
  

  

Abstract— We present experimental results of electron 

transport in one-dimensional (1D) quantum channels created 

electrostatically with a triple-gate setup on GaAs/AlGaAs 

heterostructures. In this configuration, two gates determine the 

confinement potential, while the third gate adjusts the carrier 

density within the 1D channel. While maintaining a shallower 

confinement and decreasing the 1D carrier density, we observe 

interactions between the ground and first excited states, leading 

to an anticrossing. These states rely on the 1D carrier density, 

the decrease in confinement potential, and the effects of 

Coulomb interaction. Our results suggest that fine-tuning the 

triple-gate geometry may reveal complex phases in interacting 

1D quantum systems.   

I. INTRODUCTION 

The transport properties of low-dimensional semiconductor 
nanostructures in high-quality GaAs/AlGaAs heterostructures 
have been extensively studied, especially using the two-
dimensional electron gas (2DEG). The ability to further 
confine electrons’ momentum in the 2DEG by electrostatic 
potentials allows access to the 1D regime [1,2], where 
conductance measured at low temperatures quantizes in 
universal units of 2Ne2/h, where the factor 2 accounts for the 
spin degeneracy of electrons, h is Planck’s constant, e is the 
electron charge, and N is the integer filling of 1D subbands [3-
11]. Advances in fabrication techniques and access to high-
quality 2DEGs now make the many-body states within 1D 
channels accessible [5,9,12]. Several interesting features have 
been observed in the conductance of 1D quantum wires or 
quantum point contacts (QPCs), such as the 0.7(2e2/h) 
conductance anomaly and the spin-polarized 0.5(2e2/h) 
conductance feature [13-24]. Both are suggested to result from 
intrinsic spin polarization and exchange interactions within 1D 
channels, while the role of lateral spin-orbit effects has also 
been proposed [7,13,20,25]. Additionally, some reports 
indicate that these features may originate from localized 
impurities, similar to the Kondo effect [13]. Furthermore, the 
0.7 anomaly has also been proposed to arise from the 
formation of a Wigner crystal within a 1D channel [26,27]. 
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The Wigner crystal—a solid phase of electrons—was 
theoretically predicted by Eugene Wigner in 1934. Its 
formation relies on the dominance of electron-electron 
Coulomb repulsion over kinetic energy, which occurs at very 
low temperatures and densities [28]. Due to the enhanced 
interaction effects in 1D systems, the emergence of a 1D 
Wigner crystal remains a topic of fundamental interest [29]. 
This state forms when a confined system of 1D electrons 
interacting via the long-range Coulomb force minimizes its 
total energy by arranging into a regular lattice due to mutual 
repulsion. The key condition for this crystallization is that the 
Coulomb energy must surpass the kinetic energy in the low-
density regime. However, intrinsic quantum fluctuations and 
inhomogeneity in the background potential within 1D 
channels could affect the direct observation of the 1D Wigner 
lattice. Moreover, challenges arise in manipulating a 1D 
Wigner lattice due to the lack of long-range order in infinite 
systems [27,28,30,31]. Nonetheless, it may be possible to 
probe phases of the 1D Wigner lattice, at least macroscopically 
in systems with few electrons. Experimental evidence of the 
1D Wigner lattice was reported through conductance 
measurements in weakly confined 1D quantum wires, where 
the first plateau at 2e2/h disappeared when the confinement 
and carrier density were reduced, indicating the new ground 
state at 4e2/h [4,5,32]. Due to the increased interactions among 
1D electrons, the ground state can transition into a zigzag 
phase before splitting into two lines of electrons, each 
contributing 2e2/h to conductance. This phenomenon was 
directly captured through transverse electron focusing 
experiments [33]. Moreover, minimizing disorder is essential 
to prevent pinning the fragile Wigner state. Additionally, low-
density 1D systems revealed the emergence of a variety of 
quantized conductance plateaus below 2e2/h at fractional 
fillings of 2/5,1/5, and others (in units of e2/h) in the 1D 
Wigner regime [5.8,9].  

Despite advances in understanding the physics of the 1D 
Wigner lattice, experimental challenges limit the extent of its 
observations due to the subtle balance required between carrier 
density and confinement potential. In the present work, we 
fabricate high-quality 1D quantum wires using  GaAs/AlGaAs 
heterostructures and investigate the emergence of the 1D 
Wigner lattice through transport measurements. 

II. EXPERIMENTAL 

Two samples, A and B, were fabricated using the 2DEG 
formed within a GaAs/AlGaAs quantum well of 30 nm width, 
grown using molecular beam epitaxy. Samples A and B had a 
low-temperature mobility, µ of 2.38 × 106 cm2/Vs and carrier 
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density, n2D of 2.24 × 1011 cm-2. The GaAs/AlGaAs wafers 
were converted into Hall bar geometries using the standard 
photolithography process. Ohmic contacts were formed on 
the edges of the Hall bar; the process is described in detail 
below. Metal gates (Cr/Au) were deposited on Hall bars to 
define triple-gated 1D devices consisting of a top gate 
separated from a pair of split gates by a cross-linked poly 
(methyl methacrylate), PMMA (Fig. 1(a)) [4,5,9]. The 
lithographically defined 1D channel had a length L of 0.7 µm 
and a width W of 1 µm. The two-terminal differential 
conductance, G=dI/dVsd, where Vsd is the applied dc source-
drain bias, was measured in a cryogen-free dilution 
refrigerator at a base temperature of 19 mK. An excitation 
voltage of 10 µV at 77 Hz was applied, and G was measured 
using the standard lock-in amplifier.  
 

 
 

Figure 1: (a) Schematic of the device showing split gates, top gate, source, 
and drain for two-terminal conductance measurement. (b) Scanning electron 
microscopy image of a representative device, showing a pair of split gates 
with a top gate placed over them via PMMA, as indicated in the black regime. 
A magnified view of the central region of the 1D channel is shown at the 
bottom, where split gates and a top gate may be noticed.  

III. DEVICE FABRICATION  

In this work, ohmic contacts were formed on the edges of 
the Hall bar by diffusing an alloy of NiGeAu as spikes from 
the surface to create electrical connections with the 2DEG. To 
fabricate ohmic contacts, three processes are generally 
required: photolithography, thermal deposition, and rapid 
thermal annealing (RTA). The pattern of ohmic contacts on 
the photoresist was written using standard photolithography. 
After development, a NiGeAu alloy was thermally deposited 
on the surface, as shown schematically in Fig. 1(a), followed 
by lift-off. Au is known as a good metal conductor with low 
electrical resistivity. Ge acts as a donor that would substitute 
Ga in GaAs, providing extra electrons to improve 
conductivity [34-36]. Ni serves as a surfactant, which 
prevents spheroidization in the AuGe alloy and helps 
facilitate the diffusion of elements into GaAs. Additionally, 
the ratio of Au to Ge was set at 88 wt% : 12 wt% to limit the 
eutectic temperature at 360 ℃ [36]. After deposition, RTA 
treatment induces metal-semiconductor reactions, resulting in 
the diffusion and penetration of the alloy through the 
heterostructure and the 2DEG. As the annealing process 
begins and the temperature rises, Ni reacts with native oxides 
on the GaAs surface to eliminate their effects and interacts 
with GaAs, forming intermediate complexes. These 
complexes disrupt the crystal order, creating pathways for 
diffusion. Through these pathways, Ge diffuses into GaAs, 
while Ga diffuses out of GaAs, reacting with Au in the 

contacts [35,36]. As described above, the components in the 
contacts react with GaAs to form thermodynamically stable 
compounds until the reactions are complete or reactants are 
exhausted [34-36]. Further annealing may cause As to diffuse 
from GaAs toward the contact surface, vaporize, and form 
voids that are later filled with other compounds. It has been 
reported that Ge doping in GaAs decreases contact resistance, 
whereas Ga diffusion increases it [37].   

Fig. 2 shows the effects of RTA temperature and holding 
time on the resistivity of the 2DEG measured at a temperature  

 

 
 

Figure 2: Resistivity measured between ohmic contacts as a function of 
annealing temperature (shown in red) and the holding time of RTA (shown 
in black).  

of 77 K. We observed that as the annealing temperature 
increased from 390 to 450℃, the resistivity dropped sharply 
at 410℃, reached its lowest point at 430℃, and then 
increased again at 450℃. Additionally, the holding time was 
optimized at a fixed RTA temperature of 430℃, as shown in 
Fig. 2. It was concluded through multiple optimization tests 
that holding times between 70-80 s yielded consistently lower 
resistivity values. Similar results have also been found in 
other reports [37,38]. The decrease in resistivity as the 
temperature decreases could be explained by the increase in 
the diffusion of Au along the spikes, which leads to the 
increase in the Au-Ga mixture and heavy doping of Ge in the 
Ga vacancies in GaAs. Exceeding the lowest point in 
resistivity, higher annealing temperature keeps driving the 
reaction between Ga and Au, but the formation of Au-Ga 
mixture dominates the process, leading to the degradation in 
surface morphology of contacts and the increase in contact 
resistivity. Also, the instability of the bonds among the atoms 
in the heterostructure and contacts deteriorates the contact 
resistivity. Therefore, the effect of annealing temperature is 
determined by the Ge doping in the semiconductor, the 
surface degradation, and the stability of the bonds at high 
annealing temperatures [38]. For the effect of holding time, 
the resistivity reduced as the time increased from 70 to 80 s, 
and increased significantly as the time reached 90 s. The 
decrease in resistivity as the holding time increased may be 
attributed to further doping of Ge during a longer period, 
when the effect of Ge doping is dominant [36]. When the 
holding time is longer than the lowest resistivity point, the 
doping slows down due to the consumption of Ge, and the 



  

increase in Ga vacancies may in turn increase the contact 
resistivity [34].  

The Schottky gates are used to selectively deplete electrons 
in the 2DEG to define a clean 1D channel.  Au is ideal for the 
formation of a Schottky gate on GaAs due to its high electrical 
conductivity and availability as a bonding pad. However, due 
to its poor adhesion to GaAs, a thin Cr or Ti layer is generally 
sandwiched between Au and GaAs [36].  

 

 
 

Figure 3: I-V curve of the fabricated ohmic contacts.   

Fig. 3 shows the current-voltage (I-V) characteristics 
between two ohmic contacts, exhibiting linear ohmic 
behavior up to approximately + 200 mV. As the magnitude of 
applied voltage increases, the I-V curve tends to become 
nonlinear in both negative and positive bias, likely due to high 
local electric fields around the spikes formed within the 
heterostructure [39]. The high fields drive the electrons in the 
2DEG to the maximum velocity. Therefore, further increase 
in the driving voltage does not increase the mobility of 
electrons, and the corresponding I-V curve deviates from the 
linear trend [39]. Conductance measurements were performed 
at an excitation voltage of 10 μV, which is well within the 
linear regime. For larger dc bias voltage, the non-linear 
transport will occur, which is generally utilized to perform 1D 
subband spectroscopy [11]. 

 

 
 

Figure 4: I-V curve representing the leakage-current measurement 
performed on Shottky gates.    

The Schottky gates are characterized by measuring I-V 
characteristics between one of the gates (either the split gates 
or the top gate) and an ohmic contact. Fig. 4 shows the I-V 
curve of a Schottky gate, with a positive breakdown voltage 
of ~ 0.5 V and a leakage current of around 1 pA at V= -4.0 V. 
This low leakage current at high negative bias shows good 
Schottky diode characteristics in our devices.  

IV. RESULTS AND DISCUSSION  

 
The differential conductance G measured through a 1D 

constriction requires ramping (sweeping) the split gate 
voltage, Vsg to first deplete electrons underneath the gates, 
before the depletion zone extends in the region between the 
split gates to pinch off the channel. As the split gates begin to 
sweep from zero to negative voltage values, the 2D density of 
states (DoS) transforms into the 1D DoS, resulting in the onset 
of quasi-one dimensionality. The 1D channel forms, and 
 

  
 
Figure 5: (a) The differential conductance G of Sample A at Vtg from -0.75 
V (left) to -3.45 V (right) with an increment of -0.15 V. (b) The corresponding 
grayscale plot of transconductance dG/dVsg of data in Fig. 5(a).   

depending on the dimensions of the 1D constriction and the 
Fermi energy, N integer 1D subbands will be occupied. By 
sweeping the split gates further negatively, electrons in higher 
subbands depopulate, resulting in the observation of a 
conductance staircase quantized in units(a) of 2e2/h (Fig. 
5(a)).  Therefore, sweeping Vsg controls the width and the 
number of 1D subbands within the 1D channel. Applying a 
negative voltage to the top gate, Vtg reduces the electron 
density within the 1D channel, as well as affecting the overall 
confinement. The differential conductance was measured 
under different top gate and split gate voltages. The series 
resistance from measurement leads and ohmic contacts was 
removed from the results to align the quantized conductance 
plateaus with N(2e2/h). 

Fig. 5(a) shows the differential conductance G of Sample 
A as a function of split gate voltage at different top gate 
voltages.  One advantage of the top gate is that it assists in 
flattening the bottom of the potential confinement as the top 
gate voltage decreases, which also reduces the number of 
occupied 1D subbands. Also, as the split gate voltage controls 



  

the width of the 1D channel, the decreasing top gate voltage 
raises the bottom of the potential confinement, thereby 
assisting in manipulating the Fermi level across the 1D energy 
states. In Fig. 5(a), on the left, integer plateaus in units of 2e2/h 
are resolved. This is a strong confinement regime; the 
potential is generally parabolic. As the top gate voltage 
decreases from the left (Vtg~ -0.75 V) to the right (Vtg~ -3.45 
V), the integer plateaus gradually weaken, and the overall 
channel width is reduced. It may be noted on the left of the  

 
 
Figure 6: (a) The differential conductance G of Sample B at Vtg from -1.80 
V (left) to -3.0 V (right) with an increment of -0.06 V. (b) The corresponding 
grayscale plot of transconductance dG/dVsg of data in Fig. 6(a).   

 
plot that three subbands are occupied, whereas the trace on 
the right shows two plateaus significantly reduced in strength. 
On weakening the confinement, the subband spacing reduces, 
which means the system is transitioning towards two-
dimensionality. The evolution of 1D subbands may be further 
visualized in the grayscale plot in Fig. 5(b), which shows the 
transconductance of the results presented in Fig. 5(a). The 
dark regime appears as plateaus, and the gray regime as the 
risers in conductance. It can be seen from the grayscale plot 
that five 1D subbands are resolved at Vtg ~ -0.75 V, which 
gradually narrow in the plateau width as the density and 
confinement within the 1D channel decrease. Although the 
system displays well-defined plateaus and a consistent 
decrease in strength as the confinement is reduced, we did not 
observe signs of anticrossing between the ground and first 

excited states, which is a precursor to the formation of the 1D 
Wigner lattice within the 1D channel.  

Fig. 6 shows the conductance plot in Sample B as a 
function of split gate voltage for different top gate voltages.  
On the left of the graph, the 2e2/h plateau, representing the 
ground state, is already weakly defined, although it is 
accompanied by the 0.7 structure. On decreasing the top gate 
voltage, the 2e2/h plateau gradually disappears; notice the 
traces close to the pinch off regime near Vsg~-2.5 V, which is 
accompanied by a relatively stronger plateau at 4e2/h. On 
moving further to the right, the 2e2/h returns. It may be 
noticed that plateaus on the right of the plot are slightly lower 
in value than the expected quantized conductance. This 
regime is dominated by electron-electron interactions, which 
are known to reduce the quantized conductance [40].   The 
evolution of 1D subbands may be further visualized in the 
grayscale plot in Fig. 6(b), which shows the transconductance 
of the results presented in Fig. 6(a). The conductance data for 
Vtg from 0 to -1.80 V exhibit regular integer plateaus, 
however, they are not included here. It may be noted that on 
moving to more negative top gate voltages, before the first 
plateau disappears, there is an anticrossing of the first (4e2/h) 
and second (6e2/h) excited states, due to the weakening of 
4e2/h at Vtg~-2.6 V. However, this is a short-lived state as Vtg 
is gradually made more negative, around Vtg=-2.9 V, the 
ground (2e2/h) and first excited states anticross, resulting in 
the disappearance of 2e2/h, and the new ground state is now 
4e2/h, shown with an arrow in Fig. 6(b). To be noted that there 
is a tendency for the disappearance of the third plateau (6e2/h), 
on making the top gate more negative; however, this was hard 
to measure as the regime was in close proximity to the 2D 
regime. The anticrossing of the ground and first excited states 
indicates the possible reorganization of 1D electrons into a 
zigzag to form a 1D Wigner lattice. Our results are in 
agreement with previous findings [4,5,32].  

The results shown in Figs. 5 and 6 come from two different 
samples, although both were fabricated from the same 
GaAs/AlGaAs wafer. One displays interaction effects, while 
the other does not. This difference may result from the 
complex interplay between carrier density and the 
confinement potential, which is shaped by the split gates and 
the top gate. Moreover, to observe the anticrossing, it is 
crucial that not only a low-density 1D regime is present, but 
also that the interaction energy exceeds the confinement 
energy for a 1D Wigner lattice to form. 

We notice signatures of electron-electron interaction 
effects near the 1D-2D transition in Sample B, where the 
interaction effects dominate the confinement and kinetic 
energies. To determine if the 1D regime has conditions for the 
formation of the 1D Wigner lattice, we need to estimate the 
1D density of electrons, n1D. The 2D density, n2D, along the 1D 
channel may be estimated using the channel pinch-off 
voltage, Vp using the relation  

 
 𝑛2஽ = 0ߝߝ ௣ܸ/2(1)              ,ܹ݁ߨ 
 



  

where ε=12.5 is the dielectric constant of GaAs, ε0 is the 
permittivity of free space, and e is the electron charge 
[16,41,42]. As the Wigner lattice forms in the ground state, 
the effective width of the channel can be approximated to 
λ2D/2,  where, λ2D = (2π /n2D)1/2 is the Fermi wavelength of the 
2DEG, therefore,  

 
n1D = n2D λ2D/2                (2) 
 

may be estimated [18]. For the anticrossing in Fig. 6, the 
effective pinch-off  voltage, Vp

* due to both split and top gates 
is ~ - 5.0 V. Using (1) and (2), we get n2D ~ 5.6×1010 cm-2 , 
and n1D ~ 2.75 × 105 cm-1. As 𝑛1஽ܽ஻ < 1, where aB = 10 nm 
is the effective Bohr radius of GaAs, a 1D Wigner crystal may 
have appeared in the system. 

  In conclusion, we created 1D channels using high-quality 
2DEGs and studied electron transport within them. By 
carefully adjusting the confinement and density of 1D 
electrons, we observed potential signs of a 1D Wigner lattice. 
Our findings suggest that 1D quantum systems hold great 
potential for exploring different phases expected to form 
within the Wigner regime.   
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