applied before each 
block and residual connections are applied after each block. Similar to 
the class token in the vision transformer62, we append the input tokens 
z0:T−1 with two learnable parameters μtoken and Σtoken, named distribution 
parameter tokens, which parameterize a Gaussian distribution over the 
latent space. In the transformer output layer, we extract the outputs 
from the distribution parameter tokens as distribution parameters μ 
and Σ. We then use the reparameterization trick63 to derive the latent za 
from μ and Σ, as shown in Fig. 1a. The encoding process is formulated as

zinput = [μtoken;Σtoken; z0; z1;… ; zT−1]

z′l = MSA (LN (zl−1)) + zl−1, l = 1,… , L

zl = LN [MLP ( LN (z′l)]

za = μ + ϵΣ, ϵ ∼ 𝒩𝒩𝒩0, 1)

. (1)

where ~ means distributed as, indicating that the random variable ε follows 
a normal distribution, where the bold 1 denotes the identity matrix. The 
resulting latent vector za, derived after the reparameterization step, cap-
tures the information about the distribution of the mesh sequence. This 
vector is concatenated with the condition latent vector zc to form the input 
to the transformer decoder Tdec. The decoder uses these concatenated 
vectors as keys and values in the self-attention layer, while sinusoidal 
temporal positional encodings62 serve as queries to incorporate tem-
poral information. The temporal positional encoding pt at time frame t 
is defined using the sinusoidal function with the same dimension d as za:

pt(i) = {
sin (t/10,0002i/d) , if i = 2k

cos (t/10,0002i/d) , if i = 2k + 1
, (2)

where i denotes the dimension index. The transformer decoder outputs 
a sequence of latent vectors, each corresponding to a mesh representa-
tion at a timepoint of the cardiac cycle. The latent vectors generated 
by the transformer decoder are passed through the mesh decoder Mdec, 
composed of fully connected (FC) layers, to reconstruct the 3D + t 
cardiac mesh sequence X′0∶T−1.

Probabilistic modelling and optimization
Following the VAE formulation63,64, we assume a prior distribution p(za) 
over the latent variable za. The prior p(za), together with the decoder 
(constructed by Tdec and Mdec), defines the joint distribution p(x, za∣zc). 
To train the model and perform inference, we need to compute the 
posterior distribution p(za∣x, zc), which is generally intractable. To turn 
the intractable posterior inference problem p(za∣x, zc) into a tractable 
problem, we introduce a parametric encoder model (constructed by 
Cenc, Menc and Tenc) qϕ(za∣x, zc) with ϕ to be the variational parameters, 
which approximates the true but intractable posterior distribution 
p(za∣x, zc) of the generative model, given an input x and conditions c:

qϕ(za|x, zc) ≈ pθ(za|x, zc), (3)

where qϕ(za∣x, zc) often adopts a simpler form, for example the Gaussian 
distribution63,64. By introducing the approximate posterior qϕ(za∣x, zc), 
the log-likelihood of the conditional distribution pθ(x∣zc) for input data 
x, also known as evidence, can be formulated as

logpθ(x|zc) = 𝔼𝔼za∼qϕ(za |x,zc) log [pθ(x|zc)]

= 𝔼𝔼za∼qϕ(za |x,zc) log [
pθ(x,za |zc)
qϕ(za |x,zc)

] + 𝔼𝔼za∼qϕ(za |x,zc) log [
qϕ(za |x,zc)
pθ(za |x,zc)

]
,

(4)

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | May 2025 | 800–811 808

Article https://doi.org/10.1038/s42256-025-01035-5

where the second term denotes the KL divergence DKL(qϕ∥pθ) between 
qϕ(za∣x, zc) and pθ(za∣x, zc)63,64. It is non-negative and zero only if the 
approximate posterior qϕ(za∣x, zc) equals the true posterior distribution 
pθ(za∣x, zc). Due to the non-negativity of the KL divergence, the first term 
in equation (4) is the lower bound of the evidence log[pθ(x|zc)], known 
as the evidence lower bound (ELBO). Instead of optimizing the evidence 
log[pθ(x|zc)], which is often intractable, we optimize the ELBO as 
follows:

min
θ,ϕ

ELBO = − log[pθ(x|zc)] + DKL. (5)

Training loss function
Based on the ELBO, we define the concrete training loss function, which 
combines the mesh reconstruction loss ℒR, the KL loss ℒKL and a mesh 
smoothing loss ℒS. The mesh reconstruction loss ℒR is defined as the 
Chamfer distance between the reconstructed mesh sequence 

X′0∶T−1 = (V′, E′)  and the ground truth X0:T−1 = (V, E), formulated as 

ℒR =
1
T
∑T−1
t=0 Dcham(V′t,Vt), where Dcham denotes the Chamber distance65, 

V′t  and Vt denote the mesh vertex coordinates for the reconstruction 
and the ground truth, respectively:

Dcham(Vt,V′t) =
1
|Vt|

∑
vt∈Vt

min
v′t∈V′t

‖
‖vt − v

′
t
‖
‖2 +

1
||V′t||

∑
v′t∈V′t

min
vt∈Vt

‖
‖v

′
t − vt

‖
‖2. (6)

In the VAE, the distribution of the latent space for za is encouraged to 
be close to a prior Gaussian distribution. The KL divergence is  
defined between the latent distribution and the Gaussian prior  
distribution. To control the trade-off between distribution fitting  
and diversity, we adopt the β-VAE formulation64. The KL loss ℒKL is 
formulated as

ℒKL = β ⋅ KL(𝒩𝒩𝒩 μ,Σ) ∥ 𝒩𝒩𝒩0, 1)), (7)

which encourages the latent space 𝒩𝒩( μ,Σ)  to be close to the prior 
Gaussian distribution 𝒩𝒩(0, I).

The Laplacian smoothing loss penalizes the difference between 
neighbouring vertices such as sharp changes on the mesh66,67. It is 
defined as

ℒS = 1
T

T−1
∑
t=0

Dsmooth(V′t, E′t)

Dsmooth(V, E) = ∑
vi∈V

1
|V|

‖
‖‖‖
∑
j∈Ni

1
|Ni |

(v j − vi)
‖
‖‖‖2

, (8)

where Ni denotes the neighbouring vertices adjacent to vi. The total 
loss function L is a weighted sum of the three loss terms

ℒ = ℒR + ℒKL + λs ⋅ ℒS. (9)

In terms of implementation, the mesh encoder Menc has three GCN 
layers and one FC layer. The mesh decoder Mdec is composed of five FC 
layers. The transformer encoder Tenc and decoder Tdec consist of two 
layers, four attention heads, a feed-forward size of 1,024 and a dropout 
rate of 0.1. The latent vector dimensions for the mesh and condition 
were set to 64 and 32, respectively. The model contains approximately 
69.71 million parameters and was trained on an NVIDIA RTX A6000 
graphics processing unit (48 GB) using the Adam optimizer with a fixed 
learning rate of 10−4 for 300 epochs. Training was performed with a 
batch size of one cardiac mesh sequence, consisting of 50 time frames. 
The cardiac mesh at each time frame consists of 22,043 vertices and 
43,840 faces. The weights β and λs in the loss function were empirically 
set to 0.01 and 1.

Personalized normative model, latent vector and delta
MeshHeart is trained on a large population of asymptomatic hearts. 
Once trained, it can be used as a personalized normative model to 
generate a synthetic mesh sequence of a normal heart with certain 
attributes c, including age, sex, weight and height. For each real heart, 
we can then compare the real cardiac mesh sequence with the synthetic 
normal mesh sequence of the same attributes, to understand the devia-
tion of the real heart from its personalized normative pattern.

To represent a cardiac mesh sequence in a low-dimensional latent 
space, we extract a latent vector after the transformer encoder Tenc but 
before the reparameterization step. The latent vector is calculated as 
the mean of the latent vectors at the transformer encoder output layer 
across 50 time frames. For calculating the latent delta, we quantify the 
deviation of the latent vector of the real heart to the latent vector of a 
group of synthetic hearts of the same attributes. Given conditions c, 
100 samples of the latent variable za are drawn from a standard Gaussian 
distribution, za ∼ 𝒩𝒩(0, I), where za denotes the latent space after repa-
rameterization in the VAE formulation. Each sample za is concatenated 
with the condition latent vector zc and passed through the transformer 
decoder and mesh decoder to generate a synthetic cardiac mesh 
sequence. After synthetic mesh generation, each synthetic mesh 
sequence is provided to the mesh encoder Menc and transformer 
encoder Tenc, to generate latent vectors across 50 time frames at the 
transformer output later, subsequently averaged to form the latent 
vector zsynth. The real heart mesh sequence is provided to the mesh 
encoder Menc and transformer encoder Tenc for calculating the latent 
vector zreal in the same manner.

With the latent vector zreal for the real heart and the latent vector 
zsynth for the synthetic heart, we define the latent vector as the Euclidean 
distance between zreal and zsynth. As we draw 100 synthetic samples to 
represent a subpopulation with the same attributes, the latent delta 
Δz is defined as

Δz =
‖
‖‖‖
zreal − 1

100

100
∑
i=1
zsynthi

‖
‖‖‖2
, (10)

where i denotes the sample index. The latent delta Δz provides a robust 
metric to evaluate individual differences in cardiac structure and 
motion, quantifying the deviation of the real heart from its personal-
ized normative model.

Data and experiments
This study used a dataset of 38,309 participants obtained from the UK 
Biobank46. Each participant underwent cine cardiac MR (CMR) imaging 
scans. From the cine CMR images, a 3D mesh sequence is derived to 
describe the shape and motion of the heart. The mesh sequence covers 
three anatomical structures, LV, Myo and RV. Each sequence contains 
50 time frames over the course of a cardiac cycle. To derive cardiac 
meshes from the CMR images, automated segmentation68 was applied 
to the images. The resulting segmentations were enhanced using an 
atlas-base approach69, by registering multiple high-resolution cardiac 
atlases69,70 onto the segmentations followed by label fusion, resulting in 
high-resolution segmentations. A 3D template mesh70 was then fitted 
to the high-resolution segmentations at the ED and ES frames using 
non-rigid image registration, generating ED and ES cardiac meshes. 
Subsequently, motion tracking was performed using Deepali71, a 
graphics-processing-unit-accelerated version of the non-rigid regis-
tration toolbox MIRTK72, on cardiac segmentations across the time 
frames. Deformation fields were derived using a free-form deformation 
model with a control point spacing of [8, 8, 8]. The registration objec-
tive function included Dice similarity as the primary similarity metric 
and B-spline bending energy regularization with a weight of 0.01. The 
deformation fields were derived between time frames and applied 
to propagate the ED mesh and ES mesh across the cardiac cycle. The 
proposed meshes were averaged using weighted interpolation based 
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on temporal proximity to ED and ES9 to ensure temporal smoothness 
of the resulting mesh sequence. All cardiac meshes maintained the 
same geometric structure.

The dataset was partitioned into training, validation and test 
sets for developing the MeshHeart model and a clinical analysis set 
for evaluating its performance for disease classification task. In brief, 
MeshHeart was trained on 15,000 healthy participants from the Chea-
dle imaging centre. For parameter tuning and performance evaluation, 
MeshHeart was evaluated on a validation set of 2,000 and a test set of 
4,000 healthy participants, from three different sites, Cheadle, Read-
ing and Newcastle centres. For clinical analysis, including performing 
the disease classification study and latent delta PheWAS, we used a 
separate set of 17,309 participants from the three imaging centres, 
including 7,178 healthy participants and 10,131 participants with cardiac 
diseases and hypertension. PheWAS was undertaken using the PheWAS 
R package with clinical outcomes and coded phenotypes converted 
to 1,163 categorical PheCodes. P values were deemed significant with 
Bonferroni adjustment for the number of PheCodes. The details of 
the dataset split and the definition of disease code are described in 
Supplementary Table 1.

Method comparison
To compare the generation performance of MeshHeart, we adapt three 
state-of-the-art generative models originally proposed for other tasks: 
(1) Action2Motion47, originally developed for human motion genera-
tion; (2) ACTOR27, developed for human pose and motion generation; 
and (3) CHeart42, developed for the generation of cardiac segmentation 
maps, instead of cardiac meshes. We modified these models to adapt 
to the cardiac mesh generation task.

Data availability
The raw imaging data and non-imaging participant characteristics 
are available from UK Biobank to approved researchers via a standard 
application process at http://www.ukbiobank.ac.uk/register-apply.

Code availability
The code for this research is available via GitHub at https://github.com/
MengyunQ/MeshHeart and via Zenodo at https://doi.org/10.5281/
zenodo.15122485 (ref. 73).
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