

Alpha-1 antitrypsin deficiency and granulomatosis with polyangiitis: a systematic review and meta-analysis

Reem Alluhibi^{1,2,3}, Shashank Baradwaaj¹, Nina Heyer-Chauhan¹, Aileen Marshall⁴, David A. Lomas¹, Alan D. Salama⁵ and John R. Hurst ¹⁰

¹UCL Respiratory, University College London, London, UK. ²Department of Respiratory Care, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia. ³King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia. ⁴Hepatology, Royal Free London NHS Foundation Trust, London, UK. ⁵UCL Centre for Kidney and Bladder Health, Royal Free Hospital, London, UK.

Corresponding author: Reem Alluhibi (reem.alluhibi.23@ucl.ac.uk)

Shareable abstract (@ERSpublications)

This systematic review shows a strong association between alpha-1 antitrypsin deficiency (AATD) and granulomatosis with polyangiitis (GPA), especially in Z-allele carriers, and highlights GPA disease presentation among AATD individuals. https://bit.ly/4mgqlYD

Cite this article as: Alluhibi R, Baradwaaj S, Heyer-Chauhan N, et al. Alpha-1 antitrypsin deficiency and granulomatosis with polyangiitis: a systematic review and meta-analysis. Eur Respir Rev 2025; 34: 250088 [DOI: 10.1183/16000617.0088-2025].

Copyright ©The authors 2025

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

Received: 22 April 2025 Accepted: 4 Aug 2025

Abstract

Introduction Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder characterised by low circulating levels of alpha-1 antitrypsin (AAT) protein, a key inhibitor of neutrophil elastase and proteinase 3 (PR3) which is also the main autoantigen in granulomatosis with polyangiitis (GPA). This systematic review examines the association between AATD and GPA.

Methods A systematic search of PubMed, Embase, Cochrane, EBSCO Medline and Scopus (December 2024) identified studies on AATD and GPA. Data extraction and quality assessment followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A random-effects meta-analysis was conducted to calculate pooled odds ratios and assess heterogeneity.

Results 23 studies (9634 individuals) met inclusion criteria. The Z-allele prevalence was 11.65% in GPA compared to 3.29% in controls and the S-allele prevalence was 10.8% in GPA compared to 5.26% in controls. Among 1755 individuals with GPA across 10 studies that provided specific genotype data, 22 (1.25%) were homozygous for the Z-allele. Meta-analysis showed that Z-allele carriers had 3.11 times higher odds of developing GPA (eight studies; 95% CI 2.43–3.9; I²: 0%).

Conclusion This meta-analysis reinforces the link between AATD and GPA, particularly in carriers of the Z-allele, supporting the role of PR3 dysregulation in GPA pathogenesis.

Introduction

Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder characterised by reduced levels of alpha-1 antitrypsin (AAT) protein in the circulation [1]. Clinically important AATD is most commonly caused by homozygous Pi*Z mutation (Pi*ZZ genotype) in the *SERPINA1* gene [1]. More than 120 *SERPINA1* mutations have been reported in the literature. Normal alleles are referred to as PiM, while the most common deficiency alleles are PiZ and PiS, with PiMS, PiMZ, PiSS, PiSZ and PiZZ the most common deficiency genotypes seen [2].

AAT is mainly produced by hepatocytes and is a member of the serine protease inhibitor superfamily. The main function of these proteins is to inhibit enzymes released during inflammation, preventing tissue damage caused by protease overactivation [1]. AAT mainly inhibits serine proteases such as neutrophil elastase and proteinase 3 (PR3). Neutrophil elastase can break down lung elastin, which damages alveolar tissue. Therefore, individuals with AATD are at higher risk for developing early onset panlobular emphysema [1].

PR3, a neutrophil serine protease, is the main autoantigen in granulomatosis with polyangiitis (GPA) [3]. GPA is a rare form of vasculitis characterised by necrotising granulomatous inflammation and

small-to-medium vessel vasculitis. GPA is strongly associated with the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) in blood, in 80–90% of individuals, with specificity for neutrophil PR3 [3, 4]. GPA primarily affects the upper respiratory tract, eyes, lungs and kidneys but can also involve the skin and nervous system [5, 6].

It has been hypothesised that there is a relationship between AATD and GPA, but the underlying mechanisms are not fully understood, with several hypotheses proposed. Since AAT inhibits PR3, reduced levels of functional AAT protein in individuals with AATD may lead to increased neutrophil PR3 expression, potentially triggering an autoimmune response by circulating ANCA. Additionally, increased free PR3 could be taken up by antigen presenting cells to promote autoreactive T- and B-cell expansion and promote ANCA formation. This suggests a plausible pathophysiological link whereby AATD exacerbates immune dysregulation, resulting in a predisposition to GPA.

Observational studies have reported a higher incidence of GPA and other autoimmune conditions in individuals with AATD [4, 7, 8], indicating a potential mechanistic overlap between these two conditions. Although previous meta-analysis and a genome-wide association study, have reported associations between *SERPINA1* variants and ANCA-associated vasculitis (AAV), these focused primarily on genetic susceptibility across the broader AAV spectrum and did not examine clinical manifestations or prevalence patterns specific to AATD in GPA [9–11]. To our knowledge, no previous systematic review has evaluated the clinical and epidemiological relationship between AATD and GPA, including allele-specific risks, disease presentation and severity.

Methods

Search strategy and inclusion criteria

The search included the following terms: (lung diseases OR interstitial OR "granulomatosis with polyangiitis" OR "Wegener's granulomatosis" OR "granulomatosis with polyangiitis" OR GPA OR c-ANCA OR ASO) AND (alpha 1-antitrypsin deficiency OR A1ATD OR A1AT).

We searched PubMed, the Cochrane Central Register of Controlled Trials, EBSCO, Embase and Scopus. No specific publication date range was filtered. The search took place on 20 December 2024 and whilst the same search terms were used, the format was modified depending on the specific database. The systematic review protocol was registered with PROSPERO (CRD42021259104).

We included retrospective cohort, cross sectional, case—control, case report and case series studies. Populations included were all individuals diagnosed with GPA and AATD. AATD was defined by phenotyping or genotyping, and GPA was determined by contemporary classification criteria. Studies may have used different classification criteria for inclusion of GPA patients, as there have been numerous versions of these criteria used and endorsed by different societies. For many years covered by this review the American College of Rheumatology (1990) and the Chapel Hill Consensus Conference (1992 and 2012) classifications have predominated, which were based on clinical and histological features [12–14]. However, these early versions did not initially separate out certain ANCA associated vasculitis subtypes (such as microscopic polyangiitis) leading to potential confusion in disease classification. In addition, as was proposed in these criteria, many may have used surrogate markers for granulomatous disease (e.g. lung nodules defined radiologically, without histological evaluation). More recently the Diagnostic and Classification criteria in Vasculitis study led to the newer and widely adopted American College of Rheumatology/European Alliance of Associations for Rheumatology classification (2022), which are heavily weighted on the serological phenotype, but also allow classification based on surrogate features of granulomatous disease [15].

We excluded conference abstracts, editorial reports, nonresearch letters, theses and books, systematic reviews and meta-analysis, literature reviews, and studies published in any language other than English.

Quality assessment and statistical analysis

Following guidelines issued by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), the collated papers from all databases were prepared for screening. Studies were screened by their titles and abstracts using the Rayyan tool by two independent reviewers. The quality of studies was assessed by the first author using the Newcastle–Ottawa Scale (NOS) and a modified NOS for cohort, cross sectional and case–control studies. The Joanna Briggs Institute Critical Appraisal Tools were used for case reports and case series.

Data extraction was initially performed by one reviewer and then reviewed and finalised by a second reviewer.

Statistical analysis was conducted using STATA version 18. A random-effects model was employed to calculate the pooled odds ratio and corresponding 95% confidence intervals, accounting for potential heterogeneity among studies. Heterogeneity was assessed using the Cochran Q test and quantified with $\rm I^2$ statistics. A p-value <0.1 was used to determine the statistical significance for heterogeneity.

Results

Study selection and characteristics

A total of 22 studies were included in this systematic review, 11 of which were case—control studies, two were cohorts, two were cross sectional studies, three were case series and four were case reports (figure 1).

The sample sizes of the studies varied, ranging from single case reports to 2361 individuals in a European cohort. A total of 9634 individuals were included across all studies [16–20]. The Z mutation was the most commonly reported allele, followed by the S mutation. 15 studies reported the prevalence of AATD in GPA, three studies reported on GPA in AATD.

Prevalence of AATD in AAV

A summary of studies reporting associations between AATD and AAV is provided in table 1. The largest study, with 609 GPA cases, found a significant association between the Z-allele of AATD and AAV, mainly GPA [16]. The Z-allele was associated with GPA with a hazard ratio of 2.54, CI 1.78–3.64, p<0.0001 [16]. There was no significant association between the S-allele and AAV. MAHR *et al.* [4] also reported the association between carriage of the Z-allele and increased susceptibility to GPA. MS and MZ genotypes were associated with an odds ratio of 1.47 for GPA (95% CI 0.98–2.22; p=0.06). In this study, the S-allele was observed more frequently in GPA patients (6.4%) compared to controls (3.8%) (p<0.01), suggesting that the S polymorphism of AATD is also overexpressed among patients with GPA, in contrast

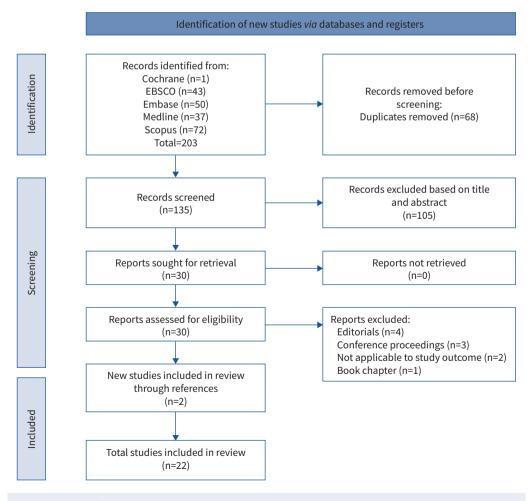


FIGURE 1 PRISMA flow diagram.

EUROPEAN RESPIRATORY REVIEW

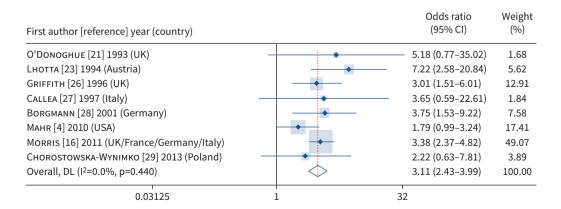
Age is reported as presented in each study: mean (range), median (interquartile range/range) or range only. cANCA: cytoplasmic anti-neutrophil cytoplasmic antibody; GPA: granulomatosis with polyangiitis; MPA: microscopic polyangiitis; NR: not reported; PR3: proteinase 3.

to the findings of Morris *et al.* [16]. Griffith *et al.* [26] reported an increase in the frequency of the Z-allele among cytoplasmic anti-neutrophil cytoplasmic antibody-positive individuals at 0.055 compared to the control frequency 0.018 (p=0.004), the relative risk conferred by the Z-allele was 3.0.

In a smaller cohort, Pervakova *et al.* [30] observed a prevalence of AATD phenotypes in 18.4% of GPA patients (7/38). Similar trends were reported by Baslund *et al.* [25], who found an over-representation of the Z-allele among GPA patients; eight of 44 patients with GPA (18%) were positive for the Z-allele, a frequency significantly higher (p<0.001) than the 4.7% observed in the general Scandinavian population.

Only one study in our review (Mahr *et al.* [4]) evaluated the risk of GPA in homozygous individuals. In this study, ZZ and SZ individuals exhibited a markedly elevated risk of GPA compared to MM carriers, with a statistically significant odds ratio of 14.6 (95% CI $1.8-\infty$; p=0.002) suggesting a dose-dependent relationship.

Across all studies included in this review, the overall prevalence of the Z-allele among GPA cases was 11.65% (196/1682), while the prevalence of the S-allele was 10.8% (155/1433). In comparison, the prevalence of the Z-allele in the control group was 3.29% and the prevalence of the S-allele in the control group was 5.26%. Among 1755 individuals with GPA across 10 studies that provided specific genotype data, 22 (1.25%) were homozygous for the Z-allele.


In meta-analysis (figure 2) there was a significant association between the Z-allele and GPA, with individuals carrying the Z-allele having 3.11 times higher odds of GPA compared to controls (eight studies; 95% CI 2.43–3.9; I^2 =0%). In contrast, the S-allele showed no significant association, with a pooled odds ratio of 0.72 (six studies; 95% CI 0.46–1.13; I^2 =19.5%).

Prevalence of AAV in AATD

Three publications reported the prevalence of GPA in AATD individuals, one exploring disease associations in AATD individuals, whilst the other two described the clinical presentation and outcome of individuals with systemic vasculitis and severe AATD (table 2). Stone *et al.* [7] reported five individuals with GPA among 651 PiZZ or PiZnull individuals (0.8%). Mohammad and Segelmark [33] further explored this association in a case series of five PiZZ individuals with primary systemic vasculitis (PSV), where three of those had GPA. Mazodier *et al.* [32] explored systemic necrotising vasculitis (SNV) in eight patients with severe AATD (PiZZ), one had GPA.

Pulmonary involvement and disease severity in AATD-associated vasculitis

Several studies included in this review explored organ-specific involvement in patients with AATD and vasculitis, particularly GPA. While some suggest a possible association with pulmonary manifestations and disease severity, the findings are not consistent across all studies. Pervakova *et al.* [30] reported that 18.4% (7/38) of GPA patients carried pathological AATD variants and all seven of these patients showed pulmonary involvement. In contrast, pulmonary manifestations were observed in 65% (20/31) of GPA patients without AATD. These findings suggest a possible association between AATD and increased risk of lung involvement in GPA. Moreover, the Birmingham Vasculitis Activity Score was significantly higher in GPA patients with abnormal AATD phenotypes (24.00±2.83) compared to those with normal phenotypes (16.42±1.50) [30]. In a

FIGURE 2 Forest plot of pooled odds ratios for the Z-allele from case–control studies of AATD and vasculitis. Weights are from the random-effects model.

First author [reference] year	Country	Sample size	Age, years median (range)	Sex, male/ female	AATD types	Patients with GPA	GPA manifestations
MAZODIER [32] 1996	Sweden	Eight AATD	48 (44–84)	4/4	5 ZZ 2 SZ	1 (ZZ)	Skin involvement: leg ulcers Kidneys: glomerulonephritis Upper respiratory tract: otitis and sinusitis
STONE [7] 2013	UK	615 AATD	NR	NR	All ZZ/ Z/Null	5 (0.8%)	NR
Монаммар and Segelmark [33] 2014	Sweden	Five AATD and primary systemic vasculitis	49 (17–67)	2/3	All ZZ	3	General symptoms, renal and lungs involvement, skin lesions

cohort of 40 ANCA-positive patients, O'Donoghue *et al.* [21] demonstrated that Z- and S-alleles were significantly overrepresented (p<0.05) in ANCA-associated vasculitis patients with pulmonary haemorrhage. Deshayes *et al.* [31] found that carriers of Z- and/or S-alleles had a significantly higher frequency of intra-alveolar haemorrhage compared to those with vasculitis without AAT-deficiency alleles (43% (15/35) *versus* 21% (22/107), p<0.01). In a case series by Mohammad and Segelmark [33], five patients with PSV and AATD were described, three of whom had GPA. All three GPA cases had pulmonary involvement, whereas the two non-GPA cases did not. Kidney, ear, nose, and throat involvement were also present in all GPA patients. In contrast, Morris *et al.* [16] found no significant association between Z-allele carriage and disease severity, survival and relapse. Beyond pulmonary complications, Baslund *et al.* [25] observed that Z carrier individuals had a higher prevalence of eye involvement than noncarriers (5/8 *versus* 8/36, respectively).

A summary of case reports is presented in table 3. These cases highlight the diverse presentations of GPA in individuals with AATD, demonstrating a spectrum of pulmonary, renal and systemic manifestations.

Discussion

This meta-analysis estimated the overall prevalence of Z- and S-allele carriers among individuals with GPA and the pooled odds ratio of Z- and S-allele carriers among GPA individuals. The findings demonstrate a significant overrepresentation of the Z-allele in individuals with GPA, with an overall prevalence of 11.65% compared to 3.29% in the control group. The odds of carrying the Z-allele were three times higher in GPA cases compared to controls, supporting the hypothesis that AATD may predisposes individuals to vasculitic disease, particularly GPA. The prevalence of the S-allele among GPA patients was 9.22%, while it was 5.26% in the control group. The S-allele was not significantly associated with GPA with an overall odds ratio of 0.72. These findings highlight the strong association of the Z-allele with GPA while suggesting no relationship with the S-allele.

There is much less data on the prevalence of GPA in individuals with AATD compared to the general population, in which the prevalence of GPA is 20–160 cases per million [35]. The largest AATD-focused study included in the review by Stone *et al.* [7] reported five GPA cases among 651 PiZZ or PiZnull individuals, suggesting a significantly higher risk. Mohammad and Segelmark [33] described five individuals with AATD and primary systemic vasculitis, three of whom had GPA, and Mazodier *et al.* [32] found one GPA case in eight PiZZ individuals with SNV. These findings suggest a significantly increased risk of GPA in individuals with AATD.

The available data on whether AATD modulates disease severity and organ involvement in GPA are mixed. Some studies suggest that pulmonary involvement and intra-alveolar haemorrhage may be more prevalent in individuals with AATD-associated GPA [23, 30, 31, 33], pointing to a potential pathogenic link in the respiratory system. However, other large-scale studies, such as that by Morris *et al.* [16], did not find significant associations between Z-allele carriage and clinical severity, relapse or survival. These discrepancies suggest that while certain patterns of organ involvement particularly pulmonary have been observed in Z-allele carriers, the overall evidence remains inconsistent. Beyond pulmonary features, limited reports have noted renal, ocular and ENT involvement in individuals with AATD and GPA, although these associations also lack consistent replication across studies [21, 31].

The mechanistic association between AATD and GPA likely involves protease–antiprotease imbalance and immune dysregulation. Failure to adequately inhibit PR3, a major autoantigen in GPA, in AATD likely

Downloaded from https://publications.ersnet.org on October 28, 2025 by guest. Please see licensing information on first page for reuse rights.

AAT: alpha-1 antitrypsin; ACR: American College of Rheumatology; ANCA: anti-neutrophil cytoplasmic antibody; cANCA: cytoplasmic anti-neutrophil cytoplasmic antibody; ENT: ear, nose, throat; GN: glomerulonephritis; PR3: proteinase 3.

amplifies neutrophil activation and the inflammatory cascade, perpetuating vasculitic damage [10]. Genetic analyses, such as those by ESNAULT et al. [22] and BORGMANN et al. [28], underscore the link between AAT-deficient alleles and PR3-ANCA positivity, implicating AATD as a driver of autoimmune mechanisms. Moreover, a meta-analysis by RAHMATTULLA et al. [11] and a genome-wide association study by Lyons et al. [10] reported genetic associations between SERPINA1 variants particularly the Z-allele and AAV. These findings support the role of SERPINA1 polymorphisms as a genetic risk factor, especially in PR3-ANCA-positive vasculitis, reinforcing the link between AATD and disease susceptibility [10, 11]. Additional indirect evidence supporting the critical role of AAT in individuals with GPA comes from a case report describing successful treatment of an 84-year-old woman with AATD and GPA using AAT replacement therapy [34]. This intervention, combined with corticosteroids, resulted in resolution of skin lesions and normalisation of renal function. The positive outcome in this case highlights the potential importance of addressing the protease-antiprotease imbalance in AATD-associated GPA. However, augmentation therapy may not be an effective solution if disease pathogenesis is primarily driven by the pro-inflammatory effects of Z-allele polymers. This possibility was raised in the study by Morris et al. [16], which reported the presence of AAT polymers in a kidney biopsy from a Z-allele carrier individual with active GPA. These findings suggest that AAT polymers might contribute directly to local inflammation and immune activation, potentially limiting the effectiveness of standard AAT replacement therapy. The role of unregulated protease activity in enhancing tissue damage is reinforced by studies reporting the ability of polymers of the Z variant of AAT to potentiate neutrophil chemotaxis [36]. Moreover, a recent study also demonstrated that in addition to circulating AAT levels the functional state of AAT is critical as oxidative modification of methionine residues within AAT can impair its ability to clear PR3 from the neutrophil surface, diminishing its anti-inflammatory effects [35]. To date, there are no clinical trials that have assessed the efficacy of augmentation therapy specifically in AATD patients with GPA, leaving its therapeutic role unproven in this context. This adds further complexity to the therapeutic equation and becomes more relevant with recent developments in AATD therapies including investigational drugs that aim to block polymer formation and emerging gene therapies designed to restore functional circulating AAT [37]. These newer therapeutic strategies are still in early stages and it remains uncertain whether they will prove effective in reducing the incidence of GPA in individuals with AATD.

This is the first systematic review and meta-analysis to examine both the epidemiological and clinical relationship between AATD and GPA, including Z- and S-allele prevalence, disease severity, and organ-specific involvement. However, it is not without limitations. Most studies included in this review were retrospective or small-scale, introducing potential biases. The lack of longitudinal data precludes definitive conclusions about the relationship between AATD and the development of GPA. Another challenge lies in disease classification, the criteria used to define GPA have evolved significantly over time. As such, variations in diagnostic definitions across studies may affect case ascertainment and introduce heterogeneity. While we recognise this as a limitation, we relied on the individual studies adequately classifying their GPA cases, based on the criteria that were available and used at the time.

Nevertheless, our systematic review highlights a potential association between AATD and GPA, particularly in relation to genetic predisposition, pulmonary involvement and proposed pathogenic mechanisms. While these findings suggest that AATD contribute to the pathogenesis of GPA, the evidence remains limited and inconsistent, especially in relation to disease severity and patterns of organ involvement. There is a clear need for well-designed, prospective, genotype-stratified studies with standardised definitions and long-term follow-up to better understand the true nature of this association and its potential therapeutic implications.

Points for clinical practice

- · Individuals with AATD, particularly Z-allele carriers, are at increased risk of developing GPA.
- The identification of AATD in GPA patients may hold relevance for understanding variability in pulmonary involvement.
- While augmentation therapy remains unproven in this setting, its theoretical benefits suggest a rationale for further exploration in selected AATD-associated GPA cases.

Questions for future research

- · Could novel therapies for AATD have an impact on GPA incidence in affected individuals?
- What are the potential mechanistic links through which AATD may contribute to intra-alveolar haemorrhage in individuals with GPA?

Provenance: Submitted article, peer reviewed.

The systematic review protocol was registered with PROSPERO (https://www.crd.york.ac.uk/prospero/) with identifier: CRD42021259104.

Conflict of interest: All authors have nothing to disclose.

Support statement: D.A. Lomas is supported by the Medical Research Council (UK) MR/V034243/ and UCLH NIHR BRC.

References

- Strnad P, McElvaney NG, Lomas DA. Alpha 1-antitrypsin deficiency. N Engl J Med 2020; 382: 1443–1455.
- 2 Corlateanu A, Covantev S, Caraivanova I, et al. Alpha-1 antitrypsin deficiency and chronic obstructive pulmonary disease: between overlaps, phenotypes and illnesses. Curr Respir Med Rev 2019; 15: 147–155.
- 3 Granel J, Korkmaz B, Nouar D, et al. Pathogenicity of proteinase 3-anti-neutrophil cytoplasmic antibody in granulomatosis with polyangiitis: implications as biomarker and future therapies. Front Immunol 2021; 12: 571933.
- 4 Mahr AD, Edberg JC, Stone JH, et al. Alpha 1-antitrypsin deficiency-related alleles Z and S and the risk of Wegener's granulomatosis. Arthritis Rheum 2010; 62: 3760–3767.
- 5 Grygiel-Górniak B, Limphaibool N, Perkowska K, *et al.* Clinical manifestations of granulomatosis with polyangiitis: key considerations and major features. *Postgrad Med* 2018; 130: 581–596.
- 6 Mota A, Sahebghadam Lotfi A, Jamshidi AR, et al. Alpha 1-antitrypsin activity is markedly decreased in Wegener's granulomatosis. Rheumatol Int 2014; 34: 553–558.
- 7 Stone H, Pye A, Stockley RA. Disease associations in alpha-1-antitrypsin deficiency. Respir Med 2014; 108: 338–343.
- 8 Elzouki A-NY, Segelmark M, Wieslander J, et al. Strong link between the alpha 1-antitrypsin PiZ allele and Wegener's granulomatosis. J Intern Med 1994; 236: 543–548.
- 9 Banerjee P, Jain A, Kumar U, et al. Epidemiology and genetics of granulomatosis with polyangiitis. Rheumatol Int 2021; 41: 2069–2089.
- 10 Lyons PA, Rayner TF, Trivedi S, *et al.* Genetically distinct subsets within ANCA-associated vasculitis. *N Engl J Med* 2012; 367: 214–223.
- 11 Rahmattulla C, Mooyaart AL, Van Hooven D, et al. Genetic variants in ANCA-associated vasculitis: a meta-analysis. *Ann Rheum Dis* 2016; 75: 1687–1692.
- 12 Jennette JC, Falk RJ, Andrassy K, et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum 1994; 37: 187–192.
- 13 Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 2013; 65: 1–11.
- 14 Hunder GG, Arend WP, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of vasculitis. Introduction. Arthritis Rheum 1990; 33: 1065–1067.
- 15 Robson JC, Grayson PC, Ponte C, et al. 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for granulomatosis with polyangiitis. Ann Rheum Dis 2022; 81: 315–320.
- 16 Morris H, Morgan MD, Wood AM, et al. ANCA-associated vasculitis is linked to carriage of the Z allele of α_1 antitrypsin and its polymers. Ann Rheum Dis 2011; 70: 1851–1856.
- 17 Lonardo A, Medicina D, Leonelli M, et al. Intestinal Wegener's granulomatosis in a patient with severe alpha-1-antitrypsin deficiency resulting from a unique combination of two deficiency alleles (PiZ and PiM_{Procida}). Eur J Gastroenterol Hepatol 2002; 14: 1389–1392.
- 18 Inaty H, Arabelovic S. α 1-Antitrypsin deficiency in a patient diagnosed with granulomatosis with polyangiitis. BMJ Case Rep 2013; 2013: bcr2013009045.
- 19 Barnett VT, Sekosan M, Khurshid A. Wegener's granulomatosis and α 1-antitrypsin-deficiency emphysema. *Chest* 1999; 116: 253–255.
- 20 Louboutin JP, Le Carrer D, Feve JR. Neurologic manifestations in Wegener's granulomatosis associated with alpha 1-antitrypsin deficiency. Neurology 1993; 43: 1857.
- 21 O'Donoghue DJ, Guickian M, Blundell G, et al. Alpha-1-proteinase inhibitor and pulmonary haemorrhage in systemic vasculitis. Adv Exp Med Biol 1993; 336: 331–335.
- 22 Esnault VLM, Testa A, Audrain M, et al. Alpha1-antitrypsin genetic polymorphism in ANCA-positive systemic vasculitis. *Kidney Int* 1993; 43: 1329–1332.
- 23 Lhotta K, Vogel W, Meisl T, et al. Alpha-1 antitrypsin phenotypes in patients with anti-neutrophil cytoplasmic antibody-positive vasculitis. Clin Sci (Lond) 1994; 87: 693–695.
- 24 Savige JA, Chang L, Cook L, *et al.* α1-Antitrypsin deficiency and anti-proteinase 3 antibodies in anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis. *Clin Exp Immunol* 1995; 100: 194–197.

- 25 Baslund B, Szpirt W, Eriksson S, *et al.* Complexes between proteinase 3, α_1 -antitrypsin and proteinase 3 anti-neutrophil cytoplasm autoantibodies: a comparison between α_1 -antitrypsin PiZ allele carriers and non-carriers with Wegener's granulomatosis. *Eur J Clin Invest* 1996; 26: 786–792.
- 26 Griffith ME, Lovegrove JU, Gaskin G, et al. C-antineutrophil cytoplasmic antibody positivity in vasculitis patients is associated with the Z allele of alpha-1-antitrypsin, and p-antineutrophil cytoplasmic antibody positivity with the S allele. Nephrol Dial Transplant 1996; 11: 438–443.
- 27 Callea F, Gregorini G, Sinico A, *et al.* Alpha 1-Antitrypsin (AAT) deficiency and ANCA-positive systemic vasculitis: genetic and clinical implications. *Eur J Clin Invest* 1997; 27: 696–702.
- 28 Borgmann S, Endisch G, Urban S, *et al.* A linkage disequilibrium between genes at the serine protease inhibitor gene cluster on chromosome 14q32.1 is associated with Wegener's granulomatosis. *Clin Immunol* 2001; 98: 244–248.
- 29 Chorostowska-Wynimko J, Gawryluk D, Struniawski R, et al. Incidence of alpha-1 antitrypsin Z and S alleles in patients with granulomatosis with polyangiitis-pilot study. Adv Respir Med 2013; 81: 319–322.
- 30 Pervakova MY, Emanuel VL, Titova ON, et al. The diagnostic value of alpha-1-antitrypsin phenotype in patients with granulomatosis with polyangiitis. *Int J Rheumatol* 2016; 2016: 7831410.
- 31 Deshayes S, Martin Silva N, Grandhomme F, *et al.* Clinical effect of alpha-1 antitrypsin deficiency in antineutrophil cytoplasmic antibody–associated vasculitis: results from a French retrospective monocentric cohort. *J Rheumatol* 2019; 46: 1502–1508.
- 32 Mazodier P. Systemic necrotizing vasculitides in severe alpharantitrypsin deficiency. QJM 1996; 89: 599–611.
- 33 Mohammad A, Segelmark M. Primary systemic vasculitis with severe α_1 -antitrypsin deficiency revisited. *Scand J Rheumatol* 2014; 43: 242–245.
- 34 Hernández Pérez JM, Fumero García S, Alvarez Pío A. Successful α 1-antitrypsin replacement therapy in a patient with α 1-antitrypsin deficiency and granulomatosis with polyangiitis. *Rheumatology (Oxford)* 2013; 52: 755–757.
- 85 Ebert M, Jerke U, Eulenberg-Gustavus C, *et al.* Protective α1-antitrypsin effects in autoimmune vasculitis are compromised by methionine oxidation. *J Clin Invest* 2022; 132: e160089.
- 36 Mahadeva R, Atkinson C, Li Z, *et al.* Polymers of Z alpha1-antitrypsin co-localize with neutrophils in emphysematous alveoli and are chemotactic *in vivo*. *Am J Pathol* 2005; 166: 377–386.
- 37 Alluhibi R, Marshall A, Lomas DA, *et al.* A cure for alpha-1? Novel therapeutics in alpha-1 antitrypsin deficiency. *Eur Respir J* 2025; 66: 2501101.