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Abstract— We present experimental results of electron
transport in one-dimensional (1D) quantum channels created
electrostatically with a triple-gate setup on GaAs/AlGaAs
heterostructures. In this configuration, two gates determine the
confinement potential, while the third gate adjusts the carrier
density within the 1D channel. While maintaining a shallower
confinement and decreasing the 1D carrier density, we observe
interactions between the ground and first excited states, leading
to an anticrossing. These states rely on the 1D carrier density,
the decrease in confinement potential, and the effects of
Coulomb interaction. Our results suggest that fine-tuning the
triple-gate geometry may reveal complex phases in interacting
1D quantum systems.

I. INTRODUCTION

The transport properties of low-dimensional semiconductor
nanostructures in high-quality GaAs/AlGaAs heterostructures
have been extensively studied, especially using the two-
dimensional electron gas (2DEG). The ability to further
confine electrons’” momentum in the 2DEG by electrostatic
potentials allows access to the 1D regime [1,2], where
conductance measured at low temperatures quantizes in
universal units of 2Ne’/h, where the factor 2 accounts for the
spin degeneracy of electrons, % is Planck’s constant, e is the
electron charge, and N is the integer filling of 1D subbands [3-
11]. Advances in fabrication techniques and access to high-
quality 2DEGs now make the many-body states within 1D
channels accessible [5,9,12]. Several interesting features have
been observed in the conductance of 1D quantum wires or
quantum point contacts (QPCs), such as the 0.7(2¢’/h)
conductance anomaly and the spin-polarized 0.5(2e°/h)
conductance feature [13-24]. Both are suggested to result from
intrinsic spin polarization and exchange interactions within 1D
channels, while the role of lateral spin-orbit effects has also
been proposed [7,13,20,25]. Additionally, some reports
indicate that these features may originate from localized
impurities, similar to the Kondo effect [13]. Furthermore, the
0.7 anomaly has also been proposed to arise from the
formation of a Wigner crystal within a 1D channel [26,27].
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The Wigner crystal—a solid phase of electrons—was
theoretically predicted by Eugene Wigner in 1934. Its
formation relies on the dominance of electron-electron
Coulomb repulsion over kinetic energy, which occurs at very
low temperatures and densities [28]. Due to the enhanced
interaction effects in 1D systems, the emergence of a 1D
Wigner crystal remains a topic of fundamental interest [29].
This state forms when a confined system of 1D electrons
interacting via the long-range Coulomb force minimizes its
total energy by arranging into a regular lattice due to mutual
repulsion. The key condition for this crystallization is that the
Coulomb energy must surpass the kinetic energy in the low-
density regime. However, intrinsic quantum fluctuations and
inhomogeneity in the background potential within 1D
channels could affect the direct observation of the 1D Wigner
lattice. Moreover, challenges arise in manipulating a 1D
Wigner lattice due to the lack of long-range order in infinite
systems [27,28,30,31]. Nonetheless, it may be possible to
probe phases of the 1D Wigner lattice, at least macroscopically
in systems with few electrons. Experimental evidence of the
1D Wigner lattice was reported through conductance
measurements in weakly confined 1D quantum wires, where
the first plateau at 2e’/4 disappeared when the confinement
and carrier density were reduced, indicating the new ground
state at 4e’/h [4,5,32]. Due to the increased interactions among
1D electrons, the ground state can transition into a zigzag
phase before splitting into two lines of electrons, each
contributing 2e*h to conductance. This phenomenon was
directly captured through transverse electron focusing
experiments [33]. Moreover, minimizing disorder is essential
to prevent pinning the fragile Wigner state. Additionally, low-
density 1D systems revealed the emergence of a variety of
quantized conductance plateaus below 2¢°/ at fractional
fillings of 2/5,1/5, and others (in units of e’/) in the 1D
Wigner regime [5.8,9].

Despite advances in understanding the physics of the 1D
Wigner lattice, experimental challenges limit the extent of its
observations due to the subtle balance required between carrier
density and confinement potential. In the present work, we
fabricate high-quality 1D quantum wires using GaAs/AlGaAs
heterostructures and investigate the emergence of the 1D
Wigner lattice through transport measurements.

II. EXPERIMENTAL

Two samples, A and B, were fabricated using the 2DEG
formed within a GaAs/AlGaAs quantum well of 30 nm width,
grown using molecular beam epitaxy. Samples A and B had a
low-temperature mobility, u of 2.38 x 10° cm?/Vs and carrier



density, nap of 2.24 x 10'! cm™. The GaAs/AlGaAs wafers
were converted into Hall bar geometries using the standard
photolithography process. Ohmic contacts were formed on
the edges of the Hall bar; the process is described in detail
below. Metal gates (Cr/Au) were deposited on Hall bars to
define triple-gated 1D devices consisting of a top gate
separated from a pair of split gates by a cross-linked poly
(methyl methacrylate), PMMA (Fig. 1(a)) [4,5,9]. The
lithographically defined 1D channel had a length L of 0.7 pm
and a width W of 1 um. The two-terminal differential
conductance, G=dI/dV,; where Vi, is the applied dc source-
drain bias, was measured in a cryogen-free dilution
refrigerator at a base temperature of 19 mK. An excitation
voltage of 10 uV at 77 Hz was applied, and G was measured
using the standard lock-in amplifier.
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Figure 1: (a) Schematic of the device showing split gates, top gate, source,
and drain for two-terminal conductance measurement. (b) Scanning electron
microscopy image of a representative device, showing a pair of split gates
with a top gate placed over them via PMMA, as indicated in the black regime.
A magnified view of the central region of the 1D channel is shown at the
bottom, where split gates and a top gate may be noticed.

III. DEVICE FABRICATION

In this work, ohmic contacts were formed on the edges of
the Hall bar by diffusing an alloy of NiGeAu as spikes from
the surface to create electrical connections with the 2DEG. To
fabricate ohmic contacts, three processes are generally
required: photolithography, thermal deposition, and rapid
thermal annealing (RTA). The pattern of ohmic contacts on
the photoresist was written using standard photolithography.
After development, a NiGeAu alloy was thermally deposited
on the surface, as shown schematically in Fig. 1(a), followed
by lift-off. Au is known as a good metal conductor with low
electrical resistivity. Ge acts as a donor that would substitute
Ga in GaAs, providing extra electrons to improve
conductivity [34-36]. Ni serves as a surfactant, which
prevents spheroidization in the AuGe alloy and helps
facilitate the diffusion of elements into GaAs. Additionally,
the ratio of Au to Ge was set at 88 wt% : 12 wt% to limit the
eutectic temperature at 360 °C [36]. After deposition, RTA
treatment induces metal-semiconductor reactions, resulting in
the diffusion and penetration of the alloy through the
heterostructure and the 2DEG. As the annealing process
begins and the temperature rises, Ni reacts with native oxides
on the GaAs surface to eliminate their effects and interacts
with GaAs, forming intermediate complexes. These
complexes disrupt the crystal order, creating pathways for
diffusion. Through these pathways, Ge diffuses into GaAs,
while Ga diffuses out of GaAs, reacting with Au in the

contacts [35,36]. As described above, the components in the
contacts react with GaAs to form thermodynamically stable
compounds until the reactions are complete or reactants are
exhausted [34-36]. Further annealing may cause As to diffuse
from GaAs toward the contact surface, vaporize, and form
voids that are later filled with other compounds. It has been
reported that Ge doping in GaAs decreases contact resistance,
whereas Ga diffusion increases it [37].

Fig. 2 shows the effects of RTA temperature and holding
time on the resistivity of the 2DEG measured at a temperature
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Figure 2: Resistivity measured between ohmic contacts as a function of
annealing temperature (shown in red) and the holding time of RTA (shown
in black).

of 77 K. We observed that as the annealing temperature
increased from 390 to 450°C, the resistivity dropped sharply
at 410°C, reached its lowest point at 430°C, and then
increased again at 450°C. Additionally, the holding time was
optimized at a fixed RTA temperature of 430°C, as shown in
Fig. 2. It was concluded through multiple optimization tests
that holding times between 70-80 s yielded consistently lower
resistivity values. Similar results have also been found in
other reports [37,38]. The decrease in resistivity as the
temperature decreases could be explained by the increase in
the diffusion of Au along the spikes, which leads to the
increase in the Au-Ga mixture and heavy doping of Ge in the
Ga vacancies in GaAs. Exceeding the lowest point in
resistivity, higher annealing temperature keeps driving the
reaction between Ga and Au, but the formation of Au-Ga
mixture dominates the process, leading to the degradation in
surface morphology of contacts and the increase in contact
resistivity. Also, the instability of the bonds among the atoms
in the heterostructure and contacts deteriorates the contact
resistivity. Therefore, the effect of annealing temperature is
determined by the Ge doping in the semiconductor, the
surface degradation, and the stability of the bonds at high
annealing temperatures [38]. For the effect of holding time,
the resistivity reduced as the time increased from 70 to 80 s,
and increased significantly as the time reached 90 s. The
decrease in resistivity as the holding time increased may be
attributed to further doping of Ge during a longer period,
when the effect of Ge doping is dominant [36]. When the
holding time is longer than the lowest resistivity point, the
doping slows down due to the consumption of Ge, and the



increase in Ga vacancies may in turn increase the contact
resistivity [34].

The Schottky gates are used to selectively deplete electrons
in the 2DEG to define a clean 1D channel. Au is ideal for the
formation of a Schottky gate on GaAs due to its high electrical
conductivity and availability as a bonding pad. However, due
to its poor adhesion to GaAs, a thin Cr or Ti layer is generally
sandwiched between Au and GaAs [36].

0.4

-04 - ' : : -
03 02 01 0 01 02 03
V(V)

Figure 3: I-V curve of the fabricated ohmic contacts.

Fig. 3 shows the current-voltage (I-V) characteristics
between two ohmic contacts, exhibiting linear ohmic
behavior up to approximately + 200 mV. As the magnitude of
applied voltage increases, the I-V curve tends to become
nonlinear in both negative and positive bias, likely due to high
local electric fields around the spikes formed within the
heterostructure [39]. The high fields drive the electrons in the
2DEG to the maximum velocity. Therefore, further increase
in the driving voltage does not increase the mobility of
electrons, and the corresponding I-V curve deviates from the
linear trend [39]. Conductance measurements were performed
at an excitation voltage of 10 puV, which is well within the
linear regime. For larger dc bias voltage, the non-linear
transport will occur, which is generally utilized to perform 1D
subband spectroscopy [11].
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Figure 4: I-V curve representing the leakage-current measurement
performed on Shottky gates.

The Schottky gates are characterized by measuring [-V
characteristics between one of the gates (either the split gates
or the top gate) and an ohmic contact. Fig. 4 shows the [-V
curve of a Schottky gate, with a positive breakdown voltage
of ~0.5 V and a leakage current of around 1 pA at V=-4.0 V.
This low leakage current at high negative bias shows good
Schottky diode characteristics in our devices.

IV. RESULTS AND DISCUSSION

The differential conductance G measured through a 1D
constriction requires ramping (sweeping) the split gate
voltage, Vi, to first deplete electrons underneath the gates,
before the depletion zone extends in the region between the
split gates to pinch off the channel. As the split gates begin to
sweep from zero to negative voltage values, the 2D density of
states (DoS) transforms into the 1D DoS, resulting in the onset
of quasi-one dimensionality. The 1D channel forms, and
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Figure 5: (a) The differential conductance G of Sample A at V, from -0.75
V (left) to -3.45 V (right) with an increment of -0.15 V. (b) The corresponding
grayscale plot of transconductance dG/dV, of data in Fig. 5(a).

depending on the dimensions of the 1D constriction and the
Fermi energy, N integer 1D subbands will be occupied. By
sweeping the split gates further negatively, electrons in higher
subbands depopulate, resulting in the observation of a
conductance staircase quantized in units(a) of 2e’/h (Fig.
5(a)). Therefore, sweeping Vs, controls the width and the
number of 1D subbands within the 1D channel. Applying a
negative voltage to the top gate, Vi, reduces the electron
density within the 1D channel, as well as affecting the overall
confinement. The differential conductance was measured
under different top gate and split gate voltages. The series
resistance from measurement leads and ohmic contacts was
removed from the results to align the quantized conductance
plateaus with N(2e%/h).

Fig. 5(a) shows the differential conductance G of Sample
A as a function of split gate voltage at different top gate
voltages. One advantage of the top gate is that it assists in
flattening the bottom of the potential confinement as the top
gate voltage decreases, which also reduces the number of
occupied 1D subbands. Also, as the split gate voltage controls



the width of the 1D channel, the decreasing top gate voltage
raises the bottom of the potential confinement, thereby
assisting in manipulating the Fermi level across the 1D energy
states. In Fig. 5(a), on the left, integer plateaus in units of 2e°/
are resolved. This is a strong confinement regime; the
potential is generally parabolic. As the top gate voltage
decreases from the left (Vig~ -0.75 V) to the right (Vig~ -3.45
V), the integer plateaus gradually weaken, and the overall
channel width is reduced. It may be noted on the left of the
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Figure 6: (a) The differential conductance G of Sample B at ¥}, from -1.80
V (left) to -3.0 V (right) with an increment of -0.06 V. (b) The corresponding
grayscale plot of transconductance dG/dV, of data in Fig. 6(a).

plot that three subbands are occupied, whereas the trace on
the right shows two plateaus significantly reduced in strength.
On weakening the confinement, the subband spacing reduces,
which means the system is transitioning towards two-
dimensionality. The evolution of 1D subbands may be further
visualized in the grayscale plot in Fig. 5(b), which shows the
transconductance of the results presented in Fig. 5(a). The
dark regime appears as plateaus, and the gray regime as the
risers in conductance. It can be seen from the grayscale plot
that five 1D subbands are resolved at V,, ~ -0.75 V, which
gradually narrow in the plateau width as the density and
confinement within the 1D channel decrease. Although the
system displays well-defined plateaus and a consistent
decrease in strength as the confinement is reduced, we did not
observe signs of anticrossing between the ground and first

excited states, which is a precursor to the formation of the 1D
Wigner lattice within the 1D channel.

Fig. 6 shows the conductance plot in Sample B as a
function of split gate voltage for different top gate voltages.
On the left of the graph, the 2¢%/ plateau, representing the
ground state, is already weakly defined, although it is
accompanied by the 0.7 structure. On decreasing the top gate
voltage, the 2e’/h plateau gradually disappears; notice the
traces close to the pinch off regime near Vy~-2.5 V, which is
accompanied by a relatively stronger plateau at 4e?/. On
moving further to the right, the 2¢’/ returns. It may be
noticed that plateaus on the right of the plot are slightly lower
in value than the expected quantized conductance. This
regime is dominated by electron-electron interactions, which
are known to reduce the quantized conductance [40]. The
evolution of 1D subbands may be further visualized in the
grayscale plot in Fig. 6(b), which shows the transconductance
of the results presented in Fig. 6(a). The conductance data for
Vie from 0 to -1.80 V exhibit regular integer plateaus,
however, they are not included here. It may be noted that on
moving to more negative top gate voltages, before the first
plateau disappears, there is an anticrossing of the first (4e?/h)
and second (6e’/h) excited states, due to the weakening of
4e%/h at V,z~-2.6 V. However, this is a short-lived state as Vi,
is gradually made more negative, around V,=-2.9 V, the
ground (2¢°/k) and first excited states anticross, resulting in
the disappearance of 2e¢”/h, and the new ground state is now
4¢°/h, shown with an arrow in Fig. 6(b). To be noted that there
is a tendency for the disappearance of the third plateau (6¢°/4),
on making the top gate more negative; however, this was hard
to measure as the regime was in close proximity to the 2D
regime. The anticrossing of the ground and first excited states
indicates the possible reorganization of 1D electrons into a
zigzag to form a 1D Wigner lattice. Our results are in
agreement with previous findings [4,5,32].

The results shown in Figs. 5 and 6 come from two different
samples, although both were fabricated from the same
GaAs/AlGaAs wafer. One displays interaction effects, while
the other does not. This difference may result from the
complex interplay between carrier density and the
confinement potential, which is shaped by the split gates and
the top gate. Moreover, to observe the anticrossing, it is
crucial that not only a low-density 1D regime is present, but
also that the interaction energy exceeds the confinement
energy for a 1D Wigner lattice to form.

We notice signatures of electron-electron interaction
effects near the 1D-2D transition in Sample B, where the
interaction effects dominate the confinement and kinetic
energies. To determine if the 1D regime has conditions for the
formation of the 1D Wigner lattice, we need to estimate the
1D density of electrons, n1p, The 2D density, n2p, along the 1D
channel may be estimated using the channel pinch-off
voltage, V), using the relation

Nyp = eV, /2meW, (1)



where ¢=12.5 is the dielectric constant of GaAs, & is the
permittivity of free space, and e is the electron charge
[16,41,42]. As the Wigner lattice forms in the ground state,
the effective width of the channel can be approximated to
Jap/2, where, A2p = (21 /nap)'? is the Fermi wavelength of the
2DEG, therefore,

nip = napAp/2 (2)

may be estimated [18]. For the anticrossing in Fig. 6, the
effective pinch-off voltage, V,," due to both split and top gates
is ~ - 5.0 V. Using (1) and (2), we get nap ~ 5.6x10"° cm™? ,
and nip ~2.75 x 10° cm’'. As n;pag < 1, where az= 10 nm
is the effective Bohr radius of GaAs, a 1D Wigner crystal may
have appeared in the system.

In conclusion, we created 1D channels using high-quality
2DEGs and studied electron transport within them. By
carefully adjusting the confinement and density of 1D
electrons, we observed potential signs of a 1D Wigner lattice.
Our findings suggest that 1D quantum systems hold great
potential for exploring different phases expected to form
within the Wigner regime.
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