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Abstract

Designing adsorption processes requires knowledge of the adsorption isotherms. Measuring accurate isotherms is time
consuming and inefficient equidistant points are usually chosen. Here, we combine isotherm measurements with Model-
Based Design of Experiments to iteratively determine isotherm models with less experimental effort, while maintaining
high model accuracy. Our joint approach combining isotherm model discrimination and parameter precision is validated
by thermo-gravimetric experiments for the adsorption pairs Lewatit VP OC 1065 with CO5 and HoO and BAM-P109 with
H-0, covering isotherm Types I, III, and V. Results show that the experimental effort could be reduced between 70-81%.
Furthermore, the framework scheduled measurements for Lewatit VP OC 1065/H50 to discriminate its isotherm Type
between II or III, devoid of our bias as experimenters. Overall, our approach demonstrates potential to streamline the
identification of adsorption isotherms while enabling more efficient and unbiased model development.
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Greek Symbols
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Difference —

Measurement error vector —
Parameter vector —
Estimated parameter vector —
Standard deviation vector —
Measurement point vector —
Optimal measurement point vector —
Chi-value —
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Subscripts
eq Equilibrium
exp Experiment

fit Fitted

G G-criterion
HR HR-criterion
max  Maximal
min  Minimal

rel Relative

sat Saturation

sor Adsorbent

1 Introduction

Adsorption isotherm measurements form the basis for
designing adsorption systems in both process and thermal
engineering. The magnetic suspension balance is the most
accurate sorption measurement technique [1]; however,
measuring adsorption equilibrium is slow [2] making exper-
iments costly and time consuming.

To design an adsorption system, isotherm models are fit-
ted to the isotherm measurements. However, not all mea-
surement points of an isotherm measurement contribute
equally to identifying the isotherm model parameters. For
example, the measurement points close to the inflection
point of a Type V isotherm contain much more information
for the isotherm model than most of the measurement points
in the pressure-insensitive regions away from the inflection
point. Knowing the most meaningful measurement points of
a given adsorption pair a-priori is no easy task.

The identification of the most informative mea-
surements is the goal of Model-Based Design of
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Experiments (MBDoE) [3]. MBDoE is a Design of Experi-
ment approach that optimizes the experimental conditions
leveraging the mechanistic model of a process. MBDoE
aims to identify and select only the high information points
of a given data set [3]. To identify this information content,
objective functions are optimized depending on the study
goal: E.g., the objective function could discriminate between
rivaling models, or could increase parameter precision of
the model parameters [3]. Usually, an adequate model is
determined first, and model parameters are estimated subse-
quently. Optimal experimental design for model discrimina-
tion and parameter precision can also be alternated [3] or be
carried out simultaneously [4].

Although MBDoE approaches have been investigated
since the 1950s [5] and research on adsorption is also
established itself, the two research areas have rarely been
combined. The following chronological literature overview
summarizes advances that have been made while applying
MBDOoE to adsorption measurements and models.

The basics for applying MBDoE to adsorption were laid
by Atkinson et al. [6], who applied D-optimal designs for
parameter estimation to consecutive and reversible chemi-
cal reactions. They also provided optimal designs for model
discrimination to determine the reaction order and proposed
statistical hypothesis testing to verify the result. Rodriguez-
Aragon et al. [7] applied c- and D-optimal design for param-
eter estimation of the Arrhenius equation, which forms the
basis for describing many physical and chemical processes
that involve an activation energy (e.g., adsorption).

Later, Rodriguez-Aragon et al. [8] analyzed a number of
isotherm models from liquid-solid adsorption literature and
calculated D-optimal designs based on the parametrized iso-
therms. This retrospective study was aimed to help future
researchers investigating the same adsorption isotherm
models with fewer measurement points. An expression
for the D-optimal design of the 2-parameter BET isotherm
and a numerical procedure for the Guggenheim-Anderson-
de Boer (GAB) isotherm were presented. Model discrimi-
nation was considered using a sequential approach before
parameter estimation. The numerical procedure for experi-
mental design was later expanded to Freundlich and Lang-
muir isotherms by Mannarswamy et al. [9].

Munson-McGee et al. [10] designed experiments to dis-
criminate between BET and GAB isotherms with three sets
of isotherm parameters each, leading to 2% = 8 isotherm
model combinations. Their study was again retrospective
where the model parameters were already known and the
isotherm models were chosen a-priori. Later, Munson-
McGee et al. [11] applied D-optimal design to sorption
kinetic experiments based on Fick’s law of diffusion cou-
pled with an external convective mass transfer coefficient.
The study was conducted theoretically for an infinite plane
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of adsorbent with finite thickness, and no experiments were
performed. The methodology was expanded to infinite cyl-
inders [12] and compared to spherical geometries [13].

Paquet-Durand et al. [14] investigated optimal experi-
mental design for parameter estimation of water absorp-
tion kinetics for the Peleg model. The optimal experimental
design was compared to equidistant measurements on a
scalar and logarithmic scale. The parameter estimation error
could be reduced by 62% compared to the equidistant mea-
surements. Kalyanaraman et al. [15] took measurement data
of the MOF adsorption pair CO5/UiO-66 from the National
Institute of Standards and Technology (NIST) database
and performed Bayesian design to determine the Langmuir
model parameters for this adsorption pair retrospectively.
The authors note that “studies on the application of Bayes-
ian design to physical experiments (...) are still scarce”.

Kober et al. [16] summarized the results of [8] and [9].
They noted that the liquid solution equilibrium concentra-
tion should not be the independent variable of the MBDoE
for liquid-solid adsorption since it is a response variable of
the system. The authors compared retrospective D-optimal
designs for various isotherm models and found optimal
experimental designs which depended on all model parame-
ters instead of only a few. The study was expanded by Kober
at al. [17] by keeping the initial concentration at its maximal
value and varying the ratio between solution volume and
adsorbent mass, resulting in better parameter estimates.

Postweiler et al. [18] applied optimal experimental design
to validate dynamic adsorption chiller models against mea-
surement data. The experimental design was performed iter-
atively to reduce uncertainty of unknown parameters in the
dynamic model. The authors show their method to lead to a
valid adsorption chiller model by executing three dynamic
adsorption chiller measurements, thereby reducing experi-
mental effort by 83% compared to random experiments.

Ward and Pini [19] determined the parameter uncertain-
ties of a 1D dynamic column breakthrough model for CO4
/He adsorption onto activated carbon with Bayesian infer-
ence. The authors propagated the parameter uncertainties
through the dynamic models to assess their robustness. The
results showed that 70% of the dynamic model variability
could be attributed to the uncertainty of temperature-depen-
dent isotherm parameters, highlighting the need for exact
adsorption isotherm models.

Toffoli de Oliveira et al. [20] optimized parameter esti-
mation of an adsorption breakthrough curve model by
employing a Bayesian technique. The operational condi-
tions of volumetric flow, adsorbent mass, and initial adsorp-
tive concentration were varied for caffeine adsorption onto
activated carbon. The results proved the Bayesian approach
effective, so that all operational conditions obtained a caf-
feine removal of 95%.

The literature overview shows first applications of
MBDoE methods to adsorption experiments, mostly
focused on liquid-solid adsorption and retrospective analy-
ses, while application to physical experiments is still scarce.
Some studies have been conducted for parameter estima-
tion of breakthrough column models, concluding that the
highest uncertainty in the dynamic models can be attributed
to the model parameters of the equilibrium isotherm [19].
However, the strength of MBDoE approaches to reduce the
actual experimental effort has not been exploited for adsorp-
tion isotherms, yet.

In this work, we present a comprehensive method to esti-
mate isotherm parameters and discriminate between rivaling
isotherm models when a-priori knowledge of the adsorp-
tion pair is missing or it would be beneficial to avoid time-
consuming equidistant adsorption isotherm measurements.
For this purpose, we combine a theoretical framework with
adsorption isotherm measurements while focusing on the
isotherm model performance rather than individual param-
eter uncertainty. In Sect. 2, we introduce the experimental
setup and reference measurements. In Sect. 3, we present
the MBDoE framework and in Sect. 4 we show the results
for optimally designed Type I, III, and V isotherm measure-
ments together with a sensitivity analysis of the stopping
criterion used in the MBDoE framework. Finally, we con-
clude our main findings.

2 Experimental setup and reference
measurements

2.1 Magnetic suspension balance

A magnetic suspension balance decouples a micro scale
and a measurement cell through a magnetic suspension
coupling, which levitates a sample basket in a magnetic
field [2]. The concept of magnetic suspension balances is
based on Gast [21], while modern systems mostly follow
the design by Losch et al. [22]. By moving the scale outside
of the measurement cell, a common scale can be used since
it is only exposed to benign conditions at ambient pressure
and temperature. Meanwhile, pressure and temperature
within the measuring cell range from 2 x 1076 bar to 150
bar and —40°C to 400°C for the gravimetric system (Rubo-
SORP 150), which was used for this study. The resolution
of'the scale is 1 pug (Sartorius MSA66S-000-DH). A custom-
built and automated gas-dosing station ensures the supply
of gas or vapor at the desired pressure and temperature. A
trace heating system with variable setpoint allows for mea-
surements with condensable vapor without superheating
the vapor too much. Furthermore, the gas dosing station
is equipped to handle sub-atmospheric pressure as well as
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high pressure allowing for high variability of the select-
able adsorbate. A photo of the magnetic suspension balance
setup in the laboratory is shown in Fig. 1.

Figure 2 gives a more detailed schematic overview of the
main components of the magnetic suspension balance. The
description of Fig. 2 follows the work by Dresp [23]: The top
of the figure shows an electromagnet attached to the micro
scale and a permanent magnet attached to the basket with a
suspension rod, forming the magnetic coupling. The posi-
tion of the basket is detected by a displacement sensor con-
sisting of a sensor core attached to the suspension rod and a
sensor coil attached to the wall of the pressure vessel. As a
consequence, the position is continually monitored, can be
adjusted by feedback control of a PID controller, and can be
set by changing the voltage of the electromagnet. With this
setup, the magnetic suspension balance transmits the forces
on the sample to the micro scale. The “tare” functionality of
a balance is realized by a mechanical coupling, allowing to
weigh a zero point signal. The zero point signal is subtracted
from the measurement signal to receive the actual change
in mass of the sample. A sinker with calibrated mass and
volume (titanium cylinder) allows to deduce the density of
the surrounding adsorptive.

This experimental setup allows to measure the change
in mass of an adsorption sample with varying pres-
sure p at a given temperature 7. Combined with the dry

Micro scale

d

| Micro scale
= control

Fig. 1 Photo of the magnetic suspension balance in the lab, including
gas dosing station, hardware controllers, evaporators, micro scale and
micro scale control, thermal bath, and measuring cell
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mass of the adsorption sample, adsorption isotherms of
mass-specific loading X over pressure p or relative pres-
sure prel = p/Psat (T') can be calculated. The measurement
of the loading over pressure is then fitted to adsorption iso-
therm models, forming the basis for designing adsorption
systems (e.g., calculating required total mass of adsorbent
in a process etc.).

2.2 Adsorption isotherm models

Taking into account the isotherm types of
Lewatit VP OC 1065 with HyO and CO5 as well as BAM-
P109/H,0, we consider the following isotherm models for
this study:

1. The Sips isotherm [24] with 3 parameters X4, b, and n,
which can take the form of Type I, 111, and V isotherms:

bpr 1/n
X (prel) = Xeq ( el) 1/n °
1+ (b prel)
2. The adjusted BET-isotherm [25] with 4 parame-
ters Xy, C, g, and n, which can take the form of all
isotherm types except Type VI:

(1)

B Cpel 1+n (%71)[):”;1 7(7Lg7n+1)p;ﬁﬂ+%np::{1 (2)
e
1—pa 14+ (C-Dpa+C(5-1)p - 40!

rel

3. The Dubinin-Astakhov (DA) isotherm [26] with three
parameters Xoq, £ and n, which can take the form of
Type I, 11, III, and V isotherms

X (prat, T) = Xeqe (B)" (3)

with the adsorption potential 4 given by:

A(pre, T) = % T log (pja) . @)
In practice, an isotherm model needs to describe the adsorp-
tion behavior at varying temperatures [27]. Temperature
dependencies have taken different forms and sometimes
vary even within the same isotherm model [28]. Also, it is
discussed whether all parameters should be dependent on
temperature [28]. Here, we employ temperature dependence
of the parameters as described for the Sips model [27]:

Xeg = Xo X (-755) | (5)
b=bg ebT(TrTSffl) , and (6)
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Fig.2 Schematic of the magnetic
suspension balance redrawn after
Rother et al. [1]

to the micro scale
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All equations incorporate an arbitrary reference tempera-
ture T..s where the temperature dependencies reduce to the
factor one. While the temperature dependence of the param-
eter b is taken from the Langmuir equation, the temperature
dependence of the parameter n is empirical. The tempera-
ture dependence of the parameter X is also empirical and
sometimes even neglected [27].

2.3 Statistical analyses of the experiments

When comparing isotherm measurements to isotherm mod-
els, a set of statistical hypothesis tests helps evaluating the
validity of the model identification results [29]. The two
tests are the y2-test and Student’s t-test, which are presented
following Pankajakshan et al. [29].

sinker

suspension rod

[“~g mechanical coupling
<+— fluid/adsorptive
Y
/
basket
sample/adsorbent

2.3.1 x2-test

The chi-square (x?) goodness of fit test can be applied
to every isotherm model to test if the hypothesis of ran-
domly distributed measurement errors can be confirmed or
rejected. This hypothesis test is performed by evaluating the
residuals between outputs y (e.g., measurements) and iso-
therm model predictions 4. The x? -test evaluates whether
the residuals can be considered as a random sample of a
specified normal error distribution or if there is a systematic
deviation, meaning the model does not match the data. The
x2-test characteristic is calculated according to

lyi — 3: (0))" [yi — 4: (0)] 3

with the standard deviation of the outputs o, and the
model parameters 6. The model parameters of the iso-
therm models are Ogsips = {Xo, X7, bo, br, no, nr},

HBET == {Xﬂa XT? 9o, 91,10, nﬂ[@iﬁeﬂov XTv E07 ETv nﬁQ(LT}

Egs. (1) to (7)). The x? value is compared to a reference x>
value X2, = X%,ﬁn , (1 — ). This reference value xZ is
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taken from a x? distribution with n,, — ng degrees of free-
dom, where n, represents the number of measurements
and ng the number of parameters of a model. The signifi-
cance level « defines the point at which the test is deemed
successful: For a high significance level, models with high
residuals will be accepted sooner while a low significance
level might lead to none of the models meeting the required
accuracy. A common significance level is 5% implying
a remaining probability of 5% that the hypothesis of the
residuals matching a normal error distribution is falsely
confirmed and the associated isotherm model should actu-
ally be rejected.

The x? -test can also be inverted to check for the prob-
ability of each model which would satisfy the hypothesis of
the model’s residuals following a normal distribution. The
test then returns an a-level which is also called p-value.

If multiple models pass the x2-test, assigning a probabil-
ity to each model becomes useful. Here, we use the equiva-
lent probability Pr; from Pankajakshan et al. [29]

Pr <X1Z < X;zly—ng>

PI‘Z' =
Mmodels 2 2
Zi:l Pr (XL < X’n,.y—’ng>

Vi =1, ..., Nmodels , (9)

where the probability Pr() is equal to the p-value from the
x2-test for the i-th model. The larger the probability, the
more residuals are not contradicted by the distribution of
measurement error [29].

Related to the x? value is the Coefficient of Varia-
tion (CV) (i.e., the relative standard deviation):

\/% S (yi — i (8))°

- (10)
i Ziiﬁ Yi

CV =

Vi=1, .., ny.

The coefficient of variation relates the root mean square
deviation to the mean of the measurements. The CV is often
given in percent: A CV value of 0% indicates a perfect fit of
the model to data, while a CV of 100% indicates a root mean
square deviation equal to the mean value of the measure-
ments. The CV value quantifies the overall predictive accu-
racy of the fitted models and allows for direct comparison
between rivaling models.

2.3.2 Student’s t-test

The Student’s t-test is performed to assess the precision of
the model parameters. The goal of the t-test is to confirm
whether the variation of the parameters can be explained
from the variation of the data. A variation of the parameter
estimates can be taken directly from the parameter covari-
ance matrix Vy

@ Springer

Vo= (Q"Q) o2 + Vay, (1)

with the sensitivity matrix Q according to

991 ___ O
96, T 90nparameter
Q=| - e 7 (12)
ay"outputs ay"outputs
004 00

Nparameter

and the standard deviation of the outputs (i.e., of the mea-
surements) o,,. In case there are prior information on the
parameters (e.g., from parameter bounds or the first curve
fit), the prior information matrix Vy ¢ is added.

From the main diagonal of the covariance matrix (Vp, ;;),
the test statistic (t-values ¢;) from Student’s t-test can be cal-
culated according to

;
tny—ng (1 - Oé/2) AV VG,ii

where 6, are estimates of the individual parameters and «
is the significance level. The computed t-values are then
compared to reference t-values from Student’s t-distribu-
tion ¢y, _n, (1 — a/2). The reference t-value is taken from
a two-tailed t-distribution with n, — ne degrees of free-
dom, where 7, is the number of measurements and ng the
number of parameters of the model. Parameters with t-val-
ues larger than the reference t-value are considered well
estimated [29].

ti =

(13)

2.4 Reference isotherm measurements

Reference measurements are needed to evaluate the result-
ing experimental designs of the MBDoE framework. To test
our design approach for a broad range of applications, our
measurements encompass the three isotherm Types I, III,
and V, and use adsorption pairs with high relevance in the
field of adsorption: Lewatit VP OC 1065 with CO (Type 1
isotherm) and HyO (Type III isotherm) as well as BAM-
P109 with water (Type V isotherm). Lewatit VP OC 1065
is a highly researched amine-functionalized polymer
manufactured by Lanxess GmbH, which can directly cap-
ture CO2 from the atmosphere [30]. BAM-P109 is an
activated carbon with defined properties provided by the
German Institute for Materials (BAM) and was recently
employed in an inter-laboratory study by Nguyen et al.
from the US National Institute of Standards and Technol-
ogy (NIST) [31]. The study aimed to provide a water cali-
bration isotherm for new isotherm measurement systems.
Gathering data from multiple laboratories enabled statisti-
cally significant results. For these three adsorption pairs,
we measure equidistant reference isotherms (i.e., evenly
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Fig. 3 Reference measure-

| X LTT (this work)

ment of a Type I isotherm with

Lewatit VP OC 1065/CO2 (LTT).
The adsorption pair was measured
at 25 °C (left), 75 °C (center),
and 100 °C (right) and compared
to literature data from Young et al.
[30]. The three isotherm mod-

els DA (dotted), BET (densely
dashed), and Sips (dashed) were
fitted to the measurement results.
An analysis of the measurement
uncertainty is given in Appendix A

0.15

=]

S
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X.

Loading X in g/g
o
)
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25°C

75 °C

0.00 -

Table 1 Results of the Type I isotherm calibration

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

Pressure p in bar

Model X() XT (b/E/g)() (b/E/g)T no nrt C() CT cv

Sips 0.170 1.487 18.66 17.01 2.95 1.962 - - 12.4%
DA 0.127 3.141 500.1 7.736 0.88 —1.251 - - 17.5%
BET 0.123 —5.5e-3 0.601 11.19 1.54 - 43.54 16.27 5.4%

The isotherm models yield the loading X in gg~! when inserting the pressure p in bar and the parameters X, b, E, g, n, and C as given. Param-
eters defining the temperature dependence according to Egs. (5) to (7) are denoted with the index 7 while the base parameters are denoted with
the index 0. Bold models indicate the chosen reference model with the lowest CV value

spaced sampling over the pressure range) with the commer-
cial gravimetric system from Rubolab from Sect. 2.1. We
compare the measurements to literature data and fit the iso-
therm models of Sips (Eq. (1)), adjusted Brunauer-Emmett-
Teller (BET) (Eq. (2)), and Dubinin-Astakhov (DA) (Eq.
(3)) to the experiments.

Figure 3 shows the reference isotherms of
Lewatit VP OC 1065/COs3. Our measurements (LTT) fol-
low the trend of the data points from Young et al. [30].

However, we underestimate the absolute loading by an
almost constant relative offset between 15—20% for all three
temperatures. The difference can be explained by different
batches of Lewatit or by the initial desorption (or activa-
tion) process of the material: Although the Lewatit sample
was desorbed in-situ at the same temperature and for the
same duration as in Young et al. [30], we only had access
to a rotary vane vacuum pump instead of a turbo-molecular
vacuum pump. The turbo-molecular pump in the work from
Young et al. [30] desorbed the sample at lower pressure than
our rotary vine pump, leading to better desorption. Further
desorption leads to a smaller sample mass and in turn to
higher loading. The constant relative offset between 15-20%
supports this hypothesis (Fig. 3 left and center). The slightly
decreasing offset towards high pressure at 100 °C (Fig. 3
right) might be due to the measurement data of Young et al.
[30] as the plateau between p = 0.6 bar — 0.8 bar at 100 °C
was neither visible at lower temperatures nor at our data at
high temperature. If there was in fact a physical effect hap-
pening between p = 0.6 bar — 0.8 bar at 100 °C, it has not
been explained.

Despite the differences between our measurement and
the literature, the set of isotherms is well suited as a ref-
erence measurement for the MBDoE framework as all
three isotherm models can be calibrated using the data.
Also, the temperature dependence of a Type I isotherm
is clearly visible. Results after model calibration are
reported in Table 1 including the isotherm with the low-
est CV-value CVggr = 5.4%. Sips and DA isotherms
have CV-values of CVg;ps = 12.4% and CVpa = 17.5%,
respectively. The probability from the x2-test is almost the
same for all three models ranging between 32—34%. The
DA model captures the steep gradient at low pressures the
best. However, the DA model underestimates the loading
at 50 °C and overestimates the loading at 100 °C, which
could be improved with different equations for the tempera-
ture dependency.

Figure 4 shows the reference isotherm of
Lewatit VP OC 1065/H2O. Our data shows good agreement
with the measurement from Young et al. [30]. We were able
to measure up to relative pressures of pre; < 0.85 PaPa™!
as water started to condensate onto the suspension rod, the
mechanical coupling and the sinker, preventing accurate
measurements beyond p..] = 0.85Pa Pa~!l. These parts
of the magnetic suspension balance cannot be heated sepa-
rately, thus limiting the range of relative pressure our setup
could cover. The largest deviation of 0.07gg~! to Young
et al. [30] is at high pressure and 75 °C. This deviation is
most likely due to the nature of the adsorption process of the
Lewatit polymer: The water leads to swelling of the polymer
[32], which increases the pore size, makes more adsorption

@ Springer
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Fig.4 Reference measurement of

[X LTT (this work)

O Young et al. - DA

a Type 11l isotherm with Lewatit

VP OC 1065/H20 (LTT). The 0.25

adsorption pair was measured

at 25 °C (left), 50 °C (center),
and 75 °C (right) and compared
to literature data from Young et al.
[30]. The three isotherm mod-

els DA (dotted), BET (densely
dashed), and Sips (dashed) were
fitted to the measurement results.
An analysis of the measurement

0.20 A

0.10 A

Loading X 'in g/g

0.05 - o
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0.00

0.15 A X

;,'<;—\" 25°C

Pe

50°C| |t
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uncertainty is given in Appendix A

Table 2 Results of the Type III isotherm calibration

0.0 02 04 06 0.8 1.0 0.0 02 04 0.6 0.8 1.0 0.0 02 04 06 08 1.0

Relative pressure p.ej in Pa/Pa

Model Xo Xr O/E/9)g _ (/E/9)y  no nr Co Cr v
Sips 1.909 2297 0.3501 0.1609 2.01 0.4280 - - 11.0%
DA 0.338 2.017 37.24 -3.046 0.59 0.0270 - - 3.6%
BET 0.495 2.406 0.8243 1370 3.23 - 0.1078 -2.29 7.8%

The isotherm models yield the loading X in gg~' when inserting the relative pressure pre; in PaPa~' and the parameters X, b, E, g, n, and C
as given. Parameters defining the temperature dependence according to Egs. (5) to (7) are denoted with the index T while the base parameters
are denoted with the index 0. Bold models indicate the chosen reference model with the lowest CV value

sites available, and leads to the Type III isotherm shape
approaching infinite loading. The swelling is very slow. If
the kinetics of adsorption are faster than the swelling, points
of lower loading will appear equilibrated even though more
water could be adsorbed when waiting for the swelling.
This effect leads to points of lower loading especially for
high relative pressures, because the last points were poten-
tially not equilibrated. Note that, the swelling also affects
the buoyancy correction, but since we measure at pressures
below 1 bar, the effect of buoyancy itself is negligible and
thus also the impact of swelling on the buoyancy.

Overall, the measurements for the Type III isotherm
(crosses and circles) resemble the literature data (dash-dot-
ted lines) reasonably well and can be used as reference data
for the MBDOE algorithm. The only drawback of this data
for a MBDoE study is the low temperature dependency of
the adsorption pair, which makes the measurement at mul-
tiple temperatures almost superfluous.

Table 2 shows the parameters of all three isotherm mod-
els for the Type III isotherm. The DA model fitted the data
the best with a coefficient of variation CVpa = 3.6 %. All
isotherm models provide the same probability from the x?
-test and are equally suited to describe the Type I1I isotherm
behavior.

Figure 5 shows the reference isotherm of BAM-
P109/H50 up to relative pressures of pye; < 0.85 PaPa'.
Our 25 °C isotherm shows good agreement with the inter-
laboratory study from Nguyen et al. [31]. Here, we pro-
vide additional isotherms to Nguyen et al. [31] at 50 °C
and 80 °C. The figure shows a slightly decreasing maximum
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loading for increasing temperature. Furthermore, the inflec-
tion point moved to higher relative pressure. However, as
with the Type III isotherm, the temperature dependency is
almost negligible.

Table 3 shows the parameters of all three isotherm models
for the Type V isotherm with the best fit by the BET model
with CVggr = 2.7%. As with the Type III isotherm, all
isotherm models provide the same probability from the 2
-test and are equally suited to describe the Type V isotherm
behavior.

Overall, 36 data points were measured for the Type I iso-
therm (Lewatit VP OC 1065/CQO5), 30 data points for the
Type III isotherm (Lewatit VP OC 1065/H50), and 48 data
points for the Type V isotherm (BAM-P109/H50), and only
adsorption was considered. The next section introduces the
MBDoE algorithm to reduce this experimental effort, while
trying to maintain high-quality isotherm models.

3 MBDoE algorithm and flowchart

The MBDoE algorithm for isotherm measurements follows
the general approach by Pankajakshan et al. [29], which is
based on Franceschini et al. [3]. The open-source Python
code is available in the SI of this study. The mathematical
models to be calibrated are generally differential algebraic
equation systems (DAE-systems) and can be written as [4]

(=P 0w, 0.1) =0,

(14)
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Fig. 5 Reference measurement of a Type V isotherm with BAM-
P109/H20 (LTT). The adsorption pair was measured at 25 °C (left),

BET (densely dashed), and Sips (dashed) were fitted to the measure-
ment results. An analysis of the measurement uncertainty is given in

50 °C (center), and 80 °C (right) and compared to literature data from Appendix A

Nguyen et al. [31] for 25 °C. The three isotherm models DA (dotted),

Table 3 Results of the Type V isotherm calibration

Model Xo Xr (b/E/g)y __ (b/BE/9)r _no nr o Cr cv
Sips 0.414 0.220 1.666 0.2342 16.1 -3.6e3 - - 3.8%
DA 0.414 0.280 75.78 —0.537 5.49 —77.8 ¢-3 - - 5.2%
BET 0.023 0.237 78.2 e3 3.856 18.2 — 0.364 0.100 2.7%

The isotherm models yield the loading X in gg~! when inserting the relative pressure pec; in PaPa~! and the parameters X, b, E, g, n, and C
as given. Parameters defining the temperature dependence according to Eqgs. (5) to (7) are denoted with the index 7 while the base parameters
are denoted with the index 0. Bold models indicate the chosen reference model with the lowest CV value

x(t=0)=xzo, and (15)
g(m(t),u(t),e,t):f/(t), (16)

where f represents the differential equations and g the alge-
braic equations. This general form reduces to Eq. (17) with-
out time dependencies for the isotherm models, since they
have no time-dependent variables:

gz, u,0)=7. (17)

The variables x are the algebraic state variables (e.g., pres-
sure p and temperature 7 in an isotherm model), x are their
initial conditions (not needed here), u are the input vari-
ables, @ are the model parameters (e.g., Osips, OBET, and
Opa). The output (e.g., loading X in an isotherm model) is
represented by y for true outputs (i.e., measurements) and
g for estimations of the outputs by the models [4]. Like-
wise, 6 denotes estimations of the true model parameters 6.
All measurements y; consist of the true response ¢; and a
measurement error €; (Eq. (18)). The measurement error ¢;
consists of a combination of measurement noise and model

lack-of-fit. Here, we assume a measurement error that is
independent and identically distributed. We assume other
sources of error, such as temperature setting error, degrada-
tion of the adsorbent, and insufficient waiting time to reach
equilibrium to be insignificant compared to the measure-
ment error of the device.

Yi = B (9> e (18)

To generate the next measurement points of the experimen-
tal design ¢* (i.e., the next pressure to be measured) in a
design space D (i.c., the pressure range), we maximize the
information for this next experiment. The information is
represented by a design criterion :

o = argmax (U} - (19)

The design criterion is usually chosen to maximize informa-
tion either regarding model discrimination or parameter pre-
cision. Here, a joint approach is chosen to optimize model
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discrimination and parameter precision at the same time. We
chose the Hunter-Reiner (HR)-criterion (Eq. (20)) for model
discrimination and the G-criterion (Eq. (21)) for parameter
precision. The HR-criterion is described by

(Mmodels—1) Nmodels

Yur = Y

i=1 j=i+1

@ —9)" (@ — 95) (20)

where §; and §J; are predictions of model 7 and j, respec-
tively, and nyodels 1S the total number of considered models.
The goal of this design criterion is to find the measurement
point where the predictions of all models deviate the most.
Alternative criteria for model discrimination have been pro-
posed by Buzzi-Ferraris et al. [33] or Donckels et al. [34]
including uncertainty of the measurements or Schwaab
et al. [35] using the parameter covariance matrix. Since
we assume constant measurement uncertainty and the vari-
ance on model prediction was relatively constant, the HR-
criterion is regarded as sufficient here and we can neglect
normalizing Eq. (20) by measurement errors. However, the
provided code base in the supplementary material allows for
both variable measurement error and alternative model dis-
crimination criteria.

For parameter precision, a scalar value needs to be
derived from the parameter covariance matrix Vy (cf. Eq.
(11)) to serve as objective function [3]. Various criteria such
as A-, D-, and E-optimality are regularly employed. While
the A-, D-, and E-criterion aim to minimize the uncertainty
of the parameters 6, the G-criterion minimizes the final
uncertainty in the outputs y [36]. Like with the CV value,
which directly allows for comparison of the model’s out-
put accuracy, the G-criterion also gives an intuitive measure

Fig.6 Flowchart of the MBDoE
algorithm for adsorption isotherms
and initialization based on Panka-
jakshan et al. [29]. Initialization
comprises determining isotherm
models, temperatures, and param-
eter bounds. The algorithm loops
isotherm fits, statistic evaluation,
finding the new measurement
point p},;, and measuring at that
pressure

Initialization

Final temperature?
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for the accuracy of the chosen model-based design. This
translation—from parameter uncertainty to output uncer-
tainty—is achieved in a similar fashion to Gaussian error
propagation [37]: The parameter covariance matrix Vjp is
multiplied with the sensitivity of the outputs y with regard
to the parameters 6, which are listed in the sensitivity
matrix Q (cf. Eq. (12)) [38]. Thus, we find the uncertainty
of the outputs u, by multiplying the uncertainty of the
parameters ug with the differentials dy/00. Since we are
interested in minimizing the deviation of the output of the
isotherm models—the loading X—we choose the G-crite-
rion with sensitivity matrix @ from Eq. (12) and parameter
covariance matrix Vi from Eq. (11):

Ny Ny

Yo =min) Y QVeQ". 1)
i g

The resulting MBDoE process is shown as a flowchart
in Fig. 6: The first step of the initialization of the MBDoE
algorithm is the preselection of the isotherm models (here:
Sips, DA, and BET), the parameter bounds (Table 8 in the
SI), and the isotherm temperatures (given by the works of
Young et al. [30] and Nguyen et al. [31]). In principle, the
isotherm temperatures could be optimized simultaneously
with the pressure creating a second design variable for the
model-based design. Here, we decided against the tempera-
ture as a second design variable since the equilibration time
for the temperature is quite large. Changing the temperature
after each measurement would increase the overall mea-
surement duration considerably compared to equilibrating
only the pressure. Temperature-dependent isotherm param-
eters are only considered after the measurement of the first

Decide on isotherm models,
parameter bounds, and
isotherm temperatures T;

v
( Initial measurements at
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'd N\
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Joint MBDoE |
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isotherm temperature is completed. The next step of the ini-
tialization are initial measurements. We decided on 3 ini-
tial measurements as the models have at least 3 parameters
when temperature dependency is not considered. We set the
initial measurements to the minimum, center, and maximum
value of the design space. Note the maximum relative pres-
sure, our gravimetric system was able to handle for water,
was at prel = 0.85gg™1, D = {0, 0.85}.

Once the initial 3 measurements have been completed,
all isotherm models are calibrated to the data. The measure-
ment at pre] = 0PaPa! can be set to X = Ogg_1 since
all isotherm models have to pass through the origin. If any
of the models passed the x2- and t-tests, the next predeter-
mined temperature would be chosen. As none of the tests
were usually passed after the initial measurements, a new
measurement point p}, is determined: Based on the cali-
brated isotherm models, the minimization problem of a joint
MBDoE with the HR- and G-criterion (Eq. (22)) is solved:
A numeric gradient-based solver from the Python package
scipy minimizes the design criterion (i.e., the sum of nor-
malized HR- and G-criterion from Eq. (22)) with respect to
the pressure p. Since the HR-criterion identifies the mini-
mum distance between all models and we are interested in
the maximum distance, the HR-criterion gets a negative
sign. In future studies, the effect of both G-and HR-criterion
could also be weighted depending on the desired experi-
mental design.

. . { Ya
@ = argmin

YHR }
- . 22
@in D ’L/)G, max wHR, max ( )

The minimum of the design criterion corresponds to the
next measurement point with the highest information con-
tent, thereby identifying the pressure at which to measure
next. Afterwards, the gravimetric system measures at the
new measurement point p’,; and the isotherm models are
recalibrated using all data points. This cycle is repeated
until any of the models satisfies the y2- and t-test with a
significance level of a = 0.05. Since the y>-test relates
model prediction error to uncertainty of the measurement, a
value for the uncertainty of the gravimetric suspension bal-
ance is required. A maximal estimate of the uncertainty of
our magnetic suspension balance (u x = 0.0202 gg‘*l) is
calculated in Appendix A and was used as a constant value
throughout the measurements.

Once the statistical tests are satisfied, the next tempera-
ture is chosen and an initial measurement at the center of

the design space is set at p*; = 0.5PaPa™'. As soon as

multiple temperatures are considered, the isotherm models
automatically consider temperature-dependent parameters

as well. The calibration step of the isotherm models to the
experimental data alters all parameters (temperature-depen-
dent and -independent). Once the statistical tests of the last
temperature are satisfied, the algorithm stops and returns the
most probable model with its parameters.

4 Optimal experimental designs
4.1 Optimal design of a Type l isotherm

The detailed progression of the experimental design in Fig. 7
shows the Type I isotherm of Lewatit VP OC 1065/CO, for
the temperatures 25/75/100 °C. The algorithm stopped after
8 measurements: 4 at 25 °C, 3 at 75 °C, and 1 at 100 °C. The
algorithm correctly identified the Type I isotherm behavior
for the first temperature after 4 data points and calibrated the
Sips, DA, and BET models accordingly (Fig. 7 (a.6)).

The initial measurements at p = 0, 0.5, and 1 bar and
the initial model fits are shown in Fig. 7 (a.1). For the CO
isotherm, the value of p., = 1 bar is chosen instead
of Prel, max = 0.85Pa Pa~! because the gravimetric sys-
tem is not limited by condensation for the non-condensing
gas. The models deviate the most around p = 0.08 bar. The
solver finds the optimum at p = 0.08 bar (dashed line in
Fig. 7 (b.1)) and the next measurement is scheduled accord-
ingly. After recalibrating the isotherm models, all models
now show the Type I isotherm behavior (Fig. 7 (a.2)). At
this point, the Sips model passes the x2- and t-test, so the
temperature switches to the next value at 75 °C.

According to the flowchart of the algorithm in Fig. 6,
the first measurement at a new temperature is always at
p = 0.5 bar. Thus, the objective function is not evaluated
in Fig. 7 (b.2) and (b.5) and instead the new design point is
setto p = 0.5 bar.

After recalibrating the models again, the 75 °C isotherms
show the largest deviation at p = 0.18 bar (Fig. 7 (b.4)).
The solver finds this optimum for model discrimination and
a measurement at 0.18 bar is conducted. Since none of the
models satisfies both the - and t-test, the algorithm sug-
gests to measure again at p = 0.85 bar (Fig. 7 (b.3)). The
objective function is higher at this point than at the low rela-
tive pressure region, since the solver found a local optimum
at the bound of the design space. Future implementations of
the algorithm should implement a solver to find the global
optimum. After the measurement, the Sips model again sat-
isfies the statistical tests.

According to the MBDoE process from Fig. 6, the next
and final measurement at the third temperature 7' = 100 °C
is conducted at p = 0.5 bar. Alternatively to setting the ini-
tial measurement of every new temperature at p = 0.5 bar,
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Fig. 7 Experimental design for a o B °
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this measurement could also have been chosen by optimal
design: Since an estimate of the temperature-dependent iso-
therms is calibrated after the second isothermal temperature,
every starting measurement for additional isothermal tem-
peratures could be chosen based on the calibrated models
instead of the fixed value of 0.5 bar. The automatic selec-
tion of a new starting value could be added to the algorithm
in the future, improving the optimal experimental designs
when many isotherms of the same adsorption pair are
investigated.

After the first measurement at the last temperature, the
Sips model passes the statistical tests. Since the Sips model
is the only model to pass the tests, it is chosen although
BET and DA model could potentially pass the tests if more
measurements were conducted. This fact is also reflected in
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Pressure p in bar

the probabilities of the models, which are still in the same
order of magnitude (Prgips = 36.2 %, Prpa = 35.5%, and
PrBET = 28.3 %)

The Sips model, which was only parametrized using
8 MBDoE measurements, is compared to the best refer-
ence model (BET isotherm) from Sect. 2.4 in Fig. 8. The
Sips model from the MBDoE algorithm underestimates
the loading of the CO5 isotherm for low pressures up to
p = 0.1bar for all temperatures, but matches the experi-
mental data quite well for higher pressures (Fig. 8a). The
best reference model was the BET model with a CV-value
of 5.4% (Fig. 8b). The CV-value between the Sips model
and the reference measurements is only 2.3 percentage
points worse than the reference CV-value of the BET model.
This result is very promising, as the Sips model was only
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Fig.8 Model fits for the Type I isotherm with Lewatit VP OC 1065/COs.
The left figure (a) shows the fitted Sips model, which was determined
as the most likely candidate by the MBDoE algorithm (filled points),
and all reference data points (empty points). The right figure (b) shows
the reference BET model with the highest probability and lowest CV-
value as well as all data points. An analysis of the measurement uncer-
tainty is given in the SI
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Fig. 9 Resulting model fits for the Type III isotherm with Lewatit VP
OC 1065/H20. The left figure (a) shows the fitted DA model, which
was determined as the most likely candidate by the MBDoE algo-
rithm (filled points), and all reference data points (empty points). The
right figure (b) shows the reference DA model with the highest prob-
ability and lowest CV-value as well as all data points. An analysis of
the measurement uncertainty is given in the SI

calibrated using 8 measurements (filled data points in Fig. 8)
and the reference model was calibrated using 36 data points
(empty data points). This way, we were able to save 78%
of the experimental effort while still achieving a reasonably
accurate model with a value of CVMBPOE — 7.7% com-
pared to CVRef = 5.4 %,

4.2 Optimal design of a Type lll isotherm

The same algorithm is repeated for the adsorption pair
Lewatit VP OC 1065/H2O (Type III isotherm) and the
temperatures 25/50/75 °C. The detailed progression of
the MBDoE experiments is shown in Figure 13. The algo-
rithm stops after 9 data points: 4 at 25 °C, 4 at 50 °C and
1 at 75 °C. The DA-model is selected as in the reference
measurement.

The isotherm Type III is not identified until 7 mea-
surements are conducted as the isotherm type is more
ambiguous for this adsorption pair. When looking closely

at the reference measurement in Fig. 4, a small plateau
between p,e] = 0.1 Pa Pa—? — 0.2 PaPa 2 can be seen. We
believe that this plateau is caused by a physical effect where
classical adsorption switches to pore condensation. The iso-
therm type of Lewatit VP OC 1065/H20 would therefore
in fact be Type II instead of Type III. This ambiguity is the
reason the isotherm type is identified later than the Type I
isotherm from the last section. Even the final model reflects
the Type II isotherm behavior for higher isotherm tempera-
tures (Fig. 9). This result shows that the MBDoE algorithm
identified a possible misconception by us as experimenters
assuming a Type III isotherm behavior, when in fact the
adsorption pair could also be a Type II isotherm.

In contrast to the Type I isotherm, the solver finds a local
optimum for measurement number 6 instead of the better
optimum at high relative pressure (Figure 13 in the SI).
Interestingly, the missed optimum at high relative pressure
is measured with the next data point leading to only minimal
deviation from the global optimal experimental design.

The calibrated model from the MBDoE process is com-
pared to the best reference model in Fig.9. This time, the
MBDoE algorithm identified the DA model, which was
also determined as the most accurate model through fit-
ting of the reference data. Although the DA model from our
MBDoE process was only calibrated using 9 measurements,
it provides a CV-value of 7.7% towards the original refer-
ence data. The remaining offset to the reference DA model
is mainly the isotherm curve below p,e; = 0.5.

The temperature dependency of the isotherms is over-
estimated between 0 < p,e < 0.4 Pa Pa"!in Fig. 9 (left),
trying to match more of the Type II isotherm behavior. This
result points out a challenge for the MBDoE algorithm: We
try to calibrate a temperature-dependent model to a predom-
inantly temperature-insensitive region. A simpler isotherm
model might provide better results here. The result for the
Type IV/III isotherm is nonetheless also quite promising as
we increase the CV-value by only 4.1 percentage points
compared to the reference CVR®f. We therefore save 70%
of the experimental effort while still providing a reasonably
accurate model.

4.3 Optimal design of a Type V isotherm

Finally, the MBDoE algorithm is applied to the Type V iso-
therm of the adsorption pair BAM-P109/H2O for the tem-
peratures 25/50/80 °C. The detailed MBDoE experiments
are shown in Figure 14. For the Type V isotherm, the algo-
rithm stops after 9 measurements: 5 at 25 °C, 3 at 50 °C,
and 1 at 80 °C. The correct isotherm shape is identified after
3 measurements. The solver gets caught at the measure-
ment boundary for the first experiment, but finds the missed
global optimum at the very next iteration. The BET model
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Fig. 10 Resulting model fits for the Type V isotherm with BAM-
P109/H20. The left figure (a) shows the fitted BET model, which
was determined as the most likely candidate by the MBDoE algo-
rithm (filled points), and all reference data points (empty points). The
right figure (b) shows the reference BET model with the highest prob-
ability and lowest CV-value as well as all data points. An analysis of
the measurement uncertainty is given in the SI

is selected by the MBDoE algorithm with a probability
of Prggr =59 %. The low probability indicates that a
second model (Sips in this case) matches the measurement
data reasonably well. The BET model was also the refer-
ence model with the lowest CV-value from Sect. 2.4, so, the
correct model is chosen despite the low absolute probability
value.

Both the BET model from optimal design and from
the reference measurements are compared in Fig. 10.
The BET model parametrized by the MBDoE algorithm
matches the 25 °C isotherm very well. However, the 50 °C
and 80 °C isotherm are not described perfectly as the tem-
perature jump of the S-shaped isotherm should move to
higher relative pressure for higher isotherm temperatures.
The fit could be improved by weighing the temperature-
dependent parameters more within the objective function of
the parameter precision.

Since the offset occurs in the steepest region of the curve,
the CV-value becomes quite large (CVMBPE = 16.3 %) as
it only considers measurement error in y-direction. None-
theless, a reasonable isotherm model is parametrized by the

MBDoE algorithm with only 9 measurements compared to
48 data points of the reference measurement saving 81% of
the data points.

4.4 Sensitivity analysis of the stopping criterion

From the results of the last section, we can see that the
MBDoE algorithm works, the correct isotherm Types
are identified, and the experimental effort is reduced
by 70—-81%. The isotherm models are parametrized quite
well; however, measuring a few more points could poten-
tially improve parameter estimation. Furthermore, passing
the statistical tests is highly dependent on the loading mea-
surement uncertainty of the device: A high measurement
uncertainty leads to the isotherm models passing the statisti-
cal test with less measurement points, as more model uncer-
tainty is tolerated. The trade-off between model accuracy
and experimental effort is analyzed in this section. Since,
the experiments are quite time consuming, this analysis is
performed in-silico with the parametrized isotherm models
from Sect. 2.4 and the measurement uncertainty of the grav-
imetric system from the SI.

The trade-off between model accuracy and experimental
effort can be adjusted by adapting the significance level «.
So far, the significance level was set to 0.05, leading to ter-
mination of the MBDOoE algorithm after 8-9 measurements.
When decreasing the significance level further, the statis-
tical tests terminate the algorithm later, as higher require-
ments are set to model lack-of-fit (y2-test) and parameter
precision (t-test). The expectation of a lower significance
level would be to reduce the CV-value of the isotherm mod-
els, although with more data points.

The trade-off between the number of measurements and
the achieved CV-value of the isotherm models parametrized
by the MBDoE algorithm shows that the CV-value decreases
for a decreasing significance level, however, not beyond a
threshold of 7.7% for the Type I isotherm (Fig. 11 (left)).
Also, at no point, the BET model is chosen as the most

Fig. 11 Sensitivity analysis of the
stopping criterion for MBDoE
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probable model due to a local minimum of the parameter
estimation for the BET model. If the correct minimum for
the optimal BET parameters is never found, the Sips model
remains the best model, limiting the CV-value to 7.7% even
with more data points. Switching the solver for the auto-
matic curve fit from a local solver to a global algorithm
could solve this issue in the future.

For the Type III isotherm, decreasing the significance
level from 0.05 to 0.01 increases the number of measure-
ments from 9 to 13 while also decreasing the CV-value
from 7.7 to 5.8% (Fig. 11 (center)). Decreasing the signifi-
cance level to 0.001 leads to a large increase of measure-
ment points up to 29 points. However, this increase does
not benefit the CV-value, pointing again towards possible
improvements to the automatic curve fit. With 29 instead
of 30 data points, the same model fit as the reference model
should be possible.

Lastly, the CV-value can be further decreased from 16.3
to 8.2% for the Type V isotherm by adjusting the signifi-
cance level (Fig. 11 (right)). Surprisingly, the number of
data points only increases slightly from 9 to 12 points,
which would be the preferred option as three more points
decrease the CV-value by half.

The results show that a lower significance level o can
lead to better isotherm models, when the automatic isotherm
calibration identifies the global minimum of the isotherm
parameters. Otherwise, the second best isotherm model is
chosen and a lower significance level does not improve
model accuracy, in case the second-best model is already
optimally parametrized. Furthermore, decreasing the sig-
nificance level to 0.01 or 0.001 can be sensible depending
on the uncertainty of the loading: 3 to 4 more data points
decreased the CV-value between 1.9 and 8.1 percentage
points. On the other hand, if the significance level is too low
and the choice of isotherm models is poor, the algorithm
may fail to converge. In practice, the set of isotherms should
be expanded and the significance level adjusted to the mea-
surement error should convergence issues arise.

Overall, if isotherm data is available from other sources,
we advise to perform an in-silico MBDoE analysis of the
literature data prior to application of the MBDoE algorithm
to the experiment. This way, the dependence of the statisti-
cal tests on the measurement uncertainty can be estimated.

5 Conclusion

In chemical engineering, the framework of model-based
design of experiments (MBDOE) is state of the art to reduce
experimental effort when calibrating models. For the field
of adsorption, equilibrium measurements are quite tedious,
however, accurate isotherm models are essential to design

adsorption processes. To the best of our knowledge, we
combined the two research fields for the first time “live”
and developed an open-source iterative MBDoE algorithm
for adsorption isotherm measurements. This way, we reduce
the experimental effort of adsorption equilibrium measure-
ments while maintaining high isotherm model accuracy.
The MBDoE algorithm updates the isotherm models after
each measurement and plans the next measurement point
based on the parametrized isotherm models. The algorithm
is based on MBDoE choosing an experimental point, which
jointly improves model discrimination and parameter preci-
sion at the same time (j-MBDOoE). The process stops after
at least one isotherm model satisfies the x2- and t-test. In
the end, the most probable isotherm model is returned. Our
analysis leads to the following 4 main conclusion:

First, the number of measurements can be reduced
by 70—81% when parametrizing an isotherm model with
temperature-dependent parameters for a set of three iso-
therm temperatures. This reduction can be achieved without
a-priori knowledge of the most suitable isotherm model or
its parameters. The measurement points equilibrate slower
than the conventional approach of equidistant adsorption
isotherms, since the changes in relative pressure are larger
for the MBDoE approach. The benefit of using the MBDoE
approach thus increases for more isotherms of the same
working pair, since fewer measurement points are needed
compared to the conventional approach. The correct model
(according to our reference measurements) was chosen by
the MBDoE algorithm for 2 of 3 isotherm types, while the
second-best model is chosen for the last isotherm type. The
model accuracy decreased between 2.3 and 13.6 percentage
points in CV-value, which is quite promising, considering
the large savings in experimental time.

Second, the MBDoE algorithm was able to identify the
isotherm type by itself and scheduled measurements to deter-
mine whether the adsorption pair Lewatit VP OC 1065/H5O
was in fact a Type I or Type Il isotherm. The reference mea-
surement shows a small plateau between p,e; = 0.1 Pa Pa~!
and 0.2 PaPa™', which we initially ignored and calibrated
a Type III isotherm model. However, the MBDoE algorithm
identified the potential mismatch and calibrated an isotherm
model devoid of our bias of the experimenters.

Third, the significance level « of the statistical tests can
be adjusted to match the measurement uncertainty in the
employed experimental setup. We showed in a sensitivity
analysis that 3-4 more isotherm points during the design
of experiments can up to halve the CV-value. This way,
each experimenter can individually set the desired trade-off
between experimental effort and model accuracy by adjust-
ing the significance level according to a prior sensitivity
analysis.
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Fourth, automatic isotherm calibration to the experimen-
tal data is crucial for the success of the MBDoE algorithm.
Sound parameter bounds have to be set and a potent solver
should be employed. If the isotherm models are not cali-
brated with high accuracy, the ensuing experimental design
cannot achieve its full potential as its then based on inac-
curate isotherm models.

These findings show the potential of measuring adsorp-
tion isotherms on the basis of model-based design of experi-
ments instead of measuring equidistantly, highlighting a
large potential to save experimental effort while maintain-
ing high model accuracy.
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