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Abstract

!e Policy Research Working Paper Series disseminates the "ndings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the "ndings out quickly, even if the presentations are less than fully polished. !e papers carry the 
names of the authors and should be cited accordingly. !e "ndings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. !ey do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its a#liated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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Google Earth Engine has transformed geospatial analysis 
by providing access to petabytes of satellite imagery and 
geospatial data, coupled with the substantial computational 
power required for in-depth analysis. /is accessibility 
empowers scientists, researchers, and non-experts alike 
to address critical global challenges on an unprecedented 
scale. In recent years, numerous R packages have emerged 
to leverage Google Earth Engine’s functionalities. How-
ever, constructing and managing complex spatio-temporal 
databases for monitoring changes in remotely sensed data 
remains a challenging task that often necessitates advanced 
coding skills. To bridge this gap, geeLite, a novel R package, 

is introduced to facilitate the construction, manage-
ment, and updating of local databases for Google Earth 
Engine-computed geospatial features, which enables users 
to monitor their evolution over time. By storing geospatial 
features in SQLite format—a serverless and self-contained 
database solution requiring no additional setup or admin-
istration—geeLite simpli0es the data collection process. 
Furthermore, it streamlines the conversion of stored data 
into native R formats and provides functions for aggregat-
ing and processing created databases to meet speci0c user 
needs.

/is paper is a product of the Development Research Group, Development Economics. It is part of a larger e1ort by the 
World Bank to provide open access to its research and make a contribution to development policy discussions around the 
world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. /e authors may 
be contacted at bandree@worldbank.org and mkurbucz@worldbank.org.
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• Google Earth Engine o!ers vast satellite imagery and computational
power.

• geeLite is an R package designed to leverage the power of Google
Earth Engine.

• It enables creating, updating, and managing custom databases for real-
time tracking.

• It stores data in SQLite format, enhancing both accessibility and porta-
bility.

• It streamlines the reading, aggregation, and processing of created databases.
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1. Introduction

The ever-growing volume of Earth observation data presents both oppor-
tunities and challenges for scientific inquiry. While vast datasets hold the
potential to revolutionize our understanding of Earth systems, traditional
desktop-based analysis methods often struggle with the computational bur-
den associated with such data (Amani et al., 2020). Google Earth Engine
(GEE) has emerged as a powerful solution, o!ering a cloud-based platform
for e"cient management, analysis, and visualization of geospatial big data
(Gorelick et al., 2017). Its core strength lies in its ability to overcome the
limitations of traditional approaches by providing (Tamiminia et al., 2020):

• Petabytes of public geospatial data: A comprehensive data cata-
log readily accessible through a web interface, including historical and
current satellite imagery, environmental variables, and other geospatial
information.

• High-performance parallel processing: Leveraging Google’s cloud
infrastructure for large-scale analysis, enabling researchers to tackle
complex problems that would be infeasible on personal computers.

• Accessible development environment: A web-based interface and
application programming interfaces (APIs) in JavaScript and Python,
supporting widely-used programming languages.

This combination of features allows scientists to investigate new scientific
questions in a wide range of subjects, particularly those requiring large-scale
spatial and temporal analysis.2 Examples include studies on climate change
(Banerjee et al., 2024; Kazemi Garajeh et al., 2024), environmental degrada-
tion (Andrée et al., 2019), land cover change (Wang et al., 2020; Burgueño
et al., 2023), deforestation (Chen et al., 2021; Brovelli et al., 2020), flood mon-
itoring (Hamidi et al., 2023), wildfire prediction (Tavakkoli Piralilou et al.,
2022), urbanization (Marconcini et al., 2021; Zheng et al., 2021), food se-
curity (Andrée et al., 2020; Wang et al., 2022; Penson et al., 2024), and
sustainable development (Burke et al., 2021), to name a few.

Recognizing the broader potential of GEE within the R user community,
Aybar et al. (2020) developed the rgee R package. Acting as a bridge,
rgee seamlessly integrates GEE with R’s extensive ecosystem of geospatial

2For a comprehensive review of current and potential future GEE research trends, refer
to Velastegui-Montoya et al. (2023).

2



packages, making GEE’s capabilities accessible to a wider user base. This
integration is facilitated by the reticulate package (Ushey et al., 2024),
allowing rgee to interact with GEE’s o"cial Python API and utilize all its
modules, classes, and functions.

In recent years, numerous R packages have been published to extend
the functionality of rgee and improve its user experience. Among these,
tidyrgee (Arno and Erickson, 2022) aids users in filtering, joining, and
summarizing GEE image collections, rgee2 (Kong, 2022) expands upon the
original package with additional functions, and rgeeExtra (Aybar et al.,
2023) simplifies its syntax. Other packages, like SAEplus (Team, 2022) and
LandsatTS (Berner et al., 2023), facilitate the data extraction and process-
ing from GEE or provide geospatial decision-making tools, such as RePlant
alpha (Morales et al., 2023).

While available third-party libraries improve the accessibility of GEE’s
functionalities, constructing and managing up-to-date temporal geospatial
databases remains a complex time-consuming task that requires advanced
coding knowledge. This poses a significant barrier for users interested in mon-
itoring applications but lacking such expertise. To address this gap, our pa-
per introduces geeLite, a novel R package that enables users to easily build,
maintain, and keep up-to-date local temporal databases of GEE-computed
geospatial features. geeLite o!ers a flexible yet user-friendly data collection
procedure and stores the gathered features in SQLite format—a serverless,
self-contained solution that eliminates the need for additional setup or ad-
ministration.3 Furthermore, it streamlines the conversion of stored data into
native R formats and provides functions for aggregating and processing cre-
ated databases to meet specific user needs. The metadata for the new package
is detailed in Table 1.

3More information can be found at: https://sqlite.org/features.html (retrieved:
February 2, 2025).
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Table 1: Metadata of the geeLite package

Metadata Description Metadata Contents

Current code version: 0.1.0
Permanent link: https://github.com/mtkurbucz/geeLite

Legal code license: Mozilla Public License Version 2.0
Code versioning system: Git
Software code languages: R
System requirements: OS agnostic (Linux, macOS, MS Windows). R 4.3.2 or later.
Required R packages: cli, crayon, data.table, dplyr, geojsonio, googledrive, h3jsr, jsonlite,

knitr, lubridate, magrittr, optparse, progress, purrr, reshape2,
reticulate, rgee, RSQLite, sf, stats, stringr, tidyr, tidyrgee, utils,
rnaturalearth, rnaturalearthdata.

Suggested R packages: leaflet, rmarkdown, testthat, withr.
External dependencies: A virtual Conda environment with the following Python packages:

earthengine-api, ee_extra, and numpy. The current version of the geeLite

package (0.1.0) specifically requires version 0.1.370 of earthengine-api.
User manual: https://github.com/mtkurbucz/geeLite/blob/master/README.md

Support email: mkurbucz@worldbank.org

Note: The underlined R packages are not directly used by the geeLite package; however, they are
essential for the database construction process. During the setup of geeLite via its gee_install function,
the availability of these packages is checked, and they are automatically installed if not already available.

The rest of this paper is organized as follows. Section 2 outlines the instal-
lation steps, workflow, structure, and unit testing of the geeLite package.
Section 3 presents an example of the package’s application. Finally, Section 4
discusses the impact of the software and provides conclusions.

2. Software Description

2.1. Installation
The geeLite package can be installed from GitHub (Kurbucz and Andrée,
2024) using the devtools R package (Wickham et al., 2022). To interact with
GEE, geeLite utilizes the rgee R package, which requires a virtual Conda
environment containing the earthengine-api, ee_extra, and numpy Python
packages. After installing geeLite, users need to set up this environment
using the gee_install function as follows:

1 # I n s t a l l g e eL i t e package : [R code ]
2 # i n s t a l l . packages (" dev too l s ")
3 d e v t o o l s : : i n s t a l l_ g i t h ub ( "mtkurbucz/ geeL i t e " )
4 g e e L i t e : : g e e_ i n s t a l l ( )

Note that the current version of the geeLite package (0.1.0) is specifi-
cally compatible with earthengine-api version 0.1.370. The gee_install

function ensures the installation of the correct version of this package and
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also installs the geojsonio and rnaturalearthdata R packages if they are
missing.

2.2. Workflow
The workflow of the geeLite package consists of two primary steps. First,
the configuration step (a) allows users to create and modify a configuration
file that specifies the dimensions, variables, and spatial aggregation methods
for the desired database. Subsequently, this file guides the second step, data
collection (b), which begins with user authentication and then e"ciently
builds a new database or updates an existing one according to the user’s
specifications. Additionally, the package provides basic tools for managing
the resulting database within an R session (c) and o!ers utilities to streamline
the automation of database updates (d). The workflow and folder structure
of the generated database are illustrated in Figure 1 and detailed in the
following points.

Figure 1: Workflow of and the folder structure of the generated database

Note: The geeLite package operates through two primary steps: (a) configuration, where users define
the parameters for the database to be generated, and (b) data collection, which begins with user authen-
tication. Upon successful authentication, the package collects and preprocesses data from GEE, tailored
to the user’s specifications, to build or update a custom SQLite database.

a) Configuration

A configuration file, created using the set_config function, is stored locally
in JSON format. This file allows users to define regions of interest (regions)
for zonal statistics calculations at both the administrative level 0 (countries)
and administrative level 1 (subnational states). These regions are identified
using ISO 3166-2 codes, which consist of two letters for countries and addi-
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tional characters for states.4 Users can select multiple data sources (source)
by specifying one or more GEE datasets, along with their bands of interest
and the statistical indicators for spatial aggregation.

The configuration file also includes settings for the resolution of the H3
grid system (resol),5 the start date for data collection (start), and a scaling
parameter to adjust image quality before processing (scale). Additionally,
to avoid interruptions caused by exceeding GEE’s limit on concurrent zonal
statistics calculations, users can set a maximum number of calculations to be
performed simultaneously in the configuration file (limit), with the default
limit set to 10,000.

To simplify the configuration process for data collection, the get_state

function allows users to view the complete list of available region codes, while
the get_config function displays the current contents of the configuration
file. Users can also modify the selected regions (regions), data sources
(source), and the limit on concurrent zonal statistics calculations (limit)
either manually (outside the R session) or using the modify_config function.
However, modifying other configuration parameters requires rebuilding the
database based on a new configuration file.

b) Data Collection (with Authentication)

Data collection involves user authentication, as well as the building and up-
dating of the database using the run_geelite function.

Authentication

Building on the authentication protocol of the rgee package, the run_geelite
function initiates the authentication process by directing users to a web
browser, where they are prompted to grant permission to link their Google
accounts with GEE. Users are then instructed to copy the resulting token
into the provided input field. Upon successful authentication, a directory is
created under the path →/.config/earthengine/, named according to the
specified username. This directory securely stores all credentials associated

4Shapefiles for the selected regions are retrieved using the rnaturalearth package
(Massicotte and South, 2024).

5
geeLite applies Uber’s H3 grid system (Uber, 2021) using the h3jsr package (O’Brien,

2023) to divide user-defined regions into hexagonal bins, from which zonal statistics are
calculated.
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with the user’s Google account. If no username is provided, the credentials
are stored directly in the →/.config/earthengine/ folder. As long as the
credentials remain valid, geeLite will automatically use them to initialize
the selected Google account.

In addition to the standard authentication method, users have the op-
tion to authenticate using Google Cloud service account credentials. This
method allows them to create a service account via the Google Cloud Con-
sole and download a corresponding JSON key file. By configuring the
GOOGLE_APPLICATION_CREDENTIALS environment variable to reference the
downloaded JSON key file, users can bypass the interactive, browser-based
authentication process.6 Once the environment variable is set, geeLite will
automatically use the service account credentials for authentication. This
method is particularly useful for automated workflows and production envi-
ronments where graphical interfaces may not be available.

Database Building and Updating

After user authentication, the database-building operation gathers GEE-
computed geospatial features based on the configuration file and stores them
in SQLite format (geelite.db).7 Depending on the value of the mode param-
eter, the extraction process operates in either "local" mode—processing
data in smaller chunks directly within R—or "drive" mode, which leverages
Google Drive for exporting larger datasets. The resulting database contains
information about H3 bins (referred to as grid) and collected datasets, orga-
nized into separate tables named according to their associated GEE datasets.
The grid table includes an Open Geospatial Consortium (OGC) feature iden-
tifier (ogc_fid), an H3 index (id), a corresponding region code (iso), and
a geometry shape (geometry). Other tables, containing zonal statistics, are
structured in a wide format. These tables include the H3 index (id) of the
associated bins, the band name (band), the statistical indicator employed
(zonal_stat), and the zonal statistics computed on specific dates (format-
ted as YYYY_MM_DD) when the dataset was updated.

In addition to the configuration file and SQLite database, the package
generates two supplementary files: state.json and log.txt. These files respec-

6To set this environment variable, use the following R code: Sys.setenv(

GOOGLE_APPLICATION_CREDENTIALS = "path/to/service-account-key.json").
7SQLite objects are managed by the RSQLite package (Müller et al., 2024).
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tively record the current state of the database and log session types (build
or update) along with their timestamps. To facilitate dataset management
and scheduled updates, the geeLite package organizes a cli folder alongside
the database. This folder contains an R script for each main function of the
package—except for set_cli and read_db—allowing them to be executed
from the Command Line Interface (CLI). To run these functions via the
CLI, use the following structure: Rscript [cli/function] --parameter

[parameter]. These scripts automatically use the path to the root directory
of the generated database as an input parameter, eliminating the need for
manual definition.8

Once the database is built, it can be updated (rebuild = FALSE) or re-
built (rebuild = TRUE). For updates, the process begins with a comparison
of the configuration and state files. If the configuration file has been mod-
ified since the last data collection procedure, the database will be adjusted
and updated accordingly. A successful update overwrites the state file and
modifies the log file. In the case of rebuilding, the data collection is based
solely on the configuration file, and it overwrites the existing database and
its supplementary files.

Note that while some parameters of the configuration file (regions,
source, and limit) can be modified manually, the state file is vulner-

able to any manual changes. Manual modification or deletion of this file
can corrupt future updates of the database and necessitate a rebuild.

c) Data management in R

The geeLite package provides two main functions to simplify the analysis of
the generated SQLite database: fetch_vars and read_db. The fetch_vars
function allows users to retrieve detailed information about the available vari-
ables in the database. This information includes variable names—comprising
the database, band, and statistical indicator names separated by slashes—
along with variable IDs, source details, start and end dates, and average
frequencies in days. The read_db function is designed to read, aggregate,
and process data from the database according to user-defined parameters.

When executing read_db, the selected variables are first converted to

8For more detailed information on using these CLI scripts, please refer to Section 3.1
or visit the package’s GitHub repository (Kurbucz and Andrée, 2024).
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a daily frequency using a preprocessing function (prep_fun)—such as the
default linear interpolation. The data is then aggregated at a specified fre-
quency (freq) using one or more aggregation functions (aggr_funs); by
default, monthly mean values are calculated. Additionally, read_db provides
the option to apply further transformations through post-processing func-
tions (postp_funs), which can be especially useful for feature extraction in
machine learning applications.

To enhance flexibility, geeLite allows users to fully customize both the
aggregation and post-processing functions. This can be achieved not only by
adjusting default settings, but also by applying specific functions to di!er-
ent variables. Furthermore, geeLite includes an additional main function,
init_postp, which provides the option to define post-processing functions
externally, in separate files, thereby improving the transparency of the trans-
formation process. This function creates a postp folder in the root directory of
the generated database, containing an editable R script (functions.R) where
users can define custom post-processing functions, along with a JSON file
(structure.json) that specifies which functions to apply to which variables
during post-processing.

After the database is imported, R’s full range of capabilities for process-
ing, modeling, and plotting the data can be utilized.

d) Automation

The geeLite package allows users to execute its functions via the command-
line interface (CLI). Each database created with geeLite includes a cli folder
containing CLI-compatible versions of all functions, except for set_cli and
read_db. Alternatively, these functions can be generated directly using the
set_cli function. This feature is designed to support automatic database
updates through job-scheduling utilities, such as Linux Crontab (see, e.g.,
Bradley, 2016).

2.3. Structure
The eleven main functions of the geeLite package, along with their param-
eters, are detailed in Table 2.

9



Table 2: Description of main functions and parameters

Functions
Name Parameters File Description

gee_install 1 gee_install.R Creates a Conda environment and installs required dependencies.
set_config 2-9 set_config.R Creates the configuration file.
run_geelite 1-2, 9-12 run_geelite.R Collects and stores data, and updates the state and log files.

modify_config 2, 9, 13, 14 modify_config.R Modifies the configuration file.
set_cli 2, 9 set_cli.R Creates scripts to make main functions callable through the CLI.

get_config 2 get_json.R Prints the configuration file.
get_state 2 get_json.R Prints the state file.

fetch_regions 15 fetch_regions.R Displays ISO 3166-2 region codes.
fetch_vars 2, 16 access_db.R Displays information on the available variables in the SQLite

database.
read_db 2, 17-21 access_db.R Reads, aggregates, and processes data from the SQLite database.

init_postp 2, 9 access_db.R Initializes the file structure for external post-processing.

Parameters
ID Name Type Description

1 conda character Name of the virtual Conda environment.
2 path character Path to the root directory for the generated database.
3 regions character ISO 3166-2 codes of regions of interest, with two letters for coun-

tries and extra characters for subdivisions like states.
4 source list Detailed description of the GEE datasets of interest. This is a

nested list with three levels: names, bands, and zonal_stats.a
4.1 names list Names of the GEE datasets to be used (e.g., "MODIS/061/MOD13A1").

4.1.1 bands list Specific data bands from the datasets (e.g., "NDVI").
4.1.1.1 zonal_stats character Type of spatial statistics to be computed for each region (options:

"mean", "sum", "median", "min", "max", "sd").
5 resol integer Spatial resolution of the H3 grid system.b
6 scale integer The nominal resolution (in meters) for processing the image pro-

jection. If left as NULL (the default), a resolution of 1000 is used.c
7 start date Starting date for data collection (default: "2020-01-01").
8 limit integer Controls batch size for concurrent zonal statistics calculations.

In local mode, it is →limit/number of dates↑. In drive mode, it
sets the max H3 bins per export. Default: 10000.

9 verbose logical Displays messages (default: TRUE).
10 rebuild logical If TRUE, overwrites the database and associated files based on the

configuration file (default: FALSE).
11 user character Generates a folder in ↓/.config/earthengine/ to store credentials

for a specific Google identity. Default is the root directory: NULL.
12 mode character Specifies the mode of data extraction. Acceptable values are

"local" and "drive". In "local" mode, data is extracted in smaller
chunks directly within R, which is suitable for modest data vol-
umes. In "drive" mode, data is exported via Google Drive, en-
abling the handling of larger datasets that require parallel pro-
cessing or higher export limits. Defaults to "local".

13 keys list Paths to the values designated for replacement.d

14 new_values list New values to replace the original entries at the specified paths.d
15 admin_lvl integer Specifies the administrative level: 0 for country, 1 for state, or

NULL for all regions (default: 0).
16 format character Specifies the output format. Options include "data.frame" (de-

fault), "markdown", "latex", "html", "pipe" (Pandoc pipe tables),
"simple" (Pandoc simple tables), or "rst".

17 vars character Names or IDs of the selected variables. Use the fetch_vars func-
tion to list available variables (default: "all").

18 freq character Output frequency. Options are "day", "week", "month" (default),
"bimonth", "quarter", "season", "halfyear", "year", or NULL (disable
aggregation).

19 prep_fun function A pre-processing function for time series data, applied before ag-
gregation. For daily frequency, missing values are handled using
the specified method. By default, if set to NULL, linear interpola-
tion is applied.

20 aggr_funs function
or list

A function or list of functions to aggregate data at the specified
frequency (freq). The default is mean: function(x) mean(x, na.rm

= TRUE).e
21 postp_funs function,

list, or
character

A function or list of functions applied to the time series data
of a single bin after aggregation. The default is NULL, indicat-
ing no post-processing.e Alternatively, set to "external" to apply
post-processing from external files initialized with the init_postp

function. See Appendix A for more details.

Note: Parameters marked with underlines are considered optional. (Referenced pages retrieved on February 2, 2025.)
aThe complete data catalog of GEE is accessible at: https://developers.google.com/earth-engine/datasets/catalog.
bAllowable values and related dimensions can be found at: https://h3geo.org/docs/core-library/restable/.
cMore information can be found at: https://developers.google.com/earth-engine/guides/scale.
dFor example, use keys = list("regions", c("source", "MODIS/061/MOD13A2", "NDVI")) and new_values = list(c("SO", "KE"),

c("mean", "max")) to update the regions to Somalia and Kenya and modify the zonal_stats for "NDVI" to "mean" and "max".
eBoth the aggr_funs and postp_funs parameters allow users to apply di!erent functions to di!erent variables. To do this,
users can define a nested list, such as aggr_funs <- list("default" = FUN_1, "Var_1" = list(FUN_1, FUN_2)), where the default
function is applied to any variable not explicitly specified. In postp_funs, the functions defined in aggr_funs can be refer-
enced by their index, corresponding to the order in which they were listed. For example, postp_funs <- list("default" =

NULL, "Var_1/2" = FUN_3) applies FUN_3 as a post-processing function after the data is aggregated using FUN_2.
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2.4. Unit Test
The geeLite package includes a test file generated using the testthat pack-
age (Wickham, 2011). This file automatically tests nearly all functions pro-
vided by geeLite, with the exception of set_cli, fetch_regions, and
init_postp. The tests cover a range of tasks, including configuration gener-
ation, database building, database reading, configuration modification, and
database updates.

If the user’s Google account is not authenticated through a regular session
of the geeLite package before running the tests, they can authenticate man-
ually using the internal function geeLite:::set_depend(conda = "rgee",

user = NULL, drive = TRUE, verbose = TRUE).9

3. Illustrative Example

This section presents a practical example of the typical workflow for the
geeLite package, demonstrating key steps such as configuration, database
creation, updates, data retrieval, and processing. The example generates
an up-to-date database containing the mean and standard deviation zonal
statistics for the Normalized Di!erence Vegetation Index (NDVI) in Somalia
and the Republic of Yemen. These statistics are calculated from January 1,
2010, using a grid system with a resolution level of three, which corresponds
to areas of approximately 12, 393 square kilometers.10

3.1. Related Workflow

a) Configuration

First, the fetch_regions function is used to identify the ISO 3166-2 country
codes for Somalia and Yemen. These codes are then used to configure the
data generation process as follows:

9The parameters are described in detail in Table 2.
10NDVI data are sourced from the Moderate Resolution Imaging Spectroradiometer

(MODIS) instrument. The dataset’s profile is available at: https://developers.googl

e.com/earth-engine/datasets/catalog/MODIS_061_MOD13A2 (retrieved: February 2,
2025).
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1 # Set t ing the c on f i g f i l e : [R code ]
2 s e t_con f i g ( path = "path/ to /db" ,
3 r e g i on s = c ( "SO" , "YE" ) ,
4 source = l i s t (
5 "MODIS/061/MOD13A2" = l i s t (
6 "NDVI" = c ( "mean" , "min" )
7 )
8 ) ,
9 r e s o l = 3 ,

10 s t a r t = "2010−01−01" )

As a result, the configuration file (config/config.json) is generated at the
specified target path.

Alternatively, the data generation process can be configured via the CLI.
First, the CLI versions of the geeLite functions are set up using the set_cli
function. Then, the data generation process is configured through the CLI
as follows:11

1 # Set t ing the CLI f i l e s : [ Bash code ]
2 Rscr ipt . / g e e L i t e / c l i / s e t_ c l i . R - - path "path/ to /db"
3
4 # Change d i r e c t o r y :
5 cd path/ to /db
6
7 # Set t ing the c on f i g u r a t i on f i l e :
8 Rscr ipt c l i / s e t_con f i g .R - - r e g i on s "SO YE" - - source " l i s t ( ’MODIS/061/

MOD13A2’ = l i s t ( ’NDVI’ = c ( ’mean ’ , ’min ’ ) ) ) " - - r e s o l 3 - - s t a r t "
2010 - 01 - 01"

b) Data Collection

Once the configuration file is defined, the current database and its supple-
mentary files (state/state.json, log/log.txt, along with the CLI versions of the
functions) can be generated using the run_geelite function:

1 # Bui ld ing or updating the database : [R code ]
2 run_gee l i t e ( path = "path/ to /db" )

Re-running the run_geelite function updates the dataset. Both the
building and updating processes can be easily handled through the corre-
sponding CLI script, as shown below:12

11The CLI versions of the functions automatically load all necessary dependencies.
12Using the CLI script is particularly useful for scheduling regular database updates.
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1 # Bui ld ing or updating the database : [ Bash code ]
2 Rscr ipt c l i / r un_ge e l i t e .R

c) Configuration Modification

To update regions of interest, data sources, or the limit parameter, modify
the configuration file using the modify_config function, then execute the
run_geelite function to refresh the database. In the configuration, mean
(mean) and minimum (min) statistics were initially selected for zonal statis-
tics calculations. To tailor the database for the original task, the following
code replaces the minimum statistic with the standard deviation (sd) in the
configuration file and updates the database accordingly:

1 # Modifying the c on f i g u r a t i on f i l e : [R code ]
2 modify_config ( path = "path/ to /db" ,
3 keys = l i s t ( c ( " source " , "MODIS/061/MOD13A2" , "NDVI" ) )
4 new_va lue s = l i s t ( c ( "mean" , " sd" ) ) )
5
6 # Updating the database :
7 run_gee l i t e ( path = "path/ to /db" )

Alternatively, the same modifications to the configuration file and database
can be made via the CLI using the following code:

1 # Modifying the c on f i g u r a t i on f i l e : [ Bash code ]
2 Rscr ipt c l i /mod i fy_con f ig .R - - keys " l i s t ( c ( ’ source ’ , ’MODIS/061/

MOD13A2’ , ’NDVI’ ) ) " - - new_va lues " l i s t ( c ( ’mean ’ , ’ sd ’ ) ) "
3
4 # Updating the database :
5 Rscr ipt c l i / r un_ge e l i t e .R

After the modifications, the generated SQLite database occupies 1.37
MB of disk space. Note that increasing the spatial resolution, number of
indicators, aggregation methods, or geographic coverage will lead to greater
disk usage. For example, raising the hexagonal resolution from size 3 to
size 4 in the original configuration (reducing the bin size from approximately
12, 393 to 1, 770 square kilometers) would increase the file size to 9.33 MB.
Despite the higher resolution, the file size would still be manageable, even
for multiple countries.

3.2. Reading and Processing the Database
The generated SQLite database (data/geelite.db) contains two tables: grid,
which stores information about the H3 bins, and MODIS/061/MOD13A2, which
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holds the collected zonal statistics.13 To read, aggregate, and pre-process the
database in R, the read_db function from the geeLite package can be used.
In this example, the dataset was converted to a daily frequency using the
default pre-processing method, which applies linear interpolation:

1 # Reading SQLite t ab l e s : [R code ]
2 db <− read_db ( path = "path/ to /db" , f r e q = "day" )

This code snippet generates a list containing three elements: a
simple features (sf) object representing the grid table, and two data
frames corresponding to the variables MODIS/061/MOD13A2/NDVI/mean and
MODIS/061/MOD13A2/NDVI/sd.

3.3. Visualizing the Database
After joining these tables using the H3 index (id), the spatiotemporal char-
acteristics of the generated database are illustrated in Figure 2.14

13The contents of the SQLite database can be reviewed using the fetch_vars function.
14A code example for visualizing the mean NDVI values from the generated database is

provided in Appendix B. To highlight the capabilities of the geeLite package, Figure A1
in Appendix C presents examples of higher-resolution H3 grid systems applied to NDVI
data from Yemen.

14



Figure 2: Unscaled mean NDVI data retrieved from GEE (scale conversion factor: 0.00001)

Note: The generated database consists of forty-two H3 bins per country, each covering approximately
12, 393 square kilometers. It tracks NDVI time series data across these bins, with 5, 306 consecutive values
derived from linear interpolation of the original 335 measurements collected between January 1, 2010, and
July 11, 2024.

As shown in Figure 2, forty-two H3 bins were defined for both countries,
each covering approximately 12, 393 square kilometers. The number of time
series generated for each bin corresponds to the number of variables collected.
The original dataset, collected between January 1, 2010, and July 11, 2024,
comprised 335 measurements. After converting the data to a daily frequency
using linear interpolation, the number of measurements increased to 5, 306.

3.4. Automation
To automate the updating of the generated database, Linux Crontab and the
CLI version of the run_geelite function are used. For a monthly schedule,
the following script can be utilized:15

1 # Monthly update with Crontab : [ Bash code ]
2 (crontab -l 2>/dev/null; echo "0 0 1 * * Rscript cli/run_geelite.R") | crontab -

15For more information about Linux Crontab, see (Bradley, 2016).
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4. Impacts and Conclusions

The development and release of geeLite represent a significant advancement
in geospatial analysis, providing a user-friendly tool that simplifies the col-
lection, management, aggregation, and processing of GEE data. By bridging
the gap between GEE’s powerful data capabilities and R users with varying
levels of technical expertise, geeLite o!ers several key benefits:

• Facilitating real-time geospatial monitoring and early warning

systems: Users can maintain continuously updated local geospatial
databases, critical for real-time applications such as disaster response,
environmental monitoring, and crisis management. Access to dynamic
spatial data supports the development of early warning systems in these
fields.

• Improving research e!ciency and data accessibility: geeLite

reduces the need for extensive coding, simplifying the collection, ag-
gregation, and management of GEE data. Its intuitive design enables
researchers to quickly gather and process large geospatial datasets, sav-
ing time and e!ort across multiple disciplines.

• Enhancing reproducibility and collaboration: With SQLite-
based storage, databases are portable and self-contained, making it easy
to share data and collaborate among research teams. This feature pro-
motes reproducibility, allowing others to easily replicate experiments
and validate findings.

• Supporting long-term geospatial studies: Designed for longitudi-
nal research, geeLite excels at tracking geospatial features over time
in studies such as climate change, land-use patterns, and biodiversity
monitoring. Its ability to manage and update local databases ensures
consistency for long-term analysis.

In conclusion, geeLite marks a significant step forward in making geospa-
tial analysis more accessible, e"cient, and reproducible. As the scale and
complexity of Earth observation data continue to grow, tools like geeLite

will be essential in transforming raw data into actionable insights that sup-
port informed decision-making and impactful research.

Appendix A. Post-Processing with External Files

The init_postp function generates a postp folder in the root directory of the
database. This folder includes an editable R script (functions.R), where users
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can define custom post-processing functions, and a JSON file (structure.json)
that outlines which functions should be applied to each variable during post-
processing. When the postp_funs parameter in the read_db function is set
to "external", the post-processing logic specified in these external files is
applied.

To illustrate the proper structure of these files, consider an example where
the "MODIS/061/MOD13A2/NDVI/mean" variable is binarized based on its up-
per and lower deciles, while all other variables remain unchanged. First, de-
fine the functions FUN_1 <- function(x) as.numeric(x < quantile(x,

0.1)) and FUN_2 <- function(x) as.numeric(x > quantile(x, 0.9))

in the functions.R script. Then, to apply these functions to the mean NDVI
variable, the structure.json file should be configured as follows:16

1 { [JSON file]

2 " d e f au l t " : nu l l ,
3 "MODIS/061/MOD13A2/NDVI/mean" : [
4 [ "FUN_1" , "FUN_2" ]
5 ]
6 }

Appendix B. Code Example for Data Visualization

Similar to Figure 2, the mean NDVI values from the database generated in
Section 3 can be visualized using the following R script:

16Note that, unlike in the R script, the absence of post-processing is denoted by lowercase
null in the JSON file.
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1 # I n s t a l l and load r equ i r ed packages : [R code ]
2 # i n s t a l l . packages (" s f ")
3 # i n s t a l l . packages (" dplyr ")
4 # i n s t a l l . packages (" l e a f l e t ")
5 l i b r a r y ( s f )
6 l i b r a r y ( dplyr )
7 l i b r a r y ( l e a f l e t )
8
9 # Read database and merge g r id with MODIS data

10 db <− read_db ( path = "path/ to /db" )
11 s f <− merge (db$grid , db$‘MODIS/061/MOD13A2/NDVI/mean‘ , by = " id " )
12
13 # Se l e c t the date to v i s u a l i z e
14 ndvi <− s f $ ‘2020−01−01 ‘
15
16 # Create a c o l o r p a l e t t e func t i on based on the va lue s
17 c o l o r_pal <− colorNumeric (palette = " v i r i d i s " , domain = ndvi )
18
19 # Create the l e a f l e t map
20 leaflet(data = s f ) %>%
21 addTi les ( ) %>% # Add base t i l e s
22 addPolygons (
23 f i l l C o l o r = co l o r_pal ( ndvi ) , # F i l l c o l o r
24 c o l o r = "#BDBDC3" , # Border c o l o r
25 weight = 1 , # Border weight
26 opac i ty = 1 , # Border opac i ty
27 f i l l O p a c i t y = 0 .9 # F i l l opac i ty
28 ) %>%
29 addScaleBar ( p o s i t i o n = " bot tomle f t " ) %>% # Add s c a l e bar
30 addLegend (
31 pal = co l o r_pal , # Color p a l e t t e
32 va lue s = ndvi , # Data va lue s to map
33 t i t l e = "Mean NDVI" , # Legend t i t l e
34 po s i t i o n = "bottomright " # Legend po s i t i o n
35 )
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Appendix C. High-Resolution H3 Grid

Figure A1: Examples of high-resolution H3 grid: unscaled mean NDVI data for Yemen
retrieved from GEE (scale conversion factor: 0.00001)

Note: This figure demonstrates the capabilities of the geeLite package by collecting NDVI data for
Yemen using high-resolution H3 grid systems. It illustrates two resolution levels: resol = 5 and resol =

6, which correspond to grid cells with approximate areas of 252 square kilometers and 36 square kilometers,
respectively.
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