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 a b s t r a c t

The energy maximisation for Wave Energy Converters (WECs) is a non-causal problem where the current power 
take-off (PTO) force incorporates knowledge of future wave prediction to significantly boost energy harnessing. 
Since WECs are constrained by PTO limitation and other limitation regarding safe operations, model predictive 
control (MPC), as a well-known non-causal control algorithm, is considered as a proper algorithm to optimise the 
energy output subject to multiple constraints. However, MPC controller relies on an accurate model to generate 
maximum energy. Obtaining and utilising such fully known models is challenging due to the highly nonlinear 
dynamics and stochastic sea wave environment of WECs in various wave conditions. Traditional machine learning 
method can be a solution since they are able to model complex dynamical systems. However, they suffer from 
the requirement of a large amount of training data, which introduces significantly increased computational 
burden. To tackle these challenges, this paper introduces a control framework that can utilise prior partial model 
information and have better sampling efficiency by integrating Physics-Informed Neural Networks (PINNs) with 
MPC to optimise the energy generation of WECs. As the benchmark of WECs control, the point absorber is chosen 
to evaluate the effectiveness of the proposed PINNs-MPC, in which 35 sea wave scenarios ranging from 𝐻𝑠 = 1.25
m, 𝑇𝑝 = 1 s to 𝐻𝑠 = 2.50 m, 𝑇𝑝 = 12 s are tested. The proposed method can be applied to other types of WECs by 
retaining the PINNs.

1.  Introduction

Ocean waves present a significant potential source of sustainable 
energy. Global estimates suggest that wave energy can generate up 
to 29,500 TWh annually (Trust, 2014), with 40–50 TWh/year (Trust, 
2012) potentially exploitable within the UK. To harness wave energy, 
various wave energy converters (WECs) have been developed, includ-
ing point absorbers (Erselcan and Kükner, 2020), attenuators (Liao et al., 
2023), and oscillating water columns (Rosati et al., 2022). Despite its po-
tential, wave energy technology is still less mature compared to the more 
established wind and solar energy sectors. (Jin and Greaves, 2021). 
Commercialisation faces challenges, particularly due to the high lev-
elised cost of energy (LCoE), which reached approximately £300/MWh 
in 2018 (Smart and Noonan, 2018). To address these challenges, the In-
ternational Energy Agency (IEA) has developed a strategic roadmap to 
harness the potential of wave energy, aiming to achieve a generation ca-
pacity of 180 GW by 2050 (Systems, 2023). Similarly, within the UK, En-
gineering and Physical Sciences Research Council (EPSRC) released the 
Wave Energy Road Map in 2020 (EPSRC, 2020), outlining the pathway
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to reduce the LCoE to £90/MWh by 2035 and achieve an installed capac-
ity of 22 GW by 2050. One of the critical components in achieving these 
targets involves the development of advanced control strategies aimed 
at reducing costs and enhancing the survivability of WECs systems.

Control strategies have long been recognised as critical in optimis-
ing the energy output of WECs. Early control methods, such as com-
plex conjugate (Budal and Falnes, 1980), latching (Feng and Kerrigan, 
2013), and declutching (Feng and Kerrigan, 2015), were designed to 
match the natural frequency of the device with the dominant frequency 
of the incoming waves to induce resonance. Although these control ap-
proaches are simple to implement under regular wave conditions, they 
become less effective when incident waves contain multiple frequencies 
(Babarit and Clément, 2006). Furthermore, these early methods often 
fail to account for the physical limitations of the WECs (Faedo et al., 
2017), leading to excessive resonance motion, which can damage the 
device and shorten its operational life. Despite their limitations, these 
methods have remained in use in the recent years, primarily because of 
their simplicity and low computational complexity (Barone et al., 2024; 
Liu et al., 2021; Yu et al., 2024).
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\begin {equation}\label {eq:ODE} \phi _t +\mathcal {N}[ \phi ] \approx f_t +\mathcal {N}[f] = 0, \quad t \in [0,t_{ub}]\end {equation}
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\begin {equation}\label {eq:PhysicsLossQuantity} F := \phi _t +\mathcal {N}[ \phi ] \approx 0\end {equation}
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To effectively handle constraints in control systems, Model Predic-
tive Control (MPC) has been widely acknowledged as a mature tech-
nique. MPC, an optimization-based control strategy, solves constrained 
optimal control problems, and its application in WECs control has been 
extensive (Zhang et al., 2024a; Lin et al., 2023; Zhan et al., 2023; Kaiser 
et al., 2025). However, achieving optimal control through MPC requires 
accurate future wave information, and thus it is a non-causal control 
problem. A range of wave prediction techniques have been developed, 
including well-established methods such as Deterministic Sea Wave Pre-
diction (Belmont et al., 2014), Adaptive Sliding Mode Observer to cope 
with model uncertainty (Zhang et al., 2020a, 2021), as well as more re-
cent machine learning approaches, for example, Long Short-Term Mem-
ory (LSTM) networks (Meng et al., 2022) and Gaussian Processes (GP) 
(Shi et al., 2018). These techniques can be readily incorporated into 
MPC frameworks to enhance energy conversion efficiency.

Beyond wave prediction, recent applications of machine learning to 
WECs control have emerged. Techniques such as reinforcement learn-
ing (Zou et al., 2022; Wang et al., 2024) and supervised learning (Zhang 
et al., 2024b; Pasta et al., 2021) have demonstrated their effectiveness 
to WECs control. Supervised learning, in particular, can construct WECs 
models as neural networks (NNs) based on experimental or simulation 
data. However, traditional machine learning methods suffer from issues 
related to sampling efficiency and the lack of model interpretability. 
To address these challenges, a novel deep learning method, Physics-
Informed Neural Networks (PINNs), was proposed by (Raissi et al., 
2019). The main idea of PINNs is to incorporate prior physical informa-
tion to the network via an additional loss function. This can be evaluated 
using unlabelled datapoints, reducing the need for large amounts of la-
belled data. In addition, this approach imposes constraints on the NNs 
to adhere to known physical laws, enhancing the model’s interpretabil-
ity. The application of PINNs has been demonstrated in various fields, 
including turbulent flows (Jin et al., 2021), heat transfer (Cai et al., 
2021), and biophysics (Zapf et al., 2022).

Recent studies have explored the integration of PINNs with MPC 
to improve control performance, especially in cases where model de-
velopment requires costly simulations or experiments. It has been ex-
tensively studied in tracking problems, such as in multi-link robotic 
systems (Nicodemus et al., 2022), autonomous underwater vehicles 
(Liu et al., 2024), and process control (Zheng et al., 2023). In these 
researches, PINNs-MPC provides superior tracking performance com-
pared to conventional NNs models. Other study highlights the strength 
of PINNs-MPC to generalise beyond the small-labelled dataset (Zheng 
et al., 2023). However, to the best of the authors’ knowledge, the use 
of PINNs-MPC to optimise energy generation has not yet been explored. 
Therefore, this study is the first attempt to address this gap by applying 
the PINNs-MPC framework, and this is the first attempt to utilise PINNs 
to solve the energy maximisation problem of WECs. The contributions 
of this paper are summarised as follows:
1. This paper is the first attempt to propose PINNs-MPC scheme to 
tackle the unique challenges of WECs, which are multiple con-
straints, external disturbances, and partially-known model.

2. The proposed PINNs-MPC scheme is designed to maximise the energy 
output of WECs with future wave height information incorporated 
into the scheme.

3. The superior sampling efficiency of PINNs is demonstrated in com-
parison to the conventional NNs for the WECs application.

4. Comprehensive comparison study is conducted between the pro-
posed PINNs-MPC scheme, conventional NNs-MPC, and traditional 
MPC that assumes perfect and imperfect knowledge of the system in 
irregular wave conditions and real-world wave conditions.

5. The study utilised real-world wave height data collected from the 
coast of Cornwall, UK, for the validation and testing of the proposed 
control scheme.
The remainder of this paper is organised as follows. Section 2 pro-

vides the problem statement of maximising energy output for WECs con-

trol. Section 3 introduces PINNs and implementation of the proposed 
PINNs-MPC algorithm. In Section 4, the result of the model training is 
presented, as well as the performance of the system in both the open-
loop and the closed-loop simulations. Finally, Section 5 concludes the 
paper and outlines the future works.

2.  WECs control problem statement

In this section, the problem statement for the WECs optimal energy 
generation control is introduced. In WECs system, the target of a con-
troller is to produce maximum energy while satisfying physical con-
straint and limitation in control input. This can be formulated as con-
strained finite-horizon optimisation in discrete time with sampling time 
(𝑇𝑠) as follows.

min
𝑢(⋅)

𝐽𝑁 (𝑥0, 𝑢(⋅)) ∶=
𝑁−1
∑

𝑘=0
𝑙(𝑥𝑘, 𝑢𝑘)

s.t. 𝑥𝑘+1 = 𝜙(𝑇𝑠, 𝑥𝑘, 𝑢𝑘, 𝑤𝑘),

𝑥𝑘 ∈ 𝕏, 𝑢(⋅) =
{

𝑢0,… , 𝑢𝑁−1
}

∈ 𝕌,

𝑥𝑘=0 = 𝑥0

(1)

where 𝜙 is the model defined by PINNs (see Remark 1), 𝑁 is the predic-
tion horizon, 𝑥0 is the initial condition at timestep 𝑘. 𝑥𝑘, 𝑤𝑘, 𝑢𝑘 are the 
discrete states, wave height, and control input at timestep 𝑘, and with 
the cost function
𝑙(𝑥𝑘, 𝑢𝑘) ∶= 𝑥𝑇𝑘𝑄𝑥𝑘 + 𝑢𝑇𝑘 𝑟𝑢𝑘 + 𝑢𝑘𝑧̇𝑘 (2)

where the first two terms, 𝑥𝑇𝑘𝑄𝑥𝑘 + 𝑢𝑇𝑘 𝑟𝑢𝑘, aim to penalise states and 
control input, 𝑄 and 𝑟 are the weighing matrix that can be tuned to 
influence this penalisation. To maximise energy generation, this paper 
maximises the power absorbed by the power take-off (PTO) with the 
third term, 𝑢𝑘𝑧̇𝑘.

The optimisation in Eq. (1) requires 𝑁 − 1 steps ahead future wave 
information. In each timestep, the optimisation generates the control 
input from the first element of 𝑢(⋅), which is applied to the system. 
The state is then updated from the real system, and the optimisation is 
performed again for the following timestep. The dynamic equality con-
straint in Eq. (1) is determined by PINNs (𝜙) while the state and control 
input constraints are defined as follows
𝕏 ∶=

{

𝑥 ∈ ℝ𝑛𝑥 ∶ |𝑥1| ≤ 𝑧𝑚𝑎𝑥, |𝑥2| ≤ 𝑧̇𝑚𝑎𝑥
}

,

𝕌 ∶=
{

𝑢 ∈ ℝ ∶ |𝑢| ≤ 𝑢𝑚𝑎𝑥
} (3)

where 𝑧max, 𝑧̇max, 𝑢max are the maximum limit of displacement, velocity, 
and control input respectively, and 𝑛𝑥 is the number of states. This limit 
is placed to increase the survivability and prolonged the service life of 
the device. The optimisation in Eq. (1) is a nonlinear programming prob-
lem since the dynamic model defined by PINNs is nonlinear. This can be 
solved by mature Sequential Quadratic Programming and Interior Point 
technique (Frison and Diehl, 2020; Wächter and Biegler, 2006)
Remark 1. Compared to the traditional MPC, the scheme in Eq. (1) uses 
PINNs as the prediction model. This is explicitly stated in the dynamic 
equality constraint. In WECs problem, the advantage of utilising such 
prediction model is that PINNs are known to be sample efficient. There-
fore, in the case of lacking expensive experimental data and high-fidelity 
simulation, PINNs can help improving the accuracy of the model with 
the help of prior physical knowledge. Nonetheless, there are challenges 
in the training process due to the addition of physical knowledge, and 
more discussions can be found in Rathore et al. (2024)
Remark 2. The cost function in Eq. (2) is constructed to optimise energy 
generation by an additional term, 𝑢𝑘𝑧̇𝑘. This is different compared to 
other existing PINNs-MPC schemes that focus on the trajectory tracking 
and regulation problem (Liu et al., 2024; Nicodemus et al., 2022).
Remark 3. The cost function in Eq. (2) is formulated to maximise me-
chanical power which is a common objective function in WEC control 
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studies (Faedo et al., 2017; Ringwood et al., 2014). However, mechan-
ical power objective function can be transformed into electrical objec-
tives by considering the efficiency term due to the generator, hydraulic 
transmission, and inverters as outlined in Tona et al. (2015)

3.  Model predictive control-based physics-informed neural 
networks

In this section, the PINNs and MPC frameworks are presented along 
with an explanation of the implementation of the algorithm.

3.1.  Physics-informed neural networks (PINNs)

PINNs have been widely used since their introduction from Raissi 
et al. (2019) to approximates solution of Partial Differential Equation 
(PDE) via NNs. However, in this paper, representing solution of Ordinary 
Differential Equation (ODE) is sufficient. Moreover, PINNs approximates 
this solution with NNs and it can be written as
𝜙𝑡 + [𝜙] ≈ 𝑓𝑡 + [𝑓 ] = 0, 𝑡 ∈ [0, 𝑡𝑢𝑏] (4)

where 𝑓 represents the solution of the ODE and  [⋅] is the nonlinear 
differential operator. 𝜙 is the output of PINNs and it depends on the 
input data and the weight of the networks (𝜃). The solution 𝑓 and 𝜙 is 
only valid for the bounded states and time. Additionally, the subscript 
−𝑡 represents the derivative with respect to time. 𝜙𝑡 can be evaluated by 
applying chain rule during the training with automatic differentiation. 
Here, the left-hand-side of Eq. (4) is defined as 𝐹
𝐹 ∶= 𝜙𝑡 + [𝜙] ≈ 0 (5)

where 𝐹  is approximately zero since 𝜙 is only an approximation of the 𝑓 . 
Therefore, a restriction on the loss function can be imposed to satisfy this 
condition. For the training of the network, three datasets are required, 
which are the initial conditions dataset, the measurement dataset, and 
the collocation point dataset. The measurement dataset is defined as 
follows

𝑚𝑒𝑎𝑠 =
{(

𝑑𝑚𝑒𝑎𝑠𝑖 , 𝑥𝑚𝑒𝑎𝑠𝑘+1,𝑖

)}𝑛𝑚𝑒𝑎𝑠

𝑖=1
,

𝑑𝑚𝑒𝑎𝑠𝑖 = 𝜏𝑚𝑒𝑎𝑠𝑖 , 𝑥𝑚𝑒𝑎𝑠𝑘,𝑖 , 𝑢𝑚𝑒𝑎𝑠𝑘,𝑖 , 𝑤𝑚𝑒𝑎𝑠
𝑘,𝑖 , 𝑖 = 1,… , 𝑛𝑚𝑒𝑎𝑠

(6)

where the number of measurement datapoints is denoted by 𝑛𝑚𝑒𝑎𝑠 and it 
is a positive constant number, 𝑑𝑚𝑒𝑎𝑠𝑖  is the i-th input datapoint consisted 
of states (𝑥𝑘,𝑖), control (𝑢𝑘,𝑖), wave height (𝑤𝑘,𝑖), and their corresponding 
solution (𝑥𝑘+1,𝑖) with arbitrary timestep (𝜏𝑖). This dataset can be taken 
from the results of the experiment, but in this paper, it is assumed that 
the dataset is the solution of a discrete system. The next dataset, initial 
condition dataset, does not require knowledge of the model and restricts 
the network to output the same states when timestep is zero.

𝑖𝑛𝑖𝑡 =
{(

𝑑𝑖𝑛𝑖𝑡𝑖 , 𝑥𝑖𝑛𝑖𝑡𝑘+1,𝑖

)}𝑛𝑖𝑛𝑖𝑡

𝑖=1
,

𝑑𝑖𝑛𝑖𝑡𝑖 = 𝜏𝑖𝑛𝑖𝑡, 𝑥𝑖𝑛𝑖𝑡𝑘,𝑖 , 𝑢
𝑖𝑛𝑖𝑡
𝑘,𝑖 , 𝑤

𝑖𝑛𝑖𝑡
𝑘,𝑖 , 𝜏 𝑖𝑛𝑖𝑡 = 0,

𝑥𝑖𝑛𝑖𝑡𝑘+1,𝑖 = 𝑥𝑖𝑛𝑖𝑡𝑘,𝑖 , 𝑖 = 1,… , 𝑛𝑖𝑛𝑖𝑡

(7)

with 𝑛𝑖𝑛𝑖𝑡 as the number of initial condition datapoints, and it is a positive 
constant number. The last dataset is the collocation point dataset which 
will be utilised to evaluate Eq. (5) in the loss function. The dataset is as 
described below
𝑐𝑜𝑙 =

{

𝑑𝑐𝑜𝑙𝑖
}𝑛𝑐𝑜𝑙
𝑖=1 , 𝑑

𝑐𝑜𝑙
𝑖 =

(

𝜏𝑐𝑜𝑙𝑖 , 𝑥𝑐𝑜𝑙𝑘,𝑖 , 𝑢
𝑐𝑜𝑙
𝑘,𝑖 , 𝑤

𝑐𝑜𝑙
𝑘,𝑖

)

,

𝑖 = 1,… , 𝑛𝑐𝑜𝑙
(8)

where 𝑛𝑐𝑜𝑙 as the number of collocation datapoints, and it is a posi-
tive constant number. Based on these datasets, the loss function for the 
PINNs is defined as follows 
𝑡𝑜𝑡𝑎𝑙 = 𝛼1𝑚𝑒𝑎𝑠 + 𝛼2𝑖𝑛𝑖𝑡 + 𝛼3𝑝ℎ𝑦𝑠 (9a)

𝑖𝑛𝑖𝑡 =
1

𝑛𝑖𝑛𝑖𝑡

𝑛𝑖𝑛𝑖𝑡
∑

𝑖=1
|𝜙(𝑑𝑖𝑛𝑖𝑡𝑖 ) − 𝑥𝑖𝑛𝑖𝑡𝑘+1,𝑖|

2 (9b)

𝑚𝑒𝑎𝑠 =
1

𝑛𝑚𝑒𝑎𝑠

𝑛𝑚𝑒𝑎𝑠
∑

𝑖=1
|𝜙(𝑑𝑚𝑒𝑎𝑠𝑖 ) − 𝑥𝑚𝑒𝑎𝑠𝑘+1,𝑖|

2 (9c)

𝑝ℎ𝑦𝑠 =
1

𝑛𝑐𝑜𝑙

𝑛𝑐𝑜𝑙
∑

𝑖=1
|𝐹 (𝑑𝑐𝑜𝑙𝑖 )|2 (9d)

where 𝑡𝑜𝑡𝑎𝑙 ,𝑚𝑒𝑎𝑠,𝑖𝑛𝑖𝑡,𝑝ℎ𝑦𝑠 are the total losses, loss due to mea-
surement, initial condition, and collocation point dataset respectively; 
𝛼1, 𝛼2, 𝛼3 are the weights for each loss components. In conventional NNs, 
the loss function typically consists of only initial condition and measure-
ment losses. In contrast, collocation point dataset contribute to the total 
loss function in PINNs. This additional loss term is evaluated with only a 
prior physical model, eliminating the need for additional measurement 
from the system. Therefore, PINNs demonstrate better sample efficiency 
than traditional NNs, since they can, in the extreme case, be trained by 
only using the collocation point dataset. Nevertheless, when the knowl-
edge of the model from Eq. (5) is not very accurate, the weights of the 
loss function can be tuned to be larger in the measurement and initial 
condition dataset.
Remark 4. To evaluate the physics loss, there are two terms to be con-
sidered: 1) To calculate nonlinear differential operator  [⋅], the known 
model is utilised. 2) To evaluate the partial derivative with respect to 
time of the output of the PINNs (𝜙𝑡), the automatic differentiation is 
utilised. At the beginning of training, the physics loss is typically large, 
as the NNs have not yet adapted to satisfy the governing equation. As 
training progresses, the physics loss tends to decrease as the network 
learns to approximate the solution that aligns with the governing dy-
namics. 

In addition to the three datasets, validation dataset is produced to 
test the accuracy of the model as well as comparing the trained model 
with different hyperparameters. This dataset is similar to the measure-
ment dataset in Eq. (6) and can be defined as follows.

𝑣𝑎𝑙 =
{(

𝑑𝑣𝑎𝑙𝑖 , 𝑥𝑣𝑎𝑙𝑘+1,𝑖

)}𝑛𝑣𝑎𝑙

𝑖=1
,

𝑑𝑣𝑎𝑙𝑖 = 𝜏𝑣𝑎𝑙𝑖 , 𝑥𝑣𝑎𝑙𝑘,𝑖 , 𝑢
𝑣𝑎𝑙
𝑘,𝑖 , 𝑤

𝑣𝑎𝑙
𝑘,𝑖 , 𝑖 = 1,… , 𝑛𝑣𝑎𝑙

(10)

where 𝑛𝑣𝑎𝑙 is the number of validation datapoints, and it is a positive 
constant number. The metric to evaluate the model is Mean Squared 
Error (MSE) below.

MSEaccuracy =
1

𝑛𝑣𝑎𝑙

𝑛𝑣𝑎𝑙
∑

𝑖=1
|𝜙(𝑑𝑣𝑎𝑙𝑖 ) − 𝑥𝑣𝑎𝑙𝑘+1,𝑖|

2,

𝑖 = 1,… , 𝑛𝑣𝑎𝑙

(11)

3.2.  Implementation of PINNs-MPC

In this section, the implementation of PINNs training, the PINNs for 
self-loop prediction, and the PINNs-MPC will be explained. Fig. 1 out-
lines the structure of PINNs and the training process is explained in 
Algorithm 1. PINNs is structured as a fully-connected NNs consisting 
of input layer, normalisation layer, hidden layer with weight (𝜃), and 
output layer. The input layer includes features such as wave prediction, 
timestep, system states, and control inputs, which are normalised ac-
cording to their respective upper and lower bounds. These normalised 
inputs are then passed through the hidden layers to predict the output, 
which represents the next system states. The derivative of the output 
with respect to the timestep is computed to evaluate the physics-based 
loss, as defined in Eq. (9d). The total loss is then calculated, and the net-
work weights are updated using a gradient descent algorithm, L-BFGS 
(Nocedal, 1980).

In Section 3.1, it is explained that the prediction for the next states 
(𝑥𝑘+1) in PINNs is only valid for a bounded time (𝑡 ∈ [0, 𝑡𝑢𝑏]). However, 
the optimisation problem in Eq. (1) requires 𝑁 − 1 intermediate pre-
diction with sampling time, 𝑇𝑠. Therefore, the prediction is chained 
in autoregressive way similar in Antonelo et al. (2024), Arnold and 
King (2021), and Nicodemus et al. (2022). This method is illustrated 
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Fig. 1. PINNs training.

Algorithm 1 PINNs model training.
1: Initialisation: Generate training data (𝑚𝑒𝑎𝑠,𝑖𝑛𝑖𝑡,𝑐𝑜𝑙 ,𝑣𝑎𝑙), spec-
ify training epoch (𝑁𝑒𝑝𝑜𝑐ℎ), learning rate, number of layers and neu-
rons, initialise weights (𝜃) 

2: Initialise training: 
3: for 𝑖 from 0 to training epoch 𝑁𝑒𝑝𝑜𝑐ℎ, do
4: Calculate the loss function in Eq. (9a) using the current weight, 𝜃

5: Calculate gradient of loss function in Eq. (9a) w.r.t. weight ( 𝜕𝑡𝑜𝑡𝑎𝑙
𝜕𝜃 ) 

6: Using L-BFGS algorithm, update the weight using the obtained 
gradient

7: end for
8: Model evaluation: using Eq. (11), evaluate the MSE of the model

in Fig. 2(a) where the timestep 𝜏 inside the PINNs is kept as 𝑇𝑠 during 
the self-loop prediction and the control input (𝑢𝑘) is specified by the 
MPC. In the self-loop process of PINNs, each new prediction (𝑥𝑘+1) is 
fed back as the current state (𝑥𝑘) for the next iteration. This process 
continues until the final prediction at 𝑁 − 1 -th iteration is completed.

Fig. 2(b) indicates the closed-loop approach of combining PINNs and 
MPC. PINNs acts as the dynamic model, running in a self-loop while the 
MPC searches for the optimal control solution. When the MPC finds the 
optimal control, it is applied to the system, and the resulting system 
measurement is used to update the PINNs with the current state. The 
detailed approach is described in Algorithm 2.

Algorithm 2 PINNs-MPC scheme.
1: Initialisation: initial condition (𝑥0), weights (𝑄, 𝑟), states and con-
trol constraints (𝕏,𝕌), horizon length (𝑁), simulation step (𝑁𝑠) 

2: Initialise MPC: 
3: for 𝑖 from 0 to simulation horizon (𝑁𝑠), do
4: Solve optimisation problem in Eq. (1) with PINNs running in self-

loop as the dynamic model 
5: Apply the first optimal control input to the system 
6: Measure the next states (𝑥𝑘+1) and set it as the current state (𝑥𝑘)
7: end for

4.  Simulation of point absorber with realistic wave data

This section presents the simulation results across two case studies: 
linear and nonlinear WECs with viscous damping. The point absorber is 
chosen as the case study since this configuration is a benchmark (Genest 
and Ringwood, 2016; Hals et al., 2011; Cretel et al., 2010; Kracht et al., 
2015; Anderlini et al., 2016; Richter et al., 2013; Jia et al., 2021; Gu 
et al., 2021; Zhang and Li, 2020; Zhan and Li, 2019). Given the novelty 

of the proposed method, this study begins with a well-established bench-
mark model. Extending the approach to other WEC configurations is 
achievable, and in some cases, straightforward, requiring only to retrain 
the PINNs. Section 4.1 outlines the training parameters and hyperparam-
eter tuning of the PINNs. Section 4.2 compares open-loop performance 
of PINNs and conventional NNs, including an analysis of sampling effi-
ciency. Section 4.3 evaluates closed-loop performance and energy cap-
ture of PINNs-MPC, NNs-MPC, and MPC controllers using a linear WECs 
model. Section 4.4 analyses the energy generation performance of the 
proposed method under different wave conditions. Section 4.5 compares 
the closed-loop performance using nonlinear WECs model with viscous 
damping.

A floating point absorber (Fig. 3) is considered in both case studies. 
The device is fixed at the seabed and constrained to only move in the 
heave direction. A hydraulic PTO system is installed in the cylinder be-
low the float to extract energy from the heave movement. An example 
of the realisation of this design can be found in Weiss et al. (2012). The 
mid-point of the float and the seawater level are represented by 𝑧𝑣 and 
𝑧𝑤 respectively. Although the model of the device is linear, it is a bench-
mark problem in WECs control problem. As the structure of the WECs 
becomes more complicated, i.e. nonlinear model and soft body WECs 
(Boren, 2021), PINNs can be extended to make a contribution in these 
areas.

With Newton’s second law in the heave direction, the dynamic equa-
tion can be written as follows

𝑚𝑠𝑧̈𝑣 = −𝑓𝑠 − 𝑓𝑟 + 𝑓𝑒 + 𝑓𝑢 (12)

where 𝑚𝑠 is the mass of the float. The forces acting on the float are the 
hydrostatic restoring force (𝑓𝑠), radiation damping force (𝑓𝑟), wave exci-
tation force (𝑓𝑒), and piston force (𝑓𝑢). Similar to Zhang et al. (2020b), 
Zhan and Li (2019) and Yu and Falnes (1995), Eq. (12) can be trans-
formed into a tenth-order continuous-time state space representation.
{

𝑥̇ = 𝐴𝑐𝑥 + 𝐵𝑢,𝑐𝑢 + 𝐵𝑤,𝑐𝑤 + 𝜖
𝑦 = 𝐶𝑐𝑥

(13)

with

𝐴𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 01×𝑛𝑟 01×𝑛𝑒
− 𝑘𝑠

𝑚 0 −𝐶𝑟
𝑚

𝐶𝑒
𝑚

0𝑛𝑟×1 𝐵𝑟 𝐴𝑟 0𝑛𝑟×𝑛𝑒
0𝑛𝑒×1 0𝑛𝑒×1 0𝑛𝑒×𝑛𝑟 𝐴𝑒

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐵𝑢,𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0
1
𝑚

0𝑛𝑟×1
0𝑛𝑒×1

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐵𝑤,𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0

0𝑛𝑟×1
𝐵𝑒

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐶𝑐 =
[

0 1 01×(𝑛𝑟+𝑛𝑒)
]

(14)

where 𝑤 = 𝑧𝑤 is the wave elevation that is assumed to be predictable, 
𝑚 = 𝑚𝑠 + 𝑚∞, 𝑚∞ is the infinite frequency added mass of the float, 
𝑘𝑠 = 𝜌𝑔𝑆 is the hydrostatic stiffness, 𝜌 is the water density, 𝑔 is the gravi-
tational acceleration, and 𝑆 is the cross-sectional area of the float. Since 
the float is cylindrical, 𝑆 is simply the area of a circle. (𝐴𝑟, 𝐵𝑟, 𝐶𝑟, 0), 𝑥𝑟, 
𝑛𝑟 are the state space representation, the states, and the number of states 
of the radiation force. (𝐴𝑒, 𝐵𝑒, 𝐶𝑒, 0), 𝑥𝑒, 𝑛𝑒 are the state space represen-
tation, the states, and the number of states of the excitation force. These 
state space representations can be obtained via hydrodynamic software 
such as WAMIT (Lee, 1995) or NEMOH (Kurnia and Ducrozet, 2023). 
Here, 𝜖 represents modeling uncertainty due to the inaccurate wave pre-
diction or linear model assumption. The notation (0) without a subscript 
represents the scalar zero, while the zero with subscript denotes a zero 
matrix whose dimensions are indicated by the subscript. 𝑦 = 𝑧̇𝑣 is the 
output, 𝑥 = [𝑧𝑣, 𝑧̇𝑣, 𝑥𝑟, 𝑥𝑒]𝑇  are the states, and 𝑢 = 𝑓𝑢 is the control input. 
To simplify the notation, the notation, 𝑣, will be dropped, and the first 
two states will be referred as 𝑧 and 𝑧̇.

The continuous-time model in Eq. (13) can be converted to a 
discrete-time model with Euler’s discretisation or Zero Order Hold 
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Fig. 2. PINNs prediction method. (a) self-loop. (b) closed-loop with MPC.

Fig. 3. Schematic diagram of floating point absorber type of WECs.

(ZOH).
{

𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 + 𝐵𝑢,𝑑𝑢𝑘 + 𝐵𝑤,𝑑𝑤𝑘 + 𝜖𝑘
𝑦𝑘 = 𝐶𝑑𝑥𝑘

(15)

where (

𝐴𝑑 , 𝐵𝑢,𝑑 , 𝐵𝑤,𝑑 , 𝐶𝑑
) are the discrete-time version of the 

continuous-time matrices (𝐴𝑐 , 𝐵𝑢,𝑐 , 𝐵𝑤,𝑐 , 𝐶𝑐
)

.
The second model that is considered in this paper is nonlinear model 

with nonlinear viscous drag force, 𝑓𝑛𝑙, defined as follows:
𝑓𝑛𝑙 = −𝑘𝑛𝑙|𝑧̇|𝑧̇ (16)

where 𝑘𝑛𝑙 = 0.5𝜌𝐶𝑑𝑆𝑑 with characteristic area (𝐴𝑑) and drag coefficient 
(𝐶𝑑) that are determined by the method presented in Giorgi and Ring-
wood (2017). By including this nonlinear term, the state-space model in 
Eq. (13) is modified as:
{

𝑥̇ = 𝐴𝑐𝑥 + 𝐵𝑢,𝑐
(

𝑢 − 𝑘𝑛𝑙|𝑧̇|𝑧̇
)

+ 𝐵𝑤,𝑐𝑤 + 𝜖
𝑦 = 𝐶𝑐𝑥

(17)

A similar formulation of Eq. (17) can be found in O’Sullivan et al. 
(2018), Karthikeyan et al. (2019), and Zhan et al. (2025). The inclu-
sion of a state-space form in this paper is motivated by the need for 
direct comparison with conventional model-based MPC approaches in 
subsequent simulations. PINNs can be trained without the explicit for-
mulation of the system in state-space form, even when the governing 
dynamics are expressed in PDE/ODE form.

4.1.  Training parameters

In this section, the training parameters for the PINNs are explored. 
The network architecture of the PINNs is based on a fully connected 

feedforward neural network. This choice is motivated by the need 
for a simple and differentiable structure that facilitates smooth gra-
dient propagation. This is important for enforcing the physics-based 
loss through automatic differentiation. Despite its simplicity, this ar-
chitecture is effective, as the incorporation of physics-informed loss 
functions provides additional bias that guides the model toward phys-
ically consistent predictions. Consequently, the network can achieve 
improved generalisation and accuracy, even with limited measurement
data.

To build the PINNs, Tensorflow in Python is utilised. and the hy-
perparameters are learning rate, number of layers and neurons, epoch, 
activation functions, and number of datapoints for each dataset. Only 
the first two hyperparameters are investigated to simplify the tuning 
process. The chosen activation function is tanh since it is smooth and 
differentiable, which is essential for computing accurate derivatives re-
quired in enforcing physics constraints. Moreover, tanh outputs bounded 
values, which helps stabilise training and improves convergence. The 
weights of the networks are initialised by Xavier’s initialisation, and 
the weights on the loss function in Eq. (9a) are set as 𝛼1 = 𝛼2 = 𝛼3 = 1. 
CPU is used for training with the specification of 24-cores Intel Core 
i9-14900K.

For the dataset, the data is sampled with Latin Hypercube Sam-
pling (LHS) (McKay et al., 2000) with 𝑛𝑖𝑛𝑖𝑡 = 100, 𝑛𝑚𝑒𝑎𝑠 = 500, 𝑛𝑐𝑜𝑙 =
10000, 𝑛𝑣𝑎𝑙 = 2649. This method provides better sampling coverage in 
the input space, which is important for systems with high-dimensional 
inputs. The bound for the data sampling is as follows: 0 ≤ 𝜏(s) ≤ 0.25, 
|𝑧| ≤ 0.5 m, |𝑧̇| ≤ 1 m/s, |𝑢| ≤ 6 kN, |𝑤| ≤ 3 m. From Nicodemus et al. 
(2022), it is reasonable to set the bound of timestep for training to be 
slightly larger than the timestep that will be used by the controller. The 
sampling bounds for the radiation and excitation states are set to their 
minimum and maximum possible values. Simulated trajectories are em-
ployed to generate the measurement dataset. In contrast, initial condi-
tion and collocation dataset are not derived from simulations. They are 
sampled using the LHS method to ensure a well-distributed coverage of 
the domain.

The parameters for the wave energy converter model are 𝑚 = 𝑚𝑠 +
𝑚∞ = 242 + 83.5 = 325.5 kg and 𝑘𝑠 = 3866 N/m. This corresponds to the 
0.35 m radius and 0.63 m draught of the cylinder. Although the buoy 
is a small-scale model, the proposed control schemes remain applicable 
to systems of different scales. The dynamic model of the radiation and 
excitation force is given by Yu and Falnes (1995).

𝐴𝑟 =
⎡

⎢

⎢

⎣

0 0 −17.9
1 0 −17.7
0 1 −4.41

⎤

⎥

⎥

⎦

, 𝐵𝑟 =
⎡

⎢

⎢

⎣

36.5
394
75.1

⎤

⎥

⎥

⎦

, 𝐶𝑟 =
[

0 0 1
]

(18)
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Fig. 4. Log of accuracy at the end of training of different number of layers and 
neurons per layer with learning rate = 0.1 (lower negative value indicate better 
accurary).

Table 1 
Comparison of learning rates and their 
accuracy at the end of training (low 
log(MSE𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) is more accurate).

 Learning rate log(MSE𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

0.1 −3.74 ± 0.07
0.01 −3.33 ± 0.09
0.001 −1.74 ± 0.07
0.0001 −0.51 ± 0.07
0.00001 −0.16 ± 0.01

𝐴𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 −400
1 0 0 0 −459
0 1 0 0 −226
0 0 1 0 −64
0 0 0 1 −9.96

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐵𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1, 549, 886
−116380
24, 748
−644
19.3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐶𝑒 =
[

0 0 0 0 1
]

(19)

Furthermore, modelling inaccuracies are represented as random distur-
bances affecting the heave and its velocity state with |𝜖1| ≤ 0.01 and 
|𝜖2| ≤ 0.1.

To analyse the complexity of the network, a comparison between 
the number of layers and the number of neurons per layer is made in 
Fig. 4. Five different simulation seeds were used, and the resulting accu-
racy was averaged to produce the plot. The networks were then trained 
for 2000 epochs. However, for instances where convergence was not 
reached (neurons per layer is more than 32), the training was increased 
by an additional 900 epochs. It can be observed from the Figure that the 
most accurate network consists of 2 layers with 64 neurons per layer, 
requiring less computational training time than larger networks. Gen-
erally, as the number of neurons per layer increases, the accuracy im-
proves across all layer configurations but with the cost of additional 
computational time.

A similar analysis was conducted for different learning rates us-
ing the network structure of 2 layers and 64 neurons, as presented in
Table 1. Five different seeds were utilised, and the averaged accuracy 
as well as standard deviation are shown in the table. Training contin-
ued until the network converged, with varying epochs depending on the 
learning rate. Notably, a learning rate of 0.1 provides the best accuracy, 
while lower learning rates results in more training durations and low 
accuracy.

Based on the two previous analysis, 2 layers - 64 neurons network 
and a learning rate of 0.1 are chosen as the hyperparameters for the 
PINNs. In addition to the PINNs, two conventional NNs were trained

Table 2 
The data sampling setup for the high-data NNs, 
low-data NNs, and PINNs.
 Datapoints  PINNs  NNs High  NNs Low
𝑛𝑐𝑜𝑙  10,000  -  -
𝑛𝑖𝑛𝑖𝑡  100  1000  100
𝑛𝑚𝑒𝑎𝑠  500  100,000  500
𝑛𝑣𝑎𝑙  2649  25,124  149

Fig. 5. Loss function and accuracy for the selected PINNs structure (2 layers, 
64 neurons, learning rate = 0.1), NNs with high datapoints and low datapoints.

using hyperparameters similar to the PINNs. The key distinction lies in 
the training data: one NN was trained on a large dataset, while the other 
was trained on a significantly smaller one. This setup is intended to il-
lustrate the sampling complexity associated with PINNs, which will be 
discussed in the next section. Neither of the NNs incorporates colloca-
tion points, as conventional NNs lack a mechanism to enforce physical 
constraints through the governing equations. The specifics of the sam-
pling setup are specified in Table 2. The NNs are trained for 2000 epochs 
with ADAM (Kingma and Ba, 2015) to facilitate faster training process.

The training progress is shown in Fig. 5 by plotting both loss and 
accuracy over the epochs. Training the PINNs required more epochs 
compared to the conventional NNs, primarily due to the larger number 
of collocation points. For all networks, both the loss and accuracy curve 
rapidly decrease in the initial epochs, exhibiting a quick reduction in the 
model’s error. They both gradually flatten, suggesting that the network 
has converged, and additional training epoch may not yield substantial 
decrease in loss or accuracy. Moreover, the parallel trends of the curves 
indicate that the model is effectively learning and that the training/val-
idation datasets are well-suited to the problem. However, both curves 
of the PINNs appear slightly noisy. This is likely due to the discrepancy 
between the known physical model from the PINNs and the real model 
utilised by the measurement and validation datasets, which contains un-
certainty. In contrast, the curves appear noticeably noisier for the NNs. 
This is due to the use of a different optimiser which is selected to accel-
erate training.

4.2.  Open loop simulation

In this section, the performance of the trained PINNs is evaluated 
in comparison to conventional NNs. Fig. 6(a)–(b) shows the self-loop 
prediction with a timestep of 0.2 s. Fig. 6(a)–(b) illustrate the self-loop 
prediction results using a timestep of 0.2s. The prediction spans 20 steps 
ahead under a sinusoidal control input with zero wave height input, 
corresponding to the prediction horizon length typically used in a MPC 
framework. Comparisons are drawn among predictions generated by the 
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Fig. 6. Self-loop simulation of PINNs, NNs High, and NNs Low. (a) one trajectory of the heave (𝑧) and the heave velocity (𝑧̇). The plant is RK45 solution of Eq. (14). 
(b) RMSE boxplot of the heave (𝑧) and the heave velocity (𝑧̇) for 20 trajectories.

PINNs, NNs trained on large and small datasets, and the plant solution 
obtained via the explicit Runge-Kutta method of order 5 (RK45) applied 
to Eq. (14).

In both the displacement and velocity trajectories (Fig. 6(a)), the 
PINNs self-loop solution initially aligns well with the exact solution. 
However, deviations become noticeable near the peaks and troughs of 
the curves after several seconds. Despite these discrepancies, the over-
all system dynamics are effectively captured. These results suggest that 
PINNs can be utilised within the MPC framework, as MPC computations 
primarily rely on the initial prediction rather than the accuracy of the 
latter half of the prediction.

In contrast, the NNs trained with fewer data points fails to accu-
rately represent the system dynamics, despite being trained with the 
same number of initial and measurement datapoints (𝑛init and 𝑛meas) 
as the PINNs. This suggests that PINNs are able to utilise available data 
more effectively through the incorporation of collocation points, thereby 
achieving higher accuracy under similar data constraints. Therefore, 
PINNs has lower sampling complexity than of the NNs. Although the 
NNs trained with more datasets demonstrate improved performance rel-
ative to their low-data counterparts, they still fail to accurately capture 
the full system dynamics. To quantify the accuracy of the prediction, 
Root Mean Square Error (RMSE) is defined in Eq. (20).

RMSE =

√

√

√

√

1
𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑒𝑠𝑡
∑

𝑖=1

(

𝑋̂𝑖 −𝑋𝑖
)2 (20)

where 𝑛𝑡𝑒𝑠𝑡 is the number of datapoints for the RMSE calculation, 𝑋̂𝑖 is 
the i-th datapoint of the PINNs/NNs, and 𝑋𝑖 is the i-th datapoint of the 
plant. In this section, the 𝑛𝑡𝑒𝑠𝑡 = 20 corresponding to the 20 steps ahead 
prediction. Fig. 6(b) presents the Root Mean Square Error (RMSE) com-
puted over 20 simulated trajectories with respect to the plant output. 
For both displacement (𝑧) and velocity (𝑧̇), the PINNs consistently yield 
lower RMSE compared to both NNs models. It is worth noting that the 
velocity prediction error for the low-data NNs model can reach up to 
3 m/s, which significantly exceeds the expected dynamic range of the 
plant. This level of error is unsuitable for use in control applications. 
Although increasing the size of the training dataset improves the perfor-
mance of the NNs model, the PINNs maintain higher accuracy in both 
heave and heave velocity case.

The impact of measurement noise on the predictive performance of 
PINNs is evaluated using a noise level metric. This is defined as the ratio 
of the standard deviation of noise-free data to that of noisy data, analo-
gous to signal-to-noise (SNR) ratio. Noise is injected into the heave and 
heave velocity measurements datapoints respectively. Fig. 7 illustrate 
trajectory deviations compared to the plant under varying noise levels. 

Fig. 7. RMSE of 20 trajectories of self-loop simulation of PINNs with different 
noise levels. RMSE is calculated compared to the plant. The trajectories have 
different initial conditions and control input.

Fig. 8. Wave height data collected from the coast of Cornwall, UK. The wave 
data is appropriately scaled according to the size of the point absorber.

As illustrated, the RMSE for both 𝑧 and 𝑧̇ generally increases with higher 
noise levels, indicating reduced prediction accuracy. This result demon-
strates that, although increasing noise levels lead to higher prediction 
errors, the degradation in accuracy remains bounded. The RMSE val-
ues for both heave displacement and velocity do not exhibit unbounded 
growth or instability, even at the highest noise level tested (100%).
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Fig. 9. Closed-loop simulation of PINNs, NNs, perfect, and inaccurate MPC. (a) 𝑧̇, |𝑧̇| ≤ 1 m/s. (b) 𝑧, |𝑧| ≤ 0.5 m.

Fig. 10. Closed-loop simulation of PINNs, NNs, perfect, and inaccurate MPC for 
the control input, purple dotted line is the constraint (|𝑢| ≤ 6000 N).

Table 3 
Model parameter of the perfect and 
inaccurate MPC.
 Parameter  Perfect  Inaccurate
𝑘𝑠 3866 3092.8
𝑚 325.5 260.4

4.3.  Closed loop simulation

In this section, the performance of the closed-loop PINNs-MPC is 
compared to NNs-MPC with high datapoints and MPC with perfect 
model and inaccurate model. The model is outlined in Table 3. The in-
accurate model was designed to have: 1) The added mass of the system 
is 78% of the perfect model. This corresponds to 20% mass reduction of 
the total mass. 2) The hydrostatic restoring coefficient is 20% less than 
the perfect model. In real-world application, this inaccurate model can 
happen due to extreme sea states where the device suffers from nonlin-
ear friction and viscous force. In addition, the inaccurate model does not 
have perfect wave radiation force calculation. Noise with uniform dis-
tribution from -0.15 to 0.15 N is injected into the wave radiation force. 
This modelling choice is justified because, in practice, wave radiation 
forces must be estimated which are inherently imperfect and subject to 
noise. The NNs model that is used in this section is the NNs with high 
datapoints from the previous section.

The weight matrix 𝑄 is the same for all models, defined as 𝑄 =
diag(7, 7, 01×(𝑛𝑟+𝑛𝑒)) while the weight 𝑟 is 0.0001. The controller was tuned 
by adjusting 𝑟 until the control input (𝑢) reached the constraint. The

prediction horizon 𝑁 is 15 steps, and a 300-second simulation is con-
ducted with a 0.2-second timestep. In practice, a timestep of 0.2 seconds 
is sufficient to effectively control the dynamics of WECs. Faster timestep 
can affect the performance of the actuator since the actuator is unable 
to respond to rapid input changes.

The state and control input constraints are the same as the data sam-
pling bounds described in Section 4.1. To implement MPC, the struc-
ture of the PINNs was converted from TensorFlow to CasADi (Andersson 
et al., 2019), enabling the use of a standard MPC solver. The do-mpc li-
brary (Fiedler et al., 2023) was implemented with IPOPT (Wächter and 
Biegler, 2006) as the solver. The initial conditions for the simulation 
were 𝑥 = [0; 0; 01×(𝑛𝑟+𝑛𝑒)]. In addition, the predicted wave is not perfect 
and within a prediction horizon, the predicted wave is

𝑤𝑘 = 𝑤𝑘 + 𝜖0𝑒
𝜆𝑠𝑘 , 𝑘 = 1, 2,… , 𝑁, 𝑠𝑘 = 0, 𝑇𝑠,… , (𝑁 − 1)𝑇𝑠 (21)

where 𝜖0 is uniformly sampled from -0.2 to 0.2 and 𝜆 = 0.5. This predic-
tion is designed such that the error grows with the prediction time. The 
wave height used in this section is shown in Fig. 8. This is a segment of 
real wave data collected from the coast of Cornwall, and the height is 
bounded. In addition to the prediction error, random disturbances are 
also considered with uniformly sampled |𝜖1| ≤ 0.01 and |𝜖2| ≤ 0.1.

The results of the comparison are presented in Figs. 9–11. The states 
are shown in Fig. 9(a)–(b) for the velocity and displacement respec-
tively. It can be observed that both are within their constraints although 
they are not active. In contrast, Fig. 10 shows that the control input con-
straints are active across all cases, ensuring a fair comparison.

To evaluate the performance of energy generation, the power and en-
ergy generated by the controllers are assessed, as shown in Fig. 11. After 
a 300-second simulation, the energy generated is 29.97 kJ for the PINNs 
model, 28.39 kJ for the NNs model, 30.55 kJ for the accurate model, and 
23.74 kJ for the inaccurate model. This indicates that the PINNs model 
generates 1.9% less energy than the accurate model but still performs 
better than the inaccurate model and the NNs model, which results in a 
22.3% and 7.06% energy loss respectively.

To investigate the sensitivity of the tuning parameters of the 
MPC, comparison is made for different 𝑞1, 𝑞2, 𝑟, 𝑁 with 𝑄 =
diag(𝑞1, 𝑞2, 01×(𝑛𝑟+𝑛𝑒)) while keeping the other parameters constant. 
These comparisons are made for the perfect MPC. Fig. 12(a)–(c) presents 
the effect of tuning the MPC weighting parameters on the energy gener-
ation of the WEC system for 300 s simulation time. Lowering 𝑞1 and 𝑞2
results in an increase in harvested energy. By assigning smaller penal-
ties to these states, the controller permits larger physical motion, which 
is beneficial for wave energy conversion since energy is extracted from 
the relative movement induced by waves. This is assuming that they re-
main well within their operational constraints. However, these weights 
cannot be reduced arbitrarily. If the setting is too low or to zero, the cost 
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Fig. 11. Closed-loop simulation of PINNs, NNs, perfect, and inaccurate MPC. (a) Power. (b) Energy.

Fig. 12. Closed-loop simulation of the energy generation of perfect MPC with different tuning parameters. (a) 𝑞1. (b) 𝑞2. (c) 𝑟. (d) prediction horizon time.

function may lose its positive definiteness, leading to an infeasible op-
timisation problem. Therefore, a balance must be maintained to ensure 
both performance and numerical stability.

In comparison, reducing the control penalty 𝑟 has a less pronounced 
effect on energy output. Although a smaller 𝑟 encourages more aggres-
sive control, the actuator is already operating near its saturation limits. 
As a result, a further reduction in 𝑟 does not significantly increase the 
control input or the energy capture. This indicates that while the adjust-
ment 𝑟 contributes to the performance, it has less influence on the en-
ergy generation compared to that of the state weights when the actuator 
constraints are active. Another MPC tuning parameter is the prediction 

horizon time, defined as 𝑁 ∗ 𝑇𝑠 in Fig. 12(d). Simulation conducted for 
100 s indicates that extending the horizon improves energy generation 
up to 3 s. Beyond this time, increasing the prediction horizon time does 
not lead to increase of energy, while the computational cost will rise.

The simulations in the current section have validated the capabil-
ity of PINNs-MPC to handle constraints effectively and achieve simi-
lar energy conversion efficiency to the accurate MPC model despite the 
presence of uncertainty. However, a limitation of this study is that the 
current model does not account for energy conversion beyond the PTO 
stage. To deliver power to the grid, it must pass through condition-
ing circuits to prevent grid instability due to power fluctuations. This
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Fig. 13. Energy plot of PINNs, NNs, perfect, and inaccurate MPC of different wave conditions. (a) Perfect model and PINNs. (b) Inaccurate model and NNs.

Fig. 14. CWR plot of PINNs, NNs, perfect, and inaccurate MPC of different wave conditions. (a) 𝐻𝑠 = 2.5 m. (b) 𝐻𝑠 = 2 m.

Fig. 15. Closed-loop simulation of PINNs, NNs, perfect, and inaccurate MPC with nonlinear viscous force. (a) 𝑧̇, |𝑧̇| ≤ 1 m/s. (b) 𝑧, |𝑧| ≤ 0.5 m.

introduces additional effects that would be interesting to explore in fu-
ture work with the proposed control scheme.

4.4.  Closed loop simulation with various wave conditions

This section presents a comparison of energy generation of the pre-
viously discussed methods under different wave conditions. The wave is 
generated by JONSWAP spectrum with a peakedness factor of 3.3. The 
significant wave height (𝐻𝑠) ranges from 1.25 m to 2.5 m, and the peak 
period (𝑇𝑝) spans 8 to 9 s. These conditions were selected to correspond 

to Sea State 4, consistent with the wave profile used in the previous 
section in Fig. 8.

The result is illustrated in Fig. 13(a)–(b). The maximum energy is 
generated by 𝐻𝑠 = 2.5 m and 𝑇𝑝 = 8 s. The trend also shows that the 
higher the significant wave height, the more energy is harvested. This 
is consistent with the theory, since larger wave heights possess more 
wave energy. In contrast, the increase of the peak period leads to a 
decrease in the harvested energy in the simulated range. The perfect 
MPC performs the best under all conditions followed by PINNs-MPC, 
NNs-MPC, and Inaccurate MPC. Nonetheless, the PINNs-MPC controller 
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Fig. 16. Closed-loop simulation of PINNs, NNs, perfect, and inaccurate MPC 
for the control input with nonlinear viscous force, purple dotted line is the con-
straint (|𝑢| ≤ 6000 N).

demonstrates energy capture performance that closely approaches the 
perfect model. For example, at 𝐻𝑠 = 2.5 m and 𝑇𝑝 = 8 s, the PINNs-MPC 
yields 37.1 kJ, only a 5.6% deviation from the ideal perfect MPC. At 
lower wave heights such as 𝐻𝑠 = 1.25 m, the PINNs-MPC and perfect 
MPC exhibit nearly identical performance. In contrast, the inaccurate 
model shows degraded performance. The energy captured by this model 
is up to 29% lower than that of the Perfect model under high wave con-
ditions (𝐻𝑠 = 2.5 m and 𝑇𝑝 = 8 s), indicating that physical modelling 
fidelity remains critical for energy generation. The conventional NNs 
model performs moderately well, achieving better results than the in-
accurate model but consistently underperforming relative to the PINNs-
MPC. These results highlight the advantage of PINNs in terms of energy 
generation performance across a range of wave conditions.

Apart from the energy calculation, the capture width ratio (CWR) of 
the WECs is also calculated based on Babarit (2015). CWR is a quantifi-
cation of the power performance of WECs and it is a measure of hydro-
dynamic efficiency. It can be defined as

CWR = 𝑃
𝑃𝑤𝑎𝑣𝑒𝐷

(22)

where 𝑃𝑤𝑎𝑣𝑒 is the available wave power per unit meter, 𝐷 is the char-
acteristic length of the WECs, 𝑃  is the average mechanical power gen-
erated by the WECs. For the point absorber, the characteristic length is 
simply the diameter of the device, 𝐷 = 0.7 m. Moreover, 𝑃𝑤𝑎𝑣𝑒 is esti-
mated based on the 𝐻𝑠 and 𝑇𝑝 (Guillou, 2020). The results of the CWR 
calculation are shown in Fig. 14(a)-(b). The significant wave height is 
fixed at 𝐻𝑠 = 2.5 m and 𝐻𝑠 = 2 m, and the peak period varies from 1 
to 12 s with a 1 s interval. These parameter ranges are consistent with 

Fig. 17. Closed-loop simulation of PINNs, NNs, perfect, and inaccurate MPC with nonlinear viscous force. (a) Power. (b) Energy.

those commonly employed in previous CWR evaluation study (Carpin-
tero Moreno and Stansby, 2019; Zhang and Li, 2020). The maximum 
CWR is found when the peak period is 4 s, and this is caused by the 
natural heave period of the device combined with the tuning from the 
controller. It can be observed that the PINNs-MPC closely follows the 
perfect MPC. At the peak period of 4 s with 𝐻𝑠 = 2.5 m, PINNs-MPC sig-
nificantly outperforms the NNs and inaccurate MPC. These simulations 
demonstrate the ability of PINNs-MPC to approximate the perfect model 
with various wave conditions. In addition, CWR should remain nearly 
constants for all 𝐻𝑠 since it is a non-dimensional parameter. However, 
in this study, the CWR can increase or decrease for different 𝐻𝑠 due to 
the limitation of PTO.

4.5.  Closed loop simulation with nonlinear WECs plant

This section presents a case study incorporating plant nonlinearity to 
demonstrate the performance of the proposed control scheme on energy 
generation. For the current device, the resulting viscous force coefficient 
is 𝑘𝑛𝑙 = 48 kg∕m. A similar setup is employed to retrain both the PINNs 
and NNs, after which the resulting models are integrated into the MPC 
framework. The closed-loop performance of the PINNs-MPC and NNs-
MPC schemes is compared against two controllers: the perfect MPC and 
an inaccurate MPC, under identical settings as previously described. This 
comparison is illustrated in Figs. 15–17. The heave displacement and 
velocity responses demonstrate that the system states remain well within 
their respective constraints across all cases. In contrast, the control input 
constraint is active throughout the simulations, thereby ensuring a fair 
comparison among the different control strategies.

To evaluate the performance of energy generation, the energy out-
put of each controller is assessed over a 300-second simulation period, 
as shown in Fig. 17. The perfect MPC yields the highest energy output at 
30.53 kJ. The PINNs-MPC achieves 30.02 kJ, corresponding to an energy 
loss of only 1.69% relative to the perfect case. The NNs-MPC produces 
29.17 kJ, resulting in a 4.46% reduction in energy. In contrast, the inac-
curate model generates only 23.74 kJ, exhibiting a significantly larger 
energy loss of 22.25%. These results highlight the effectiveness of the 
proposed PINNs-MPC in capturing the system dynamics under nonlin-
ear conditions and maintaining high energy generation performance.

Apart from the WECs control problem, PINNs-MPC framework shows 
strong potential for broader application in renewable energy systems 
such as wind and solar, which often face challenges related to model-
ing complexity, data sparsity, and control under constraints. In wind 
energy, highly nonlinear and time-varying aerodynamics, turbine wake 
interactions, and environmental uncertainties complicate accurate mod-
eling. Similarly, solar power systems must cope with rapidly changing 
irradiance, partial shading, and battery degradation dynamics, all under
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tight operational constraints. PINNs can offer a solution by incorporat-
ing partially known physical laws directly into the learning process, en-
abling accurate system identification from sparse measurements. When 
combined with MPC, this allows for constrained optimal control that 
is physically consistent, making it a powerful tool for improving en-
ergy generation performance and reliability in renewable energy appli-
cations.

Nonetheless, applying this control strategy to other renewable en-
ergy systems requires several adaptations. First, the partially known 
governing equations used in the PINNs formulation must be revised 
to reflect the physical principles governing the target system, followed 
by retraining with relevant data. Additionally, the MPC cost function 
should be redefined to reflect the performance objectives of the energy 
source, such as maximising power output in photovoltaic or wind tur-
bine systems, while explicitly incorporating the physical and operational 
constraints. Despite these modifications, the proposed framework re-
mains broadly applicable to a range of renewable energy technologies.

5.  Conclusions

In conclusion, this study presented a novel application of the PINNs-
MPC framework for optimising the energy output of WECs. The results 
from simulation studies demonstrated the sampling efficiency of PINNs 
compared to the traditional NNs. Moreover, the PINNs-MPC scheme 
achieved comparable energy conversion efficiencies to traditional MPC 
with perfect knowledge of system dynamics, while outperforming mod-
els with inaccurate information and the NNs MPC. Additionally, the use 
of PINNs models has been extensively validated through hyperparam-
eter tuning and open-loop simulations. Future work will focus on an 
experimental study with the proposed PINNs-MPC scheme.
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