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Figure 1: Our novel text-guided model (left) perceptually enhances input images based on given prompts. The model supports
Chromostereopsis, Denoising, Foveation, and Dynamic Range modification, and their permutations at different intensities using
adjectives like “mildly”, “slightly”, and “lightly” within a single inference, eliminating the need for daisy-chaining multiple
models. Real-world input images in “foveate” and “enhance dynamic range” are attributed to Billy Wilson and Orgthingy.
Remaining images are from our test set generated using Stable Diffusion [34].

Abstract perceptual graphics model. Given RGB images and text-prompts,
our model performs text-described perceptual tasks in a single in-
ference step. Simply daisy-chaining multiple models or training
dedicated models can lead to model management issues and exhaust
computational resources. In contrast, our flexible method unlocks
consistent high quality perceptual effects with reasonable com-
pute, supporting various permutations at varied intensities using

Emerging immersive display technologies efficiently utilize re-
sources with perceptual graphics methods such as foveated render-
ing and denoising. Running multiple perceptual graphics methods
challenges devices with limited power and computational resources.
We propose a computationally-lightweight learned multitasking

*Doga Yilmaz is the corresponding author. adjectives in text prompts (e.g. “mildly”, “lightly”). Text-guidance
provides ease of use for dynamic requirements such as creative

processes. To train our model, we propose a dataset containing
= source and perceptually enhanced images with corresponding text

This work is licensed under a Creative Commons Attribution 4.0 International License.
MM °25. Dublin. Ireland prompts. We evaluate our model on desktop and embedded plat-

© 2025 Copyright held by the owner/author(s). forms and validate perceptual quality through a user study.
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1 Introduction

Immersive display technologies [23], including Augmented Reality
(AR) glasses, Virtual Reality (VR) headsets, and large-format dis-
plays, are advancing towards more realistic image delivery.
However, these devices face constraints due
to power, performance, and form-factor lim-
itations, making on-device high-quality ren-
dering a challenge. Hence, researchers ex-
plore perceptual graphics methods such as
foveated rendering [37], dynamic range en-
hancement [27], image denoising [8], and
chromostereopsis [40] to enhance low qual-
ity images. In practice, these emerging per-
ceptual graphics methods need to be daisy-
chained to produce images of high percep-
tual quality. Daisy-chaining these percep-
tual models or learning models for desired
combined perceptual tasks can quickly lead
to poor image quality as shown in Fig. 2.
Moreover, these perceptual effects use the
same image attributes, such as depth, seg-
mentation, and color, which creates redun-
dancy in the model parameters and compu-

Four task
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Figure 2: Four

perceptual ; e °
tasks applied tétlon. Mitigating this red.undancy, a Poten—
on various tially more resource-efficient alternative to

daisy-chaining is to combine multiple per-
ceptual graphics methods with a multitask
learning approach. Also, recent works in gen-
erative models have demonstrated that com-
bined learned multimodal approaches, en-
ables a wide range of image-to-image trans-
lation tasks [15, 34]. Inspired by these recent
works, we propose to unify perceptual tasks in a single model to uti-
lize bandwidth, and computational resources more efficiently while
also supporting immersive displays in a device-agnostic manner,
thereby meeting their unique rendering requirements.

Our work proposes a text-guided learned multitasking percep-
tual graphics model for immersive displays. The input to this model
is an RGB image and text prompt pair to guide the model to out-
put perceptually enhanced images. Our model is enabled by our
new learned component, which we call as Embedding Mapper
module. This new module efficiently combines encoded RGB im-
ages and embeddings from text prompts at the bottleneck of a

baseline mod-
els and ours.
The capaci-
ties are equal
per task, see
Sec. 4.
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multitasking U-Net. Leveraging multitask learning, our model sup-
ports various perceptual tasks and their combinations, including
foveated rendering, dynamic range enhancement, image denois-
ing, and chromostereopsis. Utilizing text-embeddings rather than
fixed-vectors benefits the practicality and flexibility of our model.
This choice enables adjustment of effect intensity and supports
new tasks without requiring any changes in the architecture. Fur-
thermore, by maintaining a plain-text control interface, we en-
sure seamless compatibility with modern model-conditioning tech-
niques. To train our model, we introduce a new dataset compris-
ing pairs of images and their text prompts, each representing a
distinct perceptual effect. Our model facilitates deployment on
both desktop and embedded systems for immersive displays as it
is lightweight and fast. Furthermore, we validate the perceptual
quality of the images generated by our model with a subjective
experiment. The source code of our learned model, along with
our perceptual image dataset and model weights, can be found at
https://complightlab.com/multitasking_perceptual_graphics. Our
contributions are as follows:

o Multitasking Perceptual Model. Enabled by our new learned em-
bedding mapper, which efficiently combines image and text em-
beddings, we propose a learned multitasking perceptual graphics
model that transforms RGB images to various perceptually guided
image styles. Our model can achieve hybrid tasks that are com-
posed of novel permutations of individual tasks (e.g., enhance
dynamic range and foveate) as well as controlling the degree of
applied effect (e.g., mildly apply chromostereopsis) in a single
inference step. Furthermore, we deploy our model on an NVIDIA
Jetson Nano embedded device to demonstrate its effectiveness in
computationally limited scenarios.

Perceptual Evaluations. We introduce a new dataset that contains
pairs of images and their corresponding text prompts. Each pair
represents an image-to-image translation of perceptual effects.
We also provide a complete pipeline describing the image gen-
eration routine in our datasets. Utilizing this dataset and image
generation pipelines, we validate the perceptual quality of the
generated images from our model with a user study.

2 Related Work

Our work enables the simultaneous application of multiple per-
ceptual graphics tasks to efficiently prepare media for immersive
displays by leveraging multitask learning. We review the relevant
literature for each visual perception task we focus on, as well as
for learned image processing methods and multitask learning ap-
proaches, to provide context for our contributions.

2.1 Visual Perception Tasks

Our work focuses on foveation, dynamic range enhancement, image
denoising, and chromostereopsis. Image denoising and dynamic
range enhancement are well established tasks in the literature,
whereas foveation and chromostereopsis tasks are actively being
explored. Here, we refer to dynamic range enhancement as in-
creasing the bits used to represent brightness levels in an image.
Following the common literature in image denoising [8, 29, 44] and
dynamic range enhancement [5, 27, 43], we train our model using
pairs of images with low and high dynamic range and image pairs
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Table 1: Overview of perceptual graphics techniques. Our
work distinguishes itself by providing support for multi-
ple perceptual effects in a single inference pass, with text-
guidance and multitasking, while maintaining a lightweight
architecture. Abbreviations: Foveation (F), Chromostereop-
sis (C), Image Denoising (ID), Dynamic Range Enhancement
(DRE).

Text

Approach Perceptual Tasks Guidance Speed Multitasking
Walton et al. [39] Traditional F None Real Time None
Deza et al. [9] Learned F None Real Time None
‘Westermann et al. [40]  Traditional © None Real Time None
Conde et al. [8] Learned D None Real Time None
Marzuki et al. [27] Learned DRE None Real Time None
Afifi et al. [1] Learned None None Real Time Shated
Encoder
Fixed . Hard Parameter
Sun et al. [35] Learned None Wording Real Time Siiing
Open . Hard Parameter
Huang et al. [15] Learned None Ended Offline Sharing
Ours Leamed ~ F,CID,DRE  SCMiOPeN o iy, [Hard Parameter
Ended Sharing

containing noisy and noise-free images, respectively. We provide
an overview of existing perceptual graphics techniques in Tbl. 1.

Foveation. Foveated rendering promises to reduce computational
complexity by rendering perceptually accurate yet lower resolution
images in the periphery, leveraging the variation in resolution acu-
ity between the fovea and periphery in the Human Visual System
(HVS). Meng et al. [28] parameterizes foveated rendering by embed-
ding polynomial kernel functions in the classic log-polar mapping,
enabling variation in the sampling density and distribution of the
rendered images. Another class of methods for foveated rendering
uses metamers [9, 37, 39], which are image patches that are per-
ceptually indistinguishable despite being different in terms of pixel
values. Display hardware devices have recently adopted designs
specifically catered towards foveated rendering [20], especially for
AR and VR applications. Our model follows the metamer approach
proposed by Walton et al. [39] to foveate images.

Chromostereopsis. Chromostereopsis [2, 30, 40] is a visual per-
ceptual effect induced by using different colors in images, which
leads to an illusion of perceived depth differences in various colors
of the images. Hong et al. [14] propose an algorithm to enhance
perceived depth in images based on chromostereopsis and cubic ef-
fects. Similarly, Jung et al. [17] introduce a depth map-based image
enhancement algorithm utilizing chromostereopsis. Westermann et
al. [40] recently proposed a novel rule-based method to enhance
perceived depth in images, using results from a user study. Building
on Westermann et al. [40], our work focuses on creating artistically
appealing chromostereoptic images that maximize perceived depth.

2.2 Learned Multitasking Image Processing

Learned image-to-image translation. Isola et al. [16] investigate
conditional Generative Adversarial Network (GAN) as a general-
purpose solution for image-to-image translation tasks. Zhu et al.
[46] propose an unpaired image-to-image translation method using
a cycle-consistent approach, which mitigates the need for paired
training data. Additionally, Choi et al. [6] propose a novel approach
for multidomain image-to-image translations using a single model.
Recently, Ko et al. [22] introduced an independent classifier to
enhance feature learning, addressing the limitations of Choi et
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al.’s method [6]. Ke et al. [19] propose a memory efficient learned
color mapping for color normalization and stylization. Text-guided
diffusion-based generative models have also been utilized for image-
to-image translation [3, 12, 15, 25]. However, these generative mod-
els are iterative, requiring multiple passes to obtain good quality
images, making them unsuitable for interactive speeds. For our
perceptual tasks, we examined the diffusion-based approaches pro-
posed by Brooks et al. [3] and InstructDiffusion [12]. Despite the
inherent inference speed limitations, we included InstructDiffusion
[12] in our evaluation as a representative state-of-the-art diffusion-
based method. Additional results for Brooks et al. [3] can be found
in the supplementary material (see Sec. 1). Our work stands out
as a lightweight application-specific solution suitable for embedded
deployment, offering a text-guided perceptual graphics method for
immersive displays.

Multitask learning. Introduced by Caruana [4], Multitask Learn-
ing (MTL) is an inductive transfer mechanism aimed at improving
generalization performance by leveraging the domain-specific in-
formation contained in the training signals of related tasks. In our
work, we focus on hard parameter sharing, where all tasks share
the parameters for the same model. The work by Sun et al. [36]
proposes an efficient sharing scheme that learns separate execution
paths for different tasks. In addition, Afifi et al. [1] propose a deep
multitask learning architecture for auto white balancing, utilizing
a single encoder and multiple decoders, each corresponding to a
specific task. Following up Afifi et al. [1], Sun et al. [35] demonstrate
multitasking with a single task-conditioned decoder. Alternatively,
diffusion-based generative models could be utilized in multitask
learning scenarios [15], but are not suitable for embedded develop-
ment. Similar to the architecture proposed by Sun et al. [35], our work
utilizes text embeddings to learn multiple tasks with hard parameter
sharing in the encoder and decoder. Our primary difference is in how
we combine image and text embeddings using our embedding mapper.

The aforementioned perceptual tasks and learned perceptual
methods have been well explored individually. Yet, the efficient
unification of these tasks into a single model remains an open
challenge. Uniquely, our solution offers a text-guided multitasking
model capable of applying all these perceptual tasks within a single,
fast, cohesive model that can be deployed in embedded scenarios.

3 Text-Guided Perceptual Graphics

Given an input RGB image and a text prompt describing the de-
sired perceptual effect, our model in Fig. 3 applies the effect such
as foveation, dynamic range enhancement, image denoising, and
chromostereopsis, as well as their permutations at intended scales
(e.g. “mildly,” “lightly”).

Our model comprises two main components: a perceptual trans-
lation component, G, and a task-aware discriminator component, D.
Firstly, our perceptual translation component, G, a modified U-Net,
transforms input images into perceptually enhanced output images.
This component incorporates our new Embedding Mapper module,
EM, which conditions the perceptual translation based on embed-
dings derived from the provided input text prompts. Secondly, our
discriminator, D, guides the training of the perceptual translation
component, G, by verifying the outputs according to the text em-
beddings. During inference, D is not deployed and is utilized solely
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Figure 3: Our text-guided perceptual graphics model. Per-
ceptual translation component (G) is conditioned on text
embeddings (E7) generated using CLIP [32] and Embedding
Mapper (EM). The EM concatenates text embeddings (E7) and
image embeddings (E;) to generate combined embedding (E().
Task-aware discriminator (D) evaluates generated image (Iy)
for regularization.

during training to enhance the effectiveness of G. Additionally, for
extreme cases, including low bandwidth and low power, we utilize
a pre-trained autoencoder [34] to stream the generated images, in
a compressed format, to the user from a server with our model.
Our model is trained using a sample size adaptive loss function to
scale the loss based on the number of samples available for each task
and a task-aware adversarial loss to evaluate the generated images
based on the task-specific text embeddings. To train and evaluate
our model, we introduce a **new** dataset comprising pairs of
images, each representing a distinct perceptual enhancement.

Perceptual image translation component. Our first component,
the perceptual image translation component G, has two primary
objectives: (1) to enhance the visual perception of input images
with desired effects, and (2) to ensure the model is lightweight and
suitable for edge devices. To meet all these requirements, we employ
a U-Net architecture, similar to [16], with a modified bottleneck
layer, and a pre-trained CLIP model [32] for text prompt guidance.
First, we transform the input text prompts, T, into text embeddings,
Er € RBX1X512 ysing the pre-trained CLIP model, CLIP. In parallel,
we encode the input images, Iy € RBX3*HXW into image embed-
dings, E; € RBX1X2048 yysing the encoder of the U-Net. Following
this, we flatten the text embeddings, ET, and image embeddings, Ey,
and concatenate them to form a single embedding, E7.. This con-
catenated embedding, Et.y, is then fed into our embedding mapper
module, EM, consisting of an Multilayer Perceptron (MLP). The
EM module maps the concatenated embedding, ETJ, to generate a
combined embedding, Ec € RBX1X2048 wyre also derived a simple
text embedding generator that maps one-hot-encoded text embed-
dings to the CLIP embedding space to test our model in isolation;
see the supplementary Sec. 2.4 for details. This operation not only
merges text and image information into a single embedding but also

10722

Doga Yilmaz, He Wang, Towaki Takikawa, Duygu Ceylan, and Kaan Aksit

ensures that the dimensionality of the resulting combined embed-
ding, Ec, is compatible with the symmetric encoder-decoder U-Net
architecture. The combined embedding, E¢, is then unflattened and
fed to the bottleneck of our U-Net decoder to produce the percep-
tually enhanced image, Iy € REX3*HXW Our EM offers a unique
application-specific conditioning solution without requiring computa-
tionally demanding conditioning at every layer of a U-Net [18, 31] or
a dedicated network for merging images and texts in the input [42]
or enlarged decoder capacity due to size mismatch originated from
concatenating text and image embeddings at the bottleneck [10, 38].
The architecture of our perceptual translation module, G, and our
strategy for guiding the model with text prompts are illustrated
in Fig. 3. Detailed configurations of EM and the pre-trained CLIP
model are in the supplementary’s Sec. 2.3.

Sample size adaptive loss. When introducing new tasks in the
training of G, the number of samples available for a new task may
be different than the existing tasks. Thus, we introduce a sample
count adaptive loss function that regularizes G in training accord-
ing to the number of samples available for each task. Considering
the largest sample count among all tasks, SCprax, and the sample
counts for each task, SCr, we calculate boosting factors, Br, in-
versely proportional to the sample counts, capped by a maximum
boost coefficient, Byj4x. These boosting factors are then used to
scale the L1 loss for each task,

Br =1+ (Byax(1 SCr
T = MAX SCMAX

Liar1 = L11(Iy, IgT)Br.

) ®

By amplifying the loss inversely proportional to the sample counts
for tasks with fewer samples, we ensure optimal use of available data
and encourage the optimization process to allocate greater updates
for these underrepresented tasks. We further evaluate sample size
adaptive L1 loss in our ablation study in Sec. 4.

Task-aware discriminator component. It has been demonstrated
that utilizing conditional GAN loss [16] effectively regularizes im-
age translation tasks by improving the quality of generated images
while preserving the original content. Building on the image-based
conditioning proposed by Isola et al. [16], we extend this approach
to include task conditioning in our adversarial loss. To guide the
training of our model, we employ a multitasking task-aware dis-
criminator, D. This discriminator processes the generated image,
Iy, the input image, Ix, and the task-specific text embeddings, ET,
to generate probability maps that facilitates the calculation of the
task-aware adversarial loss. To support this operation, the text
embeddings, ET, are stacked and concatenated along the channel
dimension of the Iy and Ix. The resulting tensor, which comprises
both the image and task information, is subsequently fed into D to
obtain prediction maps of Py € RBXIXHXW and p; ¢ RBXIXHXW,
Our multitasking task-aware discriminator is illustrated in Fig. 3.
We leverage Py and P; to provide a pixel-wise estimation of the
likelihood that each pixel belongs to the perceptually enhanced
image, Iy. Pp and P; generated by D are used to enhance task-
aware guidance during the training of G as shown in the following
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equation:

Py = D(Ix, IgT,ET), P1 = D(Ix, Iy, ET),

2
LicgaN = Ery 167.Er [log Pol + Epy 1y B [log(1 = P1)]. @

Objective functions and training procedure. We guide the training
of our model by utilizing the following functions: (1) a sample
size adaptive L1 loss, and (2) a task-aware adversarial loss. Our
total loss function is formulated as shown in Eq. (3), where A is a
hyperparameter that adjusts the contribution of the sample size
adaptive loss to the total loss,

®)

We use a two-phase training strategy. Initially, our training dataset
is restricted to image pairs from single tasks, which allows the model
to focus on learning each task independently. After completing
this phase, we expand our training dataset by incorporating both
single and combined task image pairs, and continue the training
process. Hyperparameters and training details are available in the
supplementary’s Sec. 2.7.

Liotal = Licgan + ALtar1-

Embedding streaming component. Option-
ally, in scenarios where computational re-
sources and bandwidth are extremely lim-
ited, streaming the generated images in a
compressed form to the user can be benefi-
cial for presenting high quality media. For
such cases, our model can be deployed on a
more powerful server, where the generated
images are compressed and streamed to the
client. To support this, we utilize a distilled
version of the pre-trained encoder and de-
coder [34], where images are compressed us-
ing the encoder. The compressed images are
then streamed to the client, where they are

Chromostereopsis

Figure 4:

Utilizing decompressed by the decoder to be displayed.
depth [33] This component is optional and can be dis-
and segmen- abled in scenarios where computational and
tation [21] bandwidth resources are not a concern. Prac-

tical details for our streaming component
are available in the supplementary’s Sec. 2.5.

estimation to
generate chro-
mostereopsis

. Perceptual graphics dataset. As our model
images.

learns a mapping from observed images, Iy,
and text embeddings, ET, to perceptually en-
hanced images, Iy, denoted as G : (Ix, Er) — Iy, it requires a
dedicated set of text prompts paired with corresponding images
for training. Generating such paired data can be particularly chal-
lenging for complex tasks like chromostereopsis, and the challenge
can easily stack up as in our combined task cases. Thus, we pro-
pose a dataset containing 8800 image pairs with corresponding
text prompts, each at a resolution of 1024x1024 pixels, distributed
equally across various perceptual tasks, including foveated render-
ing, dynamic range enhancement, image denoising, chromostereop-
sis, and their permutations. Additionally, the prompts in our dataset
feature adjectives such as “mildly;” “lightly,” and “slightly” to control
the intensity of the applied effect. For all of our tasks, we generate
RGB source images using Stable Diffusion [34]. Our foveated image
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examples rely on Walton et al. [39], for dynamic range enhance-
ment we clip the dynamic range of the generated images from 8
bits to 4 bits, and for image denoising we add salt and pepper noise
to the generated images. To induce the chromostereopsis effect,
we first generate a depth map from the ground truth images us-
ing the monocular depth estimation method by Ranftl et al. [33],
then segment these images following the method by Kirillov et al.
[21]. The final chromostereopsis images are produced by adjusting
the hue of the foreground segments to red and the background
segments to blue, based on the average depth of each segment, as
proposed by Westermann et al. [40] as shown in Fig. 4. For the
combined task image pairs, we apply the related methodology of
each individual task consecutively. All supported tasks are listed
in Tbl. 3, and details about the datasets, including the supported
adjectives, can be found in the supplementary Sec. 4.

4 Evaluation

We evaluate our learned model in terms of image quality (see Tbl. 3)
and inference speed (see Thbl. 2). To assess image quality, we employ
metrics such as Peak Signal-to-Noise-Ratio (PSNR), Structural Sim-
ilarity Index Measure (SSIM), Learned Perceptual Image Patch Sim-
ilarity Metric (LPIPS) [45], and FovVideoVDP [26]. We conducted a
user study to further confirm that the image quality produced by our
model is comparable to the state-of-the-art methods. Visual results
for both synthetic and real-world images are presented in Fig. 9.
For more visual results beyond Fig. 9, consult our supplementary’s
Sec. 10.

Inference speed. We compare our model’s performance against
Sun et al. [35], InstructDiffusion [12], and relevant baseline models
to assess its image quality and inference speed using 32-bit pre-
cision (FP32). Note that the method proposed by Sun et al. [35]
does not support text guidance and is not fully equivalent to our
proposed method in this respect. To extend the evaluation further,
we formulated several baseline models, which consists of vanilla
U-Net models trained on our dataset and deployed in three different
settings. These settings are single-task, daisy-chain, and N-task,
where N represents the number of simultaneously applied tasks.
Here, a single-task model refers to a model trained for a specific task
(e.g., foveation); a daisy-chain model refers to running single-task
models consecutively (e.g., image denoising and foveation); and an
N-task model refers to a model trained with a specific combination
of tasks to perform all tasks in a single inference. For a fair compari-
son, we set the model capacity of all models to be equal per task (i.e.
~ 7.6 million parameters per task) as reported in Tbl. 2. Although
our model has ~ 50 million parameters excluding D; the parameters
for the U-Net for our model consumes only ~ 3 million parameters,
which is half the size of other baseline models with ~ 7.6 million
parameters dedicated to the U-Net at minimum. The remaining ~ 47
million parameters are used for the Embedding Mapper module
(EM), where the feature sizes are close to bottleneck feature size in
our U-Net. Dedicating more parameters to the EM with small feature
sizes help us to achieve inference speeds as fast as a single-task model
while supporting all the benefits of text-guidance and multitasking
with a single model. If the baseline models use lower capacity in their
U-Net following our model (~ 3 million parameters), they render
visually distorted blurry images as sampled in Fig. 5, making these
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Table 2: Performance evaluation results of our model, Sun et
al. [35], InstructDiffusion [12], and baselines (vanilla U-
Net) on desktop (NVIDIA RTX 3090) and embedded devices
(NVIDIA Jetson Nano) using 32-bit precision (FP32).

Doga Yilmaz, He Wang, Towaki Takikawa, Duygu Ceylan, and Kaan Aksit

Table 3: Quantitative image quality of our model, Sun et al.
[35], InstructDiffusion [12], and baseline models (vanilla U-
Nets). Abbreviations: Foveation (F), Chromostereopsis (C),
Image Denoising (ID), Dynamic Range Enhancement (DRE).

Device Model Inference Parameter Task
Speed (ms) Count (M) Count
Single—task 129.56 ms 7.656 M 1
Daisy-chain 409.16 ms 15.312 M 2
Daisy-chain 810.28 ms 30.624 M 4
Embedded Two-task 129.56 ms 7.656 M 2
Four-task 129.56 ms 7.656 M 4
Ours (streamed) 179.14 ms 1.222 M 1-4
Ours 260.82 ms 50.593 M 1-4
Single-task 1.34 ms 7.656 M 1
Daisy-chain 3.79 ms 15.312 M 2
Daisy-chain 7.65 ms 30.624 M 4
e Two-task 1.34 ms 7.656 M 2
Four-task 1.34 ms 7.656 M 4
Sun et al. [35] 4.81 ms 22.124 M 1-4
InstructDiffusion [12]  536.96 ms 859.530 M 1-4
Ours 1.74 ms 50.593 M 1-4

lower capacity baseline models unusable for comparison. Consult
our supplementary’s Sec. 2 for the lower capacity U-Net details. Our
baselines (single-task, daisy-chain, and N-task) and the work by
Sun et al. [35] are also limited in the number of supported tasks and
do not offer full flexibility to blend tasks at will ~lightly foveate and
fully denoise is not an option for a foveation and denosing baseline-.
This necessitates the training of many mod-
els for many tasks, making model manage-
ment an issue especially for embedded de-
vices. In comparison to the single-task and
two-task models, Tbl. 2 shows that our model
has similar inference speeds. Daisy-chain
models are naturally slower than our model
in inference speed due to dedicating larger
capacities. In contrast to our method, In-
structDiffusion [12] has significantly slower
inference due to its larger model size and
iterative diffusion process. As observed in
Tbl. 2, among flexible and controllable mod-
els, ours is the fastest, achieving inference
speeds 2.5 times faster than the nearest com-
parable approach.

=
=
=
=1
=]
a=]
=]
=]
o
=
O

Baseline (3 M)

Baseline (7.6 M)

Figure 3 Quantitative image quality. We evaluate
Fower capac- the visual quality of our model, method pro-
ity per task

posed by Sun et al. [35], InstructDiffusion
[12], and the baselines with established met-
rics in Tbl. 3 and provide Fig. 9 to sample
their task performance qualitatively for both
synthetic and real-world images. Results in
Tbl. 3 are averaged over the test split. Across a variety of metrics,
our models achieve on-par performance in terms of image qual-
ity when compared to competitor models. Beyond image quality,
our approach offers notable advantages in versatility, task adapt-
ability, precise control over effect intensity, and the flexibility to
deploy either fully or partially on an embedded device. By using

leads to visual
distortions in
our baseline
models.
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Task Model PSNR (dB) T SSIM T LPIPS | FovVideoVDP T
Single-task 27.43 0.79 0.18 9.23

F Sun et al. [35] 27.12 0.78 0.23 9.17
InstructDiffusion [12] 25.74 0.75 0.14 8.92
Ours 25.64 (-1.79)  0.74 (-0.05)  0.10 (+0.04) 9.01 (-0.22)
Single-task 33.38 0.92 0.05 9.25

- Sun et al. [35] 31.92 0.91 0.06 9.21
InstructDiffusion [12] 29.89 0.90 0.03 9.19
Ours 31.07 (-2.31)  0.88(-0.04)  0.08 (-0.03) 9.06 (-0.19)
Single-task 35.90 0.95 0.03 9.79

D Sun et al. [35] 34.26 0.94 0.04 9.76
InstructDiffusion [12] 29.49 0.83 0.07 9.53
Ours 34.05(-1.85)  0.92(-0.03)  0.08 (-0.05) 9.77 (-0.02)
Single-task 16.87 0.81 0.14 5.53

c Sun et al. [35] 17.02 0.80 0.14 5.80
InstructDiffusion [12] 17.03 0.75 0.13 5.92
Ours 17.04 (+0.01)  0.81(0.00)  0.13 (0.00) 5.54 (-0.38)
Two-task 16.94 0.81 0.15 5.45
Daisy-chain 16.02 0.73 0.16 543

ID and C Sun et al. [35] 17.80 0.81 0.11 5.44
InstructDiffusion [12] 17.43 0.67 0.12 4.44
Ours 16.74 (-1.06)  0.80 (-0.01)  0.14 (-0.03) 5.47 (+0.02)
Two-task 16.49 0.80 0.14 5.8
Daisy-chain 16.27 0.80 0.14 5.27

DRE and C Sun et al. [35] 16.53 0.80 0.15 533
InstructDiffusion [12] 17.61 0.74 0.12 5.32
Ours 1591 (-1.70)  0.78 (-0.02)  0.16 (-0.04) 5.36 (+0.03)
Two-task 27.15 0.78 0.22 9.16
Daisy-chain 27.15 0.78 0.20 9.17

ID and F Sun et al. [35] 26.98 0.77 0.23 9.14
InstructDiffusion [12] 25.16 0.71 0.19 8.87
Ours 25.65 (-1.50) 0.71 (-0.07) 0.11 (+0.8) 8.98 (-0.19)
Two-task 26.60 0.75 0.23 8.85
Daisy-chain 26.59 0.76 0.21 8.84

DRE and F Sun et al. [35] 26.35 0.74 0.25 8.77
InstructDiffusion [12] 24.65 0.73 0.12 8.58
Ours 25.06 (-1.54)  0.69 (-0.07)  0.11(+0.01) 8.58 (-0.27)
Four-task 16.27 0.62 0.22 5.30
Daisy-chain 12.46 0.30 0.36 4.06

?jf;::;g Sun et al. [35] 17.05 0.62 0.18 5.46
InstructDiffusion [12] 17.02 0.57 0.14 5.53
Ours 17.14 (+0.09)  0.66 (+0.04) 0.14 (+0.04)  5.61 (+0.08)

text-guidance adjectives (e.g., “strongly foveate”) to specify differ-
ent effect intensities, our model can dynamically adjust perceptual
effects, as demonstrated in Fig. 9. In contrast, while baseline models
lack on-the-fly adaptability, Sun et al. [35] offer similar functionality
with inference speed 2.5 times slower. InstructDiffusion [12] offers
on-the-fly adaptability; however, its high computational demands
make it unsuitable for real-time applications and deployment on
embedded devices. Additional visual results for other supported
tasks are provided in our supplementary’s Sec. 10. Video results
of our method are also included, with further details available in
Sec. 2.8.

Supporting complex tasks. The increasing number of tasks in a
combined task compounds the overall complexity, making it more
challenging to produce high-quality images. As indicated in the
last row of Tbl. 3 and in Fig. 2, when the task count increases to
four, our model surpasses both the daisy-chain method and the
four-task models across all measured metrics. This indicates that
the ability of the four-task model becomes insufficient for gener-
ating high-quality images. In contrast, our multitasking approach
provides a flexible solution, allowing for the blending of tasks and
the generation of high-quality images using a single model.

Ablation study. We conducted ablation studies to validate the
effectiveness of our proposed components. Specifically, we evalu-
ated the performance contribution of each component of our loss
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Figure 6: Performance of our model in terms of PSNR and
SSIM across various training sample sizes for two reduced
tasks: image denoising and chromostereopsis (top row) and
denoise and foveate (bottom row). Red curves represent re-
sults with sample size adaptive loss, while blue curves repre-
sent results without it. The plotted curves are second-degree

polynomials fitted to the data.

function. Additionally, we inspected how the parameter count al-
located to the EM impacts the model’s performance. Task-aware
adversarial loss. Fig. 7 presents a representative sample image that
demonstrates the impact of the task-aware adversarial loss. When
we include the task-aware adversarial loss in our model, we ob-
serve that the model preserves high-frequency details of the image.
Without the task-aware adversarial loss, the
model fails to preserve these details simi-
lar to the baseline models. We invite read-
ers to observe the high-frequency details in
the foveated regions of the images in Fig. 7.
Sample size adaptive loss. In our training
dataset, we reduced the sample count of a set
of tasks to simulate a low sample count sce-
nario. The reduced sample sizes are as follows:
0,50, 100, 150, and 200, whereas a non-reduced
task contain 880 samples. We measured the
performance using PSNR and SSIM (Fig. 6),
showing that the sample size adaptive loss
improves performance on low-sample tasks.
EM parameter count. Beginning with the
smallest possible EM (~ 50M parameters),
constrained by image dimensions, we incre-

w/ adversarial loss w/o adversarial loss

Ground truth

Figure 7: Our
task-aware

adversarial mentally increased its capacity to ~ 60M and
loss preserve ~ 100M. Our observations indicate that in-
features creasing the capacity of EM does not affect
at the pe- the model’s performance. Sample images gen-
riphery in erated using EM of different sizes, along with
foveated their corresponding performance metrics, can
rendering. be found in the supplementary’s Sec. 6.

Subjective evaluation. We conducted an informal subjective study
with 22 participants (age 18-30; 5 female, 17 male), all naive to the
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Figure 8: Preferences of participants in the user study. Our
model is on-par with single-task models, two-task models,
and daisy-chaining of two models, while outperforming the
daisy-chaining of four tasks and the four-task model in terms
of user preference. The colored bars indicate preference per-
centage, while green lines indicate a 95% confidence interval.

study’s purpose. The study comprised five sections, each assessing
a different task using 15 image pairs. Participant preferences be-
tween our model and the baselines are summarized in Fig. 8, with
95% confidence intervals. Before each section, participants were
informed about the task and asked to rate the image pairs based
on their preferences. Participants’ preferences indicate that our
model performs on par with single-task models, two-task models,
and the daisy-chaining of two models, with half of the participants
preferring our model. For the four task cases, participants preferred
our model with probabilities of 100% and 74% compared to the
daisy-chaining of four tasks and the four-task model, respectively.
The participants’ preferences are consistent with our quantitative
results in Tbl. 3 and further support our findings about complex
tasks in Sec. 4. Additional details about the user study are available
in the supplementary’s Sec. 5.

5 Discussion

There are various limitations and potential future research direc-
tions that may help overcome the limitations in our learned multi-
tasking perceptual graphics model.

Visual artifacts. In a small set of test cases where adjectives such
as “strongly,” “lightly,” or “mildly” are used, we observe color devia-
tions and a minor noise from the ground truth images. In scenarios
involving multiple tasks, ambiguous cases may occur when two
effects target the same region of the image. Task prioritization is
crucial in such cases to avoid visual artifacts. Our experiments in-
dicate that our model tends to prioritize the task with the higher
loss value, see supplementary’s Sec. 7. Among the tasks we support,
chromostereopsis induces the largest change in pixel values and, as
a result, is prioritized over other tasks. For the extended discussion
on visual artifacts, consult our supplementary’s Sec. 9.

Task-specific visual quality metrics. Generic image quality met-
rics such as PSNR, SSIM, LPIPS and FovVideoVDP are not well
suited for chromostereopsis and foveation cases, as shown in the
first and third rows of Fig. 9. In the case of foveation, these metrics
fail to capture the metameric patterns in the peripheral regions,
which are essential for the task. In the case of chromostereopsis,
they do not detect some artifacts that are present. This limitation
restricts the ability to further improve the quality of the generated
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Figure 9: Results of our multitasking perceptual model compared to Sun et al. [35], InstructDiffusion (InDf) [12], and task-
specific Vanilla U-Nets (Baseline). Metrics: PSNR (P) T SSIM (S) T LPIPS (L) | FovVideoVDP (V) T. Dynamic range enhancement
results are best seen on video displays. (Real-world images in rows 1-4 attributed to Miguel Discart, Michael Kuhn, James
Marvin Phelps, and Lahar Jadav. Remaining images from our test set generated using Stable Diffusion [34].)

images using learned methods, such as super-resolution [24], as tasks, offering a more flexible and user-friendly operation. Exam-
demonstrated in our supplementary Sec. 2.6. ples demonstrating our model’s ability to generalize to unseen
real-world images are provided in Fig. 9, and the supplementary’s
Supporting more tasks. Our model can potentially serve as a Sec. 8. Examples of prompt generalization are also available in the
post-processor for many real-world applications, such as video supplementary’s Sec. 8. From these experiments, we can conclude
streaming, image enhancement, and immersive display technolo- that our model can generalize to unseen images and prompts that
gies. For instance, several color-based perceptual tasks could be describe the supported tasks using novel wording. When we use a
incorporated to reduce power usage [11], provide stereo view syn- prompt that describes an unsupported task, the resulting output im-
thesis from a single image, and undertake prescription correction age shows negligible changes, validating the language conditioning
[13], anaglyph rendering [41], and accommodative rendering [7] in capability.
immersive displays. An extended discussion on the tasks currently
supported can be found in the supplementary material’s Sec. 3. Conclusion. The key finding from our model is effectively en-
coding images and text prompts for various perceptual tasks via
Generalizing to unseen prompts and images. Unlike other meth- multitask learning without exhausting computational resources.
ods [35], which utilize fixed one-hot-encoded text embeddings, our With the help of this key finding, our model efficiently enhances im-
model can generalize to unseen prompts describing the supported ages for immersive displays including VR headsets and AR glasses.
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