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Abstract. Since Prawitz proposal of his ecumenical system, where clas-
sical and intuitionistic logics co-exist in peace, there has been a discussion
about the relation between translations and the ecumenical perspective.
While it is undeniable that there exists a relationship, it is also unde-
niable that its very nature is controversial. The aim of this paper is
to show that there are interesting relations between the Gödel-Gentzen
translation and the ecumenical perspective. We show that the ecumenical
perspective cannot be reduced to the Gödel-Gentzen translation, much
less be identified with it.

1 Introduction

Ecumenical systems are formal codifications where two or more logics, even ri-
val logics, can co-exist in peace, and this means that these logics accept and
reject the same things, the same rules and the same basic principles. In [Pra15],
Dag Prawitz proposed a natural deduction ecumenical system, here called Ec,
where classical logic and intuitionistic logics are codified in the same system.1

In this system, the classical logician and the intuitionistic logician would share
the universal quantifier, conjunction, negation and the constant for the absurd,
but they would each have their own existential quantifier, disjunction and im-
plication, with different meanings. Prawitz’s main idea is that these different
meanings are given by a semantical framework that can be accepted by both
parties.

The language of Ec contains predicate variables p, q, . . . and the operators
¬, ∧, ⊥,∀,→i, ∨i,∃i, →c,∨c,∃c. The rules for the intuitionistic (→i,∨i,∃i) and
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neutral operators (∧,¬,⊥,∀) are the usual Gentzen-Prawitz natural deduction
introduction and elimination rules. The rules for the classical operators are2:

[A]n [¬B]n

Π
⊥ →c-int,n,m

A→c B

A→c B A ¬B →c-elim⊥

[¬A]n [¬B]m

Π
⊥ ∨c-int,n,m

A ∨c B

A ∨c B ¬A ¬B ∨c-elim⊥

[∀x.¬A(x)]n

Π
⊥ ∃c-int,n

∃cx.A(x)

∃cx.A(x) ∀x.¬A(x)
∃c-elim⊥

It is undeniable that there is a relation between translations [FO10] and the
ecumenical perspective. Prawitz himself observes in his paper that

Highly relevant to these discussions are the well-known translations of
classical predicate logic into intuitionistic predicate logic, first discovered
by Gentzen and Gödel. Also of some relevance is the (less well-known)
translation of intuitionistic predicate logic into quantified classical S4
established by Prawitz & Malmnäs (1968). These translations will not
be dealt with here. The emphasis will instead be on meaning-theoretical
considerations, but they can be seen to some extent as spelling out the
philosophical significance of the fact that classical logic can be translated
into intuitionistic logic.

But it is also undeniable that the very nature of this relationship is controversial.
In the limit, we could even think that in fact there is nothing new in the ecu-
menical perspective: the classical operators could be eliminated by definitions,
like (A→c B) =def ¬(A ∧ ¬B). The aim of this paper is to show that there are
interesting relations between the Gödel-Gentzen translation and the ecumenical
perspective. We show that the ecumenical perspective cannot be reduced to the
Gödel-Gentzen translation, much less be identified with it.

We shall use throughout the paper the following terminology:

– A formula is called classical (resp. intuitionistic) if and only if it has only
neutral and classical (resp. neutral and intuitionistic) connectives.

– A set Γ of formulas is called classical (resp. intuitionistic) if and only if for
every B in Γ , B is classical (resp. intuitionistic).

2 We observe that in [Pra15], Prawitz presented also classical and intuitionistic con-
stant predicates. We will present a more general formulation, with a single set of
atomic propositions.



– IL/CL refers to first-order intuitionistic/classical logic.
– Cr is the system obtained from Ec by the addition of the classical reductio

rule ⊥c:

[¬A]n

Π
⊥ ⊥c,n
A

– Let Γ be a set of formulas. Then Γ `S A represents that A is provable in
the system S with hypothesis in Γ .

2 On Krauss and double-negation translations

To our knowledge, the first ecumenical system, although without using the label
Ecumenical, was proposed by Peter Krauss in 1992 in a Technical Report never
published as a paper (see [Kra92]). Krauss defined a minimal system that has
rules for ∨i,→i,∧i,∀i,∃i,∨c,→c,∧c,∀c and ∃c.3 For example, the rules for ∧c
and ∀c can be formulated in Prawitz’s style as, respectively:

[¬A]n

Π1

⊥

[¬B]m

Π2

⊥ ∧c-int,n,m
A ∧c B

A ∧c B ¬A ∧c-elim1⊥
A ∧c B ¬B ∧c-elim2⊥

and

[∃ix.¬A(x)]n

Π
⊥ ∀c-int,n

∀cx.A(x)

∀cx.A(x) ¬A[y/x]
∀c-elim⊥

Krauss’ aim was to provide a logical framework that help us identify where we
need to use classical reasoning:

We should rather like to persuade classical mathematicians to carry out
their proofs distinguishing between intuitionistic and classical logic oper-
ators depending on what they actually prove. This way they may abstain
from eliminating double negations without leaving familiar traditional
tracks of reasoning. Moreover, this way their reasoning stays construc-
tively valid and therefore preserves the possibility of a computational
interpretation. For this more cautious form of classical reasoning we are
proposing a formal framework presenting our system of first-order logic.
([Kra92], p.17)

3 Krauss uses the symbols &, ,=⇒, ∀,∃ for the intuitionistic operators and ∧,∨,→,∧
,
∨

for the classical ones. Negation is defined as ¬A =def (A =⇒ ⊥).



Krauss correctly observes that we do not have a systematic way to identify in
classical assertions the places we have to be classical and where we may stay
intuitionistic, because these places depend on the proofs of the assertion:

It should not come as a surprise that for this form of classical reasoning
we cannot give a uniform method of describing the places in familiar clas-
sical assertions where intuitionistic logical operators are being used and
where classical logical operators are being used, because this depends on
how the assertion under consideration is actually being proved. There are
several situations that may arise. Sometimes various options are avail-
able to be proved which all are logical equivalent, however the form of
the resulting assertions may look quite different. We give some examples:

– ∀ix(ϕ→i ∃cyψ)
– ∀ix(ϕ→c ∃iyψ)
– ∀cx(ϕ→i ∃iyψ)

([Kra92], p.17)

In section 4 Krauss observes, as Prawitz did later in 2015, that

Of course, our constructive refinement of classical logic is related to the
Gödel-Gentzen Negative Translation (see, eg. Troelstra and van Dalen [TvD88],
p.56). In this section we shall describe this relationship ([Kra92], p.19).

According to Krauss, the constructive interpretation of classical logic he proposes
is not the Gödel-Gentzen negative translation4 because

It is not difficult to see that [this interpretation] interpolates the Gödel-
Gentzen negative translation. ([Kra92], p.20)

But what does it mean to say that Krauss’ constructive interpretation interpo-
lates the Gödel-Gentzen negative translation? According to Krauss, we can de-
fine two functions [·]◦ and [·]− such that, if g corresponds to the Gödel-Gentzen
translation5, the following diagram commutes:

[Γ ]◦

Γ [[Γ ]◦]−

[·]−[·]◦

g

4 See also [dPNdM01] pp.107-112.
5 Actually, the translations proposed by Gödel and by Gentzen differ, in the propo-

sitional case, in the way they treat implication. The Go translation of Gödel is
Go[A → B] = ¬(Go[A] ∧ ¬Go[B]), while Gentzen’s translation Ge is literal, i.e.,
Ge[A → B] = (Ge[A] → Ge[B]). This difference has an important consequence:
the elimination of → in the translation allows Gödel to prove that in the fragment
{¬,∧} one cannot distinguish classical logic from intuitionstic logic with respect to
theorems. We use Gödel’s translation since it corresponds more closely to the form
of the rules for classical implication →c.



The idea is that the function [·]◦ eliminates occurrences of classical operators by
their “intuitionistic interpretations”6:

– [p]◦ = p, if p is atomic.

– [⊥]◦ = ⊥
– [¬A]◦ = ¬[A]◦

– [A ∧B]◦ = [A]◦ ∧ [B]◦

– [∀x.A(x)]◦ = ∀x.[A(x)]◦

– [A ∨i B]◦ = [A]◦ ∨i [B]◦

– [A→i B]◦ = [A]◦ →i [B]◦

– [∃ix.A(x)]◦ = ∃ix.[A(x)]◦

– [A ∨c B]◦ = ¬(¬[A]◦ ∧ ¬[B]◦)

– [A→c B]◦ = ¬([A]◦ ∧ ¬[B]◦)

– [∃cx.A(x)]◦ = ¬∀x.¬[A(x)]◦

On the other hand, the function [·]− places double negations in front of atomic
formulas variables:

– [p]− = ¬¬p, if p is atomic.

– [⊥]− = ⊥
– [¬A]− = ¬[A]−

– [Qx.A(x)]− = Qx.[A(x)]− for Q ∈ {∀,∃i,∃c}
– [A ? B]− = [A]− ? [B]− for ? ∈ {∧,∨i,→i,∨c,→c}

As usual, if Γ is a set of formulas, we denote by [Γ ]◦ = {[A]◦ : A ∈ Γ} (the
same for [·]− and [·]g, which will appear later on.).

The following result is straightforward.

Lemma 1. Let A be a formula in Ec. Hence

(a) [A]◦ is an intuitionistic formula.

(b) `Ec (A↔i [A]◦)

Proof. The proof of (a) is trivial, since the only operators that appear in A◦ are
neutral or intuitionistic.
(b) is proved by structural induction over A.

– The base case where A is atomic or ⊥ is trivial since [·]◦ is the identity in
these cases.

– If A has an intuitionistic or neutral main connective, then the result is im-
mediate by the inductive hypothesis.

– If A = B →c C, then the result follows by the inductive hypothesis and the
fact that `Ec (B →c C)↔i ¬(B ∧ ¬C):

6 The function [·]◦ defined here is adapted to the meaning of the operators given by
the rules of Prawitz’s system, hence it is different from the one defined by Krauss.



[[B]◦ ∧ ¬[C]◦]2

[B]◦
Ind. Hyp.

B

[[B]◦ ∧ ¬[C]◦]2

¬[C]◦
[C]1

Ind. Hyp.
[C]◦

⊥
1¬C B →c C

⊥
2¬([B]◦ ∧ ¬[C]◦)

[B]2
Ind. Hyp.

[B]◦

[[C]◦]1
Ind. Hyp.

C [¬C]3

⊥
1¬[C]◦

[B]◦ ∧ ¬[C]◦ ¬([B]◦ ∧ ¬[C]◦)

⊥ 2,3
B →c C

– The same reasoning holds for A = B∨cC, since `Ec (B∨cC)↔i ¬(¬B∧¬C):

[¬[B]◦ ∧ ¬[C]◦]3

¬[B]◦
[B]1

Ind. Hyp.
[B]◦

⊥
1¬B

[¬[B]◦ ∧ ¬[C]◦]3

¬[C]◦
[C]2

Ind. Hyp.
[C]◦

⊥
2¬C B ∨c C

⊥
3¬(¬[B]◦ ∧ ¬[C]◦)

[[B]◦]1
Ind. Hyp.

B [¬B]3

⊥
1¬[B]◦

[[C]◦]2
Ind. Hyp.

C [¬C]4

⊥
2¬[C]◦

¬[B]◦ ∧ ¬[C]◦ ¬(¬[B]◦ ∧ ¬[C]◦)

⊥ 3,4
B ∨c C

– If A = ∃cx.B(x), then the result follows by the inductive hypothesis and the
fact that `Ec ∃cx.B(x)↔i ¬(∀x.¬B(x)):

∃cx.B(x)

[B[y/x]]1
Ind. Hyp.

[B[y/x]]◦
[∀x.¬[B(x)]◦]2

¬[B[y/x]]◦

⊥
1¬B[y/x]

∀x.¬B(x)

⊥
2¬∀x.¬[B(x)]◦



¬∀x.¬[B(x)]◦

[B[y/x]◦]1
Ind. Hyp.

B[y/x]

[∀x.¬B(x)]2

¬B[y/x]

⊥
2¬[B[y/x]]◦

∀x.¬[B(x)]◦

⊥
2∃cx.B(x)

Since the co-domain of [·]◦ is the intuitionistic fragment of Ec, from now on, we
will abuse the notation: whenever convenient we will identify→i,∨i,∃i with IL’s
implication, disjunction and existential symbols →,∨,∃.

Lemma 2. Γ `Ec A if and only if [Γ ]◦ `IL [A]◦.

Proof. By Lemma 1 (b), Γ `Ec A implies that [Γ ]◦ `Ec [A]◦. By the normaliza-
tion theorem for Ec [PR17] and Lemma 1 (a), the only rules that are used in
the derivation of [A]◦ from [Γ ]◦ are rules for the intuitionistic operators. We can
immediately conclude that this is a derivation in IL.

The other direction is direct, since Ec is a conservative extension of IL.

Lemma 3. Γ `Cr A if and only if [Γ ]◦ `Cr [A]◦.

Proof. First of all, observe that `Cr A ↔i [A]◦. In fact, if A is intuitionistic,
then this holds trivially since A = [A]◦. If A’s main connective is classical, we
use the equivalences in Lemma 1, which are proved strictly in Ec, i.e. the rule
⊥c is never applied. The main result then follows easily.

Observe that Cr collapses the ecumenical system into classical logic, since `Cr
A∨i ¬A. However, there is no proof of this formula if we restrict the application
of ⊥c to the atomic case. This can be achieved if we restrict the ecumenical
formulas to the ∨i,∃i-free ecumenical fragment.

Lemma 4. Let Γ,A be ∨i,∃i-free. If Π is a derivation of [Γ ]◦ `Cr [A]◦, then
every application of the classical reductio ⊥c in Π can be restricted to the atomic
case, i.e., with an atomic conclusion.

Proof. The proof follows easily from the following reductions.7

1. ∧-⊥c-reduction: The derivation

[¬(A ∧B)]1

Π
⊥ ⊥c, 1

A ∧B
7 This is an important part of the normalization strategy used by Prawitz in the

monograph Natural Deduction [Pra65].



reduces to8

[A ∧B]1

A [¬A]2

⊥
1

[¬(A ∧B)]

Π
⊥ ⊥c, 2
A

[A ∧B]3

B [¬B]4

⊥
3

[¬(A ∧B)]

Π
⊥ ⊥c, 4
B

A ∧B

2. →i-⊥c-reduction: The derivation

[¬(A→i B)]1

Π
⊥ ⊥c, 1

A→i B

reduces to

[A]3 [A→i B]1

B [¬B]2

⊥
1

[¬(A→i B)]

Π
⊥ ⊥c, 2
B

3
A→i B

3. ¬-⊥c-reduction: The derivation

[¬¬A]1

Π
⊥ ⊥c, 1¬A

reduces to

[A]2 [¬A]1

⊥
1

[¬¬A]

Π
⊥

2¬A
8 Let Σ be a set of derivations {Σ1, . . . , Σn} such the end formula of Σi is Ai (1 ≤ i ≤
n), and let Γ = {A1, . . . , An} be a set of undischarged assumptions in a derivation
Π. We use the notation Σ/[Γ ]/Π, to denote the result of replacing each assumption
Ai in Π by the derivation Σi (1 ≤ i ≤ n). This is called the concatenation operation
in [Pra71] pp. 251).



4. ∀-⊥c-reduction: The derivation

[¬∀x.A(x)]1

Π
⊥ ⊥c, 1

∀x.A(x)

reduces to

[∀x.A(x)]1

A[y/x] [¬A[y/x]]2

⊥
1

[¬∀x.A(x)]

Π
⊥

2
A[y/x]

y fresh
∀x.A(x)

But the function [·]◦ is more than simply a device to eliminate classical operators
from the ecumenical language. In fact, according to Krauss, it is a constructive
interpretation of classical reasoning in the theory of stable atomic formulas with
IL.

Using the terminology introduced by Krauss, let STAT be defined as the set
{(¬¬p→i p) : p is an atomic first-order formula}. We can then prove that:

Theorem 1. Let Γ and A be classical. Then Γ `Cr A if and only if STAT +
[Γ]◦ `Ec [A]◦.9

Proof. By Lemma 3, Γ `Cr A if and only if [Γ ]◦ `Cr [A]◦. By Lemma 4, if Π is
a derivation of [Γ ]◦ `Cr [A]◦, then every application of the classical reductio ⊥c

in Π is atomic, i.e., with an atomic conclusion. We can then transform Π in Cr
into a derivation Π ′ in Ec + STAT by means of the following operation.

The derivation

Γ [¬p]n

Π1

⊥ ⊥c, np

Π2

C

is transformed into

9 This is an abuse of notation: while STAT may be an infinite set, only the finite subset
of axioms involving the atomic subformulas of Γ,A is added to the context.



Γ [¬p]n

Π1

⊥ n¬¬p ¬¬p→i p

[p]

Π2

C

And vice-versa.

Let us now consider the Gödel-Gentzen translation g adapted to Prawitz’s
system:

– [p]g = ¬¬p, if p is atomic.

– [⊥]g = ⊥
– [¬A]g = ¬[A]g

– [A ∧B]g = [A]g ∧ [B]g

– [∀x.A(x)]g = ∀x.[A(x)]g

– [A ∨i B]g = [A]g ∨i [B]g

– [A→i B]g = [A]g →i [B]g

– [∃ix.A(x)]g = ∃ix.[A(x)]g

– [A ∨c B]g = ¬(¬[A]g ∧ ¬[B]g)

– [A→c B]g = ¬([A]g ∧ ¬[B]g)

– [∃cx.A(x)]g = ¬∀x.¬[A(x)]g

The next result highlights the fact that the provability of the translations
collapses in Cr.

Lemma 5. Γ `Cr A if and only if [Γ ]g `Cr [A]g. Hence, [Γ ]◦ `Cr [A]◦ if and
only if [Γ ]g `Cr [A]g.

Proof. It is easy to show that `Cr (A↔i [A]g). In fact, for p atomic [p]g = ¬¬p
and `Cr (p↔i ¬¬p). The rest of the proof is similar to Lemma 3.

Obviously, the translation [·]◦ is not the translation g, given that the for-
mer does not put double-negations in front of propositional variables. But if we
have the translation [·]− that places double negations in front of propositional
variables, we can immediately see that:

Lemma 6. For every ecumenical formula A, [A]g = [[A]◦]−.

Theorem 2. [Γ ]g `IL [A]g if and only if [[Γ ]◦]− `IL [[A]◦]−

Proof. Directly from Lemma 6.

It is in this sense that, according to Krauss, the constructive interpretation he
proposes interpolates the Gödel-Gentzen translation.



3 New translations and the ecumenical perspective

As we saw, derivability is preserved if we replace the first order classical operators
by their constructive interpretation given by the function [·]◦.

But what can we say if we want to preserve classical derivability in the
ecumenical system? Is it the case that if Γ `CL A, then Γ ∗ `Ec A∗, where A∗ is
the result of replacing every occurrence of ∨,→,∃ in A and in every formula B
in Γ by their classical counterparts ∨c,→c,∃c?

Clearly full preservation of derivability cannot be obtained, as the following
simple example shows [PPdP21]:

{p, (p→ q)} `CL q, but {p, (p→c q)} 0Ec q

where p, q are atomic.
In order to examine the relation between classical derivability and ecumenical

derivability more closely, let us define the translation function Tc suggested above
from the language of classical logic into the language of the ecumenical system.

1. Tc[p] = p, if p is atomic.
2. Tc[⊥] = ⊥
3. Tc[¬A] = ¬Tc[A]
4. Tc[A ∧B] = Tc[A] ∧ Tc[B]
5. Tc[A ∨B] = Tc[A] ∨c Tc[B]
6. Tc[A→ B] = Tc[A]→c Tc[B]
7. Tc[∀x.A(x)] = ∀x.Tc[A(x)]
8. Tc[∃x.A(x)] = ∃cx.Tc[A(x)]

Although, as we saw above, we cannot get full preservation of derivability, we
can get the following weaker result.

Theorem 3. If Γ `CL A, then Tc[Γ ] `Ec ¬¬Tc[A]

Proof. By induction on the length of the derivation Π of Γ `CL A. The interest-
ing cases are when Π ends with an application of →-elimination, ∨-elimination
or ∃-elimination.

1. Π ends with →-elimination. Π is:

Γ1

Π1

A

Γ2

Π2

A→ B
B

We can obtain directly from the induction hypothesis the following derivation
Π ′:

Tc[Γ1]

Π ′1

¬¬Tc[A]

Tc[Γ2]

Π ′2

¬¬(Tc[A]→c Tc[B])

¬¬Tc[A]→c ¬¬Tc[B]

[¬Tc[B]]2 [¬¬Tc[B]]1

⊥
1¬¬¬Tc[B]

⊥
2¬¬Tc[B]



Note that here we use the fact that ¬¬(A→c B) `Ec ¬¬A→c ¬¬B.
2. Π ends with ∨-elimination. Π is:

Γ1

Π1

A ∨B

Γ2 [A]1

Π2

C

Γ3 [B]2

Π3

C 1,2
C

We can obtain directly from the induction hypothesis the following derivation
Π ′:

Tc[Γ1]

Π ′1
¬¬(Tc[A] ∨c Tc[B])

Tc[A] ∨c Tc[B]

Tc[Γ2] [Tc[A]]1

Π ′2
¬¬Tc[C] [¬Tc[C]]3

⊥
1¬Tc[A]

Tc[Γ3] [Tc[B]]2

Π ′3
¬¬Tc[C] [¬Tc[C]]4

⊥
2¬Tc[B]

⊥ 3,4
¬¬Tc[C]

Here we use the fact that ¬¬(A ∨c B) `Ec A ∨c B.
3. Π ends with ∃-elimination. Π is:

Γ1

Π1

∃x.A(x)

Γ2 [A[y/x]]

Π2

B

B

We can obtain directly from the induction hypothesis the following derivation
Π ′:

Tc[Γ1]

Π ′1

¬¬(∃cx.Tc[A(x)])

∃cx.Tc[A(x)]

Tc[Γ2] [Tc[A[y/x]]]1

Π ′2

¬¬Tc[B] [¬Tc[B]]2

⊥
1¬Tc[A[y/x]]

∀x.¬Tc[A(x)]

⊥
2¬¬Tc[B]

Note that here we use the fact that ¬¬(∃cx.A) `Ec ∃cx.A(x).

As a direct corollary we obtain:

Corollary 1. If `CL A, then `Ec ¬¬Tc[A]

But in Prawitz’s ecumenical system we also have:

Lemma 7. If `Ec ¬¬Tc[A] then `Ec Tc[A]



Proof. Induction over the complexity of A.

1. Basis: A is atomic. Vacuously satisfied.

2. A is B ∧ C. The result follows directly from the induction hypothesis and
the fact that `Ec ¬¬Tc[B ∧ C] implies `Ec ¬¬Tc[B] ∧ ¬¬Tc[C].

3. A is ∀x.B(x). The result follows directly from the induction hypothesis and
the fact that `Ec ¬¬∀x.Tc[B(x)] implies `Ec ∀x.¬¬Tc[B(x)].
In fact,

`Ec ¬¬∀x.Tc[B(x)] implies `Ec ∀x.¬¬Tc[B(x)] implies `Ec ¬¬Tc[B[y/x]]

By the induction hypothesis `Ec ¬¬Tc[B[y/x]] implies `Ec Tc[B[y/x]], that
finally implies `Ec ∀x.Tc[B(x)].

4. The main operator of A is classical. The result follows directly from the fact
that classical operators satisfy the classical reductio ⊥c.

From Corollary 1 and Lemma 7 we obtain:

Theorem 4. If `CL A, then `Ec Tc[A].

4 Conclusion

As we have seen, there are clear connections between the ecumenical perspective
and translations, but these connections cannot be understood as a reduction of
the former to the latter. In particular, Prawitz’s ecumenical proposal is not a
double-negation translation.

Translations clearly elucidate the behavior of the classical operators and how
they interact with their intuitionistic counterparts. If one still wants to think
of translations with respect to the ecumenical perspective, one should think of
translations of derivations instead of translations between languages: the ecu-
menical perspective helps us to identify places where we have to be classical,
and obviously we do not have to be classical at all times and everywhere.
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