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Abstract
In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a
promising candidate because of their electrochemical and economic characteristics. However, as
an emerging electrochemical storage technology, it is urgent to develop capable anode materials
that can be produced at low cost and on a large scale to promote its practical application.
Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their
merits of low weight, high stability, non-toxicity, and wide availability. In this work, we
employed Platanus occidentalis L. fruits as a precursor to prepare a series of biomass-derived
carbon materials by simply adjusting carbonization temperature, and we explored their
electrochemical potassium storage capability as anode materials. The optimized sample
(annealed at 800 ◦C) delivered good potassium storage capability (193.3 mAh g−1 at
100 mA g−1 after 100 cycles), cycling stability (80.4 mAh g−1 after 300 cycles at 300 mA g−1),
and rate performance (51.2 mAh g−1 at 1000 mA g−1). This work demonstrates a feasible way
to utilize biomass waste disposal for emerging sustainable energy storage technologies.

Supplementary material for this article is available online

Keywords: sustainable, cost-effective, biomass, potassium-ion batteries, carbon, defect

6 These authors are contributed equally to this work.
∗

Authors to whom any correspondence should be addressed.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1 © 2025 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1361-6528/ada8b4
https://orcid.org/0009-0008-6814-9529
https://orcid.org/0000-0002-6288-2112
https://orcid.org/0000-0002-6424-0324
https://orcid.org/0000-0003-0177-6348
mailto:yuhanwu@sut.edu.cn
mailto:wuyus@sut.edu.cn
mailto:y.xu.1@ucl.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6528/ada8b4&domain=pdf&date_stamp=2025-1-23
http://doi.org/10.1088/1361-6528/ada8b4
https://creativecommons.org/licenses/by/4.0/


Nanotechnology 36 (2025) 125701 J Hao et al

1. Introduction

The energy and environmental problems caused by the high
consumption of conventional fossil fuels drive the rapid devel-
opment of the electrochemical energy storage market repres-
ented by lithium-ion batteries (LIBs) with high energy dens-
ities, long cycle life, and environmental friendliness [1–9].
However, the scarcity (∼20 ppm) and uneven distribution
(∼70% in South America) of lithium sources on the earth’s
crust limit their large-scale production and stable supply [10–
13]. It is estimated that LIBswill consume 65% of total lithium
consumption by 2025. Besides, based on lithium consumption
rates projected for 2050, the remaining lithium reserves on
land will only last until 2080 [14]. In this case, many new types
of metal ion battery technologies (e.g. sodium-, potassium-,
zinc-, magnesium-, and calcium-ion batteries) have been
launched successively as supplements or alternatives to LIBs
[15]. Recently, potassium-ion batteries (PIBs) as a member of
alkali metal-ion batteries have captured increasing attention.
They possessmany electrochemical properties similar to LIBs.
Meanwhile, their cost-effectiveness and abundant K resources
endow them with strong competitiveness [16].

In a metal ion battery, the anode plays a crucial role
in the safety and lifespan of the battery [17]. Currently, a
variety of materials have been investigated as PIB anodes,
including carbon materials, metal oxides/chalcogenides/phos-
phides, alloying-based materials, and organic materials [18–
20]. Among them, carbon materials are considered to be
promising candidates because of their superior material and
electrochemical properties, low weight, and environmental
friendliness [17]. Biochar is a kind of carbonmaterial obtained
by the thermal decomposition of biomasses (e.g. plants, animal
wastes, and microorganisms) under anoxic or limited oxy-
gen conditions [21, 22]. Biochar has been widely used as
an electrochemical energy storage material, benefiting from
the renewability and environmental friendliness of biomass
resources. To achieve practical applications and large-scale
production, it is of great significance to explore low-cost
and high-yield biomass precursors to produce biochar as PIB
anodes.

Platanus occidentalis L. is native to North America and
is widely planted in the United States, China, Argentina,
Australia, and other places [23]. However, Platanus occi-
dentalis L. bears a lot of fruit (named POF) every year, which
forms a large amount of pollen in spring and summer. In the
meantime, the dehiscence of the fruit produces a large amount
of POF lint, which may cause fire risks and can easily enter
the respiratory tract of human beings, leading to allergic reac-
tions and various other diseases in some people. Therefore,
how to deal with POF in a green and valuable manner has
received special attention. Herein, we prepared carbon mater-
ials using POF as the precursor by a two-step pyrolysis pro-
cess and investigated the electrochemical performance of the
carbons as PIB anodes. The results showed that the specific
capacities of the optimized sample were 194 mAh g–1 after
100 cycles at 0.1 A g–1 and 80.4 mAh g–1 after 300 cycles at

0.3 A g–1. Our work provides a feasible way to efficiently util-
ize POF waste in line with the concept of sustainable develop-
ment and prepares a promising PIB anode material for large-
scale production.

2. Experimental section

2.1. Materials preparation

The POF precursor exhibits a tubular shape (figure (S1)). It
was firstly pulverized into powers, and then, the powders were
washed with deionized water for several times, followed by
drying in a vacuum oven at 80 ◦C. Subsequently, the dried
powders were annealed at 400 ◦C with a heating rate of
5 ◦C min–1 for 2 h under an Ar atmosphere. The pre-treated
material was then annealed at different temperatures (600,
800, and 1000 ◦C) with a heating rate of 5 ◦C min–1 for
2 h under an Ar atmosphere. The carbonized powders were
washed with deionized water and hydrochloric acid for sev-
eral times. The final products were obtained after drying and
denoted as WT-600, WT-800, andWT-1000, respectively. The
preparation method is schematically shown in figure 1(a).

2.2. Materials characterizations

Morphology andmicrostructure of the products were observed
by scanning electron microscopy (SEM, Carl Zeiss Jena
GeminiSEM300), transmission electron microscope (TEM,
JEM-2100), and selected area electron diffraction (SAED,
FEI Tecnai F20). Phase was analyzed by x-ray diffracto-
meter (XRD, Shimadzu x-ray 7000 with Cu Kα radiation,
λ = 1.54056 Å). Surface chemical information was invest-
igated by x-ray photoelectron spectroscopy (XPS, Thermo
Scientific K-Alpha). Chemical bonding information was
recorded by Raman spectroscopy (HORIBA Horiba LabRAM
HR Evolution).

2.3. Electrochemical measurements

Working electrodes were prepared by mixing the WT sample,
acetylene black, and carboxymethyl cellulose sodium (CMC)
with a weight ratio of 8:1:1. The mass loading was 1–
2 mg cm–2. Then, the electrode was dried at 105 ◦C under
vacuum overnight. Electrochemical property evaluation was
carried out using CR2032-type coin cells assembled in an
Ar-filled glovebox with oxygen and moisture concentrations
below 0.1 ppm. K foil was used as a counter electrode and sep-
arated from the working electrode by a glass fiber membrane
(Whatman, Grade GF/B). The electrolyte was 0.8 M KPF6
in ethylene carbonate/diethyl carbonate (EC/DEC 1:1 Vol%).
Galvanostatic discharge/charge (GDC) measurements were
performed on a battery testing system (LANHE CT2001A) in
a voltage range of 0.01 − 3.0 V at room temperature. Cyclic
voltammetry (CV), electrochemical impedance spectroscopy
(EIS), and electrochemical galvanostatic intermittent titration
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Figure 1. (a) Schematic of the preparation of POF-derived carbon materials; SEM images of (b) WT-600, (c) WT-800, and (d) WT-1000;
TEM and SAED images of (e) WT-600, (f) WT-800, and (g) WT-1000; (h) XRD patterns, (i) Raman spectrum, and (j) XPS survey spectra
of the carbon materials.

(GITT) measurements were carried out on an electrochem-
ical workstation (DH7002A). As for full cells assembled by
employing WT-800 as the anode and commercial perylene-
3,4,9,10-tetracarboxylic dianhydride (PTCDA), the voltage
range is 0.8–3.2 V. The mass loading of PTCDA was 2–
3 mg cm–2. The mass ratio of PTCDA:WT-800 was 2.5:1.

3. Results and discussion

3.1. Material characterizations

To determine the morphological features of POF-derived car-
bon materials, the obtained WT-600, WT-800, and WT-1000
were characterized by SEM, as displayed in figures 1(b)–(d)

and (S2). POF-derived carbon materials exhibit a porous tubu-
lar structure with nano-sized walls [24], which is conducive to
infiltrating the electrolytes, buffering the volume expansion,
and shortening the diffusion distance of K+ [25]. Figure (S2)
is a SEM image of WT-800, showing that the hole wall thick-
ness is about 1.5 µm and the inner diameter is 20–30 µm.
There is no significant change as the annealing temperature
increases. TEM and SAED were utilized to reveal the effect
of carbonation temperature on the structural properties of the
WT samples (figures 1(e)–(g)). As the annealing temperat-
ure increases, the graphitization degree of the carbon mater-
ial gradually increases [26]. Also, the ring diffraction pat-
terns (in the inserts of figures 1(e)–(g)) become less diffusive
as the temperature increases, and a large number of continu-
ous pseudo-graphite domains are formed in WT-1000 (figure
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(S3)), which show crystalline properties and can be observed
in a clear diffraction pattern when the temperature reaches
1000 ◦C.

The structural properties of the POF-derived carbon mater-
ials were further investigated using XRD and Raman meas-
urements. In the XRD patterns shown in figure 1(h), two
broad diffraction peaks are located near 23 and 43◦ in the
three samples, corresponding to the (002) and (101) planes
of amorphous carbon, respectively [27, 28]. The (002) peak
gradually moves to the larger 2θ angle as the carbonization
temperature increases, signifying a progressive reduction in
the layer spacing. Based on the Bragg Law, the layer spa-
cings of WT-600, WT-800, and WT-1000 were calculated to
be 0.39, 0.38, and 0.37 nm, respectively. They are all higher
than that of graphite (0.335 nm), a commercial anode mater-
ial of PIBs, which is in favor of promoting the intercalation
of K+ in the graphite crystallite structure [29]. The graphitiz-
ation degree of WTs is revealed by Raman spectroscopy, as
presented in figure 1(i). Two obvious peaks appear at 1333
and 1588 cm−1, corresponding to the disorder-induced D-
band and in-plane vibrational G-band, respectively. The dis-
order degree of WTs is represented by the intensity ratio
(ID/IG) of the D-band to the G-band [30]. The ID/IG values
of WT-600, WT-800, and WT-1000 are 1.02, 0.97, and 0.77,
respectively, showing a gradually decreasing trend [31]. This
demonstrates that increasing the carbonization temperature
can improve the graphitization degree of POF-derived carbon
materials [32]. In addition, the ID/IG values of WT-600 and
WT-800 are close to 1.0, indicating a high disorder degree and
high defect concentration; therefore, there are abundant act-
ive sites for the K+ storage, resulting in an enhanced capa-
city. The N2 adsorption-desorption isotherms shown in figure
(S4) indicate that BET specific surface areas of POF-derived
carbon materials are 315.878, 290.334, and 1.301 m2 g−1 at
calcination temperatures of 600, 800, and 1000 ◦C, respect-
ively. The decreased specific surface with increasing carboniz-
ation temperature is mainly due to pore shrinkage induced by
high carbonization temperature. XPS was performed to ana-
lyze the surface chemical composition of WTs. The survey
spectra (figure 1(j)) reveal that WTs mainly consist of C and
O, with a small amount of N. As the calcination temperat-
ure increases, the contents of O and N gradually decrease and
tend to be stable, as shown in table (S1). The oxygen reduc-
tion can be attributed to dehydration (the reaction between
C–H and C–OH), decarboxylation (the decomposition of -
COOH), and decarbonylation (the decomposition of C=O)
(figure (S5)) [33]. As for nitrogen reduction, it is mainly
caused by the pyrolysis or decomposition of nitrogen-rich
compounds, releasing N-containing gases such as NH3 and
N2 [34]. The increased C content can increase the active pro-
portion of electrode materials, the decreased O content can
reduce the less reversible storage of K+ by oxygen-containing
functional groups [35, 36], and the presence of N can pro-
duce abundant defects on the surface of the material, providing
storage sites and diffusion channels for K+ and enhancing the
conductivity.

3.2. Electrochemical investigation

The potassium storage performance of WTs as anodes was
investigated by CV tests in half cells with a potential win-
dow of 0.01–3.0 V. Figures 2(a) and (S6) depict the CV curves
of the initial three cycles at a scan of 0.1 mV s−1. A reduc-
tion peak can be observed at about 0.75 V in the first cycle
and disappears in subsequent cycles. The cause of this irre-
versible occurrence is the electrolyte consumption during the
formation of solid-electrolyte interface (SEI) [18, 37, 38]. The
peak at∼0.01 V in the first cycle corresponds to the K+ inser-
tion into the graphitic layers, while the peak at about 0.5 V
corresponds to the K+ detachment from the graphitic layers.
The nearly overlapping second and third CV curves indic-
ate that WTs have good reversibility. This can also be veri-
fied by the well-overlapped GCD profiles at a current dens-
ity of 0.1 A g−1 (figures 2(b) and (S7)). The WT-800 elec-
trode delivers initial discharge and charge capacities of 367.4
and 234.2 mAh g–1, respectively, corresponding to an initial
Coulombic Efficiency (ICE) of 63.7%, which is higher than
that of WT-600 (59.0%) and WT-1000 (60.3%). The relat-
ively low ICEs are attributed to the formation of SEI layers,
but fortunately, CEs increase to ∼95% in the second cycle.
Although the specific surface areas of WT-600 and WT-800
are similar, the abundance of defects and oxygen-containing
functional groups in the WT-600 can cause side reactions with
K+ and lead to irreversible potassium loss, resulting in a more
significant loss of initial capacity during cycling. As for WT-
1000, it has a higher graphitization degree, which increases the
contribution of insertion capacity in the graphite layer, leading
to irreversible insertion of K+, thus affecting ICE. The syner-
gistic effect originated from the structural properties may res-
ult in the higher ICE of WT-800, such as appropriate specific
surface area, defect concentration, graphitization degree and
heteroatom contents [39].

The cycling performance of the WT electrodes was evalu-
ated to determine the effect of carbonization temperature on
the potassium storage performance of the POF-derived carbon
materials. As shown in figure 2(c), theWT-800 electrode deliv-
ers the highest discharge capacity and retains 220.7, 197.6,
and 193.3 mAh g–1 after 10, 50, and 100 cycles at 0.1 A g–1,
respectively. TheWT-600 andWT-1000 electrodes only main-
tain 128.7 mAh g–1 and 128.4 mAh g–1 after 100 cycles at
0.1 A g–1, respectively. The similar cycling tendencies of WT-
600 and WT-1000 are due to the excessive number of defects
or graphite units that make it difficult to achieve rapid elec-
tron/ion migration simultaneously. WT-600 consists mainly of
many disordered structures, which, even though this structure
is favorable for the storage of K+, lacks electron transfer path-
ways and is poorly conductive, and WT-1000 contains a large
number of contiguous pseudo-graphite domains, which indic-
ate an increase in conductivity, but restricted ion diffusion.
WT-800 has an appropriate graphitization/defect ratio, which
leads to good cycling performance. The fast charge/discharge
capability of theWT electrodes was evaluated using a rate per-
formance test (figure 2(e)). WT-800 exhibits higher discharge
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Figure 2. Electrochemical performance of the prepared WT samples. (a) CV curves of the initial three cycles of WT-800; (b) GCD profiles
of the initial three cycles of WT-800 at a current density of 0.1 A g−1; (c) cycling performance of WTs at 0.1 A g−1; (d) GCD profiles of
WT-800 at 0.1 A g−1; (e) rate performance of WTs; (f) GCD profiles of WT-800 at various current densities; (g) cycling performance of
WT-800 at 0.3 A g−1.

capacities at each current density. The average discharge capa-
cities of WT-800 are 212.8, 148.6, 105.1, 81.7, 63.9, and
51.2 mAh g–1 at 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 A g–1. As for
WT-600 andWT-1000, their discharge capacities are only 41.5
and 23.2 mAh g–1 at 1.0 A g–1, respectively. The appropriate
graphitization/defect ratio enables fast electron and ion trans-
port. The GCD profiles of WT-800 at various current densities
preserve similar shapes, further confirming its good rate cap-
ability (figure 2(f)). Cycling performance of WT-800 at a high
current density is presented in figure 2(g). It maintains a dis-
charge capacity of 80.4 mAh g–1 after 300 cycles at 0.3 A g–1.

To investigate the potassium storage kinetics and mech-
anisms of WT-800, CV measurements were carried out at
various scan rates from 0.1 to 1.0 mV s−1. The CV curves
present similar outlines. The redox peak current increases
and the peak region occupies higher voltage areas with the
growth of scan rates, indicating the existence of surface-
controlled behavior (figure 3(a)) [40, 41]. Generally, the cur-
rent (i) and scan rate (v) follow a power law relationship
(equation (1)).

i = avb (1)
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Figure 3. Reaction kinetic investigation. (a) CV curves at various scan rates ranging from 0.1 to 1.0 mV s−1; (b) a functional relationship
between the peak current (i) and scan rate (v); (c) capacitive contribution ratios (blue/white) at different scan rates; (d) EIS spectra of the
WT electrodes after the initial cycle; (e) GITT profile and (f) Dk of WT-800 as a function of discharge processes.

where a and b are variable constants. Furthermore, b can be
determined by plotting log(i) against log(ν) (equation (2)).

log(i)= blog(v)+ log(a). (2)

Different b-value ranges in electrochemical reactions cor-
respond to different kinetic control processes [42, 43]. The
electrochemical reaction is governed by ion diffusion when
the b-value is around 0.5, while capacitive behaviors dominate
when the b-value approaches 1.0 [44, 45]. The electrochem-
ical process appears to be mainly dependent on ion diffusion
because the calculated b-values are 0.63 and 0.73 at the anodic
and the cathodic peaks of WT-800, respectively (figure 3(b)).
To further quantify the contribution of different behaviors, the
current response (i) at a fixed potential (V) is split into capacit-
ive effect (k1v) and ion diffusion process (k2v1/2) (equations (3)
and (4)).

i(V)=k1v + k2v
1/2 (3)

i/v1/2 = k1v
1/2 + k2 (4)

where k1 and k2 are constants. The calculated capacitive con-
tribution of WT-800 is 43% at 0.6 mV s−1 (figure (S8)) and
increases to 48% at 1.0 mV s−1 (figure 3(c)) [46]. Fast elec-
trochemical reaction kinetics is achieved by clear diffusion-
controlled features of WT-800, which could be strongly cor-
related with its amorphous structure, good pore structure, and
appropriate graphitization/defect ratio.

The charge transfer kinetics of WTs was explored using
EIS measurements. Figure 3(d) depicts the Nyquist plots of
the WT electrodes after one cycle. The plots consist of a semi-
circle in the mid- and high-frequency regions (charge transfer
resistance, Rct) and a straight line in the low-frequency region
(Warburg resistance, W0) [47]. The equivalent circuit for EIS
data fitting is shown in figure (S9), and the fitting results are
given in table (S2). WT-800 has the lowest Rct (2506 Ω),
indicating better charge transfer kinetics during discharge pro-
cesses. K+ diffusion coefficient (Dk) was evaluated during the
discharge process using the GITT technique to further elucid-
ate the kinetics of WT-800 (the detailed calculation method of
Dk is shown in figure (S10). A potentiation settling process
with a pulse of 15 min and a relaxation of 1 h at 0.05 A g−1

is depicted in figure 3(e). The calculated Dk values are presen-
ted in figure 3(f). As a consequence of the surface capacitive
behavior in the high voltage region (>0.4 V) and the diffusion
process in the low voltage region (<0.4 V), the Dk of the WT-
800 electrode decays rapidly in the former and slowly in the
latter.
Ex situ Raman results of the WT-800 electrode during the

first cycles are displayed in figures 4(a) and (b). The ID/IG
value increases gradually during the discharge process. The
increase is slow when the voltage is above 0.5 V (from 1.03 to
1.06), while it is fast when the voltage is below 0.5 V. Finally,
the ID/IG value can reach 1.15 at 0.01 V. The increase in
ID/IG is attributed to increased disordered structure produced
by K+ insertion in the carbon layer [48, 49]. This result once
again confirms that the potassium storage in the low-voltage

6
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Figure 4. (a) Ex situ Raman spectra of WT-800 at different charge/discharge states and (b) the corresponding ID/IG values; (c)
WT-800//PTCDA full cells (d) the charge/discharge profiles of WT-800//PTCDA full cells at 0.1 A g−1, (e) optical photograph of a red LED
lighted by the full cell, and (f) the cycling stability of the full cell at 0.1 A g−1.

region is dominated by diffusion. Due to the extraction of K+

between the carbon layers and the desorption of K+ at defect
sites, the ID/IG value gradually decreases during the charging
process [50, 51]. At the end of the charge, the value recovers
to 1.05, which is close to the initial value (1.04), indicating the
structural reversibility of WT-800.

A full cell was assembled employing WT-800 as the anode
and commercial PTCDA as the cathode (figure 4(c)). The
morphological properties and electrochemical performance of
PTCDA are presented in figures (S11) and (S12). Figure 4(d)
shows the GCD profiles of the WT-800//PTCDA full cell.
It can light up a red light-emitting diode (LED, 1.8–2.4 V)
(figure 4(e)). After cycling 20 times at 0.1 A g−1, the discharge
capacity of the full cell keeps∼40 mAh g−1 (figure 4(f)), cor-
responding to an energy density of 60 Wh kg−1 based on the
total mass of the cathode and anode.

4. Conclusions

In this work, we utilized Platanus occidentalis L. fruit, a waste
biomass material, as a precursor to synthesize an environ-
mentally friendly biomass carbon anode for the first time
and investigated its electrochemical performances in PIBs. As
the carbonization temperature increases, the interlayer spa-
cing gradually decreases while the degree of graphitization
intensifies.When the temperature reached 800 ◦C, thematerial
retained the porous structure inherent to the natural Platanus
occidentalis L. fruit and exhibited a suitable interlayer spa-
cing of 0.38 nm. This porous structure provides abundant

active sites, which facilitate the rapid insertion and extrac-
tion of potassium ions, thereby enhancing the charging and
discharging efficiency. Furthermore, it mitigates volume
changes, protects the structure, and prolongs the cycle life.
Based on the above advantages, when the biomass carbon
was used as a PIB anode, it delivered a discharge capa-
city of 193.3 mAh g−1 after 100 cycles at 0.1 A g−1 and
80.4 mAh g−1 after 300 cycles at 0.3 A g−1. Our work not
only opens up a new avenue for resource utilization of waste
Platanus occidentalis L. fruit but also provides a promising
low-cost PIB anode material that can be mass-produced, thus
contributing to the development of green chemistry and sus-
tainable energy storage technologies. In the future, we will
improve the performance through various methods such as
doping, heat treatment, and surface modification.We hope this
work will bring discoveries and provide innovative ideas and
strategies for developing biomass carbon anode materials.
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