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Schedule-Robust Continual Learning
Ruohan Wang1, Marco Ciccone2, Massimiliano Pontil3,4, and Carlo Ciliberto3

Abstract—Continual learning (CL) tackles a fundamental challenge in machine learning, aiming to continuously learn novel data from
non-stationary data streams while mitigating forgetting of previously learned data. Although existing CL algorithms have introduced
various practical techniques for combating forgetting, little attention has been devoted to studying how data schedules – which dictate
how the sample distribution of a data stream evolves over time – affect the CL problem. Empirically, most CL methods are susceptible
to schedule changes: they exhibit markedly lower accuracy when dealing with more ”difficult” schedules over the same underlying
training data. In practical scenarios, data schedules are often unknown and a key challenge is thus to design CL methods that are
robust to diverse schedules to ensure model reliability. In this work, we introduce the novel concept of schedule robustness for CL and
propose Schedule-Robust Continual Learning (SCROLL), a strong baseline satisfying this desirable property. SCROLL trains a linear
classifier on a suitably pre-trained representation, followed by model adaptation using replay data only. We connect SCROLL to a
meta-learning formulation of CL with provable guarantees on schedule robustness. Empirically, the proposed method significantly
outperforms existing CL methods and we provide extensive ablations to highlight its properties.

Index Terms—Continual Learning, Lifelong Learning, Meta-Learning, Representation Learning.

✦

1 INTRODUCTION

The ability to continually absorb new knowledge while
retaining and updating the existing one is a hallmark of nat-
ural intelligence. Realizing such ability in machines is pre-
cisely the goal of continual learning (CL). Ideally, CL algo-
rithms should learn from a never-ending and non-stationary
stream of data without catastrophic forgetting [1, 2]. Con-
ceptually, a data stream comprises an underlying dataset and
a schedule, wherein the schedule determines how the dataset
is presented to CL algorithms. Existing works have inves-
tigated both task-based [3] and task-free [4] schedules. Task-
based schedules split a dataset into sequential tasks com-
posed of disjoint classes, while task-free schedules require
CL algorithms to learn online from small batches, featuring
dynamic data distribution over time [5, 6]. Fig. 1a depicts
different schedules over the same classification dataset.

Although schedules play a central role in CL, under-
standing how different data schedules affect CL perfor-
mance is understudied. Only few works [7, 8] observed
that model performance can fluctuate heavily with different
schedules, even when the underlying training data remains
unchanged. As an illustrative example, Fig. 1b reports the
performance of L2P [9], a recent CL method, under three
distinct schedules applied to the CIFAR100 dataset. These
schedules simply divide CIFAR100 into varying numbers of
classes and present them sequentially to the learner. How-
ever, they result in substantially different model accuracy:
schedules comprising larger numbers of tasks lead to more
forgetting since the learner must retain knowledge on more
tasks while learning a new one. This pattern is consistently
observed across most CL algorithms.

In this work, we demonstrate that the performance of
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most CL methods is biased towards schedules featuring
fewer tasks, akin to the example from Fig. 1b. This presents
a significant challenge for deploying CL methods in real-
world applications, where CL methods may have to perform
on novel data streams with unknown schedules. Since CL
methods are typically evaluated on only a handful of “stan-
dard” schedules, their performance on diverse schedules is
unknown, posing risks to model safety and reliability.

The above issue calls for an ideal notion of schedule
robustness: CL performance should be minimally affected
by different schedules applied to the same underlying data.
However, an exponential number of possible schedules ex-
ists for any dataset, making it impossible to evaluate (or
optimize) CL algorithms against all of them. Therefore, CL
methods must be designed with schedule robustness as a
primary objective, ideally with theoretical guarantees.

In this work, we formalize the theoretical notion of
schedule robustness for CL and a corresponding met-
ric. We then present SChedule-Robust continuaL Learning
(SCROLL), a strong baseline designed to satisfy this de-
sirable property. SCROLL trains a linear classifier on top
of a pre-trained representation – with a random features
projection layer to account for possible non-linear relations
in the data – followed by representation update using only
experience replay (ER) data [10]. By design, SCROLL is
online [11] and capable of tackling arbitrary schedules.

We prove that SCROLL is schedule-robust for all task-
based schedules comprising disjoint tasks. Our result ap-
plies to a wide range of scenarios, including tasks of differ-
ent sizes and arbitrary class ordering. In addition, we show
that our method is principally motivated by a meta-learning
formulation of CL, where we connect using pre-trained
networks for CL [e.g. 9, 12, 13] as meta-learned priors. The
theoretical analysis also justifies leveraging linear models
for continuously assimilating novel data.

In the experiments, we introduce a diverse range of
schedules for evaluating CL models. By quantifying the
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(a) Example schedules over a dataset
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(b) CL accuracy on CIFAR100 for 3 schedules

Fig. 1: (a) Different schedules for a classification dataset. Colored squares are samples from different classes. Vertical lines are task or batch
boundaries. (b) L2P’s CL performance on CIFAR100 under 3 schedules, which splits the dataset into a varying number of tasks.

schedule robustness of various CL models, we demonstrate
that most existing CL methods are not schedule-robust with
considerable risks to model reliability. In contrast, SCROLL
performs consistently across all evaluated schedules, and
significantly outperforms existing methods in test accuracy
(over 10% in some settings). Lastly, we perform extensive
ablation studies to highlight SCROLL’s properties. We sum-
marize our main contributions below:

• We introduce the notion of schedule robustness for
CL and a new metric to measure it, highlighting its
importance for practical applications of CL.

• We propose SCROLL, a simple yet effective base-
line designed to be schedule-robust. Technically, we
contribute a principled random projection technique
for mitigating the distributional shift between pre-
trained representations and novel classes encoun-
tered during CL. In addition, we introduce an ER
strategy that retains schedule robustness and miti-
gates forgetting, specifically designed for leveraging
pre-trained networks.

• We prove that SCROLL is schedule-robust (more pre-
cisely schedule-invariant) for task-based schedules.
Additionally, we show how pre-training relates to
learning a CL prior via meta-learning.

• We evaluate existing CL methods in the context of
schedule robustness and their performance under
diverse schedules in the experiments, showing that
the majority of them are susceptible to changing
dataset schedule. We demonstrate that SCROLL per-
forms consistently across all evaluated schedules and
significantly outperforms existing approaches.

2 BACKGROUND

We formalize CL as the problem of learning from non-
stationary data sequences. A supervised learning dataset
D = (xi, yi)

N
i=1 is streamed to a continual learner as a

sequence of batches. The resulting sequence S(D) is char-
acterized by a schedule S, which governs how D is streamed
(see Fig. 1a for an illustration).

Formally, a schedule S = β ◦ σ comprises two functions:
a permutation σ(D) that applies a specific ordering to D,
and a map β(D) = (Bt)

T
t=1 that divides the dataset into a se-

quence of batches in the form Bt = (xi, yi)
kt+1

i=kt
. The indices

kt represent the batch boundaries (illustrated as vertical
dashed lines in Fig. 1a). Intuitively, σ determines the order in
which (x, y) ∈ D are observed, while β dictates the number
of samples observed at a given time. We use batch Bt
to denote individual tasks in task-based settings, and mini-
batches in task-free settings respectively. For instance, S2(D)
in Fig. 1a depicts the task-based schedule that dividesD into
tasks each containing all samples from two classes, while
S3(D) and S4(D) show two possible schedules where each
batch contains a few samples from two classes. Here, S1(D)
represents the trivial schedule where the entire dataset is
observed as a single batch (no dashed separation lines),
corresponding to the standard i.i.d learning setting. This is
the most favorable schedule and we use it as a performance
upper bound in our experiments.

2.1 Continual Learning
At time t, a CL algorithm updates the model ft : X → Y to
incorporate the new data batch Bt. To mitigate forgetting,
many CL methods also assume access to a replay buffer
Mt, which contains previously observed samples to be re-
used during training. Denoting Alg(·) as the incremental
algorithm to process each batch Bt, the update step can be
formalized as

(ft, Mt) = Alg(Bt, ft−1,Mt−1), (1)

where the current model ft−1 is updated to ft, and the
replay buffer Mt−1 is also revised to potentially include
new data from Bt. At test time, Alg(·) is evaluated on a
distribution πD over samples (x, y) that share the same
class labels y with those in D. In particular, we measure
the performance of the final model fT obtained recursively
via (1) starting from an initial model f0. This is measured by
the generalization error

L(S(D), f0,Alg) = E(x,y)∼πD
ℓ(fT (x), y). (2)
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Model Update. Most CL methods learn ft by optimizing
the following:

min
f

∑
(x,y)∈Bt

ℓ(f(x), y)

︸ ︷︷ ︸
current batch loss

+
∑

(x,y)∈Mt−1

ℓ(f(x), y)

︸ ︷︷ ︸
replay loss

+ R(f, ft−1)︸ ︷︷ ︸
regularization loss

where ℓ is a loss function, and R a regularizer. The formula-
tion above recovers replay-based methods such as iCarl [14]
and DER [15] for specific choices of ℓ and R. When Mt=∅
for all t, we recover regularization-based methods [e.g.,
2, 16].

Experience Replay. Replay-based methods define a buffer-
ing strategy for Alg(·) in (1), to store samples in Mt for
future reuse. Common strategies include random sampling,
exemplar selection [14], or more sophisticated methods like
gradient-based sample selection [17]. Replay-based methods
are potentially limited by memory constraints, whereby the
memory buffer Mt is unable to hold at least one sample
per observed class. Common solutions to the memory con-
straint include generative memories [18] or sample compres-
sion [19, 20]. Existing methods typically mix current and
replay data for model updates [e.g., 5, 17, 21], a strategy that
might lack schedule robustness (see discussion in Sec. 3.2).
In this work, we introduce a novel ER strategy designed to
guarantee schedule robustness.

Model Initialization. The f0 in (2) captures the prior knowl-
edge of the model before learning from the sequence S(D).
Many methods assume random initialization without prior
knowledge [e.g., 2, 14, 22]. While random initialization
grants generality with respect to the application domain, it
can be overly restrictive and sub-optimal in practice. For
instance, in Computer Vision (CV) or Natural Language
Processing (NLP), robust pre-trained models are readily
available to provide valuable model priors to CL algorithms.
To this end, one strategy for initializing f0 involves a pre-
trained model related to the target CL domain (e.g., Ima-
geNet pre-training for CV tasks), which typically results in
a significant boost in CL performance [9, 12, 13, 23, 24].
However, [25] observed that the benefits of pre-training
diminish for longer CL sequences, since model updates
continually push ft away from the initial f0.

3 METHODOLOGY

In this section, we formalize schedule robustness and mo-
tivate its significance in CL. We then present our method
SCROLL, analyze its theoretical properties in terms of
schedule robustness and lastly establish a relevant connec-
tion to meta-learning.

3.1 Schedule Robustness
CL benchmarks typically consider only schedules featuring
few tasks containing many classes each (e.g. 10 tasks for 100
classes in split-CIFAR100 in [12, 15]). Most existing methods
have an implicit bias toward such schedules. This poses a
significant issue in practice, as it is often infeasible to control
(or know) the data schedule in advance.

Model performance tends to be lower than expected
when the schedule diverges from those used in standard CL
benchmarks. As an example, Fig. 1b illustrates this problem
with L2P [9], a recent CL method. We report its performance
on CIFAR100 [26] over three schedules Si = βi ◦ σ, which
have the same sample ordering σ but varying splits βi. S1 is
the standard schedule streaming 10 classes per task [e.g.,
9, 15, 21]. In contrast, S2 and S3 split the dataset into
more tasks. L2P exhibits a strong bias towards schedules
with fewer tasks, with over a 10% drop in performance for
alternative ones. Similar performance degradation applies
to most existing CL methods (see Sec. B.1 for analogous
plots of different CL methods).

The results show that designing CL algorithms tailored
to specific schedules – albeit not necessarily intentional –
can be detrimental to model performance and reliability in
practice. Therefore, we argue that CL algorithms should be
schedule-robust and maintain consistent performance across
different schedules. We formalize the property below,

Definition 1 (Schedule Robustness). Given a dataset D, let ρ
be a distribution of possible schedules S over D. A CL algorithm
Alg(·) is ϵ-schedule-robust with respect to schedules from ρ if

VS∼ρ [L(S(D), f0,Alg)] ≤ ϵ, (3)

for any dataset D, with V denoting the variance with re-
spect to schedules S sampled from ρ. Moreover, an algorithm is
schedule-invariant if ϵ = 0.

Def. 1 quantifies the robustness of a CL algorithm in terms
of the smallest ϵ ≥ 0 that upper bounds the variance V
of its performance across the distribution of schedules ρ.
Smaller ϵ corresponds to more robust algorithms. In particu-
lar, schedule-invariance guarantees the algorithm performs
identically across all schedules from ρ. While appealing,
precisely quantifying ϵ is often intractable since the number
of schedules can be exponential. In our experiments, we
approximate ϵ by the empirical standard deviation of model
accuracies under a finite number of schedules.

Apart from the metric proposed above, [8] also intro-
duced Order-normalized Performance Disparity (OPD), a dif-
ferent metric for schedule robustness in task-based settings
only. OPD measures how individual tasks’ performance
fluctuates when varying task ordering in a data stream. For
both OPD and our proposed metric, lower numbers imply
more robust performance across different schedules.

Lastly, we stress that schedule robustness is not the sole
objective of a CL algorithm but must be evaluated jointly
with model performance since schedule robustness could
be trivially satisfied by an “algorithm” that never updates
its initial model, clearly not a suitable learning strategy. In
other words, while schedule robustness characterizes the
reliability of a CL model, its performance remains a key
goal to maximise. An ideal CL method should achieve high
average performance along with high schedule robustness.

3.2 SCROLL: Schedule-Robust Continual Learning

In this section, we present a method for schedule-robust
continual learning that is conceptually simple yet effective.
We consider a model f = ϕ ◦ ψ, with ψ : X → Rm a feature
map and ϕ : Rm → Y a linear one-vs-rest classifier, that
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Algorithm 1 SCROLL (incremental)

Init: Buffer M0 = ∅, data statistics c0y = 0, A0 = 0

Input: Embedding ψ, current statistics ct−1
y , At−1,

current buffer Mt−1, next batch Bt,

cty, At = UpdateStat(ct−1
y , At−1) (Eq.(5))

ϕt = RidgeRegression(cty, At) (Eq.(5))
ft = ϕt ◦ ψ
Mt = SelectExemplar(Mt−1, Bt, ψ) (Sec. 3.2)
If t mod UpdateFreq == 0 or On-demand:

f∗
t = UPDATEREPR(ft,Mt) (Sec. 3.2)

Return cty, At,Mt, ft and f∗
t (optional)

Fig. 2: SCROLL update: each batch Bt updates the replay buffer Mt and classifier ϕt. If a representation update is required (on-demand), SCROLL
further trains ft over Mt, producing f∗

t . Left. Figure depicting the update process. Right. Corresponding algorithm.

is, ϕ(z) = argmaxy w⊤
y z for z ∈ Rm, parametrized by a

matrix W = [w1, . . . , wK ] ∈ Rm×K , where K is the number
of classes that have been learned so far. Given this model,
SCROLL comprises four phases: 1) pre-training an embed-
ding model ψ0; 2) adding a random features projection layer
ψRF to ψ0 yielding the embedding ψ = ψRF◦ψ0; 3) updating
the linear classifier ϕt online while keeping ψ fixed, and 4)
updating both ψ0 and ϕt on-demand via experience replay.
We detail each phase below and discuss in Sec. 4 how their
combination achieves schedule robustness.

1. Pre-training. Pre-training aims to find an embedding
model ψ0 : X → Rd that provides a suitable “backbone” as
CL prior. To this end, we train a multi-class (MC) classifier
fMC = ϕ ◦ ψMC and use the embedding model ψ0 = ψMC to
initialize SCROLL. For instance, our CIFAR experiments in
Sec. 5.1 use a ψ0 pre-trained on Meta-Dataset [27].

We note that pre-training has recently gained increasing
popularity in CL [6, 9, 12, 13, 28, 29] since it significantly
improves test performance over random initialization. We
stress that pre-training neither “bypasses” the CL problem
nor makes it trivial: firstly, as demonstrated by [25] and fur-
ther supported by our experiments in Sec. 5, any pre-trained
CL model needs to adapt to new data to achieve competitive
performance. Secondly, the knowledge contained within a
pre-trained model is also susceptible to forgetting when it is
updated during CL.

2. Random Features Projection. The representation ψ0 is
typically optimized for an auxiliary multi-class classification
problem (see Sec. 4.2 for more details). While suitable for
the originally learned classes with a linear classifier layer, it
remains unclear whether novel classes encountered during
CL will also exhibit a linear structure with respect to ψ0 to
enable efficient learning.

To tackle this issue, we propose augmenting ψ0 with
a fixed non-linear layer ψRF : Rd → Rm. Following
the random features literature [30], we implement random
Fourier features as ψRF(x) = cos(Fx), where F ∈ Rm×d has
randomly sampled entries and cosine applied element-wise.
Theories guarantee that as m → +∞, the inner product
ψRF(x)

⊤ψRF(x
′) = k(x, x′) approximates a reproducing

kernel, with kernel type dependent on the sampling dis-
tribution of F [31]. This suggests using a relatively large
m in practice (in our experiments, m = 10K). The final
embedding model becomes ψ = ψRF ◦ ψ0. Our approach
relates to and generalizes [12], which proposed random
ReLU layers for CL problems.

3. Online Classifier Learning. Given the pre-trained ψ, this
phase learns a classifier ϕt for all samples Dt = B1 ∪ · · · ∪
Bt observed so far. We chose Ridge Regression (RR) [32] to
learnWt = RR(Dt, ψ), whereWt parameterize ϕt. Denoting
∆(y) the one-hot encoding for label y and λ a regularization
constant, we have

Wt = argmin
W

∑
(x,y)∈Dt

∥∥∥W⊤ψ(x)−∆(y)
∥∥∥2 + λ ∥W∥2 (4)

We observe that the closed-form solution to (4) – which
in principle needs access to the entire dataset Dt – can
also be obtained online, by sequentially learning from the
batches Bt via recursive least squares [32]: let A be the
covariance matrix for data observed so far and cy the sum
of embeddings ψ(x) for class y. Then, for any new (x′, y′),

wy = (Anew + λI)−1cnew
y ∀y ∈ Y, s.t.

Anew = Aold + ψ(x′) ψ(x′)⊤

cnewy =

{
cold
y + ψ(x′) if y = y′

cold
y otherwise.

(5)

Eq. (5) shows that it is sufficient to maintain A and cy up-
to-date to learn Wt at each step. Crucially, RR is vital for
making SCROLL schedule-robust, by being invariant to data
ordering (see Sec. 4).

4. Representation Update via ER. The goal of this phase is
to update the model ft = ϕt ◦ ψ into f∗t = ϕ∗t ◦ ψ∗

t , with the
underlying representation ψ updated to assimilate the novel
data. A key question concerns how to update ψ effectively
without forgetting.

In this context, Experience Replay (ER) methods have
been empirically observed to yield significant improvement
for CL [e.g., 14]. ER keeps a memory buffer of samples from
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previous tasks/batches, that can be reused during training
to mitigate forgetting. However, previous ER approaches
typically 1) combine exemplars from memory with current
task/batch samples to jointly train the model f = ϕ◦ψ end-
to-end and, 2) employ the resulting updated representation
to select replay samples. This procedure is clearly schedule-
dependent. In this section, we introduce a novel ER strategy
specifically designed to ensure schedule robustness by de-
parting from the standard ER cycle outlined above.

As CL data is observed, we use Exemplar Selection
[14] for filling the replay buffer Mt. This strategy greedily
chooses replay samples independently for each class,
based on how well the mean embedding of the replay
samples approximates the empirical class mean embedding.
we leverage the pre-trained (and fixed) ψ for exemplar
selection, which allows the process to be independent from
the data schedule.

Model Updates. Given a memory buffer Mt, we then
update the CL model ft by minimizing the cross-entropy
loss L(f,Mt) =

∑
(x,y)∈Mt

ℓce(f(x), y) over the memory
buffer Mt, warm-starting the fine-tuning from ft to
obtain f∗t . Concretely, we leverage parameter-efficient
fine-tuning [33] (PEFT) to update ft while adapting the pre-
trained model. This strategy is more resistant to overfitting
given the relatively small sizes of Mt compared to all
samples observed during CL. We use task-specific adapters
(TSA) [34] for ResNet [35] pre-trained models, and low-rank
adaptation [36] (LoRa) for vision transformers [37]. This
adaptation tackles the distribution shift between the initial
fixed ψ and the CL sequence observed so far.

On-demand Updates. We highlight here that SCROLL
performs ER only periodically or on-demand to improve
computational efficiency (see Alg. 1). At the extreme, we
could perform ER only once, after observing the entire CL
sequence. More realistically, we may perform ER at the
end of each task for task-based settings, or after every K
samples in a task-free setting (as illustrated in Fig. 2). At
any time t, the current online model ft and replay buffer
Mt capture all the information needed for on-demand
representation update.

Our proposed approach differs from standard ER in three
key aspects. Firstly, standard ER mixes replay samples with
the current task/batch for training. In contrast, SCROLL
uses the current task/batch to update the classifier ϕt,
followed by fine-tuning of ψ with only replay samples.
Secondly, the proposed ER always starts from ft with the
pre-trained embedding model ψ, which is crucial for our
theoretical analysis on schedule robustness in Sec. 4. Thirdly,
our fine-tuning uses the closed-form RR solution ϕt as
initialization for the fine-tuning process. In Sec. 6.2 we show
that such initialization significantly improves fine-tuning
performance.

5. SCROLL. Fig. 2 illustrates the overall method with Alg. 1
as the incremental algorithm for handling an incoming
batch Bt: we first update data statistics ct−1

y and At−1 to
incorporate Bt. The replay buffer Mt−1 is also updated,
using the embedding model ψ for exemplar selection.

Lastly, we obtain ft using the updated states cty and At.
When required, ft is fine-tuned on Mt yielding f∗t . We
conclude by noting that both ft and f∗t are valid CL models
for the observed data Dt. The key difference is that f∗t has
a representation better tailored to the observed data.

Computational Efficiency. SCROLL offers superior computa-
tional efficiency compared to most previous methods. The
least-squares step uses Cholesky low-rank updates, requir-
ing only O(d2|Bt|) (with a max of O(d3)) operations and
O(d2 + d|Mt|) memory (see [38]), with the time complexity
independent of the number of tasks T . ER remains efficient
through PEFT and our exemplar selection strategy that
needs only per-class averages. Additionally, the on-demand
nature of updates allows for adaptive computation that
meets specific requirements.

4 THEORETICAL PROPERTIES OF SCROLL
In this section, we discuss SCROLL’s key properties and
how they contribute to schedule robustness. We also connect
SCROLL to meta-learning, offering a principled interpreta-
tion of pre-training in CL. Proof details for theoretical results
are deferred to Sec. A.

4.1 Schedule Robustness

We first show that the model ft at each time step during
Phase 2 of SCROLL is schedule-invariant.

Proposition 1. For any embedding ψ, the ft learned via ridge
regression (RR) according to (5) on Dt is deterministic and
schedule-invariant.

The proposition shows the benefits of using RR given a
fixed representation: ft trades off model expressiveness for
schedule invariance. Specifically, our baseline leverages the
invariance of RR to construct a deterministic ft for all
possible schedules. Prop. 1 also implies that the ft learned
under any schedule is equivalent to the model trained over
the entire dataset. This, in turn, implies that RR mitigates
forgetting since the model learned incrementally is identical
to the one learned over the entire dataset. We recall that
ft is a valid CL model for all observed data Dt, and thus
conclude that ft is schedule-invariant for all possible
schedules over any given dataset.

We remark that Prop. 1 holds also for other learning
strategies, such as nearest centroid classifier [39] (NCC) and
linear discriminant analysis [40] (LDA). Several concurrent
works also leverage such classifiers for replay-free CL, in-
cluding RanPAC [12] that uses RR, and FeCam [29] that
uses LDA. For SCROLL we adopted RR given its superior
empirical performance.

Proposition 2. LetDt be of the formDt = {(Xk, yk)}Kk=1, with
(Xk, yk) containing all samples of class yk for k = 1, . . . ,K . The
f∗t learned via SCROLL is invariant to schedules S such that, for
any label yk, there exists one batch Bt containing (Xk, yk).

Prop. 2 applies to replay-based f∗t , for any task-based
schedule where all tasks comprise disjoint classes, including
tasks of different sizes and arbitrary ordering of classes
or tasks. Proving Prop. 2 relies on the observation that
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exemplar selection returns a deterministic Mt. Training the
deterministic ft, from Prop. 1, on Mt yields deterministic
f∗t , which again leads to schedule-invariance.

For all other schedules where the hypotheses of Prop. 2
do not hold (such as task-free schedules S3(D) and S4(D) in
Fig. 1a), we note that exemplar selection still attains similar
class distribution across different schedules, especially for
larger buffer sizes (see Sec. 6.3 for details). Training ft on
similar Mt still leads to f∗t of comparable performance.

From the above analysis, we conclude that SCROLL
is schedule-robust with small performance variation. We
will empirically measure its robustness using the empirical
standard deviation of its error, as proposed in Sec. 3.1 and
compare it with existing CL methods.

4.2 Pre-training as Meta CL

Given the importance of pre-training in SCROLL, we pro-
vide further theoretical motivation for its usage in CL.
Specifically, we cast learning ψ0 as meta-learning the CL
prior f0 = ϕ0◦ψ0, with ϕ0 parameterized by the zero matrix
W0 = 0. Specifically, we set Alg(·) = RR and minimize the
CL generalization error in Eq. (2) over a distribution of CL
sequences

min
ψ0

E(D,S)∼ρ L(S(D), ψ0,RR), (6)

Intuitively, (6) is a meta-learning formulation of CL that
aims to learn a suitable model initialization by training
on many sequences S(D). Similar to [41], (6) casts CL as
a meta-learning problem. However, directly optimizing (6)
or the objective proposed in [41] is prohibitively expensive
for long sequences S(D), since the cost of gradient descent
scales linearly with the size of D. Fortunately for SCROLL,
we can simplify (6) by exploiting the schedule invariance of
RR from Prop. 1, which reduces (6) to

min
ψ0

EDE(x,y)∼πD
ℓ(fT (x), y) s.t. fT = RR(D,ψ0), (7)

where fT is the RR classifier trained on any sequence S(D)
over D (since it is independent on the sequence itself).
Eq. (7) recovers the well-established meta-learning setting
(i.e., without schedule dependence) and corresponds to
meta-learning method proposed in [42].

For standard meta-learning, recent works strongly sup-
port learning ψ0 by pre-training on standard multi-class
classification [43, 44], instead of optimizing (7) directly. In
particular, [44, 45] proved that pre-training is an upper
bound to (7) and thus suitable for learning ψ0. Crucially,
pre-training is computationally more efficient than meta-
learning and often yields more robust embedding. Conse-
quently, initializing ψ0 with pre-training can be principally
justified as providing a meta-learning prior for CL, when RR
is used as the CL algorithm. These are precisely the design
choices adopted in SCROLL. Incidentally, recent works [e.g.
9, 12, 13, 28, 46] have also embraced pre-trained models and
seen significant improvements in performance.

5 EXPERIMENTS

In this section, we empirically study the relevance of sched-
ule robustness in CL and evaluate the performance of

SCROLL. We demonstrate that most existing CL methods
lack schedule robustness, with a bias towards schedules
with more classes per batch. In contrast, we show that
SCROLL performs consistently over all evaluated sched-
ules, in line with our theoretical analysis. SCROLL also
outperforms most existing methods on average accuracy by
a large margin. Lastly, we highlight in the ablation studies
the contribution of various model components, including
our ER routine and the usage of random features.

Setup. We consider class-incremental learning [14] models
that observe novel classes incrementally and return a single-
head model to discriminate all classes observed so far. For
fairness, all methods are initialized with the same pre-trained
model. The size |M | denotes the total capacity of the replay
buffer across all classes. We consider both task-based and
task-free settings. We report CL performance both in terms
of final average accuracy and forgetting according to [47].
Additional experiment details are provided in Sec. C. Code
is available at https://github.com/RuohanW/scroll cl.

5.1 Class-split Schedules on CIFAR100 Dataset

CIFAR100 is used as a standard benchmark for CL [e.g.,
9, 14, 15], which splits the dataset into sequential tasks
of disjoint classes. We denote the standard schedule as
“10-split”, which divides the dataset into 10 tasks of 10
disjoint classes each. Tab. 1 reports the average accuracy and
forgetting metric for different CL methods, with the initial
ψ0 a ResNet pre-trained on Meta-Dataset [27]. We obtained
the representation ψ = ψRF ◦ ψ0 by sampling 10K random
features according to the process described in Sec. 3.2.

We compare SCROLL with online methods in the task-free
setting and offline ones in the task-based setting. We observe
that SCROLL outperforms both online and offline methods
by a large margin (over 8% in most cases).

Tab. 1 also reports the performance of different CL
methods on the 50-split schedule, which divides CIFAR100
into 50 tasks of 2 classes each. In clear contrast with the
10-split schedule, many existing methods suffer significant
performance degradation. For instance, BIC’s test accuracy
drops from 57% to 36%, while iCaRL drops from 68.3%
to 55.5%. In contrast, SCROLL performs consistently under
both schedules, in line with our theoretical analysis. This
also means that SCROLL demonstrates further performance
advantage over existing methods under more challenging
schedules. We note that RanPAC [12], SLDA [23] and Fe-
Cam [29] are also unaffected by the data schedules since
their design guarantees these methods some level of sched-
ule robustness (see discussion in Sec. 4.1). However, these
methods are significantly outperformed by SCROLL.

One crucial reason for SCROLL’s performance is rep-
resentation update via ER, since f∗T consistently improves
upon fT on both average accuracy and forgetting, suggest-
ing its vital role in tackling the distribution shift of novel
data from the pre-trained ψ0. In contrast, methods such
as RanPac, SLDA, and FeCam keep the pre-trained repre-
sentation fixed, which limits final performance. We further
remark that the minor performance differences in Tab. 1 for
f∗T between task-based vs task-free setting is caused by the
difference in replay data. In the former setting, exemplar
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CIFAR100 10-splits CIFAR100 50-splits
|M | = 200 |M | = 2000 |M | = 200 |M | = 2000

CL Algorithm Accuracy (↑) Forgetting (↓) Accuracy (↑) Forgetting (↓) Accuracy (↑) Forgetting (↓) Accuracy (↑) Forgetting (↓)
TA

SK
-B

A
SE

D ER [21] 23.8 ±0.7 78.9 ±0.9 52.6 ±0.4 45.7 ±0.4 15.1 ±2.1 85.2 ±1.5 50.3 ±0.4 48.0 ±0.6

iCaRL [14] 57.0 ±0.8 25.8 ±1.1 68.3 ±0.3 17.2 ±0.2 42.5 ±0.8 27.1 ±0.4 55.5 ±0.7 19.6 ±0.6

BIC [48] 35.2 ±3.3 64.4 ±4.0 57.1 ±0.8 39.4 ±0.9 16.1 ±4.1 85.5 ±1.5 36.8 ±2.7 65.7 ±2.8

DER [15] 27.4 ±0.8 74.6 ±0.9 55.8 ±1.5 39.3 ±1.6 15.7 ±1.7 80.6 ±2.2 48.2 ±1.4 46.1 ±2.2

DER++ [15] 28.7 ±1.3 72.7 ±1.5 59.5 ±1.0 35.4 ±1.1 18.2 ±1.4 76.7 ±1.4 53.1 ±0.9 35.4 ±0.9

FeCam [29] 55.0 ±0 12.2 ±0. 55.0 ±0 12.2 ±0. 55.0 ±0 12.2 ±0. 55.0 ±0 12.2 ±0.

RanPAC [12] 60.6 ±0.3 11.6 ±0.2 60.6 ±0.3 11.6 ±0.2 60.6 ±0.3 11.6 ±0.2 60.6 ±0.3 11.6 ±0.2

SCROLL (fT ) 63.7 ±0.1 11.2 ±0.2 63.7 ±0.1 11.2 ±0.2 63.7 ±0.1 11.2 ±0.2 63.7 ±0.1 11.2 ±0.2

SCROLL (f∗
T ) 65.3 ±0.1 10.4 ±0.2 68.4 ±0.2 7.7 ±0.2 65.3 ±0.1 10.4 ±0.2 68.4 ±0.2 7.7 ±0.2

TA
SK

-F
R

E
E GDumb [22] 21.9 ±1. 24.3 ±1.5 59.3 ±0.4 16.7 ±0.4 22.8 ±1.9 27.9 ±1.6 58.9 ±0.4 18.2 ±0.2

ER-ACE [5] 41.5 ±0.6 31.2 ±2.7 56.0 ±0.4 11.8 ±1.2 26.8 ±0.9 23.2 ±1.4 47.2 ±0.5 13.8 ±0.8

ER-AML [5] 33.2 ±1.4 26.5 ±2.4 51.2 ±1.5 11.1 ±0.6 13.2 ±1.1 32.4 ±4.0 41.1 ±1.1 16.0 ±1.0

SSIL [49] 46.0 ±3.3 20.8 ±1.0 59.4 ±1.7 10.6 ±1.6 32.9 ±0.6 28.1 ±0.5 52.2 ±0.9 16.4 ±0.6

MIR [50] 27.5 ±0.6 69.4 ±0.5 56.1 ±1.3 33.7 ±1.7 7.9 ±0.7 81.4 ±0.6 41.1 ±0.5 37.3 ±3.8

SLDA [23] 59.3 ±0.2 14.3 ±0.1 59.3 ±0.2 14.3 ±0.1 59.3 ±0.2 14.3 ±0.1 59.3 ±0.2 14.3 ±0.1

SCROLL (fT ) 63.7 ±0 11.2 ±0 63.7 ±0 11.2 ±0 63.7 ±0 11.2 ±0 63.7 ±0 11.2 ±0

SCROLL (f∗
T ) 65.0 ±0.3 10.6 ±0.4 68.0 ±0.3 7.9 ±0.3 65.0 ±0.3 10.6 ±0.4 68.0 ±0.3 7.9 ±0.3

JOINT TRAINING (I.I.D.) 79.3 ±0.4

TABLE 1: Class-incremental accuracy and forgetting on sequential CIFAR-100. Joint training (i.i.d.) accuracy is obtained by training on all classes
with supervised learning. Best methods per setting are in bold.

|M | = 200 |M | = 500 |M | = 2000

BIC 20.9 ±0.3 28.2 ±0.3 39.2 ±0.3

DER++ 11.0 ±0.3 23.5 ±0.3 41.3 ±0.3

GDumb 22.9 ±1.3 37.3 ±1.5 59.2 ±0.5

iCaRL 43.5 ±0.8 52.8 ±1.4 56.4 ±0.7

SLDA 59.3 ±0.1 59.3 ±0.1 59.3 ±0.1

RanPAC 60.6 ±0. 60.6 ±0. 60.6 ±0.

SCROLL (f∗
T ) 65.3 ±0.1 66.2 ±0.2 68.4 ±0.2

TABLE 2: Class-incremental Accuracy on CIFAR100 with varied task
sizes in a single schedule.

selection has access to full tasks for choosing representative
replay samples. In the task-free setting, it has to choose
them locally from mini-batches, leading to a minor drop in
performance.

Varying Task Sizes in Schedules. So far we have only
evaluated schedules where each task is of the same size.
We thus further consider varying task sizes within a single
schedule. Specifically, we let the class count for tasks to
follow the pattern of 5, 2, 2, 1, 5, 2, 2, 1. . . resulting in a
total of 40 tasks. Tab. 2 reports CL accuracy for the best
performing models from Tab. 1.

We observe that SCROLL achieves the identical perfor-
mance under this setting, consistent with Prop. 2 and the
results against other schedules from Tab. 1. While SLDA and
RanPAC’s performance are unaffected by the very different
schedules, SCROLL still outperforms all existing methods
by a substantial margin.

5.2 Fair Comparison of CL Methods

The experimental evidence from Sec. 5.1 exemplifies the
main motivation of this work, namely that model perfor-
mance under a single schedule is insufficient to character-
ize CL methods. For instance, iCaRL is one of the best-
performing models for 10-split CIFAR100 (M = 2000),
achieving 68.3%. However, for both 50-split and dynamic
schedules, iCaRL’s test accuracy drops significantly and
underperforms other methods. To visualize the performance
variations across different schedules, Fig. 3 shows the
spread of test accuracies for different CL methods (with

Fig. 3: Performance variation of CL methods on CIFAR100 under 5, 10,
25, and 50-split schedules with memory buffer |M | = 200. Taller boxes
correspond to unreliable performance depending on the schedule, with
a wide range of possible accuracy scores.

buffer size |M | = 200, for other sizes, see Sec. B.3) in box
plot format. Qualitatively, the taller the box for a method,
the more its performance will be unreliable in practice.

The results reinforce our earlier observation that model
performance under a single schedule is insufficient for
comparing different CL methods, in particular when the
data schedule encountered by a CL algorithm in practice is
unknown or even dynamic. To fairly compare different CL
methods under various possible schedules, we thus propose
a new performance metric called Schedule-Normalized Av-
erage Accuracy, which computes a CL method’s expected
performance over a range of schedules (i.e., an empirical
estimation of Def. 1). From our testing (see Sec. B for more
details), we find that varying the number of class splits in a
schedule effectively captures different performance levels of
CL methods, with most existing methods implicitly biased
towards lower-split schedules (i.e., more classes per batch),
while suffering significant performance degradation under
higher split schedules.

Tab. 3 reports the schedule-normalized average accuracy
for CL methods. The result shows that SCROLL outper-
forms the existing methods on this metric, highlighting
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CL Algorithm |M | = 200 |M | = 500 |M | = 2000

iCaRL 52.7 ±8.3 60.0 ±6.1 65.2 ±6.1

BIC 31.6 ±14.5 41.4 ±14.2 52.1 ±12.2

DER++ 26.7 ±6.3 41.3 ±5.5 58.4 ±4.0

GDumb 22.0 ±1.6 38.6 ±1.3 59.6 ±0.4

ER-ACE 36.9 ±7.6 44.9 ±6.7 54.4 ±4.4

ER-AML 27.6 ±9.0 37.4 ±8.2 48.8 ±4.6

SLDA 59.3 ±0.2 59.3 ±0.2 59.3 ±0.2

RanPAC 60.6 ±0.3 60.6 ±0.3 60.6 ±0.3

SCROLL (f∗
T ) 65.1 ±0.2 66.0 ±0.3 68.1 ±0.3

TABLE 3: Schedule-Normalized Average Accuracy of different CL
methods on CIFAR100.

its (expected) performance advantage if the data schedule
is unknown. Lastly, we remark that, if there is any prior
knowledge about the potential data schedules, we may sam-
ple them to obtain a more accurate performance measure.

5.3 Quantifying Schedule Robustness
We consider two metrics to quantify the schedule robustness
of different CL methods. We report Schedule-Normalized
Performance Variance (PV), the empirical variance of CL
methods as an approximation of Def. 1. On the other hand,
we report average Order-Normalized Performance Dispar-
ity (OPD) from [8], which computes how sensitive each
task’s performance is with respect to task orderings. For
both metrics, lower is better and implies higher schedule
robustness. Tab. 4 reports the two metrics for different
CL methods. We observe that in all settings, and for all
buffer sizes considered, SCROLL is schedule-robust for both
metrics, consistent with the theoretical analysis.

For evaluated methods, all suffer from high PV, OPD,
or both, with the exception of SLDA [23] and RanPAC [12].
SLDA achieves CL via streaming linear discriminant anal-
ysis given a fixed pre-trained model. As noted in Sec. 4.1,
Prop. 1 holds for standard LDA. SLDA, as an approxima-
tion, is expected to also perform consistently in practice but
lacks the strict theoretical guarantees of SCROLL. Moreover,
SLDA does not perform experience replay to correct for
distribution shift, leading to worse performance compared
to SCROLL (e.g., see Tabs. 1 and 6).

RanPac (without representation update), corresponds to
performing SCROLL(fT ) using a random ReLU layer (see
Sec. 3.2) rather than the random Fourier feature (RFF) layer
we adopted. This explains the similar behavior between
RanPac and our non-fine-tuned fT in the table. However, in
contrast to random ReLUs, RFFs are a theoretically sound
approach to approximating a universal reproducing ker-
nel [51], which could explain the performance improvement
of SCROLL(fT ) over RanPac in our experiments.

5.4 Bootstrapping Schedule on mini IMAGENET Dataset
We consider the CL setting introduced in [12, 52] where
a dataset is split into one large initial “bootstrap” task (or
batch) containing samples from several classes, followed by
sequential tasks with only a few classes each. Each method
is first trained on the initial task using standard i.i.d training
and then performs CL on the following tasks. In this setting,
learning on the bootstrap task may be interpreted as pre-
training, with two key differences: first, such a task con-
tains much fewer samples compared to typical pre-training

Schedule Robustness Metrics

Method |M | = 200 |M | = 500 |M | = 2000

PV OPD PV OPD PV OPD

iCaRL 8.3 18.8 6.1 16.5 6.1 9.7
BIC 14.5 63.7 14.2 49.8 12.2 33.9
DER++ 6.3 48.7 5.5 41.8 4.0 25.7
GDumb 1.6 17.7 1.3 12.9 0.4 6.7
ER-ACE 7.6 23.5 6.7 13.8 4.4 12.2
ER-AML 9.0 32.3 8.2 15.1 4.6 18.4
SLDA 0.2 0.6 0.2 0.6 0.2 0.6
RanPAC 0.3 0.2 0.3 0.2 0.3 0.2
SCROLL (fT ) 0.2 0.2 0.2 0.2 0.2 0.2
SCROLL (f∗

T ) 0.3 0.5 0.1 0.5 0.4 0.5

TABLE 4: Schedule-Normalized Performance Variance (PV) and Aver-
age Order-Normalized Performance Disparity (OPD) on CIFAR100 for
different buffer sizes |M |. For both metrics, lower (↓) is better.
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Fig. 4: CL Accuracy over time on miniIMAGENET, from the “bootstrap”
task followed by a sequence of binary classification tasks (see the setup
described in Sec. 5.4).

datasets. Second, models are tested also on samples from
the bootstrap task, posing a further challenge in terms of
forgetting. We consider this setup on the miniIMAGENET
dataset, with the initial task containing 64 classes and the
remaining 36 classes evenly split into 18 tasks.

To better explore the stability-plasticity tradeoff in CL,
Tab. 5 reports the average performance of each method
on all 100 classes from miniIMAGENET (Accavg), as well
as the accuracy on the first 64 classes from the bootstrap
task (Accboot), separate from the average accuracy on the
remaining 36 classes from subsequent CL tasks (Accnovel).
We observe that SCROLL outperforms all previous methods
by a significant margin and retains high average accuracy
on both sets, while most previous methods fail to preserve
the knowledge from the initial task and are unable to
adapt sufficiently to the new tasks. RanPAC retains test
accuracy comparable to SCROLL on the bootstrap tasks and
performs slightly worse on the subsequent data, as reflected
by Accnovel.

As a separate relevant observation, Tab. 5 shows also that
SCROLL does not require pre-training on massive datasets
to learn ψ0 and works well with limited data.

Model Performance over Time. CL methods are designed
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miniIMAGENET

CL Algorithm Accboot Accnovel Accavg

iCaRL 66.4 ±0.2 49.2 ±0.1 60.2 ±0.1

BIC 53.5 ±3.3 34.6 ±3.5 46.7 ±3.3

ER 29.3 ±1.7 62.4 ±0.6 41.2 ±1.3

DER++ 34.1 ±1.5 46.3 ±0.7 38.5 ±1.0

GDumb 75.6 ±3.2 15.8 ±3.3 54.1 ±3.7

ER-ACE 60.6 ±1.2 30.2 ±1.6 49.6 ±1.0

ER-AML 42.3 ±1.6 25.0 ±3.2 36.1 ±1.5

SSIL 56.2 ±2.7 0.1 ±0.1 36.0 ±1.7

MIR 37.2 ±1.5 17.0 ±0.5 30.0 ±1.0

RanPAC 77.9 ±0.3 64.1 ±0.5 73.0 ±0.4

SCROLL (f∗
T ) 78.2 ±0.1 68.4 ±0.3 74.7 ±0.2

TABLE 5: Class-incremental classification accuracy on sequential
miniIMAGENET, with |M | = 200.

to learn continuously. To evaluate this setting, Fig. 4 reports
the performance of different CL methods after every task,
for all classes observed so far. We note that SCROLL outper-
forms all previous methods, with the gap increasing with
each observed task. Specifically, SCROLL’s performance
degrades slowly as new tasks are added, suggesting that
it can perform reliably over long data sequences.

5.5 Long, Dynamic Schedule with Meta-Dataset
Lastly, we introduce a long and dynamic schedule on Meta-
Dataset [27], which combines popular image classification
datasets such as ILSVRC-2012 (ImageNet) [53], Aircraft [54],
VGG Flower (Flower) [55], and Traffic Signs [56]. In this
setting, each CL model is pre-trained on the ImageNet
dataset and performs class-incremental learning on Aircraft,
Flower, and Traffic Signs sequentially. All final models are
single-head and are evaluated on a test set combining all
test samples from the three datasets.

The proposed data stream presents several realistic chal-
lenges for assessing the efficacy of CL methods. Firstly,
the input distribution of the data stream is evolving (from
aircraft to flowers and to traffic signs), as the three datasets
are learned sequentially. Secondly, the data stream has a
large number of classes (245 in total) and requires fine-
grained classification (e.g., different variants of the same
aircraft model), which poses additional challenges in terms
of forgetting and knowledge reuse. Lastly, we vary the task
sizes and the order of tasks within the schedule to mimic the
dynamic nature of CL in real-world scenarios (see Sec. D for
more details on this data stream).

Tab. 6 reports schedule-normalized classification accu-
racy, PV (reported as standard deviation with accuracy),
forgetting, as well as OPD for different CL methods on
sequential Meta-Dataset as described above. In this chal-
lenging setting, SCROLL again outperforms existing meth-
ods by a large margin, while achieving schedule robustness
as indicated by its low PV and OPD. Lastly, we highlight
that with a buffer size M = 5000, SCROLL’s performance
is less than 3% lower than i.i.d training, which acts as the
performance upper bound for CL. In contrast, the second-
best performing methods for Tab. 6 are RanPAC and SLDA,
both of which lag more than 10% from i.i.d training.

5.6 CL with Vision Transformers
All our experiments so far used pre-trained ResNet [35] as
base models. A more recent alternative in the CL literature is

to consider vision transformers (ViT) [37], which can encode
richer prior knowledge and allow for a wide range of po-
tential strategies for model updates, including incremental
prompt tuning [28, 57] and LoRa [13]. In particular, SCROLL
employs LoRa during ER-based updates when using ViT as
base model (see Sec. 3.2.4).

Tab. 7 compares SCROLL with state-of-the-art CL ap-
proaches based on ViT (see Sec. C for additional details on
the ViT-based SCROLL). We observe that, with the excep-
tion of FeCam and SCROLL, the performance of all other
methods deteriorates in 50-split schedules. In particular,
representation update in RanPac, while improving the 10-
split performance, is detrimental to higher-split schedules.
In contrast, SCROLL retains consistent performance across
the different schedules and outperforms all baselines.

6 ABLATION STUDIES

In this section, we perform ablation experiments to better
understand the properties of SCROLL. We focus on our
proposed random feature layer and ER procedure.

6.1 Ablations on Random Projection Layer
We study the effect of random projection layer on CL
performance. To this end, we compare RanPAC [12], our
proposed random Fourier features, and the original pre-
trained features in the replay-free setting. We use RR to learn
the optimal classifiers for each of the features and compare
their test accuracy in Tab. 8.

The results validate our hypothesis from Sec. 3.2, that the
pre-trained representation, learned from auxiliary classes,
may not be linearly separable for the novel classes en-
countered during CL. Consequently, non-linear projection
of the original features into higher-dimensional spaces (e.g.,
m = 10000), could induce more separability across different
classes, as evidenced by both RanPac and our proposed
Fourier features. Between the two, the results further sug-
gest that random Fourier features are more robust and pro-
vide better test performance across all evaluated datasets, as
already discussed in Sec. 5.3.

6.2 Experience Replay with Pre-trained Models

Classifier initialization. When finetuning SCROLL to ob-
tain f∗T = ϕ∗T ◦ ψ∗

T from fT = ϕT ◦ ψ, the role of the RR so-
lution ϕT may be interpreted as warm-starting the model’s
last layer before the representation updates to ψT . In princi-
ple, one could initialize ϕ differently, for example adopting
a random initialization as typically done in standard fine-
tuning. Tab. 9 compares RR vs random initialization.

Random initialization corresponds to ignoring the data
stream and learning from replay data only. It performs
worse in Tab. 9, suggesting that learning from replay data
alone is insufficient, even with strong pre-training. Further,
the results suggest that an appropriately “warm-starting”
fT is crucial for final performance via fine-tuning, and
SCROLL offers one such strategy with RR.

Buffering Strategies. We ablate different buffering strate-
gies used in ER. We consider exemplar selection [14] and
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|M | = 1250 |M | = 2500 |M | = 5000

CL Algorithm Accuracy (↑) ± PV (↓) Forgetting (↓) OPD (↓) Accuracy ± PV Forgetting OPD Accuracy ± PV Forgetting OPD

DER++ 59.2 ±6.1 38.4 ±6.4 28.9 60.1 ±6.7 36.9 ±6.9 31.3 70.2 ±2.2 26.8 ±2.1 19.3
iCaRL 48.0 ±5.9 42.5 ±4.8 20.6 46.3 ±3.6 43.8 ±3.7 16.5 50.9 ±2.7 38.3 ±2.4 14.6
ER-ACE 34.3 ±1.5 13.8 ±1.5 19.5 34.0 ±3.3 15.1 ±3.7 25.8 33.1 ±2.7 15.1 ±3.2 23.9
ER-AML 25.5 ±1.2 9.1 ±1.6 25.0 23.8 ±1.7 10.9 ±1.7 24.9 24.9 ±2.4 9.8 ±2.0 24.1
SSIL 42.4 ±0.9 8.2 ±0.9 16.6 42.3 ±0.9 9.8 ±2.0 20.1 45.4 ±0.9 6.9 ±0.7 18.7
MIR 49.5 ±1.2 16.9 ±1.3 22.1 49.5 ±2.8 16.9 ±2.8 25.4 47.9 ±1.7 18.1 ±1.1 27.1
SLDA 72.1 ±0.1 8.9 ±0.5 0.9 72.1 ±0.1 8.9 ±0.5 0.9 72.1 ±0.1 8.9 ±0.5 0.9
RanPac 76.6 ±0.5 7.0 ±0.5 1.8 76.6 ±0.5 7.0 ±0.5 1.8 76.6 ±0.5 7.0 ±0.5 1.8
SCROLL (f∗

t ) 78.9 ±0.3 5.7 ±0.1 1.9 83.4 ±0.3 4.6 ±0.2 2.1 87.6 ±0.2 5.1 ±0.6 2.4

I.I.D. TRAINING 90.8 ±0.7

TABLE 6: Schedule-normalized class-incremental accuracy, forgetting and OPD on sequential Meta-Dataset. Joint training (i.i.d.) accuracy is
obtained by training on all classes with supervised learning.

CIFAR100 ImageNet-R Core50

Schedule 10-split 50-split 10-split 50-split 8-split
CL Algorithm Acc (↑) ± PV (↓) Forgetting (↓) Acc ± PV Forgetting Acc ± PV Forgetting Acc ± PV Forgetting Acc ± PV

L2P 82.3±0.7 9.8 ±1.3 65.6±2.1 12.2 ±1.2 73.6±0.4 5.9 ±0.3 65.8±0.7 8.7 ±0.5 78.3 ±0.7

FeCam 85.7±0 5.0 ±0 85.7±0 5.0 ±0 66.3±0 5.6 ±0. 66.3±0 5.6 ±0. 89.1 ±0.7

DualPrompt [57] 84.6 ±0.3 5.1 ±0.7 67.8 ±0.4 9.7 ±0.7 72.5 ±0.4 3.9 ±0.4 66.8 ±0.8 5.2 ±0.4 -
Coda-P [28] 85.9 ±0.6 4.9 ±0.1 67.3 ±0.7 8.8 ±0.6 74.8 ±0.4 4.3 ±0.3 63.6 ±0.1 5.4 ±0.2 89.1 ±0.7

InfLoRa 86.5 ±0.7 5.2 ±0.4 59.8 ±1.2 15.2 ±0.7 74.8 ±0.3 6.6 ±0.5 56.6 ±0.8 11.1 ±0.6 -
RanPAC 88.7 ±0.4 5.1 ±0.4 88.7 ±0.4 5.1 ±0.4 70.9 ±0.6 5.6 ±0.3 70.9 ±0.6 5.6 ±0.3 94.1±0.2

RanPAC (with Phase 1) 91.4 ±0.8 3.8 ±0.3 88.2 ±0.4 5.6 ±0.4 78.5 ±0.4 4.3 ±0.3 75.4 ±0.7 6.6 ±0.6 96.4±0.2

SCROLL (ft) 89.2 ±0.2 4.6 ±0.2 89.2 ±0.2 4.6 ±0.2 71.2 ±0.3 5.4 ±0.2 71.2 ±0.3 5.4 ±0.2 94.4 ±0.2

SCROLL (f∗
t ) 91.9 ±0.2 3.5 ±0.2 91.9 ±0.2 3.5 ±0.2 78.9 ±0.3 3.2 ±0.3 78.9 ±0.3 3.2 ±0.3 96.2 ±0.1

TABLE 7: Comparison of Vit-based CL Approaches. SCROLL outperforms all baselines and is schedule-robust. RanPac (with Phase 1) performs
representation fine-tuning on the first task followed by RR using the updated representation.

CIFAR100 ImageNet-R Meta-Dataset

Original Pre-trained 57.1 65.1 71.6
RanPAC (ReLU) 60.6 70.7 76.6
Ours (Fourier) 63.7 71.2 77.8

TABLE 8: Comparing the quality of different feature representations.
SCROLL with Random Fourier features outperforms both the original
pre-trained representation and random ReLU features (RanPAC [12]).

CIFAR100 (ResNet) ImageNet-R (VIT)

ϕ Init fT → f∗
T fT → f∗

T

Random 1.2 ±0.3 66.1 ±0.2 0.26 ±0.3 77.0 ±0.5

RR 63.7 ±0 68.4 ±0.1 71.2 ±0.3 78.9 ±0.3

TABLE 9: Classification accuracy with alternative classifier initialization
in SCROLL, |M | = 2000.

random sampling, which are commonly used in existing
works. We also introduce two variants to exemplar selection,
including selecting samples closest to the mean representa-
tion of each class (Nearest selection) or selecting samples
furthest to the mean representation of each class (Outlier
selection).

We report the effects of different buffering strategies in
Tab. 10. The exemplar strategy clearly performs the best, fol-
lowed by random reservoir sampling. Both nearest and out-
lier selections perform drastically worse. From the results,
we hypothesize that an ideal buffering strategy should store
representative samples of each class (e.g., still tracking the
mean representation of each class as in exemplar selection)
while maintaining sufficient sample diversity (e.g., avoiding
nearest selection).

The results have several implications for CL algorithms.
While random reservoir sampling performs well on average,
it can perform poorly in the worst cases, such as when
the random sampling coincides with either nearest or out-

CIFAR100 (ResNet) ImageNet-R (Vit)

Buffering \ |M | 500 2000 600 2000

Ours 66.2 ±0.1 68.4 ±0.2 77.0 ±0.2 78.9 ±0.3

Random 65.8 ±0.3 67.5 ±0.3 76.8 ±0.3 77.5 ±0.2

Nearest 64.2 ±0.1 64.9 ±0.2 65.8 ±0.3 74.9 ±0.4

Outlier 64.0 ±0.1 64.8 ±0.3 75.7 ±0.3 77.6 ±0.4

TABLE 10: Classification accuracy with different buffering strategies.

b1 = 20, b2 = 80 b1 = 20, b2 = 20 b1 = 50, b2 = 50 b1 = 90, b2 = 10
Buffer size vs Batch size
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Fig. 5: Effect of buffer (b1) and batch (b2) sizes on the population mean
approximation for samples in MT . Our exemplar selection (Orange) vs.
Random Sampling [14] (Blue). Lower distance implies better population
mean approximation. Lower variance indicates a more consistent MT .

lier selection. Therefore, it appears preferable to rank the
samples observed during CL and maintain representative
yet diverse samples, compared to random sampling. Fur-
ther, we remark that random sampling contributes towards
worse OPD metrics. This is evident from Tab. 4, where
GDumb [22], an existing CL baseline that only learns from
experience replay with random sampling, shows high OPD
despite achieving low PV.
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6.3 Schedule Robustness of proposed ER
Proposition 2 proves our exemplar selection strategy yields
a deterministic replay buffer when each class is observed at
once. Here we investigate its behavior under more general
schedules where class data is spread across a sequence, com-
paring with random reservoir sampling [14] as a baseline.

We analyze each class independently since both strate-
gies select samples per class. For clarity, buffer size b1
and batch size b2 refer to per-class capacities. We measure
performance as ∥µ̂y − µy∥ with µ̂y the last buffer’s (MT )
class mean and µy the population mean for each class y ∈ Y .

Fig. 5 compares performance over 4 different (b1, b2)
averaged across 100 random data shuffles on CIFAR dataset
to simulate schedules variability. Our strategy (Exemplar)
consistently approximates the population mean better than
reservoir sampling (Random), across all settings, corrobo-
rating the results from Tab. 10. Our method also exhibits
significantly lower variance, demonstrating that SCROLL
produces similar high-quality buffer distributions regard-
less of the schedule, making it inherently schedule-robust.

7 CONCLUSION

In this work, we introduced schedule robustness in CL, re-
quiring algorithms to perform consistently across multiple
data schedules—a crucial property for model reliability. Our
goal was motivated by an initial evaluation revealing that
most existing CL methods lack this property, resulting in
degraded performance in certain regimes. Across diverse
datasets and schedules, we found no previous method
consistently outperforming the others, making it difficult to
select an appropriate method for varying scenarios.

To achieve schedule robustness we proposed SCROLL,
which recasts CL into a meta-CL formulation with subse-
quent model fine-tuning. Key innovations include a ran-
dom feature layer to address distribution shifts between
pretraining and CL data (inspired by [12]), and a novel
experience replay strategy maintaining a schedule-robust
memory buffer. Theoretical analysis and extensive empirical
evaluation demonstrate that SCROLL is schedule-robust by
design, outperforming existing CL algorithms significantly
across all datasets in both average accuracy and robustness.
While the on-demand paradigm could potentially impose
computational costs when frequent updates are needed for
small-sized tasks, in most realistic applications, updates are
only required after substantial data accumulation, effec-
tively mitigating this concern.

Our findings suggest a promising general strategy for
CL: learning online a coarse-yet-robust model for each class
followed by on-demand adaptation. This approach grants both
flexibility and consistency to CL algorithms. The online step
prevents inter-class interference by learning each class inde-
pendently, while the adaptation step corrects for distribu-
tion shifts in model representation. Using cross-entropy loss
for adaptation optimizes for the most likely class, improving
overall performance. SCROLL’s robust performance offers
strong support for adopting this strategy.
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