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Abstract
Debates concerning philosophical grounds for the validity of classical and intu-
itionistic logics often have the very nature of proofs as a point of controversy. The 
intuitionist advocates for a strictly constructive notion of proof, while the classical 
logician advocates for a notion which allows the use of non-constructive principles 
such as reductio ad absurdum. In this paper we show how to coherently combine 
logical ecumenism and proof-theoretic semantics (PtS) by providing not only a 
medium in which classical and intuitionistic logics coexist, but also one in which 
their respective notions of proof coexist. Intuitionistic proofs receive the standard 
treatment of PtS, whereas classical proofs are given a semantics based on ideas by 
David Hilbert. Furthermore, we advance the state of the art in PtS by introducing 
a key contribution: treating the absurdity constant ⊥ as an atomic proposition and 
requiring all bases to be consistent. This treatment is essential for the obtainment of 
some ecumenical results, and it can also be used in standard intuitionistic PtS. Ad-
ditionally, we employ normalization techniques to demonstrate the consistency of 
simulation bases. These innovations provide fresh technical and conceptual insights 
into the study of bases in PtS.

Keywords  Ecumenical logic · Proof theoretic semantic · Base extension 
semantic · Intuitionistic logic · Classical logic
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1  Introduction

What is the meaning of a logical connective? This is a very difficult and controversial 
question, for many reasons. First of all, it depends on the logical setting. For example, 
asserting that 

A ∨ B is valid only if it is possible to give a proof of either A or B

clearly does not correctly determine the meaning of the classical disjunction. It turns 
out, as shown in (Piecha et al., 2015) and further analyzed in (Pym et al., 2025; Gheo-
rghiu & Pym, 2022), that this also does not seem enough for determining meaning in 
intuitionistic logic, due to the intrinsic non-determinism on choosing between A or B 
for validating A ∨ B.

In model-theoretic semantics, mathematical structures help in supporting the 
notion of validity, which is based on a notion of truth. In the case of intuitionistic 
logic, for example, one could use Kripke structures, where the validation of atomic 
propositions using the classical notion of truth (e.g., via truth tables) is enough for 
describing the meaning of the disjunction in a given world, where worlds are orga-
nized in a pre-order.

Although it became common to specify the meaning of formulas in terms of truth 
conditions, we agree with Quine’s objection to that, quoting Prawitz (Prawitz, 2015): 

Following Tarski, he [Quine] states truth conditions of compound sentences, 
not as a way to explain the logical constants, but as a first step in a definition of 
logical truth or logical consequence, which Quine takes to demarcate the logic 
that he is interested in. He points out that the truth conditions do not explain 
negation, conjunction, existential quantification and so on, because the condi-
tions are using the corresponding logical constants and are thus presupposing 
an understanding of the very constants that they would explain. I think that he is 
essentially right in saying so and that the situation is even worse: when stating 
truth conditions, one is using an ambiguous natural language expression that is 
to be taken in a certain specific way, namely in exactly the sense that the truth 
condition is meant to specify.

Proof-theoretic semantics (Schroeder-Heister, 1991, 2006, 2024) (PtS) provides an 
alternative perspective for the meaning of logical operators compared to the view-
point offered by model-theoretic semantics. In PtS, the concept of truth is substituted 
with that of proof, emphasizing the fundamental nature of proofs as a means through 
which we gain demonstrative knowledge, particularly in mathematical contexts. PtS 
has as philosophical background inferentialism (Brandom, 2000), according to which 
inferences establish the meaning of expressions. This makes PtS a superior approach 
for comprehending reasoning since it ensures that the meaning of logical operators, 
such as connectives in logics, is defined based on their usage in inferences.

Base-extension semantics (Sandqvist, 2015) (BeS) is a strand of PtS where proof-
theoretic validity is defined relative to a given collection S of inference rules defined 
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over basic formulas of the language.1 Hence, for example, while satisfiability of an 
atomic formula p at a state w in a Kripke model M = (W, R, V ) is often given by 

	 w ⊩ p iff w ∈ V (p)

in BeS, validity w.r.t. a set S of atomic rules has the general shape 

	 ⊩S p iff ⊢S p

where ⊢S p indicates that p is derivable in the proof system determined by S. After 
defining validity for atoms one can also define validity for logical connectives via 
semantic clauses that express proof conditions (e.g., A ∧ B is provable from S if and 
only if both A and B are provable from S), which results in a framework that evaluates 
propositions exclusively in terms of proofs of its constituents.

The switch from truth-functional to proof-functional semantics carries both math-
ematical and philosophical significance. In Tarskian truth-conditional semantics, as 
well as in Kripke models, the value of a proposition on a model relies solely on the 
semantic value assigned to its components. In proof-theoretic semantics, on the other 
hand, how the values of the components of a proposition are assigned is also relevant. 
For instance, given two atoms p and q, whether an implication p → q holds or not in a 
model M depends solely on the truth values assigned to p and q. But in BeS and most 
variants of PtS this implication holds in a base B only if the base is capable of pro-
ducing some inferential structure (such as a natural deduction derivation) with prem-
ise p and conclusion q (as shown in, e.g. [(Sandqvist, 2015) Theorem 3.1.]). For other 
variants of PtS it is even possible to show that Kripke models essentially correspond 
to simplified proof-theoretic structures containing flattened inferential components 
(Stafford & Nascimento, 2023; Barroso Nascimento, 2024). Those mathematical dif-
ferences are a direct reflection of the philosophy behind both frameworks: model 
theory is justified by views giving semantic primacy to the concept of truth, such as 
Davidson’s argument to the effect that by giving sufficient and necessary conditions 
for the truth of a sentence we provide it with meaning (Davidson, 1967), whereas PtS 
is justified by views giving primacy to the concept of justification, such as Dummett’s 
arguments to the effect that the meaning of a proposition is given by its assertability 
conditions (Dummett, 1991). As pointed out by Brandom (Brandom, 1976), such 
discussions trace back to a longstanding divergence between philosophers concern-
ing whether languages are better understood in terms of the concept of truth or the 
concept of linguistic use.

Although the BeS project has been successfully developed for intuitionistic 
(Sandqvist, 2015) and classical logics (Sandqvist, 2009; Makinson, 2014), it has 
not yet been systematically developed as a foundation for logical reasoning (Dicher 
& Paoli, 2021; Kürbis, 2015; Francez, 2016). In this paper, we intend to move on 

1 It should be noted that, in (Sandqvist, 2015), base rules are restricted to formulas in the logic-free frag-
ment only, that is, to atomic propositions. Here we will follow (Piecha et al., 2015) and give the unit ⊥ an 
“atomic status”, allowing it to appear in atomic rules.
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with this quest, by proposing a BeS view of ecumenical logics, inspired by Prawitz’s 
(2015) proposal of a system combining classical and intuitionistic logics.

In Prawitz’s system, the classical logician and the intuitionistic logician would 
share the universal quantifier, conjunction, negation and the constant for the absur-
dity, but they would each have their own existential quantifier, disjunction and impli-
cation, with different meanings. Prawitz’s main motivation was to provide a logical 
framework that would make possible an inferentialist semantics for the classical 
logical constants. In this way, inferentialism brought forth a very specific proposal 
when it emerged in the ecumenical context: to provide acceptable assertability con-
ditions for the operators of a certain logical system in another logical system which 
does not accept them, thus allowing the acceptance and reinterpretation of the previ-
ously rejected operators under the new inferential guise. In the context of conflicting 
discussions between classical and intuitionistic logicians, this would be compara-
ble to defining assertability conditions for classical operators inside intuitionistic 
logic, which Prawitz actually does in (Prawitz, 2015). Therefore, the inferentialist’s 
main task is to create ecumenical connectives that, with the assertability conditions 
exposed in its inferential rules, can represent connectives accepted by one of the logi-
cal systems and rejected by the others inside the ecumenical environment.

In this work we do not intend to provide a BeS for Prawitz’s original system, but 
rather to proceed with a careful analysis of different aspects of BeS for logical sys-
tems where classical and intuitionistic notions of proof coexist in peace (i.e. without 
collapsing). We define intuitionistic proofs through the usual semantic conditions of 
BeS, which encapsulate the traditional idea of Brouwer, Heyting and Dummett that 
mathematical existence of an object can only be guaranteed by means of its construc-
tion (Brouwer, 1981; Dummett, 1977; Heyting, 1956). On the other hand, classical 
proofs are defined by taking into account an idea advanced by David Hilbert to justify 
non-constructive proof methods: the concept of consistency is conceptually prior to 
that of truth, and in order to prove the truth of a proposition in a given context it 
suffices to prove its consistency. In his words (Doherty, 2017; Hilbert et al., 1979; 
Hilbert, 1900): 

You [Frege] write “From the truth of the axioms it follows that they do not 
contradict one another”. It interested me greatly to read this sentence of yours, 
because in fact for as long as I have been thinking, writing and lecturing about 
such things, I have always said the very opposite: if arbitrarily chosen axi-
oms together with everything which follows from them do not contradict one 
another, then they are true, and the things defined by the axioms exist. For me 
that is the criterion of truth and existence.

In order to properly represent this idea of classical proof in BeS we must change the 
semantic treatment given to the absurdity constant ⊥, but it is shown that this can 
be done without issues (see Sect. 2.2). As expected of an ecumenical framework, 
the resulting environment allows both notions of proof to coexist peacefully, retain 
their independence and fruitfully interact – so we are able, for instance, to analyze 
the semantic content of a proposition which is in part proved classically and in part 
proved intuitionistically in terms of interactions between the respective proof notions.
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We start by proposing a weak version of ecumenical BeS (in Sect. 3). This ver-
sion relies on the concepts of local and global validity (see e.g., (Cobreros, 2008)), 
enabling us to examine various aspects of both classical and intuitionistic validities. 
In particular we demonstrate that, while intuitionistic validity has the property of 
monotonicity, meaning that it remains unchanged under extensions, this characteris-
tic does not hold true for classical formulas. This observation gives rise to the motto: 

Classical proof plus monotonicity equals intuitionistic proof of double negation.

In Sect. 4 we will unwrap the full power of ecumenical BeS, by showing a strong 
notion of validity. In Sect. 5 we define the ecumenical natural deduction system NEB, 
and prove its soundness and completeness w.r.t. such (proof-theoretic) semantic. We 
then conclude with some ideas to push forward the PtS agenda for ecumenical 
systems.

2  Base extension semantics

2.1  Basic definitions

We will adopt Sandqvist’s (2015) terminology, adapted to the ecumenical setting.
The propositional base language is assumed to have a set At = {p1, p2, . . .} of 

countably many atomic propositions, together with the unit ⊥. The set At ∪ {⊥} will 
be denoted by At⊥, and its elements will be called basic sentences.

We use, as does Sandqvist, systems containing natural deduction rules over basic 
sentences for the semantical analysis, and we allow inference rules to discharge sets 
of basic hypotheses. Sets used in the definition of the derivability relation and seman-
tic consequence are always assumed to be finite. Unlike Sandqvist, however, we 
allow the logical constant ⊥ to be manipulated by the rules.

Definition 1  (Atomic systems) An atomic system (a.k.a. a base) S is a (possibly 
empty) set of atomic rules of the form 

	

ΓAt [P1] ΓAt [Pn]
p1 . . . pn

p

where pi, p ∈ At⊥ and ΓAt, Pi are (possibly empty) finite sets of basic sentences. 
The sequence ⟨p1, . . . , pn⟩ of premises of the rule can be empty – in this case the rule 
is called an atomic axiom.
Labels will sometimes be written as the superscript of [Pi] and to the right of a rule 
to denote that Pi was discharged at that rule application.

Definition 2  (Extensions) An atomic system S′ is an extension of an atomic system S 
(written S ⊆ S′), if S′ results from adding a (possibly empty) set of atomic rules to S.
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Definition 3  (Deducibility) The deducibility relation ⊢S  coincides with the usual 
notion in the system of natural deduction consisting of just the rules in S, that is, 
p1, . . . , pn ⊢S p iff there exists a deduction with the rules of S whose conclusion is p 
and whose set of undischarged premises is a subset of {p1, ..., pn}.

Definition 4  (Consistency) An atomic system S is called consistent if ⊬S ⊥.

Notice that, due to how deducibility is defined, if p ∈ {p1, ..., pn} then p1, ..., pn ⊢S p 
holds regardless of the S, as a single occurrence of the assumption p already counts as 
a ruleless deduction of p from p.

Those basic definitions are usually combined with validity clauses to obtain seman-
tics for intuitionistic logic. For instance, Sandqvist (2015) defines atomic derivability 
using At instead of At⊥ and employs the following clauses:

1.	 ⊩S p iff ⊢S p, for p ∈ At;
2.	 ⊩S (A ∧ B) iff ⊩S A and ⊩S B;
3.	 ⊩S (A → B) iff A ⊩S B;
4.	 ⊩S A ∨ B iff ∀S′(S ⊆ S′) and all p ∈ At, A ⊩S′ p and B ⊩S′ p implies ⊩S′ p;
5.	 ⊩S ⊥ iff ⊩S p for all p ∈ At
6.	 For non-empty finite Γ, Γ ⊩S A iff for all S′ such that S ⊆ S′ it holds that, if 

⊩S′ B for all B ∈ Γ, then ⊩S′ A;
7.	 Γ ⊩BeS A iff Γ ⊩S A for all S;

The idea being that BeS validity (⊩BeS) is defined in terms of S-validity (⊩S) and 
S-validity is reducible to derivability in S and its extensions, so we obtain a semantics 
defined exclusively in terms of proofs and proof conditions. In this sense, BeS not 
only aims at elucidating the meaning of a logical proof, but also at providing means 
for its use as a basic concept of semantic analysis.

2.2  On the semantics of ⊥ in BeS

The semantic conditions for ⊥ are usually defined in BeS in one of two ways. The 
first one is to define atomic derivability by using At instead of At⊥ and to employ 
the following semantic clause: 

	 ⊩S ⊥ iff ⊩S p holds for all p ∈ At

Absurdity is treated as a logical constant and cannot figure in atomic bases, hence the 
switch from At⊥ to At. This clause, used most notably by Sandqvist (2015), borrows 
from Dummett (1991) the idea of defining absurdity in terms of logical explosion, but 
restricts it to just atoms in order to make the definition inductive.

The second one is to consider ⊥ an atom and require all bases to contain atomic 
ex falso rules concluding p from ⊥ for every p ∈ At⊥ (Piecha et al., 2015). If for 
some S we have ⊩S ⊥ this now implies ⊢S ⊥; hence, for any p ∈ At⊥, the deduc-
tion of ⊥ from empty premises in S can be extended by the appropriate ex falso rule 
to a deduction showing ⊢S p that also shows ⊩S p. Since ⊩S p for all p ∈ At⊥ also 
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implies ⊩S ⊥ this means that (⊩S ⊥ iff ⊩S p for all p ∈ At⊥) holds in all such S, so 
by restricting ourselves to these “atomically explosive” bases we end up giving the 
same semantic treatment to ⊥.

Although technically sound, such definitions are inadequate from a conceptual 
standpoint because they do not express the intended meaning of ⊥. The absurdity 
constant is supposed to represent a statement that never holds. Logical explosion 
should be a consequence of the definition of absurdity, not its definition. Ideally, 
⊥ ⊩S A should hold for all S because no extension S′ of S validates ⊥ and the entail-
ment holds vacuously, not because there are extensions validating ⊥ that also vali-
date the arbitrary formula A.

Unfortunately, we cannot define ⊥ through the natural semantic clause: 

	 ⊮S ⊥ for all S.

If we define ¬A as (A → ⊥) and adopt the clause above, we can demonstrate that 
⊩S ¬¬p holds for every p ∈ At in every S. This follows because ⊩S ¬p would hold 
only if no extension of S validates p. However, for every S and every p ∈ At, there is 
always some extension S′ of S such that ⊩S′ p (for instance, the extension obtained 
by adding the atomic axiom with conclusion p to S). Piecha et al. (2015) observe 
that, aside from ruling out this definition of ⊥, the fact that every atom is validated in 
some extension of every system “might be considered a fault of validity-based proof-
theoretic semantics, since it speaks against the intuitionistic idea of negation ¬A as 
expressing that A can never be verified”.

As will be shown in this paper, a technically sound and conceptually adequate 
treatment of ⊥ has been thus far overlooked by the literature. Even though we cannot 
define ⊥ in terms of unsatisfiability through a semantic clause, it is still possible to 
do it by simply requiring all bases to be consistent: 

	 ⊬S ⊥ for all S.

While at first glance it may seem that the definitions are equivalent, this switch actu-
ally allows us to solve the issues with the semantic clause. Moreover, the restriction 
implements the desiderata of Piecha et al. and allows bases to contain no extensions 
validating some specific atoms. To see why, consider that if S is a consistent base 
in which p ⊢S ⊥ holds then there can be no extension S′ of S validating p, since if 
⊩S′ p for some S ⊆ S′ we would have a deduction showing ⊢S′ p which could be 
composed with the deduction showing p ⊢S ⊥ (which is also a deduction showing 
p ⊢S′ ⊥, since all rules of S are in S′ by the definition of extension) to obtain one 
showing ⊢S′ ⊥, hence S′ would be inconsistent. It is easy to show that p ⊢S ⊥ now 
implies both ⊩S ¬p and ⊮S ¬¬p. As such, by considering ⊥ an atom but requiring 
it to always be underivable we allow bases to indirectly restrict their own admissible 
extensions by conveying information about which formulas will never be validated 
in their extensions.

The completeness proof presented in Sect. 5 can easily be adapted to standard 
intuitionistic BeS by simply omitting all steps concerning classical formulas. Since 
the remaining steps are precisely the constructive ones, this yields a fully construc-
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tive proof of completeness for BeS with the consistency constraint and without any 
semantic clause for ⊥ w.r.t. intuitionistic propositional logic. It should also be noted 
that many of the results we will demonstrate for ecumenical logics are essentially 
dependent on the consistency constraint, so the definition is optional in intuitionistic 
logic but essential in our ecumenical semantics.

2.3  Ecumenical language

Propositional formulas are built from basic sentences using the binary connectives 
→, ∧, ∨. The ecumenical language is defined as follows.

Definition 5  The ecumenical language L is comprised of the following ecumenical 
formulas:

1.	 If p ∈ At⊥, them pi, pc ∈ L;
2.	 If A, B ∈ L, then (A ∧ B)i, (A ∨ B)i, (A → B)i ∈ L;
3.	 If A, B ∈ L, then (A ∧ B)c, (A ∨ B)c, (A → B)c ∈ L;

Notation 1  Parenthesis are omitted whenever no confusion ensues. For easing 
the notation, ¬A, A → B, A ∧ B and A ∨ B will be abbreviations of (A → ⊥)i, 
(A → B)i (A ∧ B)i, (A ∨ B)i, respectively. Finally, we stipulate that if a formula 
A is used without specification of its superscript, then it may be either i or c. For 
instance, Ai ∧ Bc should be read as a placeholder for (Ai ∧ Bc)i, but A ∧ B should 
be read as a placeholder for (Ai ∧ Bi)i, (Ac ∧ Bi)i, (Ai ∧ Bc)i and (Ac ∧ Bc)i.

Definition 6  The complexity of a formula with shape Ai is the number of logical 
operators distinct from ⊥ occurring on it. The complexity of a formula with shape Ac 
is the complexity of Ai plus 1.

Intuitively, an intuitionistic formula Ai holds whenever there exists an intuitionistic 
proof of A, and a classical formula Ac holds whenever there exists a classical proof of 
A. Since every formula of the usual language has both a classical and an intuitionistic 
version, classical and intuitionistic support in bases is defined for every formula.

In this paper, we will focus on two definitions of semantic ecumenism, called 
weakand strong ecumenical semantics, respectively. In both the semantics of classi-
cal proofs is given in terms of the consistency of formulas w.r.t. some atomic system, 
but the notions induce classical behavior in very different ways.

It should be observed that the weak ecumenical semantics proposed next does not 
have a simple syntactic characterization, and its study is meant for semantic purposes 
only – the goal is to explore deeply the ecumenical proof-theoretic behavior. In Sect. 
5 we present an interesting ecumenical natural deduction system which is sound and 
complete w.r.t. the strong ecumenical semantics described in Sect. 4.
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3  Weak ecumenical semantics

We start by distinguishing between two notions of logical validity for every atomic 
system S: local logical validity (represented by ⊩L

S ) and global logical validity (rep-
resented by ⊩G

S ). The idea is that, in local validity, we only concern ourselves with 
what holds in a base and its extensions, but in global validity we also take into account 
what holds in extensions of a base’s extensions. In many contexts both notions col-
lapse, but in some there is reason to make a distinction. Some relationships between 
both will be studied in more depth later.

A weak ecumenical version of BeS is given by the definition below. As usual, we 
start by giving semantic conditions for basic sentences in atomic systems, expanding 
them through semantic clauses.

Definition 7  (Weak Validity) Weak S-validity and weak validity are defined as follows.

1.	 ⊩L
S pi iff ⊢S p, for p ∈ At⊥;

2.	 ⊩L
S pc iff p ⊬S ⊥, for p ∈ At⊥;

3.	 ⊩L
S Ac iff Ai ⊮L

S ⊥i, for A /∈ At⊥;
4.	 ⊩L

S (A ∧ B)i iff ⊩L
S A and ⊩L

S B;
5.	 ⊩L

S (A → B)i iff A ⊩G
S B;

6.	 ⊩L
S (A ∨ B)i iff ∀S′(S ⊆ S′) and all p ∈ At⊥, A ⊩L

S′ pi and B ⊩L
S′ pi implies 

⊩L
S′ pi;

7.	 For non-empty finite Γ, we have that Γ ⊩L
S A iff for all S′ such that S ⊆ S′ it 

holds that, if ⊩L
S′ B for all B ∈ Γ, then ⊩L

S′ A;
8.	 For finite Γ, Γ ⊩G

S A iff for all S′ such that S ⊆ S′ we have that, if for all S″ such 
that S′ ⊆ S′′ it holds that ⊩L

S′′ B for all B ∈ Γ, then for all S″ such that S′ ⊆ S′′ 
it also holds that ⊩L

S′′ A;
9.	 Γ ⊩ A iff Γ ⊩G

S A for all S.

There are important bits of information to unpack in those clauses. First, notice that 
there is one clause for classical proofs of atoms and one for classical proofs of non-
atomic formulas, but both are defined in terms of consistency proofs for the formula’s 
immediate subformula. Second, while Clause 7 is the same as Sandqvist’s clause 
“(Inf)”, Clause 8 is slightly more complex; the former is our definition of local valid-
ity, the later of global validity (Cobreros, 2008). This distinction is redundant in usual 
intuitionistic semantics, but essential in the weak version of ecumenical BeS. Finally, 
notice that when defining the semantic clause for disjunction we use local entailment 
instead of global, which is done to show that some desirable semantic properties fol-
lows from this weak definition. By using the global notion instead we would obtain 
an alternative presentation of what we later define as strong ecumenical semantics.

The following result easily follows from Definition  7 and the requirement of 
atomic systems to be consistent.

Lemma 1  ⊮L
S ⊥i  and ⊮L

S ⊥c for all S.

1 3
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Proof  For any S, since S must be consistent we have ⊬S ⊥, so ⊮L
S ⊥i. Moreover, 

since ⊥ ⊢S ⊥ holds by the definition of deducibility we have ⊮L
S ⊥c.� □

Due to this result, from now on ⊥ will be used as an abbreviation of ⊥i (≡ ⊥c) in 
semantic contexts.

Although expected, since intuitionistic provability implies classical provability, 
the next two results are only possible due to the change from Sandqvist’s clause for 
⊥ to the consistency requirement.

Theorem 2  pi ⊩L
S pc for any p ∈ At⊥.

Proof  Assume ⊩L
S′ pi for some S ⊆ S′. Then ⊢S′ p. Now suppose p ⊢S′ ⊥. Then by 

composing both deductions we have ⊢S′ ⊥, contradicting the consistency require-
ment. So p ⊬S′ ⊥, hence ⊩L

S′ pc. Since S′ is an arbitrary extension of S, we have 
pi ⊩L

S pc by Clause 7. � □

Theorem 3  Ai ⊩L
S Ac for any A /∈ At⊥.

Proof  Assume ⊩L
S′ Ai for some S ⊆ S′ and suppose that Ai ⊩L

S′ ⊥. Then by Clause 
7 of Definition 7 we have ⊩L

S′ ⊥, and then ⊢S′ ⊥ by Clause 1, which is a contradic-
tion. Thus, Ai ⊮L

S′ ⊥, and so ⊩L
S′ Ac. Since S′ is an arbitrary extension of S, we have 

Ai ⊩L
S Ac by Clause 7.� □

If Sandqvist’s definition was used, from ⊩L
S′ Ai and Ai ⊩L

S′ ⊥ we could get 
⊩L

S′ pi for arbitrary p ∈ At⊥, but it would not be the case that Ai ⊮L
S′ ⊥. The same 

would happen with the proof for atoms if we allowed ⊥ to occur in atomic bases and 
required all bases to contain all instances of the atomic ex falso.

3.1  Monotonicity

It is well known that BeS validity in intuitionistic logic is monotonic, in the sense that 
it is stable under base extensions. As it turns out, this is not the case in the ecumenical 
setting, as discussed next.

Definition 8  (Monotonicity) A formula A is called S-monotonic with respect to an 
atomic system S if, for all S ⊆ S′, ⊩L

S A implies ⊩L
S′ A. A is called monotonic if it is 

S-monotonic for any atomic system S.

Some parts of Clause 8 come for free in the presence of monotonicity (as shown 
next), but they must be explicitly stated on the lack of it. As such, the original notion 
of logical consequence provides only a weak kind of validation for non-monotonic 
formulas, and thus would indirectly treat classical and intuitionistic formulas very 
differently.

Theorem 4  If S-monotonicity holds for A and all formulas in Γ, then Γ ⊩L
S A iff 

Γ ⊩G
S A.
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Proof  The result is trivial if Γ = ∅, so we will assume Γ non-empty.

(⇒) Suppose Γ ⊩L
S A. Then, by Clause 7, for every S′ such that S ⊆ S′ we have 

that, if ⊩L
S′ B for every B ∈ Γ then ⊩L

S′ A. Now take any such S′ in which, for all S″ 
such that S′ ⊆ S′′, we have ⊩L

S′′ B for all B ∈ Γ. Since S′ ⊆ S′, we have ⊩L
S′ B for 

every B ∈ Γ, so we conclude ⊩L
S′ A. But by S-monotonicity we also have that ⊩L

S′ A 
implies ⊩L

S′′ A for all S″ such that S′ ⊆ S′′ and, since S′ was an arbitrary extension of 
S satisfying the antecedent of the second part of Clause 7, we have Γ ⊩G

S A.
(⇐) Assume Γ ⊩G

S A. Then, by Clause 7, for every S′ such that S ⊆ S′ we have 
that, if ⊩L

S′′ B for every B ∈ Γ and for all S″ such that S′ ⊆ S′′ then ⊩L
S′′ A for all 

such S″ as well. Now let S′ be any extension of S such that ⊩L
S′ B for all B ∈ Γ. By 

monotonicity, for all formulas B ∈ Γ we have that, if ⊩L
S′ B, then ⊩L

S′′ B for every 
S″ such that S′ ⊆ S′′. Taken together with our assumption, this yields ⊩L

S′′ A for all 
such S″. In particular, since S′ ⊆ S′ we have ⊩L

S′ A and, since S′ was an arbitrary 
extension of S satisfying the antecedent of the second part of Clause 7, we have 
Γ ⊩L

S A.� □
Even though intuitionistic atoms and connectives are monotonic, this is not the 

case in the classical setting.

Theorem 5  Every formula containing only intuitionistic subformulas is monotonic. 
Classical atoms are not monotonic.

Proof  The result for formulas containing only intuitionistic subformulas is easily 
proven by induction on the complexity of formulas in the same way as in [(Sandqvist, 
2015) Lemma 3.2. (a)], where the induction hypothesis is only needed for conjunc-
tion (the case for implication holds directly from the definition of general validity).

Regarding classical atoms, for S = ∅ we have that p ⊬S ⊥ for every p ∈ At. But 
if S′ is the atomic system containing only the rule obtaining ⊥ from p, S′ is consistent 
and p ⊢S′ ⊥. Hence ⊩L

S pc and S ⊆ S′, but ⊮L
S′ pc. More generally, if p does not 

occur in the rules of S then p ⊬S ⊥ and by adding a rule obtaining ⊥ from p to S we 
have an extension S′ guaranteed to be consistent, so whenever p does not appear on 
the rules of S we have ⊩L

S pcbut ⊮L
S′ pc for some S ⊆ S′.� □

In short, for intuitionistic formulas it is irrelevant whether local or global notions 
of validity is used. For ecumenical formulas containing classical subformulas, how-
ever, this choice makes an enormous difference, as illustrated in Sect. 3.3.

3.2  Basic lemmata

Before proceeding, we briefly present some lemmas that will be useful later. For the 
sake of readability, some proofs are omitted from the main text, see Appendix A for 
details.

We start by showing that local validity implies global validity only for non-empty 
contexts, but global validity implies local validity only when the context is empty. 
A counter-example for Lemma 7 with non-empty contexts is given in Theorem 18, 
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whereas one for Lemma 6 with empty contexts can be obtained by putting A = pc 
and remembering that classical atoms are not always monotonic.

Lemma 6  For non-empty Γ, Γ ⊩L
S A implies Γ ⊩G

S A.

Lemma 7  ⊩G
S A implies ⊩L

S A.

Proof  Assume ⊩G
S A. Then for every S ⊆ S′, it holds that ⊩L

S′′ A, for every S′ ⊆ S′′. 
By putting S′′ = S′ = S we conclude ⊩L

S A.� □

Lemma 8  If ⊮L
S′ A for all S ⊆ S ′ then ⊩L

S′ ¬A for all S ⊆ S ′.

Proof  Assume ⊮L
S′ A for all S ⊆ S′. Take any such extension S′. For any S′ ⊆ S′′ 

by transitivity of the extension relation we have S ⊆ S′′, so ⊮L
S′′ A. But then clearly 

Ai ⊩G
S′ ⊥ is satisfied vacuously for any S′, so ⊩L

S′ ¬A for all S ⊆ S′.� □

The following is a form of global modus ponens.

Lemma 9  ⊩G
S A and A ⊩G

S B implies ⊩G
S B.

Proof  Assume ⊩G
S A. Thus for all S ⊆ S′ we have that S′ ⊆ S′′ implies ⊩L

S′′ A. 
Assume A ⊩G

S B. Then, for any S ⊆ S′, if for all S′ ⊆ S′′ we have ⊩L
S′′ A, then for 

all S′ ⊆ S′′ we have ⊩L
S′′ B. By putting S = S′ the antecedent gets satisfied and we 

immediately get ⊩L
S′′ B for all S ⊆ S′′, hence ⊩G

S B.� □

Finally, the following results show interactions between monotonicity, global 
validity and negation.

Lemma 10  If ⊩L
S A, S-monotonicity holds for A and A ⊩G

S B, then both ⊩L
S B and 

⊩G
S B.

Proof  Since ⊩L
S A holds and monotonicity holds for A, for all S′ such that S ⊆ S′ 

we have that ⊩L
S′ A. Since A ⊩G

S B holds and S is an extension of itself, we immedi-
ately conclude that ⊩L

S′ B for all S′ extending S and all S″ extending any S′, and thus 
⊩G

S B. In particular, since S is an extension of itself, we also have ⊩L
S B.� □

Lemma 11  (p ⊢S ⊥) iff (pi ⊩L
S ⊥) iff (pi ⊩G

S ⊥) iff (⊩L
S ¬pi).

Corollary 12  ⊩L
S pc iff pi ⊮L

S ⊥.

Lemma 13  A ⊮L
S ⊥ iff there is some S ⊆ S ′ such that ⊩L

S′ A.

Proof  Assume A ⊮L
S ⊥. Suppose there is no S ⊆ S′ with ⊩L

S′ A. Then A ⊩L
S ⊥ holds 

vacuously, which is a contradiction. Hence, for some S ⊆ Sn we have ⊩L
S′ A. On the 

other hand, assume that there is some S ⊆ S′ such that ⊩L
S′ A. Suppose A ⊩L

S ⊥. 
Then we have ⊩L

S′ ⊥, yielding a contradiction. Thus, A ⊮L
S ⊥. � □
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The following is a variation of Makinson’s proofs to the effect that every consis-
tent base has a maxiconsistent extension (Makinson, 2014).

Lemma 14  Every consistent system S has a ⊥-complete consistent extension S⊥C  
such that, for every p ∈ At⊥, either ⊢S⊥C p or p ⊢S⊥C ⊥

Proof  Since At⊥ is countable, assign to each of its elements a unique natural number 
greater than 0 as a superscript. Define S = S0, and consider the following construc-
tion procedure (for m ≥ 1):

1.	 If pm ⊬Sm−1 ⊥, then Sm is obtained by adding an atomic axiom with conclusion 
pm to Sm−1;

2.	 If pm ⊢Sm−1 ⊥, then Sm = Sm−1.

We briefly show by a simple induction that every Sm produced this way is con-
sistent. Since S0 = S, S0 is consistent. Now suppose that Sm−1 is consistent. If 
pm ⊢Sm−1 ⊥ then Sm−1 = Sm, so Sm is consistent. If pm ⊬Sm−1 ⊥, assume for the 
sake of contradiction that ⊢Sm ⊥. Then either the proof of ⊥ in Sm does not use the 
atomic axiom with conclusion pm included in Sm−1, in which case it is also a deduc-
tion showing ⊢Sm−1 ⊥, or it does use the atomic axiom, in which case by removing 
all instances of it from the deduction we obtain a deduction showing pm ⊢Sm−1 ⊥. 
In the first case we contradict the assumption that Sm−1 was consistent, and in the 
second we contradict the assumption that pm ⊬Sm−1 ⊥, so in any case we obtain a 
contradiction. Hence, if Sm−1 is consistent then Sm is consistent, and since S0 is con-
sistent we have that each Sm is consistent.

Now let S⊥C = {R ∈ Sm|m ≥ 0}. Clearly, S ⊆ S⊥C . To show that S⊥C  is also 
consistent, assume for the sake of contradiction that there is a deduction showing 
⊢S⊥C ⊥. By the definition of deducibility, this deduction can only use finitely many 
rules. If the deduction does not use any atomic axioms, it is already a deduction in S, 
thus contradicting the fact that S is consistent. If it does use atomic axioms, let m be 
the greatest superscript occurring in atomic axioms of the deduction. This deduction 
only uses axioms with superscript equal to or less than m, thus all rules used in it must 
already occur in Sm (as they could not have been added later in the construction). But 
then this means that ⊢Sm ⊥, contradicting our result that each Sm is consistent. In 
both cases we reach a contradiction, so we conclude that S⊥C  is indeed consistent.

Finally, take any pm ∈ At⊥. If pm ⊢Sm−1 ⊥ then pm ⊢S⊥C ⊥, as by the definition 
of S⊥C  we have Sm−1 ⊆ S⊥C . If pm ⊬Sm−1 ⊥ then Sm contains an atomic axiom 
concluding pm, and since Sm ⊆ S⊥C  we conclude ⊢S⊥C pm. Since this holds for 
every m ≥ 1 and every atom was assigned such a superscript, we conclude that for 
every p ∈ At⊥ either p ⊢S⊥C ⊥ or ⊢S⊥C p, as desired.� □

Notice that, unlike Makinson’s maxiconsistent extensions, ⊥-complete extension 
are not required to be maximal with respect to set inclusion. The two lemmas that 
follow are also analogues of Makinson’s [(2014) Lemma 3.5.], in the sense that they 
show that ⊥-complete extensions are classically well-behaved.
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Lemma 15  Let A and B be two formulas and S a system such that, for all S ⊆ S ′, ⊩L
S A 

iff ⊩L
S′ A and ⊩L

S B iff ⊩L
S′ B. Then for all S ⊆ S ′ we have A ⊩L

S′ B iff A ⊩G
S′ B iff 

either ⊮L
S′ A or ⊩L

S′ B.

Proof  Let S be any system A and B be two formulas as specified. Let S′ be an arbi-
trary extension of S. If ⊮L

S′ A then ⊮L
S A and for all S ⊆ S′′ we have ⊮L

S′′ A. Since 
S′ ⊆ S′′′ implies S ⊆ S′′′ we have that ⊮L

S′′′ A also holds for all extensions S′′′ of 
S′, so A ⊩L

S′ B and A ⊩G
S′ B hold vacuously. Likewise, if ⊩L

S′ B then ⊩L
S B and 

so also ⊩L
S′′ B for all S ⊆ S′′, so again for all S′ ⊆ S′′′ we have ⊩L

S′′′ B, hence 
by similar reasoning we conclude that both A ⊩L

S′ B and A ⊩G
S′ B hold. Finally, if 

⊩L
S′ A and ⊮L

S′ B hold then since S′ ⊆ S′ clearly A ⊮L
S′ B and A ⊮G

S′ B, and since 
this covers all cases we conclude the desired result.

� □

Lemma 16  Let S⊥C  be a ⊥-complete extension of some system. Then, for every 
S⊥C ⊆ S ′ and every A, ⊩L

S⊥C A iff ⊩L
S′ A.

3.3  Weak ecumenical behavior

This section will be devoted to show some interesting behaviors when monotonicity 
does not hold for ecumenical formulas. Notice that, due to Corollary 12, classical 
atoms pc and classical non-atomic formulas Ac may be treated uniformly in some 
cases.

Theorem 17  Ac ⊩ ¬¬Ai  and ¬¬Ai ⊩ Ac.

Proof  Let’s first prove that Ac ⊩G
S ¬¬Ai holds for arbitrary S.

Let S be an arbitrary atomic system. Let S′ be any extension of S such that, for 
all S′ ⊆ S′′, we have ⊩L

S′′ Ac. Then for every S′ ⊆ S′′ we have Ai ⊮L
S′′ ⊥. Sup-

pose, for the sake of contradiction, that there is a S′ ⊆ S′′ such that ⊩L
S′′ ¬Ai. Then 

Ai ⊩G
S′′ ⊥. Now let S⊥C  be a ⊥-complete extension of S″. Since S′ ⊆ S⊥C  we 

have Ai ⊮L
S⊥C ⊥, hence by Lemma 13 there must be a S⊥C ⊆ S′′′ with ⊩L

S′′′ A. 
So by Lemma 16 we conclude ⊩L

S⊥C A and also ⊩L
S′′′ A for arbitrary extensions 

S′′′ of S⊥C . But since S′′ ⊆ S⊥C , A ⊩G
S′′ ⊥ and ⊩L

S′′′ A for every S⊥C ⊆ S′′′ we 
conclude ⊩L

S′′′ ⊥ and ⊢S′′′ ⊥ for all S⊥C ⊆ S′′′, which violates the consistency 
requirement. Therefore, for all S′ ⊆ S′′ we have ⊮L

S′′ ¬Ai and so by Lemma 8 also 
⊩L

S′′ ¬¬Ai, hence by arbitrariness of S′ we have Ac ⊩G
S ¬¬Ai.

Now, let’s prove ¬¬Ai ⊩ Ac, which amounts to proving ¬¬Ai ⊩G
S Ac for arbi-

trary S. Let S be an arbitrary atomic system. Let S′ be any extension of S such that, for 
all S″ for which S′ ⊆ S′′, we have that ⊩L

S′′ ¬¬Ai holds. In particular, ¬Ai ⊩G
S′ ⊥ 

holds. Now assume for the sake of contradiction that, for some S′ ⊆ S′′, we have 
Ai ⊩L

S′′ ⊥. Assume there is a S′′ ⊆ S′′′ such that ⊩L
S′′′ Ai. Then since Ai ⊩L

S′′ ⊥ and 
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S′′ ⊆ S′′′ we conclude ⊩L
S′′′ ⊥ and obtain a contradiction, so for all S′′ ⊆ S′′′ we 

have ⊮L
S′′′ Ai. Since ⊮L

S′′′ Ai for all S′′ ⊆ S′′′ we have ⊩L
S′′′ ¬Ai for all S′′ ⊆ S′′′ 

by Lemma 8. But since ¬Ai ⊩G
S′ ⊥, S′ ⊆ S′′ and ⊩L

S′′′ ¬Ai holds for all S′′ ⊆ S′′′ 
we conclude ⊩L

S′′′ ⊥ for all such S′′′, leading to a contradiction. Hence we conclude 
that there can be no extension S″ of S′ with Ai ⊩L

S′′ ⊥, so for all S′ ⊆ S′′ we have 
Ai ⊮L

S′′ ⊥ and thus ⊩L
S′′ Ac, hence since S′ was arbitrary we conclude ¬¬Ai ⊩G

S Ac.
� □
The next two results are interesting, showing that global validity can be preserved 

locally but that this is not always the case.

Theorem 18  Ac ⊩L
S ¬¬Ai  does not hold for arbitrary S.

Proof  We prove the result for atoms. Consider the atomic system ∅, which contains 
no rules. Clearly, since p ⊬∅ ⊥, we have ⊩L

∅ pc. Suppose that ⊩L
∅ ¬¬pi. Consider 

now an extension S of ∅ containing a rule which concludes ⊥ from the premise p. 
Hence p ⊢S ⊥ and, due to Lemma 11, ⊩L

S ¬pi holds. Since ¬¬pi is intuitionistic, it is 
monotonic, and thus ⊩L

∅ ¬¬pi implies ⊩L
S ¬¬pi. By the semantic clause for implica-

tion we then have ¬pi ⊩G
S ⊥ and, since ⊩L

S ¬pi, by Lemma 10 we have ⊩L
S ⊥, and 

thus ⊢S ⊥. Contradiction. Thus ⊮L
∅ ¬¬pi and, since the empty set is an extension of 

itself, pc ⊮L
∅ ¬¬pi.

� □

Theorem 19  ¬¬Ai ⊩L
S Ac holds for arbitrary S.

Proof  Let S be any system. Consider any S ⊆ S′ such that ⊩L
S′ ¬¬Ai. By the clause 

for implication, ¬Ai ⊩G
S′ ⊥. Assume Ai ⊩L

S′ ⊥ for the sake of contradiction. Then 
clearly ⊮L

S′′ Ai for all S′ ⊆ S′′, so ⊩L
S′′ ¬Ai for all S′ ⊆ S′′ by Lemma 8. Since 

¬Ai ⊩G
S′ ⊥ and ⊩L

S′′ ¬Ai for all S′ ⊆ S′′ we conclude ⊩L
S′′ ⊥ for all S′ ⊆ S′′, 

which is a contradiction. Hence Ai ⊮L
S′ ⊥, so ⊩L

S′ Ac, therefore by arbitrariness of 
S′ we have ¬¬Ai ⊩L

S Ac.

� □

Remark 1  Put together, these results show that classical proof of A is strictly weaker 
than an intuitionistic proof of ¬¬A, and justify the motto presented in the introduction.

The following results present ecumenical versions of the excluded middle and 
Peirce’s law.

Theorem 20  ⊩L
S Ac ∨ ¬Ai  holds for arbitrary S.

Proof  Let S be any system. Let S′ be any extension of S in which Ac ⊩L
S′ pi and 

¬Ai ⊩L
S′ pifor some p ∈ At⊥. If Ai ⊩L

S′ ⊥ then by Lemma 6 we have Ai ⊩G
S′ ⊥ and 

so ⊩L
S′ ¬Ai, hence since ¬Ai ⊩L

S′ pi we conclude ⊩L
S′ pi. If A ⊮L

S′ ⊥ then ⊩L
S′ Ac, 
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so since Ac ⊩L
S′ pi we conclude ⊩L

S′ pi. Since either A ⊩L
S′ ⊥ or A ⊮L

S′ ⊥ holds this 
cover all possible cases, hence for all S ⊆ S′ we have that Ac ⊩L

S′ pi and ¬Ai ⊩L
S′ pi 

implies ⊩L
S′ pi for any p ∈ At⊥, so we conclude ⊩L

S Ac ∨ ¬Ai.

� □
This proof is particularly interesting because it combines our notion of classical 

proof with the weak definition of disjunction (in terms of local validity) to provide 
a simple proof of the excluded middle in the language through an application of the 
excluded middle in the metalanguage. This suggests that the weak disjunction here 
proposed becomes predominantly classical if combined with our notion of classi-
cal proof, and this makes it so that other classical results could also be proved via 
metalinguistical applications of the excluded middle. This would not be the case if 
we were to define disjunction through global validity; as will be seen in the strong 
ecumenical semantics, this strengthened disjunction has much more of an intuition-
istic flavor.

Theorem 21  ⊩L
S ((Ai → B) → Ai) → Ac holds for arbitrary S.

Proof  Let S be a system. Let S′ be an extension of S with ⊩L
S′′ (Ai → B) → Ai 

for all S′ ⊆ S′′. Then, by definition, for all those S″ we have (Ai → B) ⊩G
S′′ Ai. 

Assume, for the sake of contradiction, that for some of those S″ we have ⊮L
S′′ Ac. 

Then we have Ai ⊩L
S′′ ⊥ by Clause 3 of Definition 7, and since in any S′′ ⊆ S′′′ with 

⊩L
S′′′ Ai we could obtain ⊩L

S′′′ ⊥ and thus a contradiction we clearly have ⊮L
S′′′ Ai 

for all S′′ ⊆ S′′′. But notice that, for any such S′′′, S′′′ ⊆ S′′′′ implies S′′ ⊆ S′′′′ and 
so ⊮L

S′′′′ Ai, hence we have that Ai ⊩G
S′′′ B is vacuously satisfied in all such S′′′, so 

we conclude that for all S′′ ⊆ S′′′ we have ⊩L
S′′′ Ai → B. Since (Ai → B) ⊩G

S′′ Ai 
and for all S′′ ⊆ S′′′ it holds that ⊩L

S′′′ Ai → B we conclude that for all S′′ ⊆ S′′′ 
we have ⊩L

S′′′ Ai and, in particular, ⊩L
S′′ Ai. But we had previously concluded 

from our assumption for contradiction that Ai ⊩L
S′′ ⊥, so since ⊩L

S′′ Ai we have 
⊩L

S′′ ⊥, which is indeed a contradiction. Hence we conclude that for no S′ ⊆ S′′ we 
have ⊮L

S′′ Ac, so ⊩L
S′′ Ac holds for all S′ ⊆ S′′. Since S′ is an arbitrary extension 

of S with ⊩L
S′′ (Ai → B) → Ai holding for all S′ ⊆ S′′ and we have shown that 

⊩L
S′′ Ac also holds for all such S″ we conclude (Ai → B) → Ai ⊩G

S Ac, and thus 
⊩L

S ((Ai → B) → Ai) → Ac.

� □
There are, however, some drawbacks to our definitions, which are mainly due to 

the interaction between the clause for disjunction and the definition of local validity. 
For instance, we lose validities such as the following (proof in Appendix A).

Proposition 22  (A ∨ B), (A → C ), (B → C ) ⊩ C  does not hold in general.
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This issue seems to be caused by some interactions between the definition of impli-
cation (which uses global validity) and disjunction (which uses local validity). We 
could, of course, provide a weaker definition of implication that uses local validity, 
but since logical validity is defined by recourse to global validity by doing we would 
be giving away the deduction theorem (e.g., pc ⊩L

∅ ¬¬pi does not hold by Theorem 
18 but pc ⊩G

S ¬¬pi holds for all S by Theorem 17, so we would have ⊮L
S pc → ¬¬pi 

and so ⊮ pc → ¬¬pi even though pc ⊩ ¬¬pi).
As seen in the proof of Theorem 20, for all S and A either we have Ai ⊩L

S ⊥ 
and so Ai ⊩G

S ⊥ by Lemma 6 thus also ⊩L
S ¬Ai or Ai ⊮L

S ⊥ and so ⊩L
S ¬Ac. In 

other words, the metalinguistic excluded middle is “locally valid” in every S due 
to our definition of classical proofs. On the other hand, even though from Ai ⊩G

S ⊥ 
we can conclude ⊩L

S ¬Ai it is not the case that from Ai ⊮G
S ⊥ we can conclude 

Ai ⊮L
S ⊥, which would be necessary for us to conclude ⊩L

S ¬Ac (remember that 
Lemma 7 fails for non-empty contexts), so the metalinguistic excluded middle is not 
“globally valid”. This creates a certain tension between local and global definitions, 
as local definitions are able to draw on the local excluded middle to validate classical 
behavior but global definitions are not.

Although the semantic tension and the independent coexistence of classical and 
intuitionistic features are certainly desirable in the context of ecumenical semantics, 
the main issue with the definitions we have presented is that, since the usual rule for 
disjunction elimination is no longer sound, the weak ecumenical semantics is not 
easily captured in simple syntactic systems. This makes it so that the main motive for 
studying it lies in the clarification of the ways in which the global and local notions of 
validity relate to intuitionistic and classical concepts of proof. There might, of course, 
also be other combinations of local and global definitions which lead to interesting 
new ecumenical versions of BeS, but we leave the study of any such combinations 
to future works.

The clarifications provided by the weak semantics on how the notion of classical 
proof behaves in BeS allow us to formulate a new kind of ecumenical semantics 
which fixes some of its issues. As such, we propose next an ecumenical BeS with 
some stronger definitions and very different semantic properties.

4  Strong ecumenical semantics

In the weak semantics we define that a formula has a classical proof in S if and only 
if it is consistent in S. As a result, classical proofs are not monotonic, so we need to 
differentiate between local and global validity notions. But there is another possibil-
ity: we can define that a formula has a classical proof in S if and only if it is consistent 
in S and all its extensions. This is still faithful to Hilbert’s ideas concerning classical 
proofs and truth, and since we only consider extensions of S it is also faithful to the 
proposal of the original BeS.
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Definition 9  (Strong Validity) Strong S-validity and strong validity are defined as 
follows.

1.	 ⊨S pi iff ⊢S p, for p ∈ At⊥;
2.	 ⊨S pc iff ∀S′(S ⊆ S′) : p ⊬S′ ⊥, for p ∈ At⊥;
3.	 ⊨S Ac iff ∀S′(S ⊆ S′) : (A)i ⊭S′ ⊥, for A /∈ At⊥;
4.	 ⊨S (A ∧ B)i iff ⊨S A and ⊨S B;
5.	 ⊨S (A → B)i iff A ⊨S B;
6.	 ⊨S (A ∨ B)i iff ∀S′(S ⊆ S′) and all p ∈ At⊥: A ⊨S′ pi and B ⊨S′ pi implies 

⊨S′ pi;
7.	 For non-empty finite Γ, Γ ⊨S A iff for all S′ such that S ⊆ S′ it holds that, if 

⊨S′ B for all B ∈ Γ, then ⊨S′ A;
8.	 Γ ⊨ A iff Γ ⊨S A for all S.

Weak validity uses a non-monotonic notion, whereas in strong validity classical 
validities are monotonic by definition. Since by Theorem 4 S-monotonicity induces 
a collapse between ⊩L

S  and ⊩G
S  and all formulas of the strong ecumenical semantics 

are monotonic, local and global validities are non-distinguishable.

5  An ecumenical proof system for strong ecumenical validity

In this section we will prove soundness and completeness of the natural deduction 
ecumenical system NEB presented in Fig. 1 (which is a version of the system CIE 
presented in (Nascimento, 2018) with a restriction on iterations of the “classicality” 
operator) w.r.t. the strong ecumenical BeS. 

For finite Γ we say that Γ ⊢NEB A holds if and only if there is a deduction of A 
from Γ using the rules of NEB.

5.1  Soundness

Contrary to what happens with completeness, the proof of soundness follows easily 
from the proof in (Sandqvist, 2015).

Lemma 23  ⊨S Ac iff ⊨S ¬¬Ai .

Proof  (⇒) Suppose ⊨S Ac. Then, for all S ⊆ S′, we have Ai ⊭S ⊥. Suppose that, 
for some of those S′, ⊨S′ ¬Ai Then we have Ai ⊨S′ ⊥, which yields a contradiction. 
Thus for all such S′ we have ⊭S′ ¬Ai, hence ¬Ai ⊨S ⊥ is vacuously satisfied and 
⊨S ¬¬Ai holds.
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(⇐) Suppose ⊨S ¬¬Ai. Then, for all S ⊆ S′, ¬Ai ⊨S′ ⊥. Suppose that for some 
of those S′ it holds that Ai ⊨S′ ⊥. Then we have ⊨S′ ¬Ai, and thus ⊨S′ ⊥ and ⊢S′ ⊥. 
Contradiction. Hence Ai ⊭S′ ⊥ for all S ⊆ Sn, and thus ⊨S Ac.� □

Theorem 24  (Soundness) If Γ ⊢NEB A then Γ ⊨ A.

Proof  Due to the collapse between local and global consequence in strong seman-
tics, if we eliminate all clauses for classical formulas and define Ac = ¬¬Ai we 
get an equivalent definition. Then, since all the remaining semantic clauses are just 
Sandqvist’s clauses for intuitionistic logic, our proof of soundness follows from his 
(provided Ac is treated as ¬¬Ai on induction steps). The only important difference 
is in the treatment of ⊥ − elim, which is slightly different due to the consistency 

Fig. 1  Ecumenical natural deduction system NEB
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requirement. The induction hypothesis gives us Γ ⊨ ⊥ and thus Γ ⊨S ⊥ for arbitrary 
S, from which we conclude that for no S ⊆ S′ we have ⊨S B for all B ∈ Γ. But then 
Γ ⊨S′ A holds vacuously for all such S′, which shows Γ ⊨S A for arbitrary A and 
arbitrary S and thus Γ ⊨ A.� □

5.2  Completeness

We will now prove completeness of the natural deduction system shown in Fig. 1 
w.r.t. the strong ecumenical semantics. We use an adaptation of Sandqvist’s proof 
(2015); changes are made only to deal with classical formulas and the consistency 
constraint.

Lemma 25  p ⊬S ⊥ iff the system S′ obtained by adding a rule which concludes p 
from empty premises to a consistent S is also consistent.

Proof  This is strengthened syntactic counterpart of Lemma 13.

Assume p ⊬S ⊥. Let S′ be the system obtained by adding a rule concluding p from 
empty premises to S′. Suppose that ⊢S′ ⊥. Then there is a deduction Π in S′ showing 
⊥. If it does not use the new rule added to S′, Π is also a deduction in S, so S would 
violate the consistency requirement. If it does use the new rule, by replacing every 
occurrence of it by an assumption with shape p we get a deduction showing p ⊢S ⊥, 
which contradicts our initial hypothesis. Since a contradiction is obtained in both 
cases, we conclude ⊬S′ ⊥

For the other direction, assume the system S′ obtained by adding a rule which 
concludes p from empty premises to S is consistent. Assume p ⊢S ⊥. Since S ⊆ S′ 
we have ⊢S′ ⊥, violating the consistency requirement. Thus, p ⊬S ⊥.� □

Let ΓSub be the set of all subformulas of formulas contained in a set Γ. Let 
∆c

Γ = {¬Ai|Ac ∈ Γ}. Now, let Γ⋆ = ((Γ ∪ {A})Sub) ∪ (∆c
(Γ∪{A})Sub)))

We start by producing a mapping α which assigns to each formula A in Γ⋆ a unique 
pA such that:

1.	 pA = q, if A = qi (for q ∈ At⊥);
2.	 Else, pA ∈ At and (pA)i /∈ Γ⋆.

Notice that, since the assigned atoms are unique, pA = pB  iff A = B.
Consider now any semantic consequence Γ ⊨ A. Fix any mapping α for Γ⋆. Notice 

that, since Γ is finite by definition and there are infinitely many atoms in the language, 
there are always enough atoms to supply such a mapping. Following Sandqvist’s 
strategy, we start by using the mapping α to build an atomic system N  which is finely 
tailored for our proof.

We start by defining atomic correspondents of the natural deduction rules (for 
i ∈ {1, 2}): 
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We now add atomic rules to N  for all formulas D ∈ Γ⋆, according to the follow-
ing criteria. 

1.	 For every formula D with shape A → B or A ∧ B, we add pD − int and pD − elim 
to N .

2.	 For every formula D with shape A ∨ B we add the rules pD − int to N , and for 
every D with shape A ∨ B and every q ∈ At⊥ we add pD, p − elim to N .

3.	 For every formula D with shape Ac we add pD − int and pD − elim to N . Notice 
that, by the definition of ∆c

Γ and Γ⋆, if Ac ∈ (Γ ∪ {A})Sub then ¬Ai ∈ Γ∗;
4.	 For every q ∈ At⊥ we add ⊥, q − elim to N ;
5.	 We also stipulate that N  contains no rules other than those added by this 

procedure.

Since all atomic systems are now required to be consistent, before using N  in the 
completeness proof we must prove that it is consistent. One interesting way to do this 
is by proving atomic normalization results for N .

We start by providing some definitions required for the normalization proof.

Definition 10  Rules with shape pA∧B − int, pA1∨A2 − int, pA→B − int and 
pAc − int are introduction rules of N . Rules with shape pA1∧A2−elim, pA∨B ,
q − elim, pA→B−elim, pAc−elim and ⊥ − elim are elimination rules of N .

1 3

Page 21 of 39    197 



Synthese         (2025) 206:197 

Definition 11  For any rule pD − elim or pD, q − elim of N , we say that the atom 
with shape pD occurring above it (or the leftmost occurrence if there is more than 
one)is the rule’s major premise. The major premise of ⊥, q − elim is ⊥. All other 
premises are the rule’s minor premises.

For simplicity, we sometimes refer to the rules of N  simply as ∧ − int, ∨ − int, 
→ −int, Ac − int, ∧ − elim, ∨ − elim, → −elim, Ac − elim, and ⊥ − elim, omit-
ting further qualifiers where the context makes the meaning clear.

Definition 12  The length of a derivation is the number of formula occurrences in it. 
The degree of an atomic formula pA relative to a previously fixed mapping α of for-
mulas into atoms, denoted by d[pA], is recursively defined as:

1.	 d[pA] = 0, if A = qi for q ∈ At⊥;
2.	 d[pAc ] = d[pA] + 2;
3.	 d[p¬A] = d[pA] + 1;
4.	 d[pA∧B ] = d[pA] + d[pB ] + 1;
5.	 d[pA∨B ] = d[pA] + d[pB ] + 1;
6.	 d[pA→B ] = d[pA] + d[pB ] + 1;

Notice that this is slightly different from Definition 6 because now the degree of clas-
sical formulas needs to be the degree of its intuitionistic version plus 2.

Definition 13  A formula occurrence in a derivation Π in N  that is at the same time 
the conclusion of an application of an introduction rule and the major premise of an 
elimination rule is said to be a maximum formula in Π.

Example 1  The following are examples of maximum formula occurrences: 
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Definition 14  A sequence A1, A2, ..., An of formula occurrences in a deduction is 
a thread if A1 is a (possibly discharged) assumption, Am stands immediately below 
Am−1 for every 1 < m ≤ n and An is the conclusion of the deduction.

Definition 15  A sequence A1, A2, ..., An of consecutive formula occurrences in a 
thread is a segment if and only if it satisfies the following conditions:

1.	 A1 is not the consequence of an application of ∨-elimination;
2.	 Each Am, for m < n, is a minor premise of an application of ∨-elimination;
3.	 An is not the minor premise of an application of ∨-elimination.

The last formula of a segment is called the vertex of the segment.

Definition 16  A segment that begins with an application of an introduction rule or the 
⊥ − elim rule and ends with the major premise of an elimination rule is said to be a 
maximum segment.

Observe that maximum formulas are special cases of maximum segments.

Example 2  In the derivation below, the sequence pA1∧A2 , pA1∧A2  starting with the 
application of ∧-introduction and ending with an application of ∧-elimination is a 
maximum segment. 

Definition 17  The degree of a derivation Π in N , d[Π], is defined as 

	d[Π] = max{d[pC ] : pC is a maximum formula or the vertex of a maximum segment in Π}.

We adapt Prawitz’s usual proper and permutative reductions for intuitionistic logic 
(Prawitz, 1965) to the system N . Besides the usual reductions for the operators ∧, →, 
∨ and ¬, we have a new reduction for maximum formulas of the form Ac: 
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Definition 18  A derivation Π of Γ ⊢N A is called critical if and only if:

1.	 Π ends with an application β of an elimination rule.
2.	 The major premise pB of β is a maximum formula or the vertex of a maximum 

segment.
3.	 d[Π] = d[pB ].
4.	 Every other maximum formula or maximum segment in Π has a degree smaller 

than d[pB ].

The next two lemmas show how derivations can be reduced to lower degrees. The 
proof is by induction on the length of the derivation (see Appendix A).

Lemma 26  Let Π be a critical derivation of A from Γ. Then Π reduces to a derivation 
Π ′ of A from Γ such that d[Π ′] < d[Π ].

Lemma 27  Let Π be a derivation of A from Γ in N  such that d[Π ] > 0 . Then Π 
reduces to a derivation Π ′ of A from Γ in N  such that d[Π ′] < d[Π ].

Proof  By induction over the length of Π. We examine two cases depending on the 
form of the last rule applied in Π.

1.	 The last rule applied in Π is and introduction rule. The result follows directly 
from the induction hypothesis.

2.	 The last rule applied in Π is an elimination rule. Π has the following general 
form:

	

Π1 Πn
p1 . . . pn

p

By the induction hypothesis, each derivation

	
Πi

pi

(1 ≤ i ≤ n) reduces to a derivation

	
Πi

′

pi

such that d[Π′
i] < d[Πi]. Let Π∗ be:

	

Π′
1 Π′

n
p1 . . . pn

p
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If d[Π∗] < d[Π], we can take Π′ = Π∗. If d[Π∗] = d[Π], then Π∗ is a critical deriva-
tion and, by Lemma 26, it reduces to a derivation Π′ such that d[Π′] < d[Π].

� □

Theorem 28  Let Π be a derivation of A from Γ in N . Then Π reduces to a normal 
derivation Π ′ of A from Γ in N .

� □

Proof  Directly from Lemma 27 by induction on d[Π].

Our choice of normalization strategy is incidental—we could just as well have 
used Prawitz’s original strategy or another. The crucial point is that N  satisfies nor-
malization, a property we now leverage to establish its consistency.

Definition 19  Let Π be a derivation in N  and A any formula occurrence in Π. The 
derivation Π′ obtained by removing from Π all formula occurrences except A and 
those above A is called a subderivation of Π.

Lemma 29  If Π is a normal derivation in N  then all its subderivations are also 
normal.

Proof  Let Π be a normal derivation and Π′ any of its subderivations. It is straight-
forward to see that if Π′ contains a maximal formula or segment then that formula 
or segment is also maximal in Π, contradicting the assumption that Π was normal. 
Therefore, no subderivation Π′ of Π contains a maximal formula or segment, so 
every such Π′ is normal.� □

Lemma 30  If Π is a normal derivation in N  that does not end with an application of 
an introduction rule, then Π contains at least one undischarged assumption.

Proof  We prove the result by induction on the length of derivations.

1.	 Base case: Π has length 1. Then the derivation is just a single occurrence of an 
assumption p and shows p ⊢N p, so it depends on the undischarged assumption 
p.

2.	 Π has length greater than 1 and ends with an application of a elimination rule. 
Then consider the subderivation Π′ of Π which has as its conclusion the major 
premise of the last rule applied in Π. Since Π′ is a subderivation of Π and Π is 
normal, by Lemma 29 we have that Π′ is normal. Notice that, if Π′ ended with 
an application of an introduction rule, since its conclusion is the major premise 
of an elimination rule there would be a maximum formula in Π, so since Π is 
normal Π′ cannot end with an introduction rule. But then Π′ is a deduction with 
length smaller than that of Π that does not end with an introduction rule, hence by 
the induction hypothesis it has at least one undischarged assumption. Therefore, 
since no elimination rule is capable of discharging assumptions occurring above 
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its major premise, we conclude that the open assumption of Π′ are not discharged 
by the last rule application and so are also open assumptions of Π.

� □

Theorem 31  N  is consistent.

Proof  Assume, for the sake of contradiction, that there is a derivation Π showing 
⊢N ⊥. By Theorem 28, Π reduces to a normal derivation Π′ showing ⊢N ⊥. A quick 
inspection of the shape of introduction rules reveals that no introduction rule can 
have p⊥i(≡ ⊥) as its conclusion, hence the last rule of Π′ cannot be an introduction 
rule. But then from Lemma 30 it follows that Π′ must have at least one undischarged 
assumption, hence it cannot be a derivation showing ⊢N ⊥. Contradiction. There-
fore, ⊬N ⊥.� □

We have now established that N  is a valid atomic system, so we can proceed with 
the completeness proof. Before doing so, we present a lemma traditionally used in 
BeS completeness proofs—originally proved by Sandqvist in (2015) as Theorem 3.1. 
In our new framework, this lemma holds in a slightly modified form when consider-
ing general bases, but it also retains its original form when restricted to the simulation 
base.

Lemma 32  Let {p1 , . . . , pn} be any set of atoms and S any atomic system. Let q be any 
atom. Then {p1 , . . . , pn} ⊨S q iff either {p1 , . . . , pn} ⊢S q or {p1 , . . . , pn} ⊢S ⊥.

Proof  Assume {p1, . . . , pn} ⊨S q. Let S′ be the set of rules obtained by adding to 
S a rule with conclusion pi for each 1 ≤ i ≤ n. If S′ is inconsistent, there must be a 
deduction Π showing ⊢S′ ⊥. Notice that, if Π does not use one of the new rules of S′, 
then Π is already a deduction in S and so S is inconsistent, contradicting the assump-
tion that S is an atomic system. Now let Π′ be the deduction obtained by replacing 
every conclusion of one of the rules added to S′ with shape pi by an assumption with 
shape pi. Since all new rules added to S to obtain S′ are removed by this procedure, we 
conclude that Π′ is a deduction showing Γ ⊢S ⊥ for some Γ ⊆ {p1, . . . , pn}, which 
allows us to conclude {p1, . . . , pn} ⊢S ⊥. If S is consistent, then a single application 
of each of its new rules yield ⊢S′ pi and thus ⊨S′ pi for all 1 ≤ i ≤ n, hence since 
{p1, . . . , pn} ⊨S q and S ⊆ S′ we conclude ⊨S′ q and thus ⊢S′ q. Once again we can 
replace every new rule of S′ with conclusion pi by an assumption with the same shape 
and obtain a deduction showing Γ ⊢S q for some Γ ⊆ {p1, . . . , pn}, so it follows 
that {p1, . . . , pn} ⊢S q. Since S′ is either consistent or inconsistent, we conclude that 
either {p1, . . . , pn} ⊢S q or {p1, . . . , pn} ⊢S ⊥, as desired.

For the converse, assume that either {p1, . . . , pn} ⊢S q or {p1, . . . , pn} ⊢S ⊥. 
Take any S ⊆ S′ such that ⊨S′ pi for all 1 ≤ i ≤ n. Then ⊢S′ pi for all 1 ≤ i ≤ n. If 
{p1, . . . , pn} ⊢S q then by composing the deduction of each pi from empty premises 
with the deduction with premises {p1, . . . , pn} and conclusion q we obtain a deduc-
tion showing ⊢S′ q, so also ⊨S′ q and thus {p1, . . . , pn} ⊨S q by arbitrariness of S′. 
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If {p1, . . . , pn} ⊢S ⊥ then by composing the deductions in the same way we obtain 
a deduction showing ⊢S′ ⊥, meaning that there cannot be any extension S′ of S such 
that ⊨S′ pi for all 1 ≤ i ≤ n, so {p1, . . . , pn} ⊨S q holds vacuously.

� □
This shows that inclusion of the consistency constraint in the semantics also intro-

duces the possibility of vacuous satisfaction of consequences, which in the case of 
consequences having sets of atoms in their antecedent boils down to inconsistency 
of that set with respect to the base. It is also worth remarking that, due to the use of 
excluded middle in the metalanguage, the proof of this lemma is only constructive 
when consistency of the extension S′ of S is decidable. Although this cannot be guar-
anteed in general, it can be guaranteed for the particular atomic systems we use at the 
end step of the completeness proof.

Even though the original version of this result does not hold for bases in general, 
it holds for simulation bases N  and its extensions:

Lemma 33  Let {p1 , . . . , pn} be any set of atoms. Let q be any atom and S any exten-
sion of N . Then {p1 , . . . , pn} ⊨S q iff {p1 , . . . , pn} ⊢S q.� □

Proof  Assume {p1, . . . , pn} ⊨S q. By Lemma 32 we have either {p1, . . . , pn} ⊢S q 
or {p1, . . . , pn} ⊢S ⊥. If {p1, . . . , pn} ⊢S q the proof is finished, and if 
{p1, . . . , pn} ⊢S ⊥ we can apply ⊥, q − elim at the end of the deduction showing 
this to obtain another deduction showing {p1, . . . , pn} ⊢S q, so the proof is finished. 
The converse is a direct consequence of Lemma 32. � □

This means that we are still capable of using the result in its original form in the 
context of completeness proofs, even though it no longer holds for bases in general.

Our last lemma for completeness is proven by induction on the degree of formulas 
(see Appendix A).

Lemma 34  For all A ∈ Γ⋆ and all N ⊆ S  it holds that ⊨S A iff ⊢S pA.

Theorem 35  (Completeness) Γ ⊨ A implies Γ ⊢NEB A.

Proof  Define a mapping α and a system N  for Γ and A as shown earlier. Define a set 
ΓAt⊥ = {pA|A ∈ Γ}.

Suppose Γ ⊨ A. By the definition of strong validity, we have Γ ⊨N A. Now define 
B as the system obtained from N  by adding a rule concluding pB from empty prem-
ises for every pB ∈ ΓAt⊥ .

We split the proof in two cases:

1.	 B is consistent. Then it is a valid extension of N . By the definition of B, we 
have ⊢B pB  for all pB ∈ ΓAt⊥ . By Lemma 34, for all B ∈ Γ⋆ we have that, for 
any N ⊆ S, ⊢S pB  iff ⊨S B. Since Γ ⊆ Γ⋆, we conclude ⊨B B for all B ∈ Γ. 
Since Γ ⊨N A and N ⊆ B, we also have ⊨B A, and so by another application of 
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Lemma 34 we conclude ⊢B pA. Thus, we conclude that there is a deduction Π of 
pA in B.

	 If the deduction does not use any of the rules contained in B but not in N , Π is 
a deduction in N , and so ⊨N pA. If it does use some of the rules, by replacing 
every new rule concluding pB by an assumption pB we obtain a deduction Π′ of 
N  which shows ∆ ⊢N pA, for some ∆ ⊆ ΓAt⊥ . Thus, in any case we obtain 
some deduction showing ΓAt ⊢N pA.

	 Let Π be the deduction showing ΓAt ⊢N pA obtained earlier. Define Π′ as the 
deduction obtained by replacing every formula occurrence pA in Π by A (atoms q 
occurring on instances of atomic rules for disjunction and ⊥-elimination which 
are not mapped to anything by α are not substituted). Since every instance of 
every atomic rule becomes some instance of a rule in our system of natural 
deduction, it is straightforward to show by induction on the length of derivations 
that Π′ is a deduction showing Γ ⊢NEB A.

2.	 B is inconsistent. Then there is a deduction Π in B showing ⊢B ⊥. If Π does not 
use any rule contained in B but not in N , we have ⊢N ⊥, contradicting Theorem 
31. Then, Π must use some of the new rules. But then we may replace every new 
rule of B which concludes pB by an assumption with shape pB to obtain a deduc-
tion showing ∆ ⊢N ⊥ for some ∆ ⊆ ΓAt⊥ . Define Π′ as the deduction obtained 
by replacing every formula occurrence pA in Π by A. It is straightforward to 
show by induction on the length of derivations that Π′ is a deduction showing 
Γ ⊢NEB ⊥. As a finishing touch, we apply ⊥ − elim to obtain a deduction show-
ing Γ ⊢NEB A.

	�  □

Notice that the only non-constructive part of the completeness proof is the step for 
A = Ac in Lemma 34. This means that by removing Ac from the language we would 
have a fully constructive proof of completeness for intuitionistic logic.

It is important to remark that our use of the excluded middle in the metalan-
guage (either B is consistent or it is inconsistent) is not problematic in this particular 
instance, in the sense that it does not affect the constructive character of the proof. 
For the particular extension B we use during the proof, since B consists only of 
logical rules and axioms concluding atoms contained in ΓAt, it is straightforward to 
show that ⊢B pA holds if an only if Γ ⊢NEB A, meaning in particular that by putting 
A = ⊥ we can show that the consistency of B is equivalent to the consistency of Γ in 
NEB. Naturally, if the same strategy was employed in intuitionistic logic we would 
use a base B whose consistency is equivalent to the consistency of Γ in propositional 
intuitionistic logic, and since the consistency of Γ is decidable for every Γ (especially 
since Γ is finite) then the consistency of B is also decidable for every B.

The fact that the inductive steps for constructive proofs only use constructive rea-
soning but the steps for classical proofs require classical reasoning bears testament to 
the fact that our definitions indeed capture the meaning of classical and intuitionistic 
proofs. As such, the ecumenical behavior observed in the metalanguage should be 
taken as evidence both of the independence between the distinct notions of proof and 
of their conceptual adequacy.
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6  Conclusion

We have proposed a weak and a strong version of BeS for ecumenical systems. While 
the first helped furthering our understanding concerning the difference between dou-
ble negations in intuitionistic logic and provability in classical logic, the ecumenical 
semantics comes into full swing when the strong notion of BeS is provided, since it 
allows for a new ecumenical natural deduction system which is sound and complete 
w.r.t. it.

This distinction allows us not only to obtain classical behavior for formulas con-
taining classical atoms and intuitionistic behavior for formulas containing intuition-
istic atoms, but also to put on the spotlight basic properties of semantic entailment 
which are not always evident in traditional semantic analysis. It may also shed light 
on semantic differences between intuitionistic and classical logics from an even 
broader perspective.

In the course of this paper we have also shown that it is possible to furnish the 
absurdity constant ⊥ with a conceptually adequate and technically sound definition 
by requiring all systems to be consistent. This can be done in non-ecumenical con-
texts as well, provided some procedure capable of showing consistency of the syntac-
tic calculus (such as a normalization proof) is available.

There are many ways to further develop this work in the future. First of all, the role 
of local and global validity in BeS should be better explored, since it opens wide the 
classical behavior as it appears in other semantic settings for classical logic, e.g., as in 
Kripke models for classical logic (Ilik et al., 2010). One very interesting step in this 
direction would be to propose a proof system for our weak version of BeS. Of course, 
there is the natural question of what would be the BeS proposal for Prawitz’s ecu-
menical system, from which this work took its inspiration but also other ecumenical 
systems, such as the ones appearing in (Liang & Miller, 2013; Dowek, 2016; Blanqui 
et al., 2023). Another option would be to investigate new combinations of locally and 
globally defined connectives for the weak semantics. Finally, it would be interesting 
to lift this discussion to ecumenical modal logics (Marin et al., 2020).

Appendix A: Detailed proofs of selected results

Proof  of Lemma 6. Let Γ ⊩L
S A. Then, by the definition of local consequence, for 

every S′ such that S ⊆ S′ we have that if ⊩L
S′ B for all B ∈ Γ then ⊩L

S′ A. Now, let 
S′ be any extension of S in which for all S″ such that S′ ⊆ S′′, we have ⊩L

S′′ B for 
all B ∈ Γ. Consider any such S″. Since Γ ⊩L

S A holds and S″ is also an extension of 
S (by transitivity of extension), we have that ⊩L

S′′ B for all B ∈ Γ implies ⊩L
S′′ A. 

Since S″ is an extension of S′, by definition we have ⊩L
S′′ B for all B ∈ Γ, and thus 

we have ⊩L
S′′ A. But this holds for arbitrary S″ extending S′, and so for every S″ 

we have ⊩L
S′′ A. Since S′ is an arbitrary extension of S satisfying the antecedent of 

Clause 8 of the Definition 7, we conclude Γ ⊩G
S A. � □

Proof  of Lemma 11. It follows from Theorem 5 that (pi ⊩L
S ⊥) iff (pi ⊩G

S ⊥), since 
pi is an intuitionistic formula and ⊥ is either the intuitionistic ⊥i or the equivalent ⊥c. 
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On the other hand, (pi ⊩G
S ⊥) iff (⊩L

S ¬pi) follows from the clause for implication. 
Thus we only need to prove that (p ⊢S ⊥) iff (pi ⊩L

S ⊥).

(⇒) Let p ⊢S ⊥. Assume that there is an extension S′ of S in which ⊩L
S′ pi. By 

Clause 1 we have ⊢S′ p and, since S′ is an extension of S and thus contains all its 
rules, p ⊢S′ ⊥. By composing both derivations we get ⊢S′ ⊥, which clashes with 
the consistency requirement. Thus, for all S′ extending S we have ⊮L

S pi, which 
together with Clause 4 yields pi ⊩L

S ⊥.
(⇐) Assume pi ⊩L

S ⊥ and p ⊬S ⊥. Let S′ be the system obtained by adding to S 
only a rule α which concludes p from empty premises. We start by proving that S′ 
is consistent, as thus a valid extension of S in our semantics.

Assume S′ is inconsistent, and consider the proof Π of ⊥ in S′. There are two 
possibilities:

1.	 If Π does not use the rule α, then Π is a proof in S. This yields a contradiction, as 
S must be consistent.

2.	 If Π uses the rule α, replace each application of α in Π by an assumption p. This 
immediately yields a derivation showing p ⊢S ⊥, contradicting the second initial 
hypothesis.

We then conclude that S′ is consistent. But, given that ⊢S′ p, we have ⊩L
S′ pi, 

which can be used together with the assumption pi ⊩L
S ⊥ to show ⊩L

S ⊥ and thus 
⊢S ⊥, contradicting the consistency requirement. Thus p ⊢S ⊥. � □

Proof of Lemma 16  We show the result by induction on the complexity of formulas.

1.	 A = pi.

�(⇒) If ⊩L
S⊥C pi then ⊢S⊥C p, and since the deduction showing this is also a 

deduction in the arbitrary S′ we have ⊢S′ p and ⊩L
S′ pi.

(⇐) Assume ⊩L
S′ pi. Then ⊢S′ p. If we had a deduction showing p ⊢S⊥C ⊥ 

then it would also be a deduction showing p ⊢S′ ⊥, which would allow us 
to compose the deductions to show ⊢S′ ⊥ and obtain a contradiction, hence 
p ⊬S⊥C ⊥. But by the definition of ⊥-complete extensions we have that 
p ⊬S⊥C ⊥ implies ⊢S⊥C p, so we conclude ⊩L

S⊥C pi.

2.	 A = pc.

�(⇒) If ⊩L
S⊥C pc then p ⊬L

S⊥C ⊥, hence definition of ⊥-complete extensions 
⊢S⊥C p, so ⊩L

S′ pi for all S⊥C ⊆ S′ and by Theorem 2 and Clause 7 of Defi-
nition 7 also ⊩L

S′ pc.
(⇐) Assume ⊩L

S′ pc for arbitrary S⊥C ⊆ S′. Then p ⊬S′ ⊥. If p ⊢S⊥C ⊥ 
then since S⊥C ⊆ S′ we would have p ⊢S′ ⊥ and this would lead to a 
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contradiction, so p ⊬S⊥C ⊥ and by definition of ⊥-complete extension 
⊢S⊥C p and so ⊩L

S⊥C pi, which by Theorem 2 and Clause 7 of Definition 7 
yields ⊩L

S⊥C pc.

3.	 A = BC .

�(⇒) If ⊩L
S⊥C Bc then B ⊮L

S⊥C ⊥. By Lemma 13 there is a S⊥C ⊆ S′′ 
with ⊩L

S′′ Bi. Induction hypothesis: ⊩L
S⊥C Bi and also ⊩L

S′ Bi for every 
S⊥C ⊆ S′. Then by Theorem 3 also ⊩L

S′ Bc for all S⊥C ⊆ S′.
(⇐) Let ⊩L

S′ Bc for arbitrary S⊥C ⊆ S′. Then Bi ⊮L
S′ ⊥, hence by Lemma 

13 there is a S′ ⊆ S′′ with ⊩L
S′′ Bi. Induction hypothesis: ⊩L

S⊥C Bi. Then by 
Theorem 3 we have ⊩L

S⊥C Bc.

4.	 A = B ∧ C.

�(⇒) If ⊩L
S⊥C B ∧ C then ⊩L

S⊥C B and ⊩L
S⊥C C. Induction hypothesis: ⊩L

S′ B 
and ⊩L

S′ C for all S⊥C ⊆ S′. Then ⊩L
S′ B ∧ C for arbitrary S⊥C ⊆ S′.

(⇐) Let ⊩L
S′ B ∧ C for arbitrary S⊥C ⊆ S′. Then ⊩L

S′ B and ⊩L
S′ C. Induc-

tion hypothesis: ⊩L
S⊥C B and ⊩L

S⊥C C. Then ⊩L
S⊥C B ∧ C.

5.	 A = B → C.

�(⇒) If ⊩L
S⊥C B → C then B ⊩G

S⊥C C. Induction hypothesis: for all S⊥C ⊆ S′, 
⊩L

S⊥C B iff ⊩L
S′ B and ⊩L

S⊥C C iff ⊩L
S′ C. Then Lemma 15 applies to S⊥C  

and all its extensions with respect to B and C, so since B ⊩G
S⊥C C we con-

clude that either ⊮L
S⊥C B or ⊩L

S⊥C C. The induction hypothesis then yields 
⊮L

S′ B or ⊩L
S′ C for our chosen S′, so by Lemma 15 we have B ⊩G

S′ C and 
thus ⊩L

S′ B → C.
(⇐) Assume ⊩L

S′ B → C. Then B ⊩G
S′ C. Induction hypothesis: for all 

S⊥C ⊆ S′, ⊩L
S⊥C B iff ⊩L

S′ B and ⊩L
S⊥C C iff ⊩L

S′ C. Then again by apply-
ing Lemma 15 from B ⊩G

S′ C we conclude ⊮L
S′ B or ⊩L

S′ C, from the induc-
tion hypothesis we conclude ⊮L

S⊥C B or ⊩L
S⊥C C and by Lemma 15 we 

conclude B ⊩G
S⊥C C, so we conclude ⊩L

S⊥C B → C.

6.	 A = B ∨ C.
�(⇒) If ⊩L

S⊥C B ∨ C then, for all S⊥C ⊆ S′ and all p ∈ At⊥, if A ⊩L
S′ pi and 

B ⊩L
S′ pi then ⊩L

S′ pi. Now pick any S⊥C ⊆ S′, pick any p and let S″ be any 
extension of S′ with A ⊩L

S′′ pi and B ⊩L
S′′ pi. Then since S′ ⊆ S′′ implies 

S⊥C ⊆ S′′ we conclude ⊩L
S′ pi, so by arbitrariness of S″ we already have 

⊩L
S′ B ∨ C.

(⇐) Assume ⊩L
S′ B ∨ C. Then, for all p ∈ At⊥, if A ⊩L

S′ pi and B ⊩L
S′ pi 

then ⊩L
S′ pi (which is a special case of the semantic condition for disjunc-

tion). Induction hypothesis: for all S⊥C ⊆ S′′, ⊩L
S⊥C B iff ⊩L

S′′ B, ⊩L
S⊥C C 

iff ⊩L
S′′ C and ⊩L

S⊥C pi iff ⊩L
S′′ pi for all p ∈ At⊥. Now pick any S⊥C ⊆ S′′ 
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such that A ⊩L
S′′ pi and B ⊩L

S′′ pi for a particular p ∈ At⊥, if any. Then, 
by the induction hypothesis, since both S′ and S″ are extensions of S⊥C  we 
have ⊩L

S′′ B iff ⊩L
S′ B, ⊩L

S′′ C iff ⊩L
S′ C and ⊩L

S′′ pi iff ⊩L
S′ pi, so since 

A ⊩L
S′′ pi and B ⊩L

S′′ pi we can apply Lemma 15 to conclude based only 
on the equivalence of B, C and pi in S″ and S′ that A ⊩L

S′ pi and B ⊩L
S′ pi 

also hold, hence since ⊩L
S′ B ∨ C we conclude ⊩L

S′ pi. Since ⊩L
S′ pi by the 

induction hypothesis we conclude ⊩L
S′′ pi, hence for any S⊥C ⊆ S′′ we have 

that if A ⊩L
S′′ pi and B ⊩L

S′′ pi for an arbitrary p ∈ At⊥ then ⊩L
S′′ pi, which 

yields ⊩L
S⊥C B ∨ C.

Proof of Proposition  22  Let A = (¬pi), B = (pc) and C = (¬pi ∨ ¬¬pi). Theo-
rem 20 has already shown that (A ∨ B) = ¬pi ∨ pc is valid in all S, so now we 
show that this is also the case for (A → C) = ¬p → (¬pi ∨ ¬¬pi) and for 
(B → C) = pc → (¬pi ∨ ¬¬pi).

Let S be any system and S′ any extension of it with ⊩L
S′ ¬pi. Since ¬pi only con-

tains intuitionistic subformulas Theorem 5 shows that it is monotonic, so by Theorem 
4 for all S′ ⊆ S′′ we have ⊩L

S′′ ¬pi. Then for any S′ ⊆ S′′ and any q ∈ At⊥ if both 
¬pi ⊩L

S′′ qi and ¬¬pi ⊩L
S′′ qi we can combine ¬pi ⊩L

S′′ qi with ⊩L
S′′ ¬pi to obtain 

⊩L
S′′ qi, so ⊩L

S′ ¬pi ∨ ¬¬pi. Since S′ in arbitrary extension of S with ⊩L
S′ ¬pi we 

conclude ¬pi ⊩L
S ¬pi ∨ ¬¬pi and thus also ¬pi ⊩G

S ¬pi ∨ ¬¬pi by Lemma 6, so we 
conclude ⊩L

S ¬pi → (¬pi ∨ ¬¬pi).
Now let S be any system and S′ any extension of it with ⊩L

S′′ pc for every S′ ⊆ S′′. 
Then for every such S″ we have p ⊬S′′ ⊥. Assume that for some S″ we have ⊩L

S′′ ¬pi. 
Then by Theorem 11 we have p ⊢S′′ ⊥, which yields a contradiction. Hence, for all 
such S″ we have ⊮L

S′′ ¬pi, so by Lemma 8 we get ⊩L
S′′ ¬¬pi. Now pick any such 

S″ and consider a S′′ ⊆ S′′′ with ¬pi ⊩L
S′′′ qi and ¬¬pi ⊩L

S′′′ qi for some q ∈ At⊥. 
Since ¬¬pi only contains intuitionistic subformulas we conclude by Theorem 5 that 
it is monotonic. Since S′′ ⊆ S′′′ and ⊩L

S′′ ¬¬pi, by Theorem 4 we have ⊩L
S′′′ ¬¬pi, 

hence ¬¬pi ⊩L
S′′′ qi and so ⊩L

S′′′ qi. From this we conclude that ⊩L
S′′ ¬pi ∨ ¬¬pi. 

But notice that S″ is an arbitrary extension of S′, so we conclude that if ⊩L
S′′ pc for 

every S′ ⊆ S′′ then ⊩L
S′′ ¬pi ∨ ¬¬pi for all S′ ⊆ S′′, and by arbitrariness of S′ we 

conclude pc ⊩G
S ¬pi ∨ ¬¬pi, and thus ⊩L

S pc → (¬pi ∨ ¬¬pi).
We have shown that ⊩L

S A ∨ B, ⊩L
S A → C and ⊩L

S B → C hold in any S for 
our choice of A, B and C. Therefore, it suffices to show for some particular S that 
⊮L

S ¬pi ∨ ¬¬pi (that is, ⊮L
S C) to prove the desired result. But since both ¬pi and 

¬¬pi are purely intuitionistic formulas their semantics is identical to intuitionistic 
BeS, so we can simply point out that ¬pi ∨ ¬¬pi is not an intuitionistic theorem to 
conclude the desired result. In particular, ⊮L

∅ ¬pi ∨ ¬¬pi (as only intuitionistic theo-
rems hold in the empty system), so we have (A ∨ B), (A → C), (B → C) ⊮G

∅ C 
and also (A ∨ B), (A → C), (B → C) ⊮ C. � □

Proof of Lemma 26  Induction over the length of Π. There are two cases to be exam-
ined depending on whether d[Π] is determined by a maximum formula or by the 
vertex of a maximum segment.
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Case 1: d[Π] is determined by a maximum formula. The result follows directly 
from the application of a reduction to this maximum formula.

1.	 The critical derivation Π is:

We know that d(Π) = d[pA1∧A2 ] > d[Πi] (for i ∈ {1, 2}). Π reduces to

	

Πi

pAi

And the degree of this derivation is equal to d[Πi] which is smaller than d[Π].

2.	 The critical derivation Π is:

Π reduces to the following derivation Π′:

We can easily see that d[Π′] ≤ max{d[Π1], d[Π2] d[pA]} < d[Π] = d[pA→B ].
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3.	 The critical derivation Π is:

Π reduces to the following derivation Π′:

We can easily see that 
d[Π′] ≤ max{d[Π1], d[Π2], d[Π], d[pAi ]} < d[Π] = d[pA1∨A2 ].

4.	 The critical derivation Π is:

Π reduces to the following derivation Π′: 

We can easily see that d[Π′] ≤ max{d[Π1], d[Π2], d[p¬A]} < d[Π] = d[pAc ].2.

5.	 The critical derivation was obtained through an application of ⊥ − elim. Then:

2 This is the step in which we cannot use Definition 6.
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In all cases it is straightforward to check that the degree of the derivation is 
reduced.

Case 2: d[Π] is determined by the vertex of a maximal segment. Π is: 

By means of a permutative reduction, Π reduces to the following derivation Π∗: 

Without loss of generality, we can assume that the two derivations of the minor 
premises of the application of ∨-elimination are critical. By the induction hypothesis, 
they reduce to derivations 

such that d[Π′
2] < d[Π] and d[Π′

3] < d[Π]. We can then take Π′ to be:
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� □

Proof of Lemma 34  We show the result by induction on the degree of formulas.

1.	 A = pi, for some p ∈ At⊥. Then pA = A, and the result follows immediately 
from Clause 1 of strong validity;

2.	 A = A ∧ B.

�(⇒) Assume ⊨S A ∧ B. Then ⊨S A and ⊨S B. Induction hypothesis: ⊢S pA 
and ⊢S pB . By pA∧B − int, we obtain ⊢S pA∧B .
(⇐) Assume ⊢S pA∧B . Then, by pA∧B − elim we get both ⊢S pA and 
⊢S pB . Induction hypothesis: ⊨S A and ⊨S B. Then, by the semantic clause 
for conjunction, ⊨S A ∧ B.

3.	 A = A ∨ B.

�(⇒) Assume ⊨S A ∨ B. Let S′ be any extension of S with ⊨S′ A. The 
induction hypothesis yields ⊢S′ pA, and by applying one of the rules for 
pA∨B − int we get ⊢S′ pA∨B  and so ⊨S′ pA∨B . By arbitrariness of S′ we 
conclude A ⊨S pA∨B . An analogous argument establishes B ⊨S pA∨B . Since 
⊨S′ A ∨ B, B ⊨S pA∨B  and B ⊨S pA∨B  we obtain ⊨S pA∨B  by the clause 
for disjunction, so also ⊢S pA∨B .
(⇐) Assume ⊢S pA∨B . Let S′ be any extension of S with both A ⊨S′ qi 
and B ⊨S′ qi for some q ∈ At⊥. Let S″ be an extension of S′ with ⊨S′′ pA. 
Then ⊢S′′ pA, so the induction hypothesis yields ⊨S′′ A. Since A ⊨S′ qi and 
⊨S′′ A we conclude ⊨S′′ qi, hence by arbitrariness of S″ also pA ⊨S′ qi. An 
analogous argument establishes pB ⊨S′ qi. Lemma 33 yields pA ⊢S′ q and 
pB ⊢S′ q. Since ⊢S pA∨B  we also have ⊢S′ pA∨B , so using the deduction of 
this atom together with the deductions showing pA ⊢S′ q and pB ⊢S′ q we 
can obtain a deduction showing ⊢S′ q by applying pA∨B , q − elim, hence 
⊨S′ qi. Since S′ was an arbitrary extension of S with A ⊨S′ qi and B ⊨S′ qi 
for arbitrary q ∈ At⊥ and we have shown ⊨S′ qi we conclude ⊨S A ∨ B by 
the clause for disjunction.

4.	 A = A → B.

�(⇒) Assume ⊨S A → B. Then, for any S ⊆ S′, A ⊨S′ B. Let S′ be an exten-
sion of S with ⊨S′ pA. Then ⊢S′ pA, so the induction hypothesis yields 
⊨S′ A, hence ⊨S′ B and thus ⊢S′ pB  by another application of the induction 
hypothesis, whence ⊨S′ pB . By arbitrariness of S′ we conclude pA ⊨S pB , so 
Lemma 33 yields pA ⊢S pB . We can then use the rule pA→B − int to con-
clude ⊢S pA→B .
(⇐) Assume ⊢S pA→B . Let S′ be any extension of S with ⊨S′ A. The induc-
tion hypothesis yields ⊢S′ pA. Since ⊢S pA→B  we also have ⊢S′ pA→B , 
and since ⊢S′ pA we can use both deductions to obtain a deduction showing 
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⊢S′ pB  through an application of pA→B − elim. The induction hypoth-
esis yields ⊨S′ B, hence by arbitrariness of S′ we conclude A ⊨S B and so 
⊨S A → B.

5.	 A = Ac.

�(⇒) Assume ⊨S Ac.
Then, for any S ⊆ S′, Ai ⊭S′ ⊥. For the sake of contradiciton, assume 
that for some S ⊆ S′ we have pAi ⊢ ⊥. Let S″ be an extension of S′ such 
that ⊨S′′ Ai. The induction hypothesis yields ⊢S′′ pAi

, so by composition 
of deductions we obtain ⊢S′′ ⊥ and thus ⊨S′′ ⊥, whence by arbitrariness of 
S″ also Ai ⊨S′ ⊥. This contradicts the fact that Ai ⊭S′ ⊥, so we conclude 
pAi ⊬S′ ⊥ for all S ⊆ S′, hence it also follows by Lemma 25 that, for every 
S ⊆ S′, the system obtained by adding a rule concluding pAi

 from empty 
premises to S′ is consistent.
Assume, for the sake of contradiction, that p¬Ai ⊬S ⊥. Then, by Lemma 25, 
the system S′ obtained by adding a rule concluding p¬Ai

 from empty prem-
ises to S is consistent. But by the previous result we also have that the sys-
tem S″ obtained by adding a rule concluding pAi

 from empty premises to S′ 
must be consistent. However, since ⊢S′′ pAi

 and ⊢S′′ p¬Ai

, we can apply 
the p¬Ai − elim rule to show ⊢S′′ p⊥, and thus ⊢S′′ ⊥ due to the properties 
of the mapping α. Contradiction. Thus, p¬Ai ⊢S ⊥, and so ⊢S pAc

 can by 
obtained trough an application of pAc − int.
(⇐) Assume ⊢S pAc

. Suppose there is an S ⊆ S′ such that pA ⊢S′ p⊥. Then, 
by p¬Ai − int we conclude ⊢S′ p¬Ai

 and, since S ⊆ S′ and thus ⊢S′ pAc

, 
we conclude ⊢S′ p⊥ through an application of pAc − elim, and thus ⊢S′ ⊥. 
Contradiction. Hence, for all S ⊆ S′ we have pAi ⊬S′ ⊥. Induction hypoth-
esis: for all S ⊆ S′ it holds that Ai ⊭S′ ⊥, which by the clauses for classical 
formulas yield ⊨S Ac. � □
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