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Introduction

Abstract

Terrestrial remote sensing approaches, such as acoustic monitoring, deliver
finely resolved and reliable biodiversity data. However, the scalability of surveys
is often limited by the effort, time and cost needed to deploy, maintain and
retrieve sensors. Autonomous unmanned aerial vehicles (UAVs, or drones) are
emerging as a promising tool for fully autonomous data collection, but there is
considerable scope for their further use in ecology. In this study, we explored
whether a novel approach to UAV-based acoustic monitoring could detect bio-
diversity patterns across a varied tropical landscape in Costa Rica. We simu-
lated surveys of UAVs employing intermittent locomotion-based sampling
strategies on an existing dataset of 26,411 h of audio recorded from 341 static
sites, with automated detections of 19 bird species (n=1819) and spider mon-
key (n=2977) vocalizations. We varied the number of UAVs deployed in a sin-
gle survey (sampling intensity) and whether the UAVs move between sites
randomly, in a pre-determined route to minimize travel time, or by adaptively
responding to real-time detections (sampling strategy), and measured the
impact on downstream ecological analyses. We found that avian species detec-
tions and spider monkey occupancy were not impacted by sampling strategy,
but that sampling intensity had a strong influence on downstream metrics.
Whilst our simulated UAV surveys were effective in capturing broad biodiver-
sity trends, such as spider monkey occupancy and avian habitat associations,
they were less suited for exhaustive species inventories, with rare species often
missed at low sampling intensities. As autonomous UAV systems and acoustic
Al analyses become more reliable and accessible, our study shows that combin-
ing these technologies could deliver valuable biodiversity data at scale.

proven particularly effective for surveying vocal species
(Gibb et al., 2018; Ross et al., 2023) and has demon-

Terrestrial remote sensing approaches provide numerous
advantages for biodiversity monitoring over traditional
surveys, offering a non-invasive and scalable way to study
ecosystems (Allan et al, 2018; Berger-Tal & Lahoz-
Monfort, 2018; Lahoz-Monfort & Magrath, 2021; Ste-
phenson, 2020). Among these, acoustic monitoring has

strated great potential to contribute to biodiversity moni-
toring and policy compliance efforts (Stowell &
Sueur, 2020; Sugai et al., 2019). Acoustic data can also be
analysed rapidly using machine learning, either post hoc
(Lawson et al., 2023; Sethi et al., 2024) or in real-time
(Sethi et al., 2018; Wigele et al, 2022). However,
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deploying acoustic sensors is a time-consuming and costly
process, and survey locations can be limited by accessibil-
ity or safety concerns (Sethi et al., 2022).

Unmanned aerial vehicles (UAVs), or drones, are
emerging as a transformative technology for ecological
research (Christie et al., 2016; Millner et al., 2023; Robin-
son et al., 2022). By using sensors attached to UAVs, these
devices can improve scalability and reduce the logistical
constraints associated with manually deploying sensors.
Using aerial imagery from on-board cameras is an
established method for ecological studies (Duporge et al.,
2025; Rahman et al., 2025; Schofield et al.,, 2017), but
UAV-based acoustic surveys are less common due to noise
interference. Early studies have explored suspending acous-
tic recording devices from UAVs that record during flight
(Fischer et al., 2023; Michez et al., 2021; Wang et al., 2023;
Wilson et al., 2017), using custom classification algorithms
to detect animal vocalizations against the backdrop of
engine noise (Fu et al., 2018; Wang et al., 2023). However,
the noise generated by drone motors can impact detection
by disturbing wildlife (Kuhlmann et al., 2022; McEvoy
et al., 2016; Wilson et al., 2017), and training novel detec-
tion algorithms demands more data, effort and expertise
than using established vocalization detection models (e.g.
BirdNET; Kahl et al., 2021). An alternative sampling
approach is to deploy a swarm of robotic UAVs with
on-board sensors and processors that land during record-
ing periods and move between sampling sites on a defined
schedule. This intermittent mobile sampling approach
could mitigate noise-related disturbance and more closely
reflects survey designs of passive acoustic monitoring sur-
veys (PAM), where static sensors are preferred over tran-
sect surveys for estimating animal activity or density
(Browning et al, 2017; Lucas et al, 2015; Marques
et al., 2013; Newson et al., 2017).

Previous UAV-based acoustic surveys have used UAVs
that are manually piloted. However, autonomous UAVs,
which can be deployed in coordinated ‘swarms’ and navi-
gate themselves to avoid obstacles, could reduce barriers
to access, enabling finer resolution and larger scale biodi-
versity data collection (Pringle et al.,, 2025). UAV proto-
types have been developed to overcome challenges to
automated acoustic surveys, such as perching in trees
(Lan et al,, 2024) and navigating UAV swarms through
dense forest environments (Romanello et al., 2024; Zhou
et al., 2022). These advances could reduce disturbance of
wildlife and the environment by avoiding the need for
any people to enter the survey area. An autonomous
aquatic vehicle has been designed for ecological sensing
and performed well (Lawson et al., 2024), but it remains
to be tested if an autonomous swarm of UAVs can deliver
reliable ecological data when compared with data from
manually deployed sensors.
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The deployment of autonomous UAVs for ecological
surveys represents an opportunity to test novel survey
designs that would not be possible with manual sensor
deployment. UAV systems can be programmed with vehi-
cle routing algorithms which optimize for a specific
parameter, for example reducing the number of recharges
required (Guerber et al., 2021; Gunal, 2019; Macrina
et al., 2020; Phalapanyakoon & Siripongwutikorn, 2021).
Additionally, adaptive systems can respond to real-time
input from sensors (Dwivedi et al., 2023; Hwang
et al., 2019), a method successfully employed by underwa-
ter autonomous vehicles in tasks such as mapping the
extent of underwater oil spills or locating phytoplankton
blooms (Das et al., 2015; Jakuba et al., 2011). In biodiver-
sity monitoring, adaptive sampling strategies have been
used to detect environmental gradients or improve occu-
pancy model accuracy (Flint et al, 2024; Henrys
et al., 2024; Pacifici et al., 2016), but these occur over sev-
eral survey periods and do not respond to real-time ani-
mal detections. There is little understanding of how
real-time adaptive sampling might impact the structure of
ecological data, and if this could produce robust measures
of biodiversity compared with more established survey
techniques.

Designing a UAV-based acoustic survey presents
unique limitations, particularly regarding sampling com-
pleteness. Standard PAM surveys typically deploy one
recording device at each sampling site, and all devices
record simultaneously over extended periods. In contrast,
intermittent sampling by a swarm of UAVs means that
the recording duration at any given site is restricted. As
some animal vocalizations are temporally dependent,
sampling at the same time of day across independent sites
is important for robust comparisons of species detections
across sites. It remains unclear whether the impact of
incomplete sampling on key ecological indicators can be
offset by sampling strategy. Addressing these gaps is criti-
cal to understanding the trade-offs associated with
UAV-based acoustic monitoring and to help practitioners
choose the optimal sampling strategy to meet their
survey aims.

In this study, we ask how reduced effort resulting from
an intermittent sampling protocol would impact down-
stream biodiversity metrics. We designed and ran simu-
lated UAV surveys using an acoustic dataset from the Osa
Peninsula, Costa Rica. This dataset has previously been
analysed to measure avian (Sethi et al., 2024) and spider
monkey (Lawson et al., 2023) diversity and occupancy,
respectively. Using published data from these studies, we
simulated surveys under four sampling strategies that
could be carried out by a network of autonomous UAVs
— random, routed and two types of adaptive sampling.
We evaluated the performance of each strategy under
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varying levels of sampling intensity, defined by the num-
bers of UAVs deployed in a mission. By replicating key
analyses from the original studies, we assessed the ability
of intermittent sampling to detect 19 avian species and
estimate spider monkey occupancy over a forest cover
gradient. This work is the first to consider the full pipe-
line of UAV-based acoustic surveys and to investigate the
impact of sampling techniques on downstream ecological
metrics, informing future applications of this technology
in ecological research.

Materials and Methods

Study area and sampling design

For our simulations, we used species vocalization detec-
tions from two open-source datasets from a large PAM
survey in the Osa Peninsula, Costa Rica (Lawson
et al., 2023; Sethi et al., 2024). The Osa Peninsula, located
on the south Pacific coast of Costa Rica, contains biodi-
verse tropical broadleaf evergreen lowland rainforest (Gil-
bert et al., 2016; Sdnchez-Azofeifa et al., 2003), embedded
within a mosaic of pasture, plantations and urban centres
(Fig. 1).

We chose this dataset for our drone simulations
because of the sampling design. Due to access limitations,
a uniform sampling design across the survey area
(1093 km?) was not possible. Instead, a set of sampling
groups was created which appear as ‘clusters’ (Fig. 1).
This mimics the sampling design of a robotic UAV sur-
vey, where UAVs begin from a central charging station
and travel to recording locations within a set radius of
the charging station. The dataset contained recordings
from 341 sites grouped into 35 clusters, with an average
of 8.7 sampling sites within each cluster (range [4, 28]).

Sampling sites were stratified across five land-use cate-
gories, with the number of recorders placed in each
land-use category representative of its percentage cover
across the region (determined from the 5 X 5m Landsat 5
Thematic Mapper (TM) and Landsat 8 Operational Land
Imager (OLI); Lawson et al., 2023; Shrestha et al., 2018).
The land-use categories were old-growth forest, secondary
forest, palm plantation, teak plantation and grassland. At
each sampling cluster, the first recorder was placed by
walking 500m in a random direction, and remaining
recorders were placed a minimum of 500 m apart to max-
imise  independence  between  samples  (Figueira
et al., 2015). Where possible, trails were not used; how-
ever, where this was not possible, devices were placed a
minimum distance of 200 m perpendicular to a trail.
Recording devices were also placed at a minimum dis-
tance of 200 m from habitat boundaries to ensure sounds
were solely from the classified habitat. Recordings were
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obtained using AudioMoth devices (Open Acoustics
Devices, UK). Recorders ran for a minimum of seven
consecutive days (range [7, 16 days]) to allow for variabil-
ity in activity across different days and to allow for suffi-
cient sampling effort. The devices were set to record on a
schedule of 05:00-09:30, 14:00-18:30 and 21:00-03:00, a
total of 15h each day. Data were recorded constantly dur-
ing these periods at a sample rate of 48 kHz (Metcalf
et al., 2023). Sampling was conducted during the dry sea-
son (December—August). The final dataset included
26,411 h of uncompressed 16-bit audio files.

Data processing
Avian species detections

We used avian vocalization detections from Sethi
et al. (2024) (data retrieved from Sethi (2024)), who used
an open-source bird vocalization detection model, Bird-
NET (Kahl et al., 2021), to identify bird calls in the audio
data. BirdNET is a convolutional neural network (CNN)
trained on bird vocalizations from many online call
libraries, which detects species occurrences in audio data,
with a prediction probability. Sethi et al. (2024) had the
geographic species filter enabled and set a model confi-
dence threshold of 0.8. For this study, we kept detections
for 19 species which the model was able to detect with
> 90% precision (i.e., low false-positive rate) based on
verification of a random subset of 50 detections by an
experienced local ornithologist (Sethi et al., 2024). This
resulted in 1819 bird detections across 126 sites and 32
clusters. The 19 species represent a very small proportion
of the ~ 465 bird species that can be found on the Osa
Peninsula, a result of the geographical and taxonomic bias
in the training datasets of BirdNET (Stowell, 2022). It is
important to note that analyses of avian detections from
this study are not intended to make conclusions about
avian diversity or distribution in the Osa Peninsula, but
to be used as an example of real species spatiotemporal
patterns and dynamics.

Spider monkey occupancy

We wused spider monkey detections from Lawson
et al. (2023) (data retrieved from Lawson (2022)), who
trained a deep learning CNN to detect the species’ vocali-
zations. Lawson et al. (2023) manually annotated 561
examples from 13 sites of the ‘whinny’ vocalization made
by spider monkeys. The neural network used, proposed
by Rizos et al. (2021), used a deep, CNN architecture. All
spider monkey detections were manually verified to
ensure all false-positives were removed. The final dataset
contained 2977 true-positives across 64 of 341 sites
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Figure 1. Map of survey area in the Osa Peninsula, Costa Rica. Each point represents a sampling location where a single acoustic recorder was
placed. Acoustic recorders were deployed in ‘clusters’ across the landscape (n = 35). This is also the sampling unit used for simulated drone-based
surveys. The Land Use Map shows the land-use categories in the region, created at a scale of 5x 5m using Landsat 5 Thematic Mapper (TM) and

Landsat 8 Operational Land Imager (OLI) (Shrestha et al., 2018).

(Lawson et al., 2023). These detections were converted
into a 7-day detection history per site with each day
coded as 1 or 0 to represent the presence or absence of
spider monkeys. Data at a finer temporal resolution was
not published, limiting the scope of our simulations for
the spider monkey dataset.

UAV survey simulations

To evaluate data collectable by an autonomous UAV sys-
tem, we ran simulations to collect data from the avian
and spider monkey datasets. Surveys were designed as
intermittent mobile sampling, meaning that data collec-
tion (i.e. sound recording) occurs when the UAV is sta-
tionary at a site to minimize the impact of flying noise
on recording quality and animal disturbance. Such inter-
mittent locomotion can be achieved by landing on the
ground or perching in the canopy (e.g. Zheng
et al., 2023). All simulations were run in Python 3.

UAV functionality was based on the DJI Mini 2, a
commercially available multirotor drone. This device can
achieve ~30min of flight time when unweighted. As
UAVs would be weighted with a microphone and related
hardware (c. 80g including separate batteries) (Hill
et al,, 2019), we estimated a maximum flight time of
20 min. Battery consumption was calculated as a function
of flight time. Average flying speed was set at 15 m/s, and
an extra penalty of 16 s was added per take-off to account
for the increased battery consumption of increasing the
UAV’s altitude. We assumed that whilst stationary and
landed, the UAV consumed no battery. We did not
account for the impact of wind, temperature and other
factors that may reduce overall battery life in a real-life
scenario, as we did not have this data at appropriate
resolutions.

Simulations were run at the level of a sampling cluster
(Fig. 1). The sampling site closest to the mean latitude
and mean longitude of all sampling sites in the cluster
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was selected to be a ‘charging station’. Each simulation
began with all UAVs (an autonomous UAV equipped
with a microphone) at the charging site in the first time
step. At each sequential time step, UAVs would be moved
to other sampling locations within the cluster and ‘collect’
any detections from the real audio dataset at that time
step and location. A time step was 1 h for the avian data-
set simulations (15 time steps per day, ranging 7—16 days)
and 1day for the spider monkey dataset simulations (7
time steps in total). If a UAV did not have enough bat-
tery to both visit the next selected site and then return to
the charging station, the UAV was sent directly back to
the charging station. All simulations were repeated 50
times to account for stochasticity in site selection.

Our simulations experimented with two parameters:
sampling intensity and sampling strategy. Sampling inten-
sity represents the number of UAVs deployed simulta-
neously. We used five values of sampling intensity (0.2,
0.4, 0.6, 0.8, 1), where each value represents the number
of UAVs as a proportion of the total sites in the cluster.
A sampling intensity value of 1, representing complete
sampling (i.e., one UAV per sampling site), is equivalent
to the full static PAM survey and was used for baseline
comparisons.

Sampling strategy defined how the UAV’s route between
sites was determined. We created four strategies: Random,
Routed, Adaptive explorative and Adaptive exploitative.

In the random sampling strategy, the choice of the next
site. was determined by random selection with replace-
ment, allowing the same site to be chosen in consecutive
time steps. Sites already selected by another UAV were
removed from the list of available sites to avoid multiple
visits to the same site at the same time.

For the routed sampling strategy, sampling sites at each
cluster were grouped into geographically distinct
sub-groups using k-means clustering based on their GPS
coordinates, where k=Nyay;. Each UAV would only
travel to sites within a specific sub-group. At each time
step, the choice of next site was based on the number of
previous visits, prioritizing sites that had been sampled
the least. Among these sites, the nearest available site was
selected. This strategy meant that over the course of the
survey, all sites in a cluster were visited equally, and the
order of site visits remained relatively consistent because
the nearest-neighbour algorithm repeatedly identified the
same shortest route between sites.

The third and fourth sampling strategies, adaptive
explorative and adaptive exploitative, considered a sce-
nario where UAVs had on-board processing capability
such that animal vocalizations could be detected in real-
time, and adapt the choice of next site. This strategy was
run for the avian community dataset only, due to the
higher temporal resolution of this dataset. Adaptive

Robotics-Assisted Acoustic Surveys for Ecology

sampling can be configured in many ways, depending on
the metric being optimized for example, finding a gradi-
ent (Hwang et al., 2019) or increasing occupancy confi-
dence (Pacifici et al., 2016). Here, we chose to optimize
sampling effort to increase confidence that all species pre-
sent in each cluster were detected. To achieve this, we
programmed the routing system to prioritize sites where
more frequent avian vocalization rates were detected, as
these were expected to represent areas of high avian activ-
ity. For the first 2 days of the simulation (30 time steps),
sites were sampled using the routed sampling strategy
explained above, to ensure baseline coverage of all sites.
After 30 time steps, the choice of next site was decided
through random selection with replacement, where the
probability of choosing each site was biased by the num-
ber of vocalizations previously detected and total number
of visits to that site. The probability weighting of site i
(P(i)) was determined as:
1

P(i)= -+ (b w)

where the bias, b; is calculated as total number of vocali-
zations previously detected at site i, divided by the total
number of visits to site i, normalized by the sum of these
values for all available sites. w represents a weighting fac-
tor that determines the disparity between high and low
probabilities.

We tested two values of w to explore the difference
between an ‘explorative’ adaptive system (w =0.3), where
real-time detections give a low bias to site choices, and an
‘exploitative’ adaptive system (w=100), where real-time
detections give a high bias to choice of next site.

Evaluating simulation performance

Simulation evaluation was conducted in R (V4.4.1). For
simulations using the dataset of BirdNET detections, we
measured the total number of species detected across the
survey area and in each land-use type (Old-Growth For-
est, Secondary Forest, Mangrove Forest, Grassland, Palm
Plantation, Teak Plantation) and compared these values
to those collected through complete sampling (sampling
intensity = 1). We used a generalized linear mixed-effects
model (GLMM) with a Poisson distribution to determine
the effect of sampling strategy (random, routed, adaptive
explorative and adaptive exploitative) and sampling inten-
sity on avian species detections. Iteration number was
included as a random effect.

For the spider monkey dataset, we used the 7-day
detection history to run a logistic GLM that predicted the
probability of spider monkey presence in response to for-
est cover, replicating the analysis from Lawson
et al. (2023). To define a minimum threshold of forest
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cover for spider monkey occupancy, we used the receiver
operating characteristic (ROC) curve to determine a cut-
off point that maximized specificity and sensitivity for
predicting positive occupancy. We then predicted occu-
pancy probability over the range of forest cover and
found the value of forest cover that intersected with the
cut-off probability to get the minimum forest cover
threshold. This threshold is not the minimum value at
which spider monkeys were detected, but more closely
represents the value of forest cover above which spider
monkeys are consistently detected; therefore, it accounts
for anomalous detections in areas of lower forest cover.
We calculated the minimum forest cover threshold for
each simulation and compared it to values from complete
sampling (sampling intensity = 1).

Survey logistics

To show how changing the sampling strategy and inten-
sity would impact other aspects of a UAV-based survey
design, we measured sampling evenness, total UAV travel
time and the number of recharges for all simulations on
the avian vocalization dataset.

To measure sampling evenness across space and time,
we calculated the frequency of visits to each site at each
hour in the day the survey was active (05:00-09:30,
14:00-18:30 and 21:00-03:00, n = 15h) and calculated the
Shannon evenness index (SEI) for each cluster. The SEI
value is bound between 0 and 1, where a higher value
indicates more equal visits to a site across hours in the
day. We calculated SEI for each cluster and averaged this
across all 35 clusters for each value of sampling strategy
and sampling intensity.

Average total travel time was calculated by summing
the total distance travelled by all UAVs in a cluster during
a single simulation, then normalized by the number of
sites so that travel time was comparable across clusters
with different numbers of sites. The same method was
used to record the average number of visits to the charg-
ing station.

Results

Simulation results: Routed and random
sampling strategies

All simulations were able to recover the patterns of Bird-
NET species detections across land-use types, although
species richness reduced with sampling intensity (Fig. 2).
Across all values of sampling intensity, the measured spe-
cies richness was always highest in grassland, followed by
secondary forest, old-growth forest, palm plantation,
mangroves and teak plantation (Fig. 2A). Sampling

P. A. Bevan et al.

strategy (random or routed) had no impact on measured
species richness.

When examining the full list of BirdNET species detec-
tions across all sites, no simulations with a sampling
intensity <1 were able to consistently detect the maxi-
mum species richness (n=19 species), although some
iterations at 0.6 and 0.8 sampling intensity did detect the
maximum species richness (Fig. 2B). Results of the GLM
showed no impact from sampling strategy on measured
species richness (p =0.58), but sampling intensity had a
strong positive effect (p < 0.001).

For the spider monkey simulations, we found that the
minimum forest cover threshold for predicting spider
monkey occupancy tended to be overestimated with high
uncertainty, although this improved with sampling inten-
sity. The results from complete sampling (sampling
intensity = 1) predicted a minimum threshold of 0.909,
equivalent to 91% forest cover. This value was not consis-
tently achieved by any of the simulations, regardless of
sampling strategy. For simulations with the lowest sam-
pling intensity (0.2) and random sampling strategy, the
average forest cover threshold was 95%, ranging between
91% and 100% (Fig. 3). Interestingly, the raw minimum
level of forest cover that a spider monkey was detected at
(79%) was detected by both sampling strategies at all
sampling intensities except for 0.2.

Simulation results: Adaptive Sampling

Including knowledge of real-time detections into the
routing algorithm did not show an improvement on ran-
dom sampling when looking at total number of species
detected per survey. We investigated two adaptive routing
strategies in our simulations by adapting the weighting
parameter, w, in the routing algorithm: explorative
(w=0.3) and exploitative (w=100). At very low sam-
pling intensity (0.2), the adaptive exploitative strategy
detected a higher species richness than the adaptive
explorative strategy on average, but estimates of species
richness were no higher than the random sampling strat-
egy (Fig. 4). Results of the GLM showed that sampling
intensity resulted in higher species richness (p < 0.001)
but none of the tested sampling strategies had any effect
(explorative: p = 0.58; exploitative, p = 0.85).

Survey logistics

We found that the sampling strategy had little impact on
the sampling evenness of a survey (how evenly samples
were spread across hours in the day and sites per cluster
over the full sampling period). We found no difference in
sampling evenness between random, routed, or adaptive
sampling strategies (Fig. 5A). However, the variation in

6 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Figure 2. Patterns of biodiversity across land-use types detected with low number of UAV samplers, but full species list is hard to detect. Total
BirdNET detections from UAV survey simulations that varied the number of UAVs deployed simulataneously (sampling intensity) and the sampling
strategy (random movement between sites, or Routed, optimizing for the shortest travel distance). A sampling intensity of 1 represents the full
dataset, a static PAM survey. (A) the number of species detected by BirdNET across five land-use types. (B) the total number of species detected
by BirdNET across the entire survey (maximum 19). Note that species numbers and habitat use patterns are not indicative of real biodiversity

patterns in the study area.

sampling evenness across the 50 simulation iterations was
larger in the routed simulations than in random or adap-
tive. Although increasing sampling intensity improved the
average sampling evenness score, the lowest value of sam-
pling evenness was 0.95. This means that even high
manipulations to the sampling regime had a low impact
on overall sampling evenness and would have little impact
on the ability to straightforwardly compare sampled data
across sites without adding complexity to downstream
analyses.

When looking at total energy consumption of a drone
survey, using the routed sampling strategy reduced the
average travel time per UAV (Fig. 5B) and total number
of charger visits per UAV (Fig. 5C). This was in high con-
trast to the distances travelled by drones in both the ran-
dom and adaptive sampling strategies. The difference in
travel time and charger visits between routed strategies

and the other strategies was higher at higher sampling
intensities, likely due to the creation of sub-groups that
forced UAVs to stay in one geographical area.

Discussion

This study demonstrates that the intermittent sampling
design of a UAV-based acoustic monitoring survey can
effectively detect broad biodiversity patterns such as asso-
ciations with land-use types, but is limited in its ability to
capture complete species lists at low sampling intensities.
This suggests that a UAV-based acoustic survey could be
used as a rapid, preliminary survey tool for identifying
sites of high conservation value, reducing the need for
manual deployments of acoustic sensors. Whilst previous
studies on drone routing have largely focused on optimiz-
ing for efficiency in logistical applications (Macrina

© 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 7
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Figure 3. UAV-based acoustic surveys overestimate the minimum forest cover requirements for spider monkeys. (A) The predicted spider monkey
occupancy over a gradient of forest cover within 100 m of the sensor when the entire dataset from a static PAM survey was included (Sampling
Intensity = 1), as presented in Lawson et al. (2024). The minimum forest cover threshold, calculated by finding the cut-off point that maximized
the probability of a positive spider monkey detection, was 0.909 (red dashed line). (B) Shows a repetition of this analysis using data collected
from simulated UAV surveys, where sampling intensity (the number of drones deployed simultaneously, as a proportion of total sites) and
sampling strategy (Random movement between sites or Routed movement that prioritizes nearest neighbours) were varied. Boxplots summarize
the minimum forest cover threshold estimated from 50 iterations of each simulation, where the box represents the lower quartile, median and
upper quartile and the whiskers are 1.5 x the Interquartile Range. Points show the raw results from each simulation.

et al, 2020), this is the first study to investigate the
impact of intermittent sampling strategies on the quality
of downstream biodiversity data.

Impact of UAV sampling strategy and
sampling intensity

One key consideration of survey design is the evenness of
sampling across space and time to ensure both between-
and within-site variability can be straightforwardly
detected (Rhodes & Jonzén, 2011). Incomplete sampling
across either of these axes can lead to bias in biodiversity
metrics like species richness (Banks-Leite et al., 2012;
Chave, 2013; Field et al, 2002; Lahoz-Monfort
et al, 2014). We hypothesized that the routed sampling
strategy, designed to distribute visits evenly across sites,

would enhance sampling evenness. However, we found
that the sampling strategy had no influence on sampling
evenness or downstream biodiversity metrics. This sug-
gests that even simple, non-optimized sampling strategies
can achieve sufficient site coverage, provided sampling
intensity is high enough. Thus, the results of our experi-
ments suggest the ability of UAV-based surveys to pro-
vide representative biodiversity —metrics is largely
dependent on the number of UAVs deployed or the
length of the total survey period, rather than the routing
systems tested here.

The feasibility of employing some of the sampling
intensities given by our results depends on project aims,
budget and scale. For a survey of 100 sites, an intensity of
0.4 could mean either deploying a swarm of 40 UAVs
simultaneously or 4 UAVs visiting clusters of 10 sites

8 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Figure 4. Incorporating very simple real-time detections into route planning does not detect more species than a random sampling strategy.
Unique BirdNET species detections from three simulations of an existing acoustic dataset. In each simulation, we varied sampling intensity
(number of UAVs deployed simultaneously, as a proportion of total sites) and sampling strategy, defined as random movement between sites or
two types of adaptive sampling, where UAVs change routes depending on real-time detections. A sampling intensity of 1 represents the full
dataset of a static PAM survey. Adaptive explorative indicates that previous vocalization frequency at a site gives a low bias towards visiting that
site again over others, whereas adaptive exploitative indicates vocalization frequency at a site will give a high bias towards visiting that site again
over others. Each solid point represents the average number of species detected over 50 simulation iterations, with error bars representing 95%
confidence intervals. The faded points show the actual species richness from each iteration.
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Figure 5. Distance-based, routed sampling improves energy consumption but not sampling evenness. Comparison of survey logistics for different
drone survey simulations where sampling intensity (number of UAVs deployed simultaneously, as a proportion of total sites) and sampling
strategy, defined as random movement between sites, routed (optimizing for the shortest travel distance) or two types of adaptive sampling,
where UAVs change routes depending on real-time detections. A sampling intensity of 1 represents the full dataset of a static PAM survey.
Adaptive explorative indicates that previous vocalization frequency at a site gives a low bias towards visiting that site again over others, whereas
adaptive exploitative indicates previous vocalization frequency at a site will give a high bias towards visiting that site again over others. We
calculated (A) sampling evenness using Shannon’s evenness index (SEI), where a high value represents even sampling across sites and hours in the
day. (B) Average total travel time, normalized by total number of sites in a cluster and (C) average number of charger visits, normalized by total
number of sites in a cluster. For all plots, each point represents the average of 50 simulation iterations, with error bars representing 95%
confidence intervals.

sequentially. Our results suggest that lower intensities accurately detect specific signals like species’ habitat
(0.2) can detect broad patterns such as land-use associa- thresholds or complete species lists. These findings suggest
tions, but higher intensities (0.4-0.8) are needed to that practitioners could tailor sampling intensity to their
© 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 9
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monitoring goals, and further research could investigate
how studies with a higher number of species might alter
these interpretations.

Adaptive sampling is not yet widely used in biodiversity
surveys, but advances in autonomous robotics present
new opportunities to explore the potential of this
approach (Henrys et al., 2024; Stache et al., 2023). The
adaptive sampling strategy employed here showed no
improvement over random sampling, possibly because
sampling clusters were mostly within a single land-use
type (Fig. 1), meaning that the adaptive algorithm strug-
gled to identify a difference between sites. This strategy
may perform better in fragmented landscapes, where
adaptive sampling could reveal biodiversity gradients.
Additionally, the adaptive strategy employed was relatively
simple, relying on one variable: vocalization rate history.
Although vocal activity has previously been used as an
acoustic index (Towsey et al., 2014), there is no ecological
theory linking it to the number of species. Vocal activity
was a useful proxy in our dataset, as many sites had no
detections at all, so prioritizing ‘vocal’ sites increased the
chance of encountering species. A more advanced adap-
tive system could incorporate real-time abiotic or biotic
(e.g. land classification) factors, similar to methods used
in UAV-based pollution mapping (Boubrima &
Knightly, 2021).

Study limitations and challenges for
robotics-assisted acoustic surveys

Real-world deployments of UAV surveys may be influ-
enced by additional factors such as the behavioural
responses to UAVs or weather conditions, which we
could not control for. Previous studies on UAV distur-
bance have mainly focused on optimal flight heights to
minimize disturbance (Corcoran et al., 2021; Duporge
et al., 2021; McEvoy et al., 2016); however, the intermit-
tent sampling method used here would be more affected
by recovery time after UAV landing. UAV take-off or
landing can elicit escape responses in birds within 40 m
(Weston et al., 2020), although others have found bird
vocalization rates can recover in less than 4 min after
noise disturbances from a snowmobile (Cretois et al.,
2023). A species’ tolerance to UAV noise depends on the
focal taxa (Mesquita et al., 2022), UAV flight path (Afridi
et al.,, 2024; Schad & Fischer, 2023), and the noise level
of the UAV model (Kuhlmann et al., 2022). We recom-
mend that UAV-based acoustic surveys account for dis-
turbance effects by incorporating a latency period after
landing and using quieter drone models where possible,
with preliminary tests on disturbance of their study taxa
before monitoring (Duporge et al., 2021; Schad &
Fischer, 2023).

P. A. Bevan et al.

A limitation of the avian detections dataset was that
BirdNET only detected a subset of the total bird species
in the study area, limiting the possibilities for ecological
analyses. The accuracy of BirdNET species detections has
been shown to depend on the number of vocalizations
available in public repositories (Funosas et al., 2024) that
the training data are drawn from (Kahl et al., 2021). As a
result, species that are frequent vocalizers and commonly
encountered in human-dominated habitats tend to be
detected with greater accuracy (Van Merriénboer
et al., 2024), which is the case for the Costa Rica dataset
(Sethi et al., 2024). Further work is needed to understand
how reduced sampling intensity affects the data quality
when looking at more detailed metrics of species habitat
use that are possible with static acoustic surveys, such as
occupancy (Rhinehart et al., 2022), community composi-
tion (Kiimmet et al., 2025), or behaviour (Szymanski
et al., 2021; Wrege et al.,, 2017).

For our simulations, we based battery capacity on a
commercially available UAV and did not test other
models with longer flight capacity or differing propeller
noise, since our study area was not distance-limited and
we could not account for disturbance. Implementing the
survey proposed in this study would require careful inte-
gration of emerging technologies, such as integrated sen-
sors, solar-powered docking stations (e.g. Florczak
et al., 2025) and efficient data-sharing systems (e.g. Li
et al., 2021). Whilst a single UAV is more expensive than
a static acoustic sensor, the overall cost could be lower
depending on sampling intensity, labour savings and
extended survey duration. Legal constraints also shape
feasibility, as many countries require UAV flights to
maintain visual line of sight (VLOS), though regulations
are evolving, with the UK Civil Aviation Authority aiming
to permit Beyond VLOS operations by 2027
(UKCAA, 2024). Given that much of the technology
already exists in prototype form, we believe that further
investment in the development of advanced UAV swarm
designs is justified.

Conclusion

In conclusion, our findings highlight the feasibility of
UAV-based acoustic monitoring as a scalable approach
for biodiversity assessment and highlight barriers to mak-
ing robotics-assisted UAV surveys a reality. We demon-
strate that the number of UAVs deployed simultaneously
plays a greater role in determining detection success than
the choice of sampling strategy, though routing will
reduce power consumption. As UAV technology con-
tinues to advance, further research is needed to explore
the applications of autonomous UAV-based ecological
surveys across different ecosystems, taxonomic groups

10 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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and data collection methods (e.g. camera trapping,
eDNA). In addition, future studies should prioritize
developing novel sensor placement methods and auton-
omy frameworks that are validated in field conditions to
maximize their potential for conservation science.

Acknowledgements

We thank the UK Acoustics Network Plus (UKAN+) for
providing funding to complete this research. We would
also like to thank the staff at El Ministerio de Ambiente y
Energia (MINAE) and La Sistema Nacional de Areas de
Conservacion (SINAC) for their support with permits
and for the field support from their park rangers. This
work was partially supported by funding from the Engi-
neering and Physical Sciences Research Council, the
SERI-funded ERC ProteusDrone consolidator grant (grant
no: MB22.00066), and the Empa-Imperial College London
research partnership. Mirko Kovac was supported by the
Royal Society Wolfson fellowship (RSWEF/R1/18003).
Jenna Lawson was supported by the Natural Environment
Research Council (grant no. NE/L002515/1).

Author Contributions

Peggy A. Bevan: Conceptualization; investigation; writing
— original draft; methodology; visualization; writing —
review and editing; project administration. Cristina
Banks-Leite: Funding acquisition; writing — review and
editing; supervision; data curation; conceptualization.
Mirko Kovac: Conceptualization; funding acquisition;
writing — review and editing; supervision. Jenna Lawson:
Conceptualization; methodology; writing — review and
editing; data curation. Lorenzo Picinali: Conceptualiza-
tion; funding acquisition; writing — review and editing;
supervision. Sarab S. Sethi: Conceptualization; investiga-
tion; funding acquisition; writing — original draft; meth-
odology; writing — review and editing; project
administration; supervision; data curation.

Data Availability Statement

All code used for analysis is available at https://github.
com/PeggyBevan/PAM_drones_simulator. All data used
are publicly available at https://zenodo.org/records/
6511837 (From Lawson et al., 2023) and https://zenodo.
org/records/10820823 (From Sethi et al., 2024).

References

Afridi, S., Hlebowicz, K., Cawthorne, D., & Lundquist, U. P. S.
(2024). Unveiling the Impact of Drone Noise on Wildlife: A
Crucial Research Imperative. 2024 International Conference
on Unmanned Aircraft Systems (ICUAS).

Robotics-Assisted Acoustic Surveys for Ecology

Allan, B.M., Nimmo, D.G., Ierodiaconou, D., Vanderwal, J.,
Koh, L.P. & Ritchie, E.G. (2018) Futurecasting ecological
research: the rise of technoecology. Ecosphere, 9(5), €02163.
https://doi.org/10.1002/ecs2.2163

Banks-Leite, C., Ewers, R.M., Pimentel, R.G. & Metzger, J.P.
(2012) Decisions on temporal sampling protocol influence
the detection of ecological patterns. Biotropica, 44(3), 378—
385. https://doi.org/10.1111/j.1744-7429.2011.00801.x

Berger-Tal, O. & Lahoz-Monfort, J.J. (2018) Conservation
technology: the next generation. Conservation Letters, 11(6),
€12458. https://doi.org/10.1111/conl.12458

Boubrima, A. & Knightly, E.W. (2021) Robust environmental
sensing using UAVs. ACM Transactions on Internet of
Things, 2(4), 1-20. https://doi.org/10.1145/3464943

Browning, E., Gibb, R., Glover-Kapfer, P., & Jones, K. E.
(2017). Passive acoustic monitoring in ecology and
conservation (Conservation Technology Issue).

Chave, J. (2013) The problem of pattern and scale in ecology:
what have we learned in 20 years? Ecology Letters, 16(s1), 4—
16. https://doi.org/10.1111/ele.12048

Christie, K.S., Gilbert, S.L., Brown, C.L., Hatfield, M. &
Hanson, L. (2016) Unmanned aircraft systems in wildlife
research: current and future applications of a transformative
technology. Frontiers in Ecology and the Environment, 14(5),
241-251. https://doi.org/10.1002/fee.1281

Corcoran, E., Denman, S. & Hamilton, G. (2021) Evaluating
new technology for biodiversity monitoring: are drone
surveys biased? Ecology and Evolution, 11(11), 6649—6656.
https://doi.org/10.1002/ece3.7518

Cretois, B., Bick, I.A., Balantic, C., Gelderblom, F.B.,
Pavon-Jordan, D., Wiel, J. et al. (2023) Snowmobile noise
alters bird vocalization patterns during winter and
pre-breeding season. Journal of Applied Ecology, 61(2), 340—
350. https://doi.org/10.1111/1365-2664.14564

Das, J., Py, F., Harvey, J.B.J., Ryan, J.P., Gellene, A., Graham,
R. et al. (2015) Data-driven robotic sampling for marine
ecosystem monitoring. The International Journal of Robotics
Research, 34(12), 1435-1452. https://doi.org/10.1177/
0278364915587723

Duporge, I., Kholiavchenko, M., Harel, R., Wolf, S.,
Rubenstein, D.I., Crofoot, M.C. et al. (2025) BaboonLand
dataset: tracking primates in the wild and automating
behaviour recognition from drone videos. International
Journal of Computer Vision, 133(9), 6578—6589. https://doi.
0rg/10.1007/511263-025-02493-5

Duporge, L., Spiegel, M.P., Thomson, E.R., Chapman, T.,
Lamberth, C., Pond, C. et al. (2021) Determination of
optimal flight altitude to minimise acoustic drone
disturbance to wildlife using species audiograms. Methods in
Ecology and Evolution, 12(11), 2196-2207. https://doi.org/10.
1111/2041-210x.13691

Dwivedi, K., Govindarajan, P., Srinivasan, D., Keerthi Sanjana,
A., Selvanambi, R. & Karuppiah, M. (2023) Intelligent
autonomous drones in industry 4.0. In: Artificial intelligence

© 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 11

35UB017 SUOWILIOD) BAIEaID 3|qedt|dde ay) Aq pausenob ale sajoie O ‘asn Jo sani 10j Akeiqi] autjuQ A3IA UO (SUOTIPUOD-PUR-SWLLIBIL0D AB|IM" eI 1 BU 1 UO//:SANY) SUORIPUOD pue SWiB | 3Y3 39S “[GZ0z/TT/S0] uo ARldiTauluQ /3|1 ‘SeoInBS ARl TON uopuoabe)joD AiseAlun Aq ZE00. 29S1/200T OT/I0p/wod A3 1m Akeld 1puluo'suoiealgnd sz//:sdny wouy pepeojumod ‘0 ‘879502


https://github.com/PeggyBevan/PAM_drones_simulator
https://github.com/PeggyBevan/PAM_drones_simulator
https://zenodo.org/records/6511837
https://zenodo.org/records/6511837
https://zenodo.org/records/10820823
https://zenodo.org/records/10820823
https://doi.org/10.1002/ecs2.2163
https://doi.org/10.1111/j.1744-7429.2011.00801.x
https://doi.org/10.1111/j.1744-7429.2011.00801.x
https://doi.org/10.1111/j.1744-7429.2011.00801.x
https://doi.org/10.1111/conl.12458
https://doi.org/10.1145/3464943
https://doi.org/10.1111/ele.12048
https://doi.org/10.1002/fee.1281
https://doi.org/10.1002/ece3.7518
https://doi.org/10.1111/1365-2664.14564
https://doi.org/10.1177/0278364915587723
https://doi.org/10.1177/0278364915587723
https://doi.org/10.1007/s11263-025-02493-5
https://doi.org/10.1007/s11263-025-02493-5
https://doi.org/10.1111/2041-210x.13691
https://doi.org/10.1111/2041-210x.13691

Robotics-Assisted Acoustic Surveys for Ecology

and cyber security in industry 4.0, Advanced Technologies and
Societal Change. Singapore: Springer, pp. 133-163. https://
doi.org/10.1007/978-981-99-2115-7_6

Field, S.A., Tyre, A.J. & Possingham, H.P. (2002) Estimating
bird species richness: how should repeat surveys be
organized in time? Austral Ecology, 27(6), 624—629. https://
doi.org/10.1046/;.1442-9993.2002.01223.x

Figueira, L., Tella, J.L., Camargo, U.M. & Ferraz, G. (2015)
Autonomous sound monitoring shows higher use of
Amazon old growth than secondary forest by parrots.
Biological Conservation, 184, 27-35. https://doi.org/10.1016/j.
biocon.2014.12.020

Fischer, S., Edwards, A.C., Garnett, S.T., Whiteside, T.G. &
Weber, P. (2023) Drones and sound recorders increase the
number of bird species identified: a combined surveys
approach. Ecological Informatics, 74, 101988. https://doi.org/
10.1016/j.ecoinf.2023.101988

Flint, I., Wu, C.H., Valavi, R., Chen, W.]. & Lin, T.E. (2024)
Maximising the informativeness of new records in spatial
sampling design. Methods in Ecology and Evolution, 15(1),
178-190. https://doi.org/10.1111/2041-210x.14260

Florczak, D., Jacewicz, M., Kopyt, A. & Glebocki, R. (2025)
Autonomous solar-powered docking station for quadrotor
drones—design and testing. Proceedings of the Institution of
Mechanical Engineers, Part G: Journal of Aerospace
Engineering. https://doi.org/10.1177/09544100251331282

Fu, Y., Kinniry, M. & Kloepper, L.N. (2018) The Chirocopter:
a UAV for recording sound and video of bats at altitude.
Methods in Ecology and Evolution, 9(6), 1531-1535. https://
doi.org/10.1111/2041-210x.12992

Funosas, D., Barbaro, L., Schillé, L., Elger, A., Castagneyrol, B.
& Cauchoix, M. (2024) Assessing the potential of BirdNET
to infer European bird communities from large-scale
ecoacoustic data. Ecological Indicators, 164, 112146. https://
doi.org/10.1016/j.ecolind.2024.112146

Gibb, R., Browning, E., Glover-Kapfer, P., Jones, K.E. &
Borger, L. (2018) Emerging opportunities and challenges for
passive acoustics in ecological assessment and monitoring.
Methods in Ecology and Evolution, 10(2), 169-185. https://
doi.org/10.1111/2041-210x.13101

Gilbert, L.E., Christen, C.A., Altrichter, M., Longino, J.T.,
Sherman, P.M., Plowes, R. et al. (2016) The southern Pacific
lowland evergreen moist forest of the Osa Region. In: Costa
Rican ecosystems. Chicago, Illinois: The University of
Chicago Press, pp. 360—412. https://doi.org/10.7208/chicago/
9780226121642.003.0012

Guerber, C., Royer, M. & Larrieu, N. (2021) Machine learning
and software defined network to secure communications in
a swarm of drones. Journal of Information Security and
Applications, 61, 102940. https://doi.org/10.1016/j.jisa.2021.
102940

Gunal, M.M. (2019) Data collection inside industrial facilities
with autonomous drones. In: Simulation for Industry 4.0,

P. A. Bevan et al.

Springer Series in Advanced Manufacturing. Cham: Springer,
pp. 141-151. https://doi.org/10.1007/978-3-030-04137-3_9

Henrys, P.A., Mondain-Monval, T.O. & Jarvis, S.G. (2024)
Adaptive sampling in ecology: key challenges and future
opportunities. Methods in Ecology and Evolution, 15(9),
1483-1496. https://doi.org/10.1111/2041-210x.14393

Hill, A.P., Prince, P., Snaddon, J.L., Doncaster, C.P. & Rogers,
A. (2019) AudioMoth: a low-cost acoustic device for
monitoring biodiversity and the environment. HardwareX,
6, €00073. https://doi.org/10.1016/j.0hx.2019.e00073

Hwang, J., Bose, N. & Fan, S. (2019) AUV adaptive sampling
methods: a review. Applied Sciences, 9(15), 3145. https://doi.
org/10.3390/app9153145

Jakuba, M.V, Kinsey, J.C., Yoerger, D.R., Camilli, R., Murphy,
C.A., Steinberg, D. et al. (2011) Exploration of the gulf of
Mexico oil spill with the sentry autonomous underwater
vehicle. Proceedings of the international conference on
intelligent robots and systems (IROS), Workshop on Robotics
for Environmental Monitoring (WREM), San Francisco, CA,
USA.

Kahl, S., Wood, C.M., Eibl, M. & Klinck, H. (2021) BirdNET:
a deep learning solution for avian diversity monitoring.
Ecological Informatics, 61, 101236. https://doi.org/10.1016/j.
ecoinf.2021.101236

Kuhlmann, K., Fontaine, A., Brisson-Curadeau, E., Bird,D.M.
Elliott, K.H.2022) Miniaturization eliminates detectable
impacts of drones on bat activity. Methods in Ecology and
Evolution, 13(4), 842-851. https://doi.org/10.1111/2041-210x.
13807

Kiimmet, S., Miiller, J., Burivalova, Z., Schaefer, H.M., Gelis,
R., Freile, J. et al. (2025) Acoustic indices predict recovery
of tropical bird communities for taxonomic and functional
composition. Conservation Letters, 18(4), e13131.

Lahoz-Monfort, J.J. & Magrath, M.J.L. (2021) A
comprehensive overview of technologies for species and
habitat monitoring and conservation. Bioscience, 71(10),
1038-1062. https://doi.org/10.1093/biosci/biab073

Lahoz-Monfort, J.J., Harris, M.P., Morgan, B.J.T., Freeman,
S.N. & Wanless, S. (2014) Exploring the consequences of
reducing survey effort for detecting individual and temporal
variability in survival. Journal of Applied Ecology, 51(2), 534—
543. https://doi.org/10.1111/1365-2664.12214

Lan, T., Romanello, L., Kovac, M., Armanini, S. F., & Bahadir
Kocer, B. (2024). Aerial Tensile Perching and Disentangling
Mechanism for Long-Term Environmental Monitoring. 2024
IEEE International Conference on Robotics and Automation
(ICRA).

Lawson, J. (2022). JennaLawson/spider-monkey: spider-
monkey-acoustics (version v.1.0). Zenodo. https://doi.org/10.
5281/zenodo.6511837.

Lawson, J., Farinha, A., Romanello, L., Pang, O., Zufferey, R.
& Kovac, M. (2024) Use of an unmanned aerial-aquatic
vehicle for acoustic sensing in freshwater ecosystems. Remote

12 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

35UB017 SUOWILIOD) BAIEaID 3|qedt|dde ay) Aq pausenob ale sajoie O ‘asn Jo sani 10j Akeiqi] autjuQ A3IA UO (SUOTIPUOD-PUR-SWLLIBIL0D AB|IM" eI 1 BU 1 UO//:SANY) SUORIPUOD pue SWiB | 3Y3 39S “[GZ0z/TT/S0] uo ARldiTauluQ /3|1 ‘SeoInBS ARl TON uopuoabe)joD AiseAlun Aq ZE00. 29S1/200T OT/I0p/wod A3 1m Akeld 1puluo'suoiealgnd sz//:sdny wouy pepeojumod ‘0 ‘879502


https://doi.org/10.1007/978-981-99-2115-7_6
https://doi.org/10.1007/978-981-99-2115-7_6
https://doi.org/10.1007/978-981-99-2115-7_6
https://doi.org/10.1007/978-981-99-2115-7_6
https://doi.org/10.1007/978-981-99-2115-7_6
https://doi.org/10.1007/978-981-99-2115-7_6
https://doi.org/10.1007/978-981-99-2115-7_6
https://doi.org/10.1007/978-981-99-2115-7_6
https://doi.org/10.1007/978-981-99-2115-7_6
https://doi.org/10.1007/978-981-99-2115-7_6
https://doi.org/10.1046/j.1442-9993.2002.01223.x
https://doi.org/10.1046/j.1442-9993.2002.01223.x
https://doi.org/10.1046/j.1442-9993.2002.01223.x
https://doi.org/10.1046/j.1442-9993.2002.01223.x
https://doi.org/10.1016/j.biocon.2014.12.020
https://doi.org/10.1016/j.biocon.2014.12.020
https://doi.org/10.1016/j.ecoinf.2023.101988
https://doi.org/10.1016/j.ecoinf.2023.101988
https://doi.org/10.1111/2041-210x.14260
https://doi.org/10.1111/2041-210x.14260
https://doi.org/10.1111/2041-210x.14260
https://doi.org/10.1177/09544100251331282
https://doi.org/10.1111/2041-210x.12992
https://doi.org/10.1111/2041-210x.12992
https://doi.org/10.1111/2041-210x.12992
https://doi.org/10.1111/2041-210x.12992
https://doi.org/10.1016/j.ecolind.2024.112146
https://doi.org/10.1016/j.ecolind.2024.112146
https://doi.org/10.1111/2041-210x.13101
https://doi.org/10.1111/2041-210x.13101
https://doi.org/10.1111/2041-210x.13101
https://doi.org/10.1111/2041-210x.13101
https://doi.org/10.7208/chicago/9780226121642.003.0012
https://doi.org/10.7208/chicago/9780226121642.003.0012
https://doi.org/10.1016/j.jisa.2021.102940
https://doi.org/10.1016/j.jisa.2021.102940
https://doi.org/10.1007/978-3-030-04137-3_9
https://doi.org/10.1007/978-3-030-04137-3_9
https://doi.org/10.1007/978-3-030-04137-3_9
https://doi.org/10.1007/978-3-030-04137-3_9
https://doi.org/10.1007/978-3-030-04137-3_9
https://doi.org/10.1007/978-3-030-04137-3_9
https://doi.org/10.1007/978-3-030-04137-3_9
https://doi.org/10.1007/978-3-030-04137-3_9
https://doi.org/10.1007/978-3-030-04137-3_9
https://doi.org/10.1111/2041-210x.14393
https://doi.org/10.1111/2041-210x.14393
https://doi.org/10.1111/2041-210x.14393
https://doi.org/10.1016/j.ohx.2019.e00073
https://doi.org/10.3390/app9153145
https://doi.org/10.3390/app9153145
https://doi.org/10.1016/j.ecoinf.2021.101236
https://doi.org/10.1016/j.ecoinf.2021.101236
https://doi.org/10.1111/2041-210x.13807
https://doi.org/10.1111/2041-210x.13807
https://doi.org/10.1111/2041-210x.13807
https://doi.org/10.1111/2041-210x.13807
https://doi.org/10.1093/biosci/biab073
https://doi.org/10.1111/1365-2664.12214
https://doi.org/10.1111/1365-2664.12214
https://doi.org/10.1111/1365-2664.12214
https://doi.org/10.5281/zenodo.6511837
https://doi.org/10.5281/zenodo.6511837

P. A. Bevan et al.

Sensing in Ecology and Conservation, 10(3), 343-359. https://
doi.org/10.1002/rse2.373

Lawson, J., Rizos, G., Jasinghe, D., Whitworth, A., Schuller, B.
& Banks-Leite, C. (2023) Automated acoustic detection of
Geoffroy’s spider monkey highlights tipping points of
human disturbance. Proceedings of the Biological Sciences,
290(1995), 20222473. https://doi.org/10.1098/rspb.2022.2473

Li, C.-I., Yen, L.-H., & Cho, M.-C. (2021). Distributed mission
and charging scheduling for UAV swarm to maximize
service coverage. 2021 IEEE 94th Vehicular Technology
Conference (VTC2021-Fall).

Lucas, T.C.D., Moorcroft, E.A., Freeman, R., Rowcliffe, ] M. &
Jones, K.E. (2015) A generalised random encounter model
for estimating animal density with remote sensor data.
Methods in Ecology and Evolution, 6(5), 500-509. https://doi.
org/10.1111/2041-210x.12346

Macrina, G., Di Puglia Pugliese, L., Guerriero, F. & Laporte,
G. (2020) Drone-aided routing: a literature review.
Transportation Research Part C: Emerging Technologies, 120,
102762. https://doi.org/10.1016/j.trc.2020.102762

Marques, T.A., Thomas, L., Martin, S.W., Mellinger, D.K,,
Ward, J.A., Moretti, D.J. et al. (2013) Estimating animal
population density using passive acoustics. Biological Reviews
of the Cambridge Philosophical Society, 88(2), 287-309.
https://doi.org/10.1111/brv.12001

McEvoy, J.F., Hall, G.P. & McDonald, P.G. (2016) Evaluation
of unmanned aerial vehicle shape, flight path and camera
type for waterfowl surveys: disturbance effects and species
recognition. Peer], 4, e1831. https://doi.org/10.7717/peer;j.
1831

Mesquita, G., Mulero-Pazmany, M., Wich, S. &
Rodriguez-Teijeiro, J. (2022) Terrestrial megafauna response
to drone noise levels in ex situ areas. Drones, 6(11), 333.
https://doi.org/10.3390/drones6110333

Metcalf, O., Abrahams, C., Ashington, B., Baker, E.,
Bradfer-Lawrence, T., Browning, E. et al. (2023). Good
practice guidelines for long-term ecoacoustic monitoring in
the UK.

Michez, A., Broset, S. & Lejeune, P. (2021) Ears in the sky:
potential of drones for the bioacoustic monitoring of birds
and bats. Drones, 5(1), 9. https://doi.org/10.3390/
drones5010009

Millner, N., Cunliffe, A.M., Mulero-Pdzmany, M., Newport, B.,
Sandbrook, C. & Wich, S. (2023) Exploring the
opportunities and risks of aerial monitoring for biodiversity
conservation. Global Social Challenges Journal, 2, 2-23.
https://doi.org/10.1332/tiok6806

Newson, S.E., Bas, Y., Murray, A., Gillings, S. & Freckleton, R.
(2017) Potential for coupling the monitoring of
bush-crickets with established large-scale acoustic
monitoring of bats. Methods in Ecology and Evolution, 8(9),
1051-1062. https://doi.org/10.1111/2041-210x.12720

Pacifici, K., Reich, B.J., Dorazio, RM. & Conroy, M.]J. (2016)
Occupancy estimation for rare species using a

Robotics-Assisted Acoustic Surveys for Ecology

spatially-adaptive sampling design. Methods in Ecology and
Evolution, 7(3), 285-293. https://doi.org/10.1111/2041-210x.
12499

Phalapanyakoon, K. & Siripongwutikorn, P. (2021) Route
planning of unmanned aerial vehicles under recharging and
mission time constraints. International Journal of
Mathematical, Engineering and Management Sciences, 6(5),
1439-1459. https://doi.org/10.33889/ijmems.2021.6.5.087

Pringle, S., Dallimer, M., Goddard, M.A., Le Goff, L.K., Hart,
E., Langdale, S.J. et al. (2025) Opportunities and challenges
for monitoring terrestrial biodiversity in the robotics age.
Nature Ecology & Evolution, 9(6), 1031-1042. https://doi.
0rg/10.1038/541559-025-02704-9

Rahman, D.A., Putro, H.R., Mufawwaz, T.A., Rinaldi, D.,
Yudiarti, Y., Prabowo, E.D. et al. (2025) Developing a new
method using thermal drones for population surveys of the
world’s rarest great ape species, Pongo tapanuliensis. Global
Ecology and Conservation, 58, e03463. https://doi.org/10.
1016/j.gecco.2025.e03463

Rhinehart, T.A., Turek, D. & Kitzes, J. (2022) A
continuous-score occupancy model that incorporates
uncertain machine learning output from autonomous
biodiversity surveys. Methods in Ecology and Evolution, 13
(8), 1778-1789. https://doi.org/10.1111/2041-210x.13905

Rhodes, J.R. & Jonzén, N. (2011) Monitoring temporal trends
in spatially structured populations: how should sampling
effort be allocated between space and time? Ecography, 34
(6), 1040-1048. https://doi.org/10.1111/j.1600-0587.2011.
06370.x

Rizos, G., Lawson, J., Han, Z., Butler, D., Rosindell, J.,
Mikolajczyk, K. et al. (2021). Multi-attentive detection of the
spider monkey whinny in the (actual) wild, Interspeech 2021,

Robinson, J.M., Harrison, P.A., Mavoa, S. & Breed, M.F.
(2022) Existing and emerging uses of drones in restoration
ecology. Methods in Ecology and Evolution, 13(9), 1899—
1911. https://doi.org/10.1111/2041-210x.13912

Romanello, L., Lan, T., Kovac, M., Armanini, S. F., & Kocer,
B. B. (2024). Exploring the potential of multi-modal sensing
framework for forest ecology. IEEE International Conference
on Robotics and Automation, Yokohama, Japan.

Ross, S.R.P.J., O’Connell, D.P., Deichmann, J.L., Desjonqueres,
C., Gasc, A., Phillips, J.N. et al. (2023) Passive acoustic
monitoring provides a fresh perspective on fundamental
ecological questions. Functional Ecology, 37(4), 959-975.
https://doi.org/10.1111/1365-2435.14275

Sanchez-Azofeifa, G.A., Daily, G.C,, Pfaff, A.S.P. & Busch, C.
(2003) Integrity and isolation of Costa Rica’s national parks
and biological reserves: examining the dynamics of
land-cover change. Biological Conservation, 109(1), 123—-135.
https://doi.org/10.1016/s0006-3207(02)00145-3

Schad, L. & Fischer, J. (2023) Opportunities and risks in the
use of drones for studying animal behaviour. Methods in
Ecology and Evolution, 14(8), 1864—1872. https://doi.org/10.
1111/2041-210x.13922

© 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 13

35UB017 SUOWILIOD) BAIEaID 3|qedt|dde ay) Aq pausenob ale sajoie O ‘asn Jo sani 10j Akeiqi] autjuQ A3IA UO (SUOTIPUOD-PUR-SWLLIBIL0D AB|IM" eI 1 BU 1 UO//:SANY) SUORIPUOD pue SWiB | 3Y3 39S “[GZ0z/TT/S0] uo ARldiTauluQ /3|1 ‘SeoInBS ARl TON uopuoabe)joD AiseAlun Aq ZE00. 29S1/200T OT/I0p/wod A3 1m Akeld 1puluo'suoiealgnd sz//:sdny wouy pepeojumod ‘0 ‘879502


https://doi.org/10.1002/rse2.373
https://doi.org/10.1002/rse2.373
https://doi.org/10.1098/rspb.2022.2473
https://doi.org/10.1111/2041-210x.12346
https://doi.org/10.1111/2041-210x.12346
https://doi.org/10.1111/2041-210x.12346
https://doi.org/10.1111/2041-210x.12346
https://doi.org/10.1016/j.trc.2020.102762
https://doi.org/10.1111/brv.12001
https://doi.org/10.7717/peerj.1831
https://doi.org/10.7717/peerj.1831
https://doi.org/10.3390/drones6110333
https://doi.org/10.3390/drones5010009
https://doi.org/10.3390/drones5010009
https://doi.org/10.1332/tiok6806
https://doi.org/10.1111/2041-210x.12720
https://doi.org/10.1111/2041-210x.12720
https://doi.org/10.1111/2041-210x.12720
https://doi.org/10.1111/2041-210x.12499
https://doi.org/10.1111/2041-210x.12499
https://doi.org/10.1111/2041-210x.12499
https://doi.org/10.1111/2041-210x.12499
https://doi.org/10.33889/ijmems.2021.6.5.087
https://doi.org/10.1038/s41559-025-02704-9
https://doi.org/10.1038/s41559-025-02704-9
https://doi.org/10.1038/s41559-025-02704-9
https://doi.org/10.1038/s41559-025-02704-9
https://doi.org/10.1038/s41559-025-02704-9
https://doi.org/10.1038/s41559-025-02704-9
https://doi.org/10.1038/s41559-025-02704-9
https://doi.org/10.1038/s41559-025-02704-9
https://doi.org/10.1016/j.gecco.2025.e03463
https://doi.org/10.1016/j.gecco.2025.e03463
https://doi.org/10.1111/2041-210x.13905
https://doi.org/10.1111/2041-210x.13905
https://doi.org/10.1111/2041-210x.13905
https://doi.org/10.1111/j.1600-0587.2011.06370.x
https://doi.org/10.1111/j.1600-0587.2011.06370.x
https://doi.org/10.1111/j.1600-0587.2011.06370.x
https://doi.org/10.1111/j.1600-0587.2011.06370.x
https://doi.org/10.1111/2041-210x.13912
https://doi.org/10.1111/2041-210x.13912
https://doi.org/10.1111/2041-210x.13912
https://doi.org/10.1111/1365-2435.14275
https://doi.org/10.1111/1365-2435.14275
https://doi.org/10.1111/1365-2435.14275
https://doi.org/10.1016/s0006-3207(02)00145-3
https://doi.org/10.1016/s0006-3207(02)00145-3
https://doi.org/10.1016/s0006-3207(02)00145-3
https://doi.org/10.1016/s0006-3207(02)00145-3
https://doi.org/10.1016/s0006-3207(02)00145-3
https://doi.org/10.1111/2041-210x.13922
https://doi.org/10.1111/2041-210x.13922
https://doi.org/10.1111/2041-210x.13922
https://doi.org/10.1111/2041-210x.13922

Robotics-Assisted Acoustic Surveys for Ecology

Schofield, G., Katselidis, K.A., Lilley, M.K.S., Reina, R.D. &
Hays, G.C. (2017) Detecting elusive aspects of wildlife
ecology using drones: new insights on the mating dynamics
and operational sex ratios of sea turtles. Functional Ecology,
31(12), 2310-2319. https://doi.org/10.1111/1365-2435.12930

Sethi, S. (2024). Data associated with global-bird-
detection-paper [Data set] (Zenodo). https://doi.org/10.5281/
zenodo.10820823.

Sethi, S.S., Bick, A., Chen, M.-.Y., Crouzeilles, R., Hillier, B.V.,
Lawson, J. et al. (2024) Large-scale avian vocalization
detection delivers reliable global biodiversity insights.
Proceedings of the National Academy of Sciences of the United
States of America, 121(33), €2315933121. https://doi.org/10.
1073/pnas.2315933121

Sethi, S.S., Ewers, R.M., Jones, N.S., Orme, C.D.L., Picinali, L.
& Parrini, F. (2018) Robust, real-time and autonomous
monitoring of ecosystems with an open, low-cost,
networked device. Methods in Ecology and Evolution, 9(12),
2383-2387. https://doi.org/10.1111/2041-210x.13089

Sethi, S.S., Kovac, M., Wiesemiiller, F., Miriyev, A. & Boutry,
C.M. (2022) Biodegradable sensors are ready to transform
autonomous ecological monitoring. Nature Ecology &
Evolution, 6(9), 1245-1247. https://doi.org/10.1038/s41559-
022-01824-w

Shrestha, S., Johnson, T., Langstaff, J., Rashid, T., Bouffard, M.

& Candice, L. (2018). Utilizing NASA earth observations to
evaluate effects of land use change on watershed health and
carbon sequestration in the Osa Peninsula, Costa Rica.
NASA DEVELOP National Program. See https://develop.
larc.nasa.gov/2018/summer/posters/2018Sum_GA_
OsaPeninsulaWaterII_Poster.pdf.

Stache, F., Westheider, J., Magistri, F., Stachniss, C. &
Popovi¢, M. (2023) Adaptive path planning for UAVs for
multi-resolution semantic segmentation. Robotics and
Autonomous Systems, 159, 104288. https://doi.org/10.1016/j.
robot.2022.104288

Stephenson, P.J. (2020) Technological advances in biodiversity
monitoring: applicability, opportunities and challenges.
Current Opinion in Environmental Sustainability, 45, 36—41.

Stowell, D. (2022) Computational bioacoustics with deep
learning: a review and roadmap. Peer], 10, e13152. https://
doi.org/10.7717/peer;j.13152

Stowell, D. & Sueur, J. (2020) Ecoacoustics: acoustic sensing
for biodiversity monitoring at scale. Remote Sensing in
Ecology and Conservation, 6(3), 217-219. https://doi.org/10.
1002/rse2.174

Sugai, L.S.M,, Silva, T.S.F., Ribeiro, ] W. & Llusia, D. (2019)
Terrestrial passive acoustic monitoring: review and

14 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

P. A. Bevan et al.

perspectives. Bioscience, 69, 15-25. https://doi.org/10.1093/
biosci/biy147

Szymanski, P., Olszowiak, K., Wheeldon, A., Budka, M. &
Osiejuk, T.S. (2021) Passive acoustic monitoring gives new
insight into year-round duetting behaviour of a tropical
songbird. Ecological Indicators, 122, 107271. https://doi.org/
10.1016/j.ecolind.2020.107271

Towsey, M., Wimmer, J., Williamson, I. & Roe, P. (2014) The
use of acoustic indices to determine avian species richness
in audio-recordings of the environment. Ecological
Informatics, 21, 110-119. https://doi.org/10.1016/j.ecoinf.
2013.11.007

UKCAA. (2024). Delivering scalable UAS BVLOS in the specific
category.

Van Merriénboer, B., Hamer, J., Dumoulin, V., Triantafillou,
E. & Denton, T. (2024) Birds, bats and beyond: evaluating
generalization in bioacoustics models. Frontiers in Bird
Science, 3, 1369756. https://doi.org/10.3389/fbirs.2024.
1369756

Wigele, J.W., Bodesheim, P., Bourlat, S.J., Denzler, J.,
Diepenbroek, M., Fonseca, V. et al. (2022) Towards a
multisensor station for automated biodiversity monitoring.
Basic and Applied Ecology, 59, 105-138. https://doi.org/10.
1016/j.baae.2022.01.003

Wang, L., Clayton, M. & Rossberg, A.G. (2023) Drone
audition for bioacoustic monitoring. Methods in Ecology and
Evolution, 14(12), 3068-3082. https://doi.org/10.1111/2041-
210x.14234

Weston, M.A., O’Brien, C., Kostoglou, K.N. & Symonds,
M.R.E. (2020) Escape responses of terrestrial and aquatic
birds to drones: towards a code of practice to minimize
disturbance. Journal of Applied Ecology, 57(4), 777-785.
https://doi.org/10.1111/1365-2664.13575

Wilson, A.M., Barr, J. & Zagorski, M. (2017) The feasibility of
counting songbirds using unmanned aerial vehicles. The
Auk, 134(2), 350-362. https://doi.org/10.1642/auk-16-216.1

Wrege, P.H., Rowland, E.D., Keen, S. & Shiu, Y. (2017) Acoustic
monitoring for conservation in tropical forests: examples
from forest elephants. Methods in Ecology and Evolution, 8
(10), 1292-1301. https://doi.org/10.1111/2041-210x.12730

Zheng, P., Xiao, F., Nguyen, P.H., Farinha, A. & Kovac, M.
(2023) Metamorphic aerial robot capable of mid-air shape
morphing for rapid perching. Scientific Reports, 13(1), 1297.
https://doi.org/10.1038/541598-022-26066-5

Zhou, X., Wen, X., Wang, Z., Gao, Y., Li, H., Wang, Q. et al.
(2022) Swarm of micro flying robots in the wild. Science
Robotics, 7(66), eabm5954. https://doi.org/10.1126/
scirobotics.abm5954

35UB017 SUOWILIOD) BAIEaID 3|qedt|dde ay) Aq pausenob ale sajoie O ‘asn Jo sani 10j Akeiqi] autjuQ A3IA UO (SUOTIPUOD-PUR-SWLLIBIL0D AB|IM" eI 1 BU 1 UO//:SANY) SUORIPUOD pue SWiB | 3Y3 39S “[GZ0z/TT/S0] uo ARldiTauluQ /3|1 ‘SeoInBS ARl TON uopuoabe)joD AiseAlun Aq ZE00. 29S1/200T OT/I0p/wod A3 1m Akeld 1puluo'suoiealgnd sz//:sdny wouy pepeojumod ‘0 ‘879502


https://doi.org/10.1111/1365-2435.12930
https://doi.org/10.1111/1365-2435.12930
https://doi.org/10.1111/1365-2435.12930
https://doi.org/10.5281/zenodo.10820823
https://doi.org/10.5281/zenodo.10820823
https://doi.org/10.1073/pnas.2315933121
https://doi.org/10.1073/pnas.2315933121
https://doi.org/10.1111/2041-210x.13089
https://doi.org/10.1111/2041-210x.13089
https://doi.org/10.1111/2041-210x.13089
https://doi.org/10.1038/s41559-022-01824-w
https://doi.org/10.1038/s41559-022-01824-w
https://doi.org/10.1038/s41559-022-01824-w
https://doi.org/10.1038/s41559-022-01824-w
https://doi.org/10.1038/s41559-022-01824-w
https://doi.org/10.1038/s41559-022-01824-w
https://doi.org/10.1038/s41559-022-01824-w
https://doi.org/10.1038/s41559-022-01824-w
https://develop.larc.nasa.gov/2018/summer/posters/2018Sum_GA_OsaPeninsulaWaterII_Poster.pdf
https://develop.larc.nasa.gov/2018/summer/posters/2018Sum_GA_OsaPeninsulaWaterII_Poster.pdf
https://develop.larc.nasa.gov/2018/summer/posters/2018Sum_GA_OsaPeninsulaWaterII_Poster.pdf
https://doi.org/10.1016/j.robot.2022.104288
https://doi.org/10.1016/j.robot.2022.104288
https://doi.org/10.7717/peerj.13152
https://doi.org/10.7717/peerj.13152
https://doi.org/10.1002/rse2.174
https://doi.org/10.1002/rse2.174
https://doi.org/10.1093/biosci/biy147
https://doi.org/10.1093/biosci/biy147
https://doi.org/10.1016/j.ecolind.2020.107271
https://doi.org/10.1016/j.ecolind.2020.107271
https://doi.org/10.1016/j.ecoinf.2013.11.007
https://doi.org/10.1016/j.ecoinf.2013.11.007
https://doi.org/10.3389/fbirs.2024.1369756
https://doi.org/10.3389/fbirs.2024.1369756
https://doi.org/10.1016/j.baae.2022.01.003
https://doi.org/10.1016/j.baae.2022.01.003
https://doi.org/10.1111/2041-210x.14234
https://doi.org/10.1111/2041-210x.14234
https://doi.org/10.1111/2041-210x.14234
https://doi.org/10.1111/2041-210x.14234
https://doi.org/10.1111/1365-2664.13575
https://doi.org/10.1111/1365-2664.13575
https://doi.org/10.1111/1365-2664.13575
https://doi.org/10.1642/auk-16-216.1
https://doi.org/10.1642/auk-16-216.1
https://doi.org/10.1642/auk-16-216.1
https://doi.org/10.1642/auk-16-216.1
https://doi.org/10.1642/auk-16-216.1
https://doi.org/10.1111/2041-210x.12730
https://doi.org/10.1111/2041-210x.12730
https://doi.org/10.1111/2041-210x.12730
https://doi.org/10.1038/s41598-022-26066-5
https://doi.org/10.1038/s41598-022-26066-5
https://doi.org/10.1038/s41598-022-26066-5
https://doi.org/10.1038/s41598-022-26066-5
https://doi.org/10.1038/s41598-022-26066-5
https://doi.org/10.1038/s41598-022-26066-5
https://doi.org/10.1038/s41598-022-26066-5
https://doi.org/10.1126/scirobotics.abm5954
https://doi.org/10.1126/scirobotics.abm5954

	Outline placeholder
	 Abstract
	 Introduction
	 Materials and Methods
	 Study area and sampling design
	 Data processing
	 Avian species detections
	 Spider monkey occupancy

	 UAV survey simulations
	 Evaluating simulation performance
	 Survey logistics

	 Results
	 Simulation results: Routed and random sampling strategies
	 Simulation results: Adaptive Sampling
	 Survey logistics

	 Discussion
	 Impact of UAV sampling strategy and sampling intensity
	 Study limitations and challenges for robotics-assisted acoustic surveys

	 Conclusion
	 Acknowledgements
	 Author Contributions
	 Data Availability Statement
	 References


