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Abstract
Designing adsorption processes requires knowledge of the adsorption isotherms. Measuring accurate isotherms is time 
consuming and inefficient equidistant points are usually chosen. Here, we combine isotherm measurements with Model-
Based Design of Experiments to iteratively determine isotherm models with less experimental effort, while maintaining 
high model accuracy. Our joint approach combining isotherm model discrimination and parameter precision is validated 
by thermo-gravimetric experiments for the adsorption pairs Lewatit VP OC 1065 with CO2 and H2O and BAM-P109 with 
H2O, covering isotherm Types I, III, and V. Results show that the experimental effort could be reduced between 70–81%. 
Furthermore, the framework scheduled measurements for Lewatit  VP  OC  1065/H2O to discriminate its isotherm Type 
between II or III, devoid of our bias as experimenters. Overall, our approach demonstrates potential to streamline the 
identification of adsorption isotherms while enabling more efficient and unbiased model development.

Keywords  Lewatit VP OC 1065 · BAM-P109 · CO2 · H2O · Magnetic suspension balance measurements · 
Experimental validation · Parameter estimation
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V 	� Covariance matrix –
V 0	� Prior information matrix –
X	 �Mass-specific loading kg kg−1

x	� Model variable vector –
y	� Model response vector –
ŷ	� Estimated model response vector –

Greek Symbols
α	 �Significance level –
∆ 	 �Difference –
ϵ 	� Measurement error vector –
θ	� Parameter vector –
θ̂	� Estimated parameter vector –
σ	� Standard deviation vector –
φ	� Measurement point vector –
φ∗	� Optimal measurement point vector –
χ	� Chi-value –
ψ	� Design criterion –

Subscripts
eq	� Equilibrium
exp	� Experiment
fit	 �Fitted
G	� G-criterion
HR	� HR-criterion
max 	� Maximal
min	� Minimal
rel	� Relative
sat	� Saturation
sor	� Adsorbent

1  Introduction

Adsorption isotherm measurements form the basis for 
designing adsorption systems in both process and thermal 
engineering. The magnetic suspension balance is the most 
accurate sorption measurement technique  [1]; however, 
measuring adsorption equilibrium is slow [2] making exper-
iments costly and time consuming.

To design an adsorption system, isotherm models are fit-
ted to the isotherm measurements. However, not all mea-
surement points of an isotherm measurement contribute 
equally to identifying the isotherm model parameters. For 
example, the measurement points close to the inflection 
point of a Type V isotherm contain much more information 
for the isotherm model than most of the measurement points 
in the pressure-insensitive regions away from the inflection 
point. Knowing the most meaningful measurement points of 
a given adsorption pair a-priori is no easy task.

The identification of the most informative mea-
surements is the goal of Model-Based Design of 

Experiments (MBDoE) [3]. MBDoE is a Design of Experi-
ment approach that optimizes the experimental conditions 
leveraging the mechanistic model of a process. MBDoE 
aims to identify and select only the high information points 
of a given data set [3]. To identify this information content, 
objective functions are optimized depending on the study 
goal: E.g., the objective function could discriminate between 
rivaling models, or could increase parameter precision of 
the model parameters  [3]. Usually, an adequate model is 
determined first, and model parameters are estimated subse-
quently. Optimal experimental design for model discrimina-
tion and parameter precision can also be alternated [3] or be 
carried out simultaneously [4].

Although MBDoE approaches have been investigated 
since the 1950 s [5] and research on adsorption is also 
established itself, the two research areas have rarely been 
combined. The following chronological literature overview 
summarizes advances that have been made while applying 
MBDoE to adsorption measurements and models.

The basics for applying MBDoE to adsorption were laid 
by Atkinson et al. [6], who applied D-optimal designs for 
parameter estimation to consecutive and reversible chemi-
cal reactions. They also provided optimal designs for model 
discrimination to determine the reaction order and proposed 
statistical hypothesis testing to verify the result. Rodríguez-
Aragón et al. [7] applied c- and D-optimal design for param-
eter estimation of the Arrhenius equation, which forms the 
basis for describing many physical and chemical processes 
that involve an activation energy (e.g., adsorption).

Later, Rodríguez-Aragón et al. [8] analyzed a number of 
isotherm models from liquid-solid adsorption literature and 
calculated D-optimal designs based on the parametrized iso-
therms. This retrospective study was aimed to help future 
researchers investigating the same adsorption isotherm 
models with fewer measurement points. An expression 
for the D-optimal design of the 2-parameter BET isotherm 
and a numerical procedure for the Guggenheim-Anderson-
de Boer (GAB) isotherm were presented. Model discrimi-
nation was considered using a sequential approach before 
parameter estimation. The numerical procedure for experi-
mental design was later expanded to Freundlich and Lang-
muir isotherms by Mannarswamy et al. [9].

Munson-McGee et al. [10] designed experiments to dis-
criminate between BET and GAB isotherms with three sets 
of isotherm parameters each, leading to  23 = 8 isotherm 
model combinations. Their study was again retrospective 
where the model parameters were already known and the 
isotherm models were chosen a-priori. Later, Munson-
McGee et  al. [11] applied D-optimal design to sorption 
kinetic experiments based on Fick’s law of diffusion cou-
pled with an external convective mass transfer coefficient. 
The study was conducted theoretically for an infinite plane 
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of adsorbent with finite thickness, and no experiments were 
performed. The methodology was expanded to infinite cyl-
inders [12] and compared to spherical geometries [13].

Paquet-Durand et  al. [14] investigated optimal experi-
mental design for parameter estimation of water absorp-
tion kinetics for the Peleg model. The optimal experimental 
design was compared to equidistant measurements on a 
scalar and logarithmic scale. The parameter estimation error 
could be reduced by 62% compared to the equidistant mea-
surements. Kalyanaraman et al. [15] took measurement data 
of the MOF adsorption pair CO2/UiO-66 from the National 
Institute of Standards and Technology  (NIST) database 
and performed Bayesian design to determine the Langmuir 
model parameters for this adsorption pair retrospectively. 
The authors note that “studies on the application of Bayes-
ian design to physical experiments (...) are still scarce”.

Kober et al. [16] summarized the results of [8] and [9]. 
They noted that the liquid solution equilibrium concentra-
tion should not be the independent variable of the MBDoE 
for liquid-solid adsorption since it is a response variable of 
the system. The authors compared retrospective D-optimal 
designs for various isotherm models and found optimal 
experimental designs which depended on all model parame-
ters instead of only a few. The study was expanded by Kober 
at al. [17] by keeping the initial concentration at its maximal 
value and varying the ratio between solution volume and 
adsorbent mass, resulting in better parameter estimates.

Postweiler et al. [18] applied optimal experimental design 
to validate dynamic adsorption chiller models against mea-
surement data. The experimental design was performed iter-
atively to reduce uncertainty of unknown parameters in the 
dynamic model. The authors show their method to lead to a 
valid adsorption chiller model by executing three dynamic 
adsorption chiller measurements, thereby reducing experi-
mental effort by 83% compared to random experiments.

Ward and Pini [19] determined the parameter uncertain-
ties of a 1D dynamic column breakthrough model for CO2
/He adsorption onto activated carbon with Bayesian infer-
ence. The authors propagated the parameter uncertainties 
through the dynamic models to assess their robustness. The 
results showed that 70% of the dynamic model variability 
could be attributed to the uncertainty of temperature-depen-
dent isotherm parameters, highlighting the need for exact 
adsorption isotherm models.

Toffoli de Oliveira et al. [20] optimized parameter esti-
mation of an adsorption breakthrough curve model by 
employing a Bayesian technique. The operational condi-
tions of volumetric flow, adsorbent mass, and initial adsorp-
tive concentration were varied for caffeine adsorption onto 
activated carbon. The results proved the Bayesian approach 
effective, so that all operational conditions obtained a caf-
feine removal of 95%.

The literature overview shows first applications of 
MBDoE methods to adsorption experiments, mostly 
focused on liquid-solid adsorption and retrospective analy-
ses, while application to physical experiments is still scarce. 
Some studies have been conducted for parameter estima-
tion of breakthrough column models, concluding that the 
highest uncertainty in the dynamic models can be attributed 
to the model parameters of the equilibrium isotherm [19]. 
However, the strength of MBDoE approaches to reduce the 
actual experimental effort has not been exploited for adsorp-
tion isotherms, yet.

In this work, we present a comprehensive method to esti-
mate isotherm parameters and discriminate between rivaling 
isotherm models when a-priori knowledge of the adsorp-
tion pair is missing or it would be beneficial to avoid time-
consuming equidistant adsorption isotherm measurements. 
For this purpose, we combine a theoretical framework with 
adsorption isotherm measurements while focusing on the 
isotherm model performance rather than individual param-
eter uncertainty. In Sect. 2, we introduce the experimental 
setup and reference measurements. In Sect.  3, we present 
the MBDoE framework and in Sect. 4 we show the results 
for optimally designed Type I, III, and V isotherm measure-
ments together with a sensitivity analysis of the stopping 
criterion used in the MBDoE framework. Finally, we con-
clude our main findings.

2  Experimental setup and reference 
measurements

2.1  Magnetic suspension balance

A magnetic suspension balance decouples a micro scale 
and a measurement cell through a magnetic suspension 
coupling, which levitates a sample basket in a magnetic 
field  [2]. The concept of magnetic suspension balances is 
based on Gast [21], while modern systems mostly follow 
the design by Lösch et al. [22]. By moving the scale outside 
of the measurement cell, a common scale can be used since 
it is only exposed to benign conditions at ambient pressure 
and temperature. Meanwhile, pressure and temperature 
within the measuring cell range from 2 × 10−6 bar to 150 
bar and −40◦C to 400◦C for the gravimetric system (Rubo-
SORP 150), which was used for this study. The resolution 
of the scale is 1µg (Sartorius MSA66S-000-DH). A custom-
built and automated gas-dosing station ensures the supply 
of gas or vapor at the desired pressure and temperature. A 
trace heating system with variable setpoint allows for mea-
surements with condensable vapor without superheating 
the vapor too much. Furthermore, the gas dosing station 
is equipped to handle sub-atmospheric pressure as well as 
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mass of the adsorption sample, adsorption isotherms of 
mass-specific loading X over pressure  p or relative pres-
sure prel = p/psat (T ) can be calculated. The measurement 
of the loading over pressure is then fitted to adsorption iso-
therm models, forming the basis for designing adsorption 
systems (e.g., calculating required total mass of adsorbent 
in a process etc.).

2.2  Adsorption isotherm models

Taking into account the isotherm types of 
Lewatit VP OC 1065 with H2O and CO2 as well as BAM-
P109/H2O, we consider the following isotherm models for 
this study: 

1.	 The Sips isotherm [24] with 3 parameters Xeq, b, and n, 
which can take the form of Type I, III, and V isotherms: 

X (prel) = Xeq
(b prel)1/n

1 + (b prel)1/n
.� (1)

2.	 The adjusted BET-isotherm [25] with 4  parame-
ters Xeq, C, g, and n, which can take the form of all 
isotherm types except Type VI: 

X (prel)

= Xeq
C prel

1 − prel

1 + n
(

g
2 − 1

)
pn−1
rel − (n g − n + 1) pn

rel + g
2 n pn+1

rel

1 + (C − 1) prel + C
(

g
2 − 1

)
pn
rel − g

2 C pn+1
rel

.
� (2)

3.	 The Dubinin-Astakhov (DA) isotherm [26] with three 
parameters Xeq, E  and n, which can take the form of 
Type I, II, III, and V isotherms

X (prel, T ) = Xeq e−( A
E )n

,� (3)

with the adsorption potential A given by:

A (prel, T ) = R

M
T log

(
1

prel

)
.� (4)

In practice, an isotherm model needs to describe the adsorp-
tion behavior at varying temperatures  [27]. Temperature 
dependencies have taken different forms and sometimes 
vary even within the same isotherm model [28]. Also, it is 
discussed whether all parameters should be dependent on 
temperature [28]. Here, we employ temperature dependence 
of the parameters as described for the Sips model [27]:

Xeq = X0 e
XT

(
1− T

Tref

)
, � (5)

b = b0 e
bT

(
Tref

T −1
)

, and � (6)

high pressure allowing for high variability of the select-
able adsorbate. A photo of the magnetic suspension balance 
setup in the laboratory is shown in Fig. 1.

Figure 2 gives a more detailed schematic overview of the 
main components of the magnetic suspension balance. The 
description of Fig. 2 follows the work by Dresp [23]: The top 
of the figure shows an electromagnet attached to the micro 
scale and a permanent magnet attached to the basket with a 
suspension rod, forming the magnetic coupling. The posi-
tion of the basket is detected by a displacement sensor con-
sisting of a sensor core attached to the suspension rod and a 
sensor coil attached to the wall of the pressure vessel. As a 
consequence, the position is continually monitored, can be 
adjusted by feedback control of a PID controller, and can be 
set by changing the voltage of the electromagnet. With this 
setup, the magnetic suspension balance transmits the forces 
on the sample to the micro scale. The “tare” functionality of 
a balance is realized by a mechanical coupling, allowing to 
weigh a zero point signal. The zero point signal is subtracted 
from the measurement signal to receive the actual change 
in mass of the sample. A sinker with calibrated mass and 
volume (titanium cylinder) allows to deduce the density of 
the surrounding adsorptive.

This experimental setup allows to measure the change 
in mass of an adsorption sample with varying pres-
sure  p at a given temperature  T. Combined with the dry 

Fig. 1  Photo of the magnetic suspension balance in the lab, including 
gas dosing station, hardware controllers, evaporators, micro scale and 
micro scale control, thermal bath, and measuring cell
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2.3.1  χ2-test

The chi-square  (χ2) goodness of fit test can be applied 
to every isotherm model to test if the hypothesis of ran-
domly distributed measurement errors can be confirmed or 
rejected. This hypothesis test is performed by evaluating the 
residuals between outputs y (e.g., measurements) and iso-
therm model predictions ŷ. The χ2 -test evaluates whether 
the residuals can be considered as a random sample of a 
specified normal error distribution or if there is a systematic 
deviation, meaning the model does not match the data. The 
χ2-test characteristic is calculated according to

χ2 = 1
σ2

y

ny∑
i=1

[yi − ŷi (θ)]T [yi − ŷi (θ)] ,� (8)

with the standard deviation of the outputs  σy  and the 
model parameters  θ. The model parameters of the iso-
therm models are θSips = {X0, XT , b0, bT , n0, nT }, 
θBET = {X0, XT , g0, gT , n0, nT , C0, CT }, and θDA = {X0, XT , E0, ET , n0, nT } (cf. 
Eqs. (1) to (7)). The χ2 value is compared to a reference χ2 
value χ2

ref = χ2
ny−nθ

(1 − α). This reference value χ2
ref is 

1
n

= 1
n0

+ nT

(
1 − Tref

T

)
. � (7)

All equations incorporate an arbitrary reference tempera-
ture Tref where the temperature dependencies reduce to the 
factor one. While the temperature dependence of the param-
eter b is taken from the Langmuir equation, the temperature 
dependence of the parameter n is empirical. The tempera-
ture dependence of the parameter Xeq is also empirical and 
sometimes even neglected [27].

2.3  Statistical analyses of the experiments

When comparing isotherm measurements to isotherm mod-
els, a set of statistical hypothesis tests helps evaluating the 
validity of the model identification results  [29]. The two 
tests are the χ2-test and Student’s t-test, which are presented 
following Pankajakshan et al. [29].

Fig. 2  Schematic of the magnetic 
suspension balance redrawn after 
Rother et al. [1]
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Vθ =
(
QT Q

)−1
σ2

y + Vθ,0 ,� (11)

with the sensitivity matrix Q according to

Q =




∂ŷ1
∂θ1

... ∂ŷ1
∂θnparameter

... ... ...
∂ŷnoutputs

∂θ1
...

∂ŷnoutputs
∂θnparameter


 ,� (12)

and the standard deviation of the outputs (i.e., of the mea-
surements) σy . In case there are prior information on the 
parameters (e.g., from parameter bounds or the first curve 
fit), the prior information matrix Vθ,0 is added.

From the main diagonal of the covariance matrix (Vθ, ii), 
the test statistic (t-values ti) from Student’s t-test can be cal-
culated according to

ti = θ̂i

tny−nθ
(1 − α/2)

√
Vθ, ii

∀i = 1, ..., nθ ,� (13)

where  θ̂i are estimates of the individual parameters and α 
is the significance level. The computed t-values are then 
compared to reference t-values from Student’s t-distribu-
tion tny−nθ

(1 − α/2). The reference t-value is taken from 
a two-tailed t-distribution with ny − nθ degrees of free-
dom, where ny  is the number of measurements and nθ the 
number of parameters of the model. Parameters with t-val-
ues larger than the reference t-value are considered well 
estimated [29].

2.4  Reference isotherm measurements

Reference measurements are needed to evaluate the result-
ing experimental designs of the MBDoE framework. To test 
our design approach for a broad range of applications, our 
measurements encompass the three isotherm Types  I,  III, 
and V, and use adsorption pairs with high relevance in the 
field of adsorption: Lewatit VP OC 1065 with CO2 (Type I 
isotherm) and H2O (Type  III isotherm) as well as BAM-
P109 with water (Type V isotherm). Lewatit VP OC 1065 
is a highly researched amine-functionalized polymer 
manufactured by Lanxess GmbH, which can directly cap-
ture  CO2 from the atmosphere  [30]. BAM-P109 is an 
activated carbon with defined properties provided by the 
German Institute for Materials  (BAM) and was recently 
employed in an inter-laboratory study by Nguyen et  al. 
from the US National Institute of Standards and Technol-
ogy (NIST) [31]. The study aimed to provide a water cali-
bration isotherm for new isotherm measurement systems. 
Gathering data from multiple laboratories enabled statisti-
cally significant results. For these three adsorption pairs, 
we measure equidistant reference isotherms (i.e., evenly 

taken from a χ2 distribution with ny − nθ degrees of free-
dom, where  ny  represents the number of measurements 
and nθ the number of parameters of a model. The signifi-
cance level α defines the point at which the test is deemed 
successful: For a high significance level, models with high 
residuals will be accepted sooner while a low significance 
level might lead to none of the models meeting the required 
accuracy. A common significance level is  5% implying 
a remaining probability of  5% that the hypothesis of the 
residuals matching a normal error distribution is falsely 
confirmed and the associated isotherm model should actu-
ally be rejected.              

The χ2 -test can also be inverted to check for the prob-
ability of each model which would satisfy the hypothesis of 
the model’s residuals following a normal distribution. The 
test then returns an α-level which is also called p-value.

If multiple models pass the χ2-test, assigning a probabil-
ity to each model becomes useful. Here, we use the equiva-
lent probability Pri from Pankajakshan et al. [29]

Pri =
Pr

(
χ2

i ≤ χ2
ny−nθ

)

∑nmodels
i=1 Pr

(
χ2

i ≤ χ2
ny−nθ

) ∀i = 1, ..., nmodels ,� (9)

where the probability Pr() is equal to the p-value from the 
χ2-test for the i-th model. The larger the probability, the 
more residuals are not contradicted by the distribution of 
measurement error [29].

Related to the χ2 value is the Coefficient of Varia-
tion (CV) (i.e., the relative standard deviation):

CV =

√
1

ny

∑ny

i=1 (yi − ŷi (θ))2

1
ny

∑ny

i=1 yi

∀i = 1, ..., ny .� (10)

The coefficient of variation relates the root mean square 
deviation to the mean of the measurements. The CV is often 
given in percent: A CV value of 0% indicates a perfect fit of 
the model to data, while a CV of 100% indicates a root mean 
square deviation equal to the mean value of the measure-
ments. The CV value quantifies the overall predictive accu-
racy of the fitted models and allows for direct comparison 
between rivaling models.

2.3.2  Student’s t-test

The Student’s t-test is performed to assess the precision of 
the model parameters. The goal of the t-test is to confirm 
whether the variation of the parameters can be explained 
from the variation of the data. A variation of the parameter 
estimates can be taken directly from the parameter covari-
ance matrix Vθ
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Despite the differences between our measurement and 
the literature, the set of isotherms is well suited as a ref-
erence measurement for the MBDoE framework as all 
three isotherm models can be calibrated using the data. 
Also, the temperature dependence of a Type  I isotherm 
is clearly visible. Results after model calibration are 
reported in  Table  1 including the isotherm with the low-
est CV-value  CVBET = 5.4 %. Sips and DA isotherms 
have CV-values of CVSips = 12.4 % and CVDA = 17.5 %, 
respectively. The probability from the χ2-test is almost the 
same for all three models ranging between  32−34%. The 
DA model captures the steep gradient at low pressures the 
best. However, the DA  model underestimates the loading 
at 50  ◦C and overestimates the loading at 100  ◦C, which 
could be improved with different equations for the tempera-
ture dependency.

Figure  4 shows the reference isotherm of 
Lewatit VP OC 1065/H2O. Our data shows good agreement 
with the measurement from Young et al. [30]. We were able 
to measure up to relative pressures of prel < 0.85 PaPa−1 
as water started to condensate onto the suspension rod, the 
mechanical coupling and the sinker, preventing accurate 
measurements beyond  prel = 0.85 PaPa−1. These parts 
of the magnetic suspension balance cannot be heated sepa-
rately, thus limiting the range of relative pressure our setup 
could cover. The largest deviation of 0.07 g g−1 to Young 
et al. [30] is at high pressure and 75 ◦C. This deviation is 
most likely due to the nature of the adsorption process of the 
Lewatit polymer: The water leads to swelling of the polymer 
[32], which increases the pore size, makes more adsorption 

spaced sampling over the pressure range) with the commer-
cial gravimetric system from Rubolab from Sect. 2.1. We 
compare the measurements to literature data and fit the iso-
therm models of Sips (Eq. (1)), adjusted Brunauer-Emmett-
Teller  (BET) (Eq. (2)), and Dubinin-Astakhov  (DA)  (Eq. 
(3)) to the experiments.

Figure  3 shows the reference isotherms of 
Lewatit VP OC 1065/CO2. Our measurements  (LTT) fol-
low the trend of the data points from Young et al. [30].

However, we underestimate the absolute loading by an 
almost constant relative offset between 15−20% for all three 
temperatures. The difference can be explained by different 
batches of Lewatit or by the initial desorption (or activa-
tion) process of the material: Although the Lewatit sample 
was desorbed in-situ at the same temperature and for the 
same duration as in Young et al. [30], we only had access 
to a rotary vane vacuum pump instead of a turbo-molecular 
vacuum pump. The turbo-molecular pump in the work from 
Young et al. [30] desorbed the sample at lower pressure than 
our rotary vine pump, leading to better desorption. Further 
desorption leads to a smaller sample mass and in turn to 
higher loading. The constant relative offset between 15−20% 
supports this hypothesis (Fig. 3 left and center). The slightly 
decreasing offset towards high pressure at 100 ◦C (Fig. 3 
right) might be due to the measurement data of Young et al. 
[30] as the plateau between p = 0.6 bar − 0.8 bar at 100 ◦C 
was neither visible at lower temperatures nor at our data at 
high temperature. If there was in fact a physical effect hap-
pening between p = 0.6 bar − 0.8 bar at 100 °C, it has not 
been explained.

Table 1  Results of the Type I isotherm calibration
Model

X0 XT (b/E/g)0 (b/E/g)T n0 nT C0 CT
CV

Sips 0.170 1.487 18.66 17.01 2.95 1.962 – – 12.4%
DA 0.127 3.141 500.1 7.736 0.88 −1.251 – – 17.5%
BET 0.123 −5.5 e-3 0.601 11.19 1.54 – 43.54 16.27 5.4%
The isotherm models yield the loading X in  g g−1 when inserting the pressure p in bar and the parameters X, b, E, g, n, and C as given. Param-
eters defining the temperature dependence according to Eqs. (5) to (7) are denoted with the index T while the base parameters are denoted with 
the index 0. Bold models indicate the chosen reference model with the lowest CV value

Fig. 3  Reference measure-
ment of a Type I isotherm with 
Lewatit VP OC 1065/CO2 (LTT). 
The adsorption pair was measured 
at 25 ◦C (left), 75 ◦C (center), 
and 100 ◦C (right) and compared 
to literature data from Young et al. 
[30]. The three isotherm mod-
els DA (dotted), BET (densely 
dashed), and Sips (dashed) were 
fitted to the measurement results. 
An analysis of the measurement 
uncertainty is given in Appendix A
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loading for increasing temperature. Furthermore, the inflec-
tion point moved to higher relative pressure. However, as 
with the Type III isotherm, the temperature dependency is 
almost negligible.

Table 3 shows the parameters of all three isotherm models 
for the Type V isotherm with the best fit by the BET model 
with  CVBET = 2.7 %. As with the Type  III isotherm, all 
isotherm models provide the same probability from the χ2

-test and are equally suited to describe the Type V isotherm 
behavior.

Overall, 36 data points were measured for the Type I iso-
therm (Lewatit VP OC 1065/CO2), 30 data points for the 
Type III isotherm (Lewatit VP OC 1065/H2O), and 48 data 
points for the Type V isotherm (BAM-P109/H2O), and only 
adsorption was considered. The next section introduces the 
MBDoE algorithm to reduce this experimental effort, while 
trying to maintain high-quality isotherm models.

3  MBDoE algorithm and flowchart

The MBDoE algorithm for isotherm measurements follows 
the general approach by Pankajakshan et al. [29], which is 
based on Franceschini et  al. [3]. The open-source Python 
code is available in the SI of this study. The mathematical 
models to be calibrated are generally differential algebraic 
equation systems (DAE-systems) and can be written as [4]

f

(
dx (t)

dt
, x (t) , u (t) , θ, t

)
= 0 , � (14)

sites available, and leads to the Type  III isotherm shape 
approaching infinite loading. The swelling is very slow. If 
the kinetics of adsorption are faster than the swelling, points 
of lower loading will appear equilibrated even though more 
water could be adsorbed when waiting for the swelling. 
This effect leads to points of lower loading especially for 
high relative pressures, because the last points were poten-
tially not equilibrated. Note that, the swelling also affects 
the buoyancy correction, but since we measure at pressures 
below 1 bar, the effect of buoyancy itself is negligible and 
thus also the impact of swelling on the buoyancy.

Overall, the measurements for the Type  III isotherm 
(crosses and circles) resemble the literature data (dash-dot-
ted lines) reasonably well and can be used as reference data 
for the MBDoE algorithm. The only drawback of this data 
for a MBDoE study is the low temperature dependency of 
the adsorption pair, which makes the measurement at mul-
tiple temperatures almost superfluous.

Table 2 shows the parameters of all three isotherm mod-
els for the Type III isotherm. The DA model fitted the data 
the best with a coefficient of variation CVDA = 3.6 %. All 
isotherm models provide the same probability from the χ2

-test and are equally suited to describe the Type III isotherm 
behavior.

Figure  5 shows the reference isotherm of BAM-
P109/H2O up to relative pressures of prel < 0.85 PaPa−1. 
Our 25 ◦C isotherm shows good agreement with the inter-
laboratory study from Nguyen  et al. [31]. Here, we pro-
vide additional isotherms to Nguyen et  al. [31] at  50  ◦C 
and 80 ◦C. The figure shows a slightly decreasing maximum 

Table 2  Results of the Type III isotherm calibration
Model

X0 XT (b/E/g)0 (b/E/g)T n0 nT C0 CT
CV

Sips 1.909 2.297 0.3501 0.1609 2.01 0.4280 – – 11.0%
DA 0.338 2.017 37.24 −3.046 0.59 0.0270 – – 3.6%
BET 0.495 2.406 0.8243 1.370 3.23 – 0.1078 −2.29 7.8%
The isotherm models yield the loading X in  g g−1 when inserting the relative pressure prel in  Pa Pa−1 and the parameters X, b, E, g, n, and C 
as given. Parameters defining the temperature dependence according to Eqs. (5) to (7) are denoted with the index T while the base parameters 
are denoted with the index 0. Bold models indicate the chosen reference model with the lowest CV value

Fig. 4  Reference measurement of 
a Type III isotherm with Lewatit 
VP OC 1065/H2O (LTT). The 
adsorption pair was measured 
at 25 ◦C (left), 50 ◦C (center), 
and 75 ◦C (right) and compared 
to literature data from Young et al. 
[30]. The three isotherm mod-
els DA (dotted), BET (densely 
dashed), and Sips (dashed) were 
fitted to the measurement results. 
An analysis of the measurement 
uncertainty is given in Appendix A
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lack-of-fit. Here, we assume a measurement error that is 
independent and identically distributed. We assume other 
sources of error, such as temperature setting error, degrada-
tion of the adsorbent, and insufficient waiting time to reach 
equilibrium to be insignificant compared to the measure-
ment error of the device.

yi = ŷi

(
θ̂

)
+ ϵi .� (18)

To generate the next measurement points of the experimen-
tal design φ∗ (i.e., the next pressure to be measured) in a 
design space D (i.e., the pressure range), we maximize the 
information for this next experiment. The information is 
represented by a design criterion ψ:

φ∗ = argmax
φ in D

{ψ} .� (19)

The design criterion is usually chosen to maximize informa-
tion either regarding model discrimination or parameter pre-
cision. Here, a joint approach is chosen to optimize model 

x (t = 0) = x0 , and � (15)

g (x (t) , u (t) , θ, t) = ŷ (t) , � (16)

where f  represents the differential equations and g the alge-
braic equations. This general form reduces to Eq. (17) with-
out time dependencies for the isotherm models, since they 
have no time-dependent variables:

g (x, u, θ) = ŷ .� (17)

The variables x are the algebraic state variables (e.g., pres-
sure p and temperature T in an isotherm model), x0 are their 
initial conditions (not needed here), u are the input vari-
ables, θ are the model parameters  (e.g., θSips, θBET, and 
θDA). The output (e.g., loading X in an isotherm model) is 
represented by y for true outputs (i.e., measurements) and 
ŷ for estimations of the outputs by the models  [4]. Like-
wise, θ̂ denotes estimations of the true model parameters θ. 
All measurements yi consist of the true response  ŷi and a 
measurement error ϵi (Eq. (18)). The measurement error ϵi 
consists of a combination of measurement noise and model 

Table 3  Results of the Type V isotherm calibration
Model

X0 XT (b/E/g)0 (b/E/g)T n0 nT C0 CT
CV

Sips 0.414 0.220 1.666 0.2342 16.1 −3.6 e-3 – – 3.8%
DA 0.414 0.280 75.78 −0.537 5.49 −77.8 e-3 – – 5.2%
BET 0.023 0.237 78.2 e3 3.856 18.2 – 0.364 0.100 2.7%
The isotherm models yield the loading X in  g g−1 when inserting the relative pressure prel in  Pa Pa−1 and the parameters X, b, E, g, n, and C 
as given. Parameters defining the temperature dependence according to Eqs. (5) to (7) are denoted with the index T while the base parameters 
are denoted with the index 0. Bold models indicate the chosen reference model with the lowest CV value

Fig. 5  Reference measurement of a Type  V isotherm with BAM-
P109/H2O (LTT). The adsorption pair was measured at 25 ◦C (left), 
50 ◦C (center), and 80 ◦C (right) and compared to literature data from 
Nguyen et al. [31] for 25 ◦C. The three isotherm models DA (dotted), 

BET (densely dashed), and Sips (dashed) were fitted to the measure-
ment results. An analysis of the measurement uncertainty is given in 
Appendix A
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for the accuracy of the chosen model-based design. This 
translation—from parameter uncertainty to output uncer-
tainty—is achieved in a similar fashion to Gaussian error 
propagation  [37]: The parameter covariance matrix  Vθ is 
multiplied with the sensitivity of the outputs y with regard 
to the parameters  θ, which are listed in the sensitivity 
matrix Q (cf. Eq. (12)) [38]. Thus, we find the uncertainty 
of the outputs  uy  by multiplying the uncertainty of the 
parameters uθ with the differentials ∂y/∂θ. Since we are 
interested in minimizing the deviation of the output of the 
isotherm models—the loading  X—we choose the G-crite-
rion with sensitivity matrix Q from Eq. (12) and parameter 
covariance matrix Vθ from Eq. (11):

ψG = min
ny∑
i

ny∑
j

QVθQT .� (21)

The resulting MBDoE process is shown as a flowchart 
in Fig. 6: The first step of the initialization of the MBDoE 
algorithm is the preselection of the isotherm models (here: 
Sips, DA, and BET), the parameter bounds (Table 8 in the 
SI), and the isotherm temperatures (given by the works of 
Young et al. [30] and Nguyen et al. [31]). In principle, the 
isotherm temperatures could be optimized simultaneously 
with the pressure creating a second design variable for the 
model-based design. Here, we decided against the tempera-
ture as a second design variable since the equilibration time 
for the temperature is quite large. Changing the temperature 
after each measurement would increase the overall mea-
surement duration considerably compared to equilibrating 
only the pressure. Temperature-dependent isotherm param-
eters are only considered after the measurement of the first 

discrimination and parameter precision at the same time. We 
chose the Hunter-Reiner (HR)-criterion (Eq. (20)) for model 
discrimination and the G-criterion (Eq. (21)) for parameter 
precision. The HR-criterion is described by

ψHR =
(nmodels−1)∑

i=1

nmodels∑
j=i+1

(ŷi − ŷj)T (ŷi − ŷj) ,� (20)

where  ŷi and  ŷj  are predictions of model i and j, respec-
tively, and nmodels is the total number of considered models. 
The goal of this design criterion is to find the measurement 
point where the predictions of all models deviate the most. 
Alternative criteria for model discrimination have been pro-
posed by Buzzi-Ferraris et al. [33] or Donckels et al. [34] 
including uncertainty of the measurements or Schwaab 
et  al. [35] using the parameter covariance matrix. Since 
we assume constant measurement uncertainty and the vari-
ance on model prediction was relatively constant, the HR-
criterion is regarded as sufficient here and we can neglect 
normalizing Eq. (20) by measurement errors. However, the 
provided code base in the supplementary material allows for 
both variable measurement error and alternative model dis-
crimination criteria.

For parameter precision, a scalar value needs to be 
derived from the parameter covariance matrix Vθ (cf. Eq. 
(11)) to serve as objective function [3]. Various criteria such 
as A-, D-, and E-optimality are regularly employed. While 
the A-, D-, and E-criterion aim to minimize the uncertainty 
of the parameters  θ, the G-criterion minimizes the final 
uncertainty in the outputs y [36]. Like with the CV value, 
which directly allows for comparison of the model’s out-
put accuracy, the G-criterion also gives an intuitive measure 

Fig. 6  Flowchart of the MBDoE 
algorithm for adsorption isotherms 
and initialization based on Panka-
jakshan et al. [29]. Initialization 
comprises determining isotherm 
models, temperatures, and param-
eter bounds. The algorithm loops 
isotherm fits, statistic evaluation, 
finding the new measurement 
point p∗

rel, and measuring at that 
pressure
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as well. The calibration step of the isotherm models to the 
experimental data alters all parameters (temperature-depen-
dent and -independent). Once the statistical tests of the last 
temperature are satisfied, the algorithm stops and returns the 
most probable model with its parameters.

4  Optimal experimental designs

4.1  Optimal design of a Type I isotherm

The detailed progression of the experimental design in Fig. 7 
shows the Type I isotherm of Lewatit VP OC 1065/CO2 for 
the temperatures 25/75/100 ◦C. The algorithm stopped after 
8 measurements: 4 at 25 ◦C, 3 at 75 ◦C, and 1 at 100 ◦C. The 
algorithm correctly identified the Type I isotherm behavior 
for the first temperature after 4 data points and calibrated the 
Sips, DA, and BET models accordingly (Fig. 7 (a.6)).

The initial measurements at p = 0, 0.5, and  1  bar and 
the initial model fits are shown in Fig. 7 (a.1). For the CO2 
isotherm, the value of  pmax = 1 bar is chosen instead 
of  prel, max = 0.85 PaPa−1 because the gravimetric sys-
tem is not limited by condensation for the non-condensing 
gas. The models deviate the most around p = 0.08 bar. The 
solver finds the optimum at  p = 0.08 bar (dashed line in 
Fig. 7 (b.1)) and the next measurement is scheduled accord-
ingly. After recalibrating the isotherm models, all models 
now show the Type  I isotherm behavior (Fig. 7 (a.2)). At 
this point, the Sips model passes the χ2- and t-test, so the 
temperature switches to the next value at 75 ◦C.

According to the flowchart of the algorithm in Fig.  6, 
the first measurement at a new temperature is always at 
p = 0.5 bar. Thus, the objective function is not evaluated 
in Fig. 7 (b.2) and (b.5) and instead the new design point is 
set to p = 0.5 bar.

After recalibrating the models again, the 75 ◦C isotherms 
show the largest deviation at p = 0.18 bar (Fig.  7  (b.4)). 
The solver finds this optimum for model discrimination and 
a measurement at 0.18 bar is conducted. Since none of the 
models satisfies both the χ2- and t-test, the algorithm sug-
gests to measure again at p = 0.85 bar (Fig. 7  (b.3)). The 
objective function is higher at this point than at the low rela-
tive pressure region, since the solver found a local optimum 
at the bound of the design space. Future implementations of 
the algorithm should implement a solver to find the global 
optimum. After the measurement, the Sips model again sat-
isfies the statistical tests.

According to the MBDoE process from Fig. 6, the next 
and final measurement at the third temperature T = 100 ◦C 
is conducted at p = 0.5 bar. Alternatively to setting the ini-
tial measurement of every new temperature at p = 0.5 bar, 

isotherm temperature is completed. The next step of the ini-
tialization are initial measurements. We decided on 3  ini-
tial measurements as the models have at least 3 parameters 
when temperature dependency is not considered. We set the 
initial measurements to the minimum, center, and maximum 
value of the design space. Note the maximum relative pres-
sure, our gravimetric system was able to handle for water, 
was at prel = 0.85 g g−1, D = {0, 0.85}.

Once the initial 3 measurements have been completed, 
all isotherm models are calibrated to the data. The measure-
ment at prel = 0 PaPa−1 can be set to X = 0 g g−1 since 
all isotherm models have to pass through the origin. If any 
of the models passed the χ2- and t-tests, the next predeter-
mined temperature would be chosen. As none of the tests 
were usually passed after the initial measurements, a new 
measurement point  p∗

rel is determined: Based on the cali-
brated isotherm models, the minimization problem of a joint 
MBDoE with the HR- and G-criterion (Eq. (22)) is solved: 
A numeric gradient-based solver from the Python package 
scipy minimizes the design criterion (i.e., the sum of nor-
malized HR- and G-criterion from Eq. (22)) with respect to 
the pressure p. Since the HR-criterion identifies the mini-
mum distance between all models and we are interested in 
the maximum distance, the HR-criterion gets a negative 
sign. In future studies, the effect of both G-and HR-criterion 
could also be weighted depending on the desired experi-
mental design.

φ∗ = argmin
φ in D

{
ψG

ψG, max
− ψHR

ψHR, max

}
.� (22)

The minimum of the design criterion corresponds to the 
next measurement point with the highest information con-
tent, thereby identifying the pressure at which to measure 
next. Afterwards, the gravimetric system measures at the 
new measurement point p∗

rel and the isotherm models are 
recalibrated using all data points. This cycle is repeated 
until any of the models satisfies the χ2- and t-test with a 
significance level of  α = 0.05. Since the χ2-test relates 
model prediction error to uncertainty of the measurement, a 
value for the uncertainty of the gravimetric suspension bal-
ance is required. A maximal estimate of the uncertainty of 
our magnetic suspension balance 

(
uX = 0.0202 g g−1)

 is 
calculated in Appendix A and was used as a constant value 
throughout the measurements.

Once the statistical tests are satisfied, the next tempera-
ture is chosen and an initial measurement at the center of 

the design space is set at  p∗
rel = 0.5 PaPa−1. As soon as 

multiple temperatures are considered, the isotherm models 
automatically consider temperature-dependent parameters 
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the probabilities of the models, which are still in the same 
order of magnitude (PrSips = 36.2 %, PrDA = 35.5 %, and 
PrBET = 28.3 %).

The Sips model, which was only parametrized using 
8  MBDoE measurements, is compared to the best refer-
ence model (BET isotherm) from Sect. 2.4 in Fig. 8. The 
Sips  model from the MBDoE algorithm underestimates 
the loading of the CO2 isotherm for low pressures up to 
p = 0.1 bar for all temperatures, but matches the experi-
mental data quite well for higher pressures (Fig. 8a). The 
best reference model was the BET model with a CV-value 
of 5.4% (Fig. 8b). The CV-value between the Sips model 
and the reference measurements is only  2.3 percentage 
points worse than the reference CV-value of the BET model. 
This result is very promising, as the Sips model was only 

this measurement could also have been chosen by optimal 
design: Since an estimate of the temperature-dependent iso-
therms is calibrated after the second isothermal temperature, 
every starting measurement for additional isothermal tem-
peratures could be chosen based on the calibrated models 
instead of the fixed value of 0.5 bar. The automatic selec-
tion of a new starting value could be added to the algorithm 
in the future, improving the optimal experimental designs 
when many isotherms of the same adsorption pair are 
investigated.

After the first measurement at the last temperature, the 
Sips model passes the statistical tests. Since the Sips model 
is the only model to pass the tests, it is chosen although 
BET and DA model could potentially pass the tests if more 
measurements were conducted. This fact is also reflected in 

Fig. 7  Experimental design for a 
Type I isotherm with Lewatit VP 
OC 1065/CO2. The left column 
(a.1)-(a.6) shows the measure-
ment points for 25 ◦C (circles), 
75 ◦C (squares), and 100 ◦C (tri-
angles) and the fitted models. The 
right column (b.1)-(b.5) shows the 
objective function and the minima 
found by the solver (purple dashed 
lines)
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at the reference measurement in Fig.  4, a small plateau 
between prel = 0.1 PaPa−2 − 0.2 PaPa−2 can be seen. We 
believe that this plateau is caused by a physical effect where 
classical adsorption switches to pore condensation. The iso-
therm type of Lewatit VP OC 1065/H2O would therefore 
in fact be Type II instead of Type III. This ambiguity is the 
reason the isotherm type is identified later than the Type I 
isotherm from the last section. Even the final model reflects 
the Type II isotherm behavior for higher isotherm tempera-
tures (Fig. 9). This result shows that the MBDoE algorithm 
identified a possible misconception by us as experimenters 
assuming a Type  III isotherm behavior, when in fact the 
adsorption pair could also be a Type II isotherm.

In contrast to the Type I isotherm, the solver finds a local 
optimum for measurement number 6 instead of the better 
optimum at high relative pressure (Figure  13 in the SI). 
Interestingly, the missed optimum at high relative pressure 
is measured with the next data point leading to only minimal 
deviation from the global optimal experimental design.

The calibrated model from the MBDoE process is com-
pared to the best reference model in Fig.9. This time, the 
MBDoE  algorithm identified the DA  model, which was 
also determined as the most accurate model through fit-
ting of the reference data. Although the DA model from our 
MBDoE process was only calibrated using 9 measurements, 
it provides a CV-value of 7.7% towards the original refer-
ence data. The remaining offset to the reference DA model 
is mainly the isotherm curve below prel = 0.5.

The temperature dependency of the isotherms is over-
estimated between 0 < prel < 0.4 PaPa−1 in Fig. 9 (left), 
trying to match more of the Type II isotherm behavior. This 
result points out a challenge for the MBDoE algorithm: We 
try to calibrate a temperature-dependent model to a predom-
inantly temperature-insensitive region. A simpler isotherm 
model might provide better results here. The result for the 
Type II/III isotherm is nonetheless also quite promising as 
we increase the CV-value by only  4.1 percentage points 
compared to the reference CVRef . We therefore save 70% 
of the experimental effort while still providing a reasonably 
accurate model.

4.3  Optimal design of a Type V isotherm

Finally, the MBDoE algorithm is applied to the Type V iso-
therm of the adsorption pair BAM-P109/H2O for the tem-
peratures 25/50/80  ◦C. The detailed MBDoE experiments 
are shown in Figure 14. For the Type V isotherm, the algo-
rithm stops after 9 measurements: 5 at 25 ◦C, 3 at 50 ◦C, 
and 1 at 80 ◦C. The correct isotherm shape is identified after 
3  measurements. The solver gets caught at the measure-
ment boundary for the first experiment, but finds the missed 
global optimum at the very next iteration. The BET model 

calibrated using 8 measurements (filled data points in Fig. 8) 
and the reference model was calibrated using 36 data points 
(empty data points). This way, we were able to save 78% 
of the experimental effort while still achieving a reasonably 
accurate model with a value of CVMBDoE = 7.7 % com-
pared to CVRef = 5.4 %.

4.2  Optimal design of a Type III isotherm

The same algorithm is repeated for the adsorption pair 
Lewatit  VP  OC  1065/H2O (Type  III isotherm) and the 
temperatures 25/50/75  ◦C. The detailed progression of 
the MBDoE experiments is shown in Figure 13. The algo-
rithm stops after 9 data points: 4 at 25 ◦C, 4 at 50 ◦C and 
1 at 75 ◦C. The DA-model is selected as in the reference 
measurement.

The isotherm Type  III is not identified until 7  mea-
surements are conducted as the isotherm type is more 
ambiguous for this adsorption pair. When looking closely 

Fig. 9  Resulting model fits for the Type III isotherm with Lewatit VP 
OC 1065/H2O. The left figure (a) shows the fitted DA model, which 
was determined as the most likely candidate by the MBDoE algo-
rithm (filled points), and all reference data points (empty points). The 
right figure (b) shows the reference DA model with the highest prob-
ability and lowest CV-value as well as all data points. An analysis of 
the measurement uncertainty is given in the SI

 

Fig. 8  Model fits for the Type I isotherm with Lewatit VP OC 1065/CO2. 
The left figure (a) shows the fitted Sips model, which was determined 
as the most likely candidate by the MBDoE algorithm (filled points), 
and all reference data points (empty points). The right figure (b) shows 
the reference BET model with the highest probability and lowest CV-
value as well as all data points. An analysis of the measurement uncer-
tainty is given in the SI
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MBDoE algorithm with only 9 measurements compared to 
48 data points of the reference measurement saving 81% of 
the data points.

4.4  Sensitivity analysis of the stopping criterion

From the results of the last section, we can see that the 
MBDoE  algorithm works, the correct isotherm Types 
are identified, and the experimental effort is reduced 
by  70−81%. The isotherm models are parametrized quite 
well; however, measuring a few more points could poten-
tially improve parameter estimation. Furthermore, passing 
the statistical tests is highly dependent on the loading mea-
surement uncertainty of the device: A high measurement 
uncertainty leads to the isotherm models passing the statisti-
cal test with less measurement points, as more model uncer-
tainty is tolerated. The trade-off between model accuracy 
and experimental effort is analyzed in this section. Since, 
the experiments are quite time consuming, this analysis is 
performed in-silico with the parametrized isotherm models 
from Sect. 2.4 and the measurement uncertainty of the grav-
imetric system from the SI.

The trade-off between model accuracy and experimental 
effort can be adjusted by adapting the significance level α. 
So far, the significance level was set to 0.05, leading to ter-
mination of the MBDoE algorithm after 8-9 measurements. 
When decreasing the significance level further, the statis-
tical tests terminate the algorithm later, as higher require-
ments are set to model lack-of-fit  (χ2-test) and parameter 
precision  (t-test). The expectation of a lower significance 
level would be to reduce the CV-value of the isotherm mod-
els, although with more data points.

The trade-off between the number of measurements and 
the achieved CV-value of the isotherm models parametrized 
by the MBDoE algorithm shows that the CV-value decreases 
for a decreasing significance level, however, not beyond a 
threshold of 7.7% for the Type I isotherm (Fig. 11 (left)). 
Also, at no point, the BET  model is chosen as the most 

is selected by the MBDoE  algorithm with a probability 
of  PrBET = 59 %. The low probability indicates that a 
second model (Sips in this case) matches the measurement 
data reasonably well. The BET model was also the refer-
ence model with the lowest CV-value from Sect. 2.4, so, the 
correct model is chosen despite the low absolute probability 
value.

Both the BET  model from optimal design and from 
the reference measurements are compared in Fig.  10. 
The BET  model parametrized by the MBDoE  algorithm 
matches the 25 ◦C isotherm very well. However, the 50 ◦C 
and 80 ◦C isotherm are not described perfectly as the tem-
perature jump of the S-shaped isotherm should move to 
higher relative pressure for higher isotherm temperatures. 
The fit could be improved by weighing the temperature-
dependent parameters more within the objective function of 
the parameter precision.

Since the offset occurs in the steepest region of the curve, 
the CV-value becomes quite large (CVMBDoE = 16.3 %) as 
it only considers measurement error in y-direction. None-
theless, a reasonable isotherm model is parametrized by the 

Fig. 11  Sensitivity analysis of the 
stopping criterion for MBDoE 
of adsorption isotherms of 
Type I (left), Type III (center), and 
Type V (right). The CV-values and 
the number of experimental points 
are shown over the significance 
level α of both χ2- and t-test

 

Fig. 10  Resulting model fits for the Type  V isotherm with BAM-
P109/H2O. The left figure  (a) shows the fitted BET model, which 
was determined as the most likely candidate by the MBDoE algo-
rithm (filled points), and all reference data points (empty points). The 
right figure (b) shows the reference BET model with the highest prob-
ability and lowest CV-value as well as all data points. An analysis of 
the measurement uncertainty is given in the SI
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adsorption processes. To the best of our knowledge, we 
combined the two research fields for the first time “live” 
and developed an open-source iterative MBDoE algorithm 
for adsorption isotherm measurements. This way, we reduce 
the experimental effort of adsorption equilibrium measure-
ments while maintaining high isotherm model accuracy. 
The MBDoE algorithm updates the isotherm models after 
each measurement and plans the next measurement point 
based on the parametrized isotherm models. The algorithm 
is based on MBDoE choosing an experimental point, which 
jointly improves model discrimination and parameter preci-
sion at the same time (j-MBDoE). The process stops after 
at least one isotherm model satisfies the χ2- and t-test. In 
the end, the most probable isotherm model is returned. Our 
analysis leads to the following 4 main conclusion:

First, the number of measurements can be reduced 
by  70−81% when parametrizing an isotherm model with 
temperature-dependent parameters for a set of three iso-
therm temperatures. This reduction can be achieved without 
a-priori knowledge of the most suitable isotherm model or 
its parameters. The measurement points equilibrate slower 
than the conventional approach of equidistant adsorption 
isotherms, since the changes in relative pressure are larger 
for the MBDoE approach. The benefit of using the MBDoE 
approach thus increases for more isotherms of the same 
working pair, since fewer measurement points are needed 
compared to the conventional approach. The correct model 
(according to our reference measurements) was chosen by 
the MBDoE algorithm for 2 of 3 isotherm types, while the 
second-best model is chosen for the last isotherm type. The 
model accuracy decreased between 2.3 and 13.6 percentage 
points in CV-value, which is quite promising, considering 
the large savings in experimental time.

Second, the MBDoE algorithm was able to identify the 
isotherm type by itself and scheduled measurements to deter-
mine whether the adsorption pair Lewatit VP OC 1065/H2O 
was in fact a Type II or Type III isotherm. The reference mea-
surement shows a small plateau between prel = 0.1 PaPa−1 
and 0.2 PaPa−1, which we initially ignored and calibrated 
a Type III isotherm model. However, the MBDoE algorithm 
identified the potential mismatch and calibrated an isotherm 
model devoid of our bias of the experimenters.

Third, the significance level α of the statistical tests can 
be adjusted to match the measurement uncertainty in the 
employed experimental setup. We showed in a sensitivity 
analysis that 3-4 more isotherm points during the design 
of experiments can up to halve the CV-value. This way, 
each experimenter can individually set the desired trade-off 
between experimental effort and model accuracy by adjust-
ing the significance level according to a prior sensitivity 
analysis.

probable model due to a local minimum of the parameter 
estimation for the BET model. If the correct minimum for 
the optimal BET parameters is never found, the Sips model 
remains the best model, limiting the CV-value to 7.7% even 
with more data points. Switching the solver for the auto-
matic curve fit from a local solver to a global algorithm 
could solve this issue in the future.

For the Type  III isotherm, decreasing the significance 
level from 0.05 to 0.01 increases the number of measure-
ments from 9  to  13 while also decreasing the CV-value 
from 7.7 to 5.8% (Fig. 11 (center)). Decreasing the signifi-
cance level to 0.001 leads to a large increase of measure-
ment points up to 29  points. However, this increase does 
not benefit the CV-value, pointing again towards possible 
improvements to the automatic curve fit. With  29 instead 
of 30 data points, the same model fit as the reference model 
should be possible.

Lastly, the CV-value can be further decreased from 16.3 
to 8.2% for the Type V isotherm by adjusting the signifi-
cance level (Fig.  11  (right)). Surprisingly, the number of 
data points only increases slightly from 9  to  12  points, 
which would be the preferred option as three more points 
decrease the CV-value by half.

The results show that a lower significance level α can 
lead to better isotherm models, when the automatic isotherm 
calibration identifies the global minimum of the isotherm 
parameters. Otherwise, the second best isotherm model is 
chosen and a lower significance level does not improve 
model accuracy, in case the second-best model is already 
optimally parametrized. Furthermore, decreasing the sig-
nificance level to 0.01 or 0.001 can be sensible depending 
on the uncertainty of the loading: 3  to 4 more data points 
decreased the CV-value between 1.9  and 8.1  percentage 
points. On the other hand, if the significance level is too low 
and the choice of isotherm models is poor, the algorithm 
may fail to converge. In practice, the set of isotherms should 
be expanded and the significance level adjusted to the mea-
surement error should convergence issues arise.

Overall, if isotherm data is available from other sources, 
we advise to perform an in-silico MBDoE analysis of the 
literature data prior to application of the MBDoE algorithm 
to the experiment. This way, the dependence of the statisti-
cal tests on the measurement uncertainty can be estimated.

5  Conclusion

In chemical engineering, the framework of model-based 
design of experiments (MBDoE) is state of the art to reduce 
experimental effort when calibrating models. For the field 
of adsorption, equilibrium measurements are quite tedious, 
however, accurate isotherm models are essential to design 
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source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​o​​n​s​.​​o​
r​g​​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.
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