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Understanding the structure and motion of the heart is crucial for diagnosing
and managing cardiovascular diseases, the leading cause of global death.

Thereiswide variationin cardiac shape and motion patterns, influenced

by demographic, anthropometric and disease factors. Unravelling normal
patterns of shape and motion, and understanding how eachindividual
deviates from the norm, would facilitate accurate diagnosis and personalized
treatment strategies. Here, to this end, we developed a conditional generative
model, MeshHeart, to learn the distribution of shape and motion patterns

for theleftand right ventricles of the heart. To model the high-dimensional
spatio-temporal mesh data, MeshHeart uses ageometric encoder to represent
cardiac meshesinalatent space and atemporal transformer to model

the motion dynamics of latent representations. Based on MeshHeart, we
investigate the latent space of 3D +t cardiac mesh sequences and propose a
distance metric, latent delta, which quantifies the deviation of areal heart from
its personalized normative pattern. Here, 3D + t refers to three-dimensional
dataevolving over time. In experiments using a large cardiac magnetic
resonance image dataset of 38,309 participants from the UK Biobank,
MeshHeart demonstrates high performancein cardiac mesh sequence
reconstruction and generation. Latent space features are discriminative for
cardiac disease classification, whereas latent delta exhibits strong correlations
with clinical phenotypesin phenome-wide association studies.

Theheartis one of the mostimportant and vital organs within the human
body'. Itis composed of four morphologically distinct chambers that
function in a coordinated manner. The shape of the heart is governed
by genetic and environmental factors**, as well as aremodelling process
observedinresponse to myocardialinfarction, pressure overload and car-
diacdiseases*’. The motion of the heart follows a periodic nonlinear pat-
ternmodulated by the underlying molecular, electrophysiological and
biophysical processes®. Unveiling the complex patterns of cardiac shape
and motion will provide important insights for assessing the status of
cardiac healthinboth clinical diagnosis and cardiovascular research’ .

Thecurrentstate of the art for assessing cardiac shape and motion
is to perform analyses of cardiacimages, for example, cardiac magnetic
resonance (MR) images, and extract imaging-derived phenotypes
of cardiac chambers®". Most imaging phenotypes, such as chamber
volumes or ejection fractions, provide aglobal and simplistic measure
of the complex three-dimensional (3D)-temporal (3D + t) geometry
of cardiac chambers™"2. However, these global volumetric measures
may not fully capture the dynamics and variations of cardiac func-
tion across individuals. Recent studies have shown that mesh-based
cardiac shape and motion analyses can provide more detailed and
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clinically relevant insights™ ™. For example, Piras et al."* proposed to
use spatio-temporal motion analysis to identify myocardial infarction.
Gilbert et al.”” highlighted stronger associations between cardiac risk
factors and mesh-derived metrics in the UK Biobank dataset. Mauger
etal."*showed that mesh-based motion metrics could independently
predict adverse cardiac events. This underscores the importance of
establishing a precise computational model of cardiac status to define
what a normal heart looks like and moves like. Nevertheless, it is a
non-trivial task to describe the normative pattern of the 3D shape or
even 3D +tmotion of the heart, due to the complexity inrepresenting
high-dimensional spatio-temporal data.

Recently, machine learning techniques have received increasing
attention for cardiac shape and motion analysis®'”'®, Most existing
research focuses on developing discriminative machine learning mod-
els, that is, training a model to perform classification tasks between
different shapes or motion patterns®*'>?°. However, discriminative
models offer only classification results and do not explicitly explain
what the normative pattern of cardiac shape or motion looks like*. By
contrast, generative machine learning models provide an alternative
route. Generative models are capable of describing distributions of
high-dimensional data, such as images® >, geometric shapes® or
molecules®?’, which allow the representation of normative data pat-
ternsinthelatent space ofthe model. Interms of generative modelling
ofthe heart, recent developments focus on shape reconstruction and
virtual population synthesis™*°*, For example, Xia et al. proposed a
method that integrates statistical shape priors with deep learning for
four-chamber cardiac shape reconstruction from images®. Gaggion
et al. introduced HybridVNet, which combines convolutional neural
networks with graph convolutions to perform shape reconstruction
from multiview images®. Dou et al. proposed a conditional flow-based
variational autoencoder (VAE) for synthesizing virtual populations
of cardiac anatomy* and later developed a compositional generative
model for multipart anatomical structures®, Beetz et al. introduced
avariational mesh autoencoder that models population-wide varia-
tionsin cardiac shapes with a hierarchical structure® and investigated
the interpretability of the latent space extracted from a point-cloud
VAE*. Although generative models have been explored for cardiac
shape reconstruction®?®, shape modelling®>*~*°, image and video
generation*"* and data augmentation**, their application to person-
alized normative modelling of the heart from population dataremains
underexplored.

Here, we provide anendeavour to create a personalized normative
model of 3D +t cardiac shape and motion, leveraging deep generative
modelling techniques. Cardiac shape and motion are represented by
a dynamic sequence of 3D surface meshes across a cardiac cycle. A
geometric deep generative model, named MeshHeart, is developed
to model the distribution of 3D + t cardiac mesh sequences. Mesh-
Heart uses a graph convolutional network (GCN)* to learn the latent
features of the mesh geometry and a transformer to learn the temporal
dynamics of the latent features during cardiac motion. This integration
enables MeshHeart to model the distributions across both spatial and
temporal dimensions. MeshHeart functions as a conditional generative
model, accounting for major clinical variables such as sex and age as
the generation factor. This enables the model to describe personal-
ized normative patterns, generating synthetic healthy cardiac mesh
sequences for a specific patient or a specific subpopulation.

Wetrainthe proposed generative model, MeshHeart (Fig.1a),ona
large-scale population-level imaging dataset with 38,309 participants
from the UK Biobank®*®. After training the model, for each individual
heart, we can generate a personalized 3D +t cardiac mesh model that
describes the normative pattern for this particular subpopulation that
has the same clinical factors as the input heart, as shown in Fig. 1c. In
qualitative and quantitative experiments, we demonstrate that Mesh-
Heart achieves high accuracy in generating the personalized heart
model. Furthermore, we investigate the clinical relevance of the latent

vector z of the model and propose a distance metric (latent delta Az),
whichmeasures the deviation of the input heart fromits personalized
normative pattern (Fig. 1c). We demonstrate that the latent vector and
latent delta have a highly discriminative value for the disease classifi-
cation task, and they are associated with a range of clinical featuresin
phenome-wide association studies (PheWAS).

Results

MeshHeart learns spatio-temporal mesh characteristics
Wefirstassessed the reconstruction capability of MeshHeart for 3D +t
cardiac mesh sequences. The experiments used a dataset of 4,000 test
participants, with details of the dataset described in Supplementary
Table 1. Each input mesh sequence was encoded into latent represen-
tation and then decoded to reconstruct the mesh sequence. Recon-
struction performance was evaluated using two metrics, the Hausdorff
distance (HD) and the average symmetric surface distance (ASSD),
which measure the difference between the input and reconstructed
meshes. The HD metric quantifies the maximum distance between
pointsintwo sets, highlighting the maximum discrepancy between the
original and reconstructed heart meshes. ASSD computes the average
distance between the surfaces of two meshes, providing amore holistic
evaluation of the model’s accuracy. Evaluation was performed for three
anatomical structures: the left ventricle (LV), the myocardium (Myo)
and the right ventricle (RV). We compared the performance of Mesh-
Heart with three baseline mesh generative models: Action2Motion*,
ACTOR¥ and CHeart*. Supplementary Table 2 presents the architecture
comparison.

Figure 2a and Supplementary Table 3 report the reconstruction
accuracy of MeshHeart, compared with other generative models. The
metrics are reported as the average across all time frames, as well as
attwo representative time frames of cardiac motion: the end-diastolic
(ED) frame and the end-systolic (ES) frame. Overall, MeshHeart achieves
the best reconstruction accuracy, outperforming other generative
models, with the lowest HD of 4.163 mm and ASSD of 1.934 mm aver-
aged across the time frames and across anatomical structures. In
addition, Fig. 2b visualizes examples of the reconstructed meshes,
with vertex-wise reconstruction errors overlaid, at different frames
of the cardiac cycle (¢ (time) = 0, 10 and 19 out of 50 frames in total).
MeshHeart achieves lower reconstruction errors compared with the
other models and maintains the smoothness of reconstructed meshes.
We further conducted ablation studies to assess the contribution of
each component to the model performance. These components are
described in the Methods, and the detailed results are reported in
Supplementary Table 6. Replacing GCN by linear layers results in an
increased HD from 4.163 mm to 5.707 mm, while replacing GCN by
convolutional neural network results in a HD of 5.268 mm, highlight-
ing GCN’s superiority in encoding mesh geometry. Substituting the
transformer with gated recurrent units (GRUs) or long short-term
memory networks (LSTMs) leads to an increased HD of 4.720 mm or
5.015 mm, respectively, which demonstrates the advantage of using the
transformer for modellinglong-range temporal dependencies. Other
components such as the smoothness loss term and the distribution
parameter tokens also contribute to the model performance. These
results highlight MeshHeart’s capability in learning spatial-temporal
characteristics of cardiac mesh sequences.

MeshHeart resembles real data distribution

Utilizing the latent representations learned by MeshHeart, we assessed
the ability of the model to generate new synthetic cardiac mesh
sequences that mimic real heart dynamics. To evaluate the fidelity
and diversity of the generation, we calculated the similarity between
the distributions of real meshes and generated synthetic meshes. For
eachrealheartinthetestset (n=4,000), we applied MeshHeart to gen-
erate synthetic mesh sequences using the same clinical factors (age,
sex, weight and height) as the individual as the model input. During
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Fig.1| Anoverview of the MeshHeart model. a, Model architecture: MeshHeart
encodes asequence of cardiac meshes using amesh encoder M,,. and encodes
clinical factors using a conditional encoder C.,.. The encoder outputs across
the time frames and along with distribution tokens t;qye, and 2., are processed
by atemporal transformer encoder T,.. A transformer decoder T,..and amesh
decoder M,.. generate a 3D cardiac mesh sequence based on clinical factors.

b, Given aset of clinical factors, an example of the generated mesh sequence
across time frames. ¢, Conceptual framework: MeshHeart constructs a normative
cardiac mesh sequence using personal information including age, sex, weight
and height. A real heart can be compared with its personalized norm by the latent
vector. The latent delta Azis a distance defined between the latent vector of a
synthetic normal heart (dark-blue dot) and that of the real heart (red dot).

the generation stage, we chose 20 random samples from the Gauss-
iandistribution of the latent space and generated the corresponding
mesh sequences. For both real and synthetic meshes, clinically relevant
metrics for cardiac structure and function were derived, including left
ventricular ED volume (LVEDV), left ventricular ES volume (LVESV),
left ventricular ejection fraction (LVEF), left ventricular myocardial
mass (LVM), right ventricular ED volume (RVEDV), right ventricular
ES volume (RVESV) and right ventricular ejection fraction (RVEF). For
each metric m, its probability distributions against age P(m|c = age)
and against sex P(m|c = sex) were calculated. The similarity between
real and synthetic probability distributions was quantified using the
Kullback-Leibler (KL) divergence*® and the Wasserstein distance
(WD)*, with alower value denoting a higher similarity, that is, better
generation performance. KL divergence is a metric from informa-
tion theory that evaluates the dissimilarity between two probability
mass functions. Similarly, WD measures the dissimilarity between two
probability distributions. MeshHeart’s ability to replicate real data
distributions is quantitatively demonstrated in Fig. 3a. MeshHeart

achieves lower KL and WD scores compared with existing methods,
as shown by radar plots with the smallest area, suggesting that the
synthetic data generated by the proposed model align closely with the
real data distribution for clinically relevant metrics. Supplementary
Tables 4 and 5 report the detailed KL divergence and WD scores for
different methods.

For qualitative assessment, Fig. 3b shows four instances of syn-
thetic cardiac mesh sequences for different personal factors (age,
sex, weight and height). For brevity, only two frames (¢ = 0 and 20) are
shown. The figure demonstrates that MeshHeart can mimic authentic
cardiac movements, showing contractions across time from diastole
to systole. Figure 3¢ compares a real heart with a synthetic normal
heart, at different time frames (¢=0, 5,15 and 19), demonstrating the
capability of MeshHeart in replicating both the real cardiac structure
as well as typical motion patterns.

We also examined the latent representation learnt by MeshHeart
using t-distributed stochastic neighbour embedding visualization®°
asillustrated in Supplementary Fig. 1. The ¢-distributed stochastic
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Fig. 2| Evaluation of the mesh reconstruction accuracy of MeshHeart,
compared with three other methods; Action2Motion, ACTOR and CHeart.
a, Plots of the HD and ASSD metrics. The metrics are calculated as the mean
across all time frames, as well as at the ED frame and the ES frame. They are
reported for the LV, the Myo and the RV and averaged across the anatomical
structures. Lower values indicate better performance. Each boxplot represents
results over n =4,000 UK Biobank participants from the held-out test set,
treated as biological replicates. Each participant contributes one sample per

Error (mm)

method; no technical replicates were used. The unit of analysis is the individual
participant. Box plots represent the distribution of the data as follows: the centre
lineindicates the median; box limits represent the 25th and 75th percentiles
(interquartile range); whiskers extend to 1.5x the interquartile range from the
box limits; and points beyond this range are plotted individually as outliers.

b, Visualization of the reconstructed cardiac mesh sequence, coloured by the
reconstruction error (in red) between the input mesh and reconstructed mesh.
The meshis visualized in three different imaging planes.

neighbourembedding plot projects the 64-dimensional latent repre-
sentation of amesh, extracted from the last hidden layer of the trans-
former encoder T, onto a two-dimensional space, with each point
denoting amesh. It shows tensample sequences. For eachsample, the
latent representations of the meshes across time frames formacircular
pattern that resembles the rhythmic beating of the heart™.

Latent vector aids cardiovascular disease classification

After demonstrating the generative capability of MeshHeart, we
explore its potential for clinical applications, in particular using its
latent space, which provides alow-dimensional representation of car-
diacshape and motion. Thelatent feature analyses were conducted on
17,309 participants. More than half (58.5%) had a reported diagnosis of
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Fig. 3| Evaluation of the generation performance of MeshHeart. a, Spider
charts for the WD and the KL divergence metrics, which quantify the distance
between the generated and real data distributions. The data distribution is
calculated as the histogram of a cardiac imaging phenotype (LVEDV, LVESV,
LVEF, LVM, RVEDV, RVESV and RVEF) against a clinical factor (age or sex). The
metrics are plotted over a polar coordinate system, colour-coded by different

Real heart

Synthetic heart Difference map

methods. The smaller the metric (closer to the centre), the greater the similarity
between the generated and real data distributions. b, Examples of generated

3D +tcardiac meshes with different generating factors, including age (a), sex
(fand m for female and male, respectively), weight (w) and height (). c, Aside-
by-side comparison of areal heart versus the generated synthetic heart and the
difference map between them.

atleast one disease. We use the latent vector zof each mesh sequence,
a64-dimensional vector, as the feature for correlation analysis and for
cardiovascular disease classification. Figure 5a shows that the latent
vector exhibits strong correlations with conventional imaging phe-
notypes, suchasLVM, LVEDV and RVEDV. Figure 4 and Supplementary
Table 7 compare the classification performance of six cardiac diseases
when using different feature sets. The three evaluated feature sets
include ‘phenotypes + confounders (age, sex, weight, height)’, ‘latent
vector + confounders’and ‘phenotypes +latent vector + confounders’.
The classification performanceis evaluated using the area under the
curve (AUC) scores for three different classifiers: AdaBoost, linear
discriminant analysis (LDA) and support vector machine (SVM). The
six cardiovascular diseases include myocardial infarction (ICD-10
code I21), ischaemic heart diseases (124), paroxysmal tachycardia
(147), atrial fibrillation and flutter (148), hypertension (110) and cardiac
disease (I51). Figure 4 shows that using imaging phenotypes alone led
tomoderate AUC scores (for example, 0.8361 and 0.8201 for myocar-
dial infarction and ischaemic heart diseases using with AdaBoost).
Using the latent vector resulted inincreased AUC scores (0.8557 and
0.8453). Combining both imaging phenotypes and the latent vector
furtherimproved the AUC scores (0.8762 and 0.8472), indicating the
usefulness of thelatent vector for cardiovascular disease classification.

These results demonstrate the model’s ability to discriminate not only
between normal and abnormal cardiac states but also among specific
disease conditions.

For the AdaBoost classifier, using feature sets comprising the
latent vector, as well as the combination of phenotypes and the latent
vector, consistently outperformed the performance of the phenotypes
set alone (for example, 0.8291 and 0.8316 for cardiac disease using
latent vector and combined feature sets), implying thatincorporating
the latent vector improved the classification accuracy. The trend was
particularly noticeable for myocardial infarction, hypertension and
cardiac diseases, where the combined phenotypes and latent vector
feature set substantially improved the AUC scores (0.8762,0.7738 and
0.8316 for myocardial infarction, hypertension and cardiac disease).
While the model was trained using a normal healthy heart dataset, it
has learned arich latent representation to encode diverse shape and
motion patterns for different subpopulations in this large dataset.
The resulting latent vector captures deviations in the latent space
that are indicative of specific disease outcomes, as demonstrated by
the experimental results. The LDA and SVM classifiers demonstrated
that, among the three feature sets, the combined phenotypes and
latent vector feature set achieved the highest AUC scores (for example,
0.6728 and 0.6479 for hypertension with LDA and SVM). However,
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Fig. 4| Comparison of disease classification performance, in terms of the
AUCscores, when different feature sets are used. The three feature sets being
compared include ‘phenotypes + confounders (age, sex, weight, height)’, ‘latent
vector +confounders’ and ‘phenotypes +latent vector + confounders’, with each
feature set represented by a unique colour in the plot. The three subplots show
the performance of three different classifiers, AdaBoost, LDA and SVM. The

X axis denotes the disease type, and the y axis denotes the AUC score. AUC values

are averaged across five random train-test splits. For the three feature sets,

each feature set is compared with one of the other two features sets using the
two-sided DeLong’s test. A single asterisk denotes a notable difference (P<0.05),
indicating that a feature set outperforms another feature set markedly, while a
double asterisk indicates that a feature set outperforms both of the other two
feature sets substantially. Exact Pvalues are provided in Supplementary Table S7.
No multiple testing correction was applied.

for certain diseases such as ischaemic heart disease, classifiers using
only phenotypes (for example, 0.7381 and 0.7123 for ischaemic heart
diseases with LDA and SVM) outperformed those that used only the
latent vector (0.7277 and 0.6975) but still fell short of their combination
(0.7492 and 0.7214). Overall, the results show that, integrating imaging
phenotypes, the latent vector along with confounders provides the
best discriminative feature set for classification.

Latent deltafor PheWAS

Foreachindividual heart, we use MeshHeart to generate anormal syn-
thetic heart using the same clinical factors as this individual. This syn-
thetic heartcanberegarded asa personalized normative modellearned
from a specific subpopulation. We define the latent delta Azto be the
difference between the latent vectors of an individual heart and its
personalized norm, quantified using the Euclidean distance. The latent
deltacharacterizes the deviation of the shape and motion patterns of
anindividual heart from the normal pattern for a subpopulation with
the same clinical factors (Fig. 1c). APheWAS was performed to explore
the clinical relevance of Az, as shown in Fig. 5b. The PheWAS revealed
notable associations between the latent delta Az and an unbiased set
of clinical outcomes, including circulatory system diseases, endocrine
and metabolic diseases, genitourinary diseases, musculoskeletal dis-
eases and neoplasms.

The latent delta has been shown to correlate with phenotypes
such as LVM and LVEF (Fig. 5a), which serve as indicators of cardiac
structure and function. Conditions such as hypertension, lipid and
cholesterol abnormalities and diabetes can induce changes in these
cardiac phenotypes. For example, hypertension probably resultsinan
increased LVM and may be linked to areduced LVEF due to the heart’s
adaptation to prolonged high blood pressure. Inasimilar vein, diabe-
tes can exert metabolic stress on the heart, which canlead to changes
in cardiac volume and ejection fraction. These modifications in the
structure and motion patterns of the heart, as captured by the latent
delta, provide amechanistic explanation for the associations observed
inthe PheWAS results.

InFig. 5b, the direction of effect shows the relationship between
Azandthe clinical outcome. A positive effectindicatesthatanincrease
in Azis associated with a higher probability of the outcome. By con-
trast, a negative effect indicates that a higher Az reduces the likeli-
hood of the outcome. For example, a negative effect for birth trauma
suggests that a higher Az is associated with a reduced likelihood
of birth trauma. These directional effects provide insight into how

deviationsin cardiacstructure and function relate to specific clinical
outcomes, highlighting potential associations for further in-depth
clinical investigation.

Discussion

Thiswork contributes to the growing field of generative artificial intel-
ligence for science, with aspecific applicationin cardiacimaging. The
proposed MeshHeart model is a generative model that can facilitate
improved understanding of the complexities of 3D + t cardiac shape
and motion. In this study, we made four major contributions. First,
we developed MeshHeart using a dataset of 38,309 participants from
alarge UK population*®, capturing the variation in cardiac structures
and clinical characteristics. Second, we demonstrated MeshHeart’s
capability to generate a normal heart, accounting for clinical factors
such as age, sex, weight and height. This established a personalized
normative model for cardiac anatomy. Third, we investigated the latent
vector of MeshHeart and demonstrated its associations with conven-
tionalimaging phenotypes and usefulness for enhancing disease clas-
sification performance. Finally, we propose a latent delta (Az) metric.
This metric provides a way for quantifying the difference between an
individual heart and the normative model, as well as for investigating
the associations between the spatial-temporal characteristics of the
heart and various health outcomes.

MeshHeart’s reconstruction capability was assessed using HD
and ASSD metrics. Using these two metrics, we compared the model
with other models along with an ablation study. Using geometric con-
volutions and atemporal transformer, the model reconstructed more
accurate cardiac mesh sequences compared with other state-of-the-art
models. This is is due to the reason that geometric convolutions are
proficientin encoding meshgeometry, and the transformer is effective
in capturing long-range temporal dependencies. The ablation study
confirms the essential role of geometric convolutions and the temporal
transformer in increasing the performance of the model, as detailed
in Supplementary Table 6. We also compared MeshHeart against a
previous work CHeart*2. CHeart uses segmentation as a representation
method for the cardiac structure, whereas MeshHeart uses the mesh
representation. The results show that mesh provides apowerful repre-
sentation for modellingthe 3D geometry as well for tracking temporal
motion, asitessentially allows the movement of each individual point
tobe monitored over time.

The generative capabilities of MeshHeart, as illustrated by the
results in Fig. 3 and Supplementary Tables 3 and 4, demonstrate its
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correlation coefficients between imaging phenotypes and the 64-dimensional
latent vector. The intensity of the colour reflects the magnitude and direction of
the correlation, where blue signifies negative (Neg) correlations and red signifies
positive (Pos) correlations. Darker shades indicate a stronger correlation
between the vector and the phenotypes. b, PheWAS between the latent delta Az
and unbiased categories of clinical features. The y axis lists the clinical outcomes

Latent delta

where asignficiant association was identified. The x axis uses different colours
to represent different disease categories. Each triangle denotes a notable
PheWAS association, adjusted for multiple comparisons using the Bonferroni
correction for 1,163 clinical features analysed. These clinical features encompass
both clinical outcomes (for example, diseases and diagnoses) and phenotypes,
covering awide range of characteristics and measurements. The shape of each
triangle indicates the direction of the effect. This analysis included 17,000
participants.

proficiency as agenerative model, able to replicate anormal heart on
the basis of certain clinical factors including demographics (age and
sex) and anthropometrics (weight and height). These four factors have
shown strong correlations with heart structure and function across
various individuals®****, They form a reliable basis for constructing a
normal heart model for anindividual, as shownin Fig. 3b. Our analysis
in Fig. 3a and Supplementary Tables 3 and 4 focused on age and sex,
using WD and KL divergence to assess the similarity between the real
and synthetic datadistributions. Lower WD and KL metrics suggest that
MeshHeart effectively represents demographic diversity, making the
synthetic databeneficial for potential clinical and research purposes.
Theincorporation of additional clinical variablesin the future, such as
blood pressure and medical history, could improve the representation
of cardiac health and diseases, thus enabling more potential applica-
tions for downstream tasks.

Thelatent vector obtained from the MeshHeart demonstratedits
discriminative power for disease classification tasks. Incorporating
the latent vector as feature substantially improves the classification
accuracy for a range of cardiovascular conditions, as illustrated in
Fig. 4. Although conventional imaging phenotypes can also be used

asafeature set for the classification model, their classification perfor-
mance was surpassed by the augmented feature set thatalsoincludes
the latent vector, suggesting that the latent vector may contain some
information not provided by the imaging phenotypes. Combining
imaging phenotypes with the latent vector and confounders consist-
ently achieved the best classification performance, regardless of the
classification model used, demonstrating the benefit of integrating
multiple datasources torepresent the status of the heart. Some dimen-
sions of the latent vector exhibit high correlations with conventional
cardiac phenotypes, which are essential for assessing cardiovascular
disease risk. The high correlation with the latent vector underscores
their clinical analysis potential.

PheWAS uses a data-driven approach to uncover unbiased associa-
tions between cardiac deviations and disease diagnoses. Our analysis
foundthat greater deviationsin heart functionare linked toincreased
risks of endocrine, metabolic and circulatory diseases. These cardiac
diseases suggest underlying metabolic problems such as insulin resist-
ance or metabolic disturbances observed in diabetes and obesity,
which affect the structure and performance of the heart>**, Likewise,
they indicate wider circulatory conditions such as hypertension and
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atherosclerosis, which can lead to heart failure and ischaemic heart
disease’. Understanding these relationshipsis crucial for risk stratifi-
cation, personalized medicine and prevention strategies, highlighting
the need for thorough cardiac evaluations in clinical management®.

Although this work advances the science in personalized cardiac
modelling, there are several limitations. First, the personalized norma-
tive model relies on a restricted range of generating factors, including
age, sex, weight and height, as we aim to develop a standard healthy
heart. Including additional elements in the future such as diseases or
environmental factors such as air pollution and noise*® could improve
our understanding of their impacts on cardiac anatomy and function.
Second, the model uses a cross-sectional dataset from the UK Biobank
for both training and testing purposes. However, it does not include
abenchmark for the progression of cardiac ageing, which could be
addressed by using a longitudinal dataset to evaluate the model.
Repeated scans are expected in the near future from the UK Biobank.
Third, this study focuses on modelling the dynamic mesh sequence to
describe cardiac shape and motion. It does not aimto model the under-
lying electrophysiology or biomechanics of the heart, which are also
essential for cardiac modelling and understanding cardiac function®*®°.
In addition, the explainability of latent vectors could be explored, as
understanding the specificinformation each latent dimension captures
iscrucial for clinical interpretation and validation. Finally, our method
doesnotincorporatelong-axisimages, whichlimitsits ability to capture
the mitral, tricuspid or aortic valves for assessing valvular function.
Mauger et al.*’ used two-chamber and four-chamber long-axis images to
identify tricuspid and mitral valve points, so that the motion of the valve
points canbe tracked and modelled using principal component analysis.

Inconclusion, this study presents MeshHeart, a generative model
for cardiac shape modelling. By training and evaluating the model on
apopulation-level dataset from the UK Biobank, we demonstrate that
MeshHeart not only achieves a high reconstruction accuracy but also
excels in generating synthetic cardiac mesh sequences that closely
resemble the real heart. The latent vector of the generative model and
the latent delta metric provide new avenues of research to improve
disease classification and personalized healthcare. These findings
pave the way for future research on cardiac modelling and may inspire
the development of generative modelling techniques for other types
of biomedical data.

Methods
Generative model architecture
Figurelaillustrates the architecture of the proposed generative model,
MeshHeart. Given a set of clinical conditions c, our goal is to develop
a model that can generate a dynamic 3D cardiac mesh sequence,
Xo:7-1= X0, X1, -+, X1}, Where T denotes the number of time frames,
that corresponds to the conditions c. Figure 1b shows an example of
theinput conditions and the generated mesh sequence. Without losing
generality, we take age, sex, weight and height as conditions c in this
work. Age, weight and height are continuous variables, whereas sex is
abinary variable. Each cardiac mesh x,= (v, e,) is a graph with a set of
vertices vand aset of edges e connecting them.

The proposed generative model consists of a mesh encoder M.,
a transformer encoder T, a condition encoder C,,, a transformer
decoder T ,..and amesh decoder M,... These components are designed
to work together to learn the probability distribution py(x|z.) of the
cardiacmesh sequence conditioned onclinical attributes, where @ repre-
sents the decoder parameters and z.denotes the condition latent vector.
The condition encoder C,,., implemented as a multilayer perceptron
(MLP), maps the clinical conditions c into a condition latent vector z,.

The mesh encoder M., implemented as a GCN, processes the
input cardiac mesh sequence x,.;;. It extracts latent representations
Zo.71, Whereeachvector z,corresponds to alatent representation of the
cardiacmeshat time framet. These latent vectors serve asintermediate
representations of the cardiac mesh sequence.

The latent vectors z,.;; from the mesh encoder are concatenated
with the condition latent vector z, to form a sequence of input tokens
tothetransformer encoder T,,.. Thetransformer encoder T, captures
temporal dependencies across the sequence, which comprises L layers of
alternating blocks of multihead self-attention (MSA) and MLP. To ensure
stability and effective learning, LayerNorm (LN) is applied before each
block and residual connections are applied after each block. Similar to
the class tokenin the vision transformer®?, we append the input tokens
Zo.7q Withtwo learnable parameters f,oye and 2., Named distribution
parameter tokens, which parameterize a Gaussian distribution over the
latent space. In the transformer output layer, we extract the outputs
from the distribution parameter tokens as distribution parameters y
and X. We then use the reparameterization trick® to derive the latent z,
frompuandZ,asshowninFig.1a. Theencoding processis formulated as

Zinput = [Htokens Zroken3 205 21; -+ 3 27-1]
2= MSA(IN(Z")) + 241 =1,...,L
2 = LN[MLP (LN (z)] '
Z, = p+€X,e~N(0,1)

@

where - meansdistributed as, indicating that therandomvariable e follows
anormaldistribution, where the bold1denotes theidentity matrix. The
resulting latent vector z,, derived after the reparameterization step, cap-
tures theinformation about the distribution of the mesh sequence. This
vector is concatenated with the condition latent vector z.to form the input
to the transformer decoder T,... The decoder uses these concatenated
vectors as keys and values in the self-attention layer, while sinusoidal
temporal positional encodings® serve as queries to incorporate tem-
poral information. The temporal positional encoding p, at time frame ¢
is defined using the sinusoidal function with the same dimensiondas z,:

sin (t/lO,OOOZi/d) . ifi=2k

o —

Pt 2)

cos (r/1o,0002""‘), ifi=2k+1

whereidenotesthe dimensionindex. The transformer decoder outputs
asequence of latent vectors, each corresponding to ameshrepresenta-
tion at a timepoint of the cardiac cycle. The latent vectors generated
by the transformer decoder are passed through the mesh decoder M.,
composed of fully connected (FC) layers, to reconstruct the 3D +t
cardiac mesh sequence X, ..
Probabilistic modelling and optimization

Following the VAE formulation®***, we assume a prior distribution p(z,)
over the latent variable z,. The prior p(z,), together with the decoder
(constructed by T,..and M), defines the joint distribution p(x, z,|z,).
To train the model and perform inference, we need to compute the
posterior distribution p(z,|x, z.), whichis generally intractable. To turn
theintractable posterior inference problem p(z,|x, z.) into atractable
problem, we introduce a parametric encoder model (constructed by
Cene» Menc and To,0) G,(2,1x, z.) with ¢ to be the variational parameters,
which approximates the true but intractable posterior distribution
p(z,)x, z.) of the generative model, given an input x and conditions c:

q¢(zalxvzc) ~ Pe(Zalx,Zc)y (3)

where g,(z,lx, z,) often adopts asimpler form, for example the Gaussian
distribution®***. By introducing the approximate posterior q,(z,/x, z,),
thelog-likelihood of the conditional distribution py(x|z,) forinput data
x, also known as evidence, can be formulated as

Inge(x|Zc) = [Ez,,~q¢(z,,|x,zc) lOg [po(xizc)]

Po(XZa|2c)

Gp(Zalx,2c) ] ’
qp(2alx:2c)

Po(zalx,2c)

4)

= Erpngyaabrzo) ‘08[ + Ezpngyzabezo) log[

Nature Machine Intelligence | Volume 7 | May 2025 | 800-811

807


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-025-01035-5

where the second term denotes the KL divergence Dy, (g, |p,) between
q,(z.lx, z.) and py(z,lx, z.)°*°*. It is non-negative and zero only if the
approximate posterior g,(z,|x, z,) equals the true posterior distribution
Po(z,lx,z.). Due to the non-negativity of the KL divergence, the first term
in equation (4) is the lower bound of the evidence log[py(x|z.)], known
astheevidencelower bound (ELBO). Instead of optimizing the evidence
log[py(x|z.)], which is often intractable, we optimize the ELBO as
follows:

ngipn ELBO = —log[py(x|z.)] + Dyt - ©)

Trainingloss function

Based onthe ELBO, we define the concrete training loss function, which
combines the mesh reconstructionloss £y, the KL loss £y, and amesh
smoothing loss £s. The mesh reconstruction loss £y is defined as the
Chamfer distance between the reconstructed mesh sequence
Xy.r_, = (V,E') and the ground truth X, = (V, E), formulated as
Lg = lT Z[T;é Dcham(V,, V,), where Dy, denotes the Chamber distance®,
Vv, and V, denote the mesh vertex coordinates for the reconstruction
and the ground truth, respectively:

(6)

/
v, - v

1 . , 1 .
Deham(Ve, V) = i ZV min ””‘_”fnz + ] > min R
veV, tSh

vV,
tl ey, "t

Inthe VAE, the distribution of the latent space for z, is encouraged to
be close to a prior Gaussian distribution. The KL divergence is
defined between the latent distribution and the Gaussian prior
distribution. To control the trade-off between distribution fitting
and diversity, we adopt the B-VAE formulation®®. The KL loss £y, is
formulated as

L =B-KLV(@,3) || N(0,1)), @)

which encourages the latent space N( 1, ) to be close to the prior
Gaussian distribution (0, I).

The Laplacian smoothing loss penalizes the difference between
neighbouring vertices such as sharp changes on the mesh®®’. It is
defined as

7-1
Ls = ;- Z Dsmooth(V;’ED
t=0
(8)
Dsmooth(V’E) = ‘lvl LZ ﬁ(vj - Ui)
v;eV jeN; i 2

where N;denotes the neighbouring vertices adjacent to v, The total
loss function L is aweighted sum of the three loss terms

L =Lg+ Ly +A - Ls. 9)

Interms ofimplementation, the mesh encoder M, . has three GCN
layers and one FC layer. The mesh decoder M, is composed of five FC
layers. The transformer encoder T,. and decoder T, consist of two
layers, four attention heads, afeed-forward size 0of 1,024 and adropout
rate of 0.1. The latent vector dimensions for the mesh and condition
were setto 64 and 32, respectively. The model contains approximately
69.71 million parameters and was trained on an NVIDIA RTX A6000
graphics processing unit (48 GB) using the Adam optimizer with afixed
learning rate of 107 for 300 epochs. Training was performed with a
batchsize of one cardiac mesh sequence, consisting of 50 time frames.
The cardiac mesh at each time frame consists of 22,043 vertices and
43,840 faces. The weights fand A in the loss function were empirically
setto0.0land1.

Personalized normative model, latent vector and delta
MeshHeart is trained on a large population of asymptomatic hearts.
Once trained, it can be used as a personalized normative model to
generate a synthetic mesh sequence of a normal heart with certain
attributes ¢, including age, sex, weight and height. For eachreal heart,
we canthen compare thereal cardiac mesh sequence with the synthetic
normal meshsequence of the same attributes, to understand the devia-
tion of the real heart from its personalized normative pattern.

Torepresent acardiac meshsequencein alow-dimensional latent
space, we extractalatent vector after the transformer encoder 7,.but
before the reparameterization step. The latent vector is calculated as
the mean of the latent vectors at the transformer encoder output layer
across 50 time frames. For calculating the latent delta, we quantify the
deviation of the latent vector of the real heart to the latent vector of a
group of synthetic hearts of the same attributes. Given conditions c,
100 samples ofthe latent variable z, are drawn from a standard Gaussian
distribution, z, ~ N(0,I), where z,denotes the latent space after repa-
rameterizationin the VAE formulation. Each sample z,is concatenated
with the condition latent vector z.and passed through the transformer
decoder and mesh decoder to generate a synthetic cardiac mesh
sequence. After synthetic mesh generation, each synthetic mesh
sequence is provided to the mesh encoder M,,. and transformer
encoder T, to generate latent vectors across 50 time frames at the
transformer output later, subsequently averaged to form the latent
vector z¥™", The real heart mesh sequence is provided to the mesh
encoder M,,. and transformer encoder T, for calculating the latent
vector 2 in the same manner.

With the latent vector 2 for the real heart and the latent vector
Z¥"for the synthetic heart, we define the latent vector as the Euclidean
distance between z"* and z™". As we draw 100 synthetic samples to
represent a subpopulation with the same attributes, the latent delta
Azisdefined as

Az = (10)

100
1
real _ synth
'~ 100 2%

2
whereidenotesthesampleindex. Thelatent delta Azprovides arobust
metric to evaluate individual differences in cardiac structure and

motion, quantifying the deviation of the real heart from its personal-
ized normative model.

Dataand experiments

Thisstudy used adataset of 38,309 participants obtained from the UK
Biobank*. Each participant underwent cine cardiac MR (CMR) imaging
scans. From the cine CMR images, a 3D mesh sequence is derived to
describe the shape and motion of the heart. The mesh sequence covers
three anatomical structures, LV, Myo and RV. Each sequence contains
50 time frames over the course of a cardiac cycle. To derive cardiac
meshes from the CMR images, automated segmentation®was applied
to the images. The resulting segmentations were enhanced using an
atlas-base approach®, by registering multiple high-resolution cardiac
atlases®”’° onto the segmentations followed by label fusion, resulting in
high-resolution segmentations. A 3D template mesh’® was then fitted
to the high-resolution segmentations at the ED and ES frames using
non-rigid image registration, generating ED and ES cardiac meshes.
Subsequently, motion tracking was performed using Deepali’, a
graphics-processing-unit-accelerated version of the non-rigid regis-
tration toolbox MIRTK™?, on cardiac segmentations across the time
frames. Deformation fields were derived using a free-form deformation
model with a control point spacing of [8, 8, 8]. The registration objec-
tive functionincluded Dice similarity as the primary similarity metric
and B-spline bending energy regularization with a weight of 0.01. The
deformation fields were derived between time frames and applied
to propagate the ED mesh and ES mesh across the cardiac cycle. The
proposed meshes were averaged using weighted interpolation based
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on temporal proximity to ED and ES’ to ensure temporal smoothness
of the resulting mesh sequence. All cardiac meshes maintained the
same geometric structure.

The dataset was partitioned into training, validation and test
sets for developing the MeshHeart model and a clinical analysis set
for evaluating its performance for disease classification task. In brief,
MeshHeart was trained on15,000 healthy participants from the Chea-
dleimaging centre. For parameter tuning and performance evaluation,
MeshHeart was evaluated on a validation set of 2,000 and a test set of
4,000 healthy participants, from three differentsites, Cheadle, Read-
ingand Newcastle centres. For clinical analysis, including performing
the disease classification study and latent delta PheWAS, we used a
separate set of 17,309 participants from the three imaging centres,
including 7,178 healthy participants and 10,131 participants with cardiac
diseases and hypertension. PheWAS was undertaken using the PheWAS
R package with clinical outcomes and coded phenotypes converted
to 1,163 categorical PheCodes. P values were deemed significant with
Bonferroni adjustment for the number of PheCodes. The details of
the dataset split and the definition of disease code are described in
Supplementary Table 1.

Method comparison

To compare the generation performance of MeshHeart, we adapt three
state-of-the-art generative models originally proposed for other tasks:
(1) Action2Motion*, originally developed for human motion genera-
tion; (2) ACTOR?, developed for human pose and motion generation;
and (3) CHeart*, developed for the generation of cardiac segmentation
maps, instead of cardiac meshes. We modified these models to adapt
to the cardiac mesh generation task.

Data availability

The raw imaging data and non-imaging participant characteristics
areavailable from UK Biobank to approved researchers viaastandard
application process at http://www.ukbiobank.ac.uk/register-apply.

Code availability

The codefor thisresearchis available via GitHub at https://github.com/
MengyunQ/MeshHeart and via Zenodo at https://doi.org/10.5281/
zenodo.15122485 (ref. 73).
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