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ABSTRACT   

The rapid expansion of offshore wind electricity generation capacity over the past decades means that many existing wind 

farms will soon come to the end of their design life, typically using monopiles as the support structure in medium water 

depths. The need for renewable energy generation and lower embodied carbon will in many cases encourage offshore wind 

turbine life extension. The viability for lifetime extension was investigated using reliability analysis, leveraging a novel 

active learning framework with an ensemble of surrogate models and offering valuable insights for risk-based decision-

making and sustainable management of offshore wind assets. For a reference monopile-supported OWT, this provided 

accurate failure probability estimates with significantly reduced computational costs. Results indicate a progressive decline 

in OWT reliability over time due to accumulated fatigue damage under cyclic environmental loading. The feasibility of 

employing guided ultrasonic waves to monitor the inaccessible, submerged part of the monopiles to detect the development 

of critical defects was explored to assess the sensitivity for typical fatigue and corrosion defects at circumferential welds. 

The guided wave sensor data could be combined with wind and wave load predictions to facilitate fatigue reliability 

analysis based on structural health monitoring. 

Keywords: Guided ultrasonic waves, offshore wind turbine, fatigue reliability analysis, renewable energy, structural health 

monitoring 

 

1. INTRODUCTION  

Offshore wind turbines (OWTs) are a crucial component for the shift towards renewable energy, playing a pivotal role in 

reducing carbon emissions and meeting long-term sustainability targets [1]. Monopile-supported OWTs are the most 

common offshore installation due to their cost-effectiveness and adaptability up to medium water depths. However, their 

structural integrity needs to be ascertained, as cyclic wind, wave, and operational loads can lead to progressive fatigue 

damage [2]. Ensuring the long-term reliability of these structures is essential for extending service life and reducing 

lifecycle costs [3]. Fatigue failure in OWT monopiles primarily stems from repeated stress cycles caused by dynamic 

loading, with critical regions often located near circumferential welds below the mudline. Accurately assessing fatigue life 

requires a comprehensive understanding of environmental conditions, material behavior, and loading uncertainties [4].  

Conventional fatigue assessment methods mainly rely on time-domain simulations coupled with cumulative damage 

models such as the Palmgren-Miner rule. While effective, these approaches are computationally expensive, particularly 

for long-term reliability assessments under varying load conditions [5]. To address these challenges, researchers have 

explored surrogate-based approaches for efficient fatigue reliability analysis [6]. The commonly used surrogate models 

include the response surface method, artificial neural network, polynomial chaos expansion, and Kriging model [7-9]. 

However, current surrogate-based methods often rely on one-shot sampling techniques, where training samples are 

generated beforehand using space-filling designs. This approach fails to dynamically focus on the most critical areas of 

the design space, particularly regions near the failure boundaries or those with high uncertainty [10]. Consequently, 

computational resources may be inefficiently allocated, and the accuracy of fatigue reliability predictions can be 

compromised. Moreover, single surrogate models may struggle to capture the complexities and nonlinearity inherent in 

fatigue damage predictions for OWTs, especially under varying environmental conditions [11]. 

To overcome these limitations, this study proposes the use of ensemble surrogate models, which combine multiple 

individual models to leverage their complementary strengths. By integrating different types of surrogates, such as Kriging 

[7], Bayesian Support Vector Regression (BSVR) [12], and Polynomial Chaos Kriging (PCK) [13], the ensemble approach 

enhances prediction accuracy and robustness, better capturing the complex relationships between environmental factors 



 

 
 

 

 

 

and structural responses. Additionally, active learning strategies are introduced to iteratively select the most informative 

training samples, focusing on the regions with high uncertainty or near the critical failure points. This dynamic sampling 

process ensures that the model is refined efficiently, reducing the need for excessive function evaluations and improving 

computational efficiency. Through the combination of ensemble models and active learning, the proposed approach offers 

a more accurate, adaptable, and resource-efficient solution for fatigue reliability analysis of OWTs. 

Structural Health Monitoring (SHM) techniques, particularly guided ultrasonic waves, offer a promising solution for real-

time fatigue damage assessment. These techniques could enable the detection of defects in submerged monopile sections, 

where direct inspection is challenging. By integrating SHM data with probabilistic fatigue models, the predictive 

capabilities could be enhanced and proactive maintenance strategies developed, ultimately supporting the life extension of 

offshore wind assets. This study proposes a novel framework combining guided wave-based SHM with an adaptive 

ensemble of surrogate models for efficient fatigue reliability analysis of monopile-supported OWTs. The methodology is 

designed to improve fatigue life predictions, reduce computational costs, and support risk-informed decision-making for 

sustainable offshore wind farm management. 

2. NUMERICAL MODEL OF A REFERENCE OWT 

To evaluate the fatigue reliability of OWTs, a robust numerical model is required to capture the complex interactions 

between structural dynamics and environmental forces. This study utilizes the well-known NREL 5 MW monopile-

supported reference OWT [14] for the case study, as shown in Fig. 1a. 

The finite element (FE) model of the referenced OWT employs Euler-Bernoulli beam elements to represent the 

tower/monopile [15]. Each node has six degrees of freedom (DOFs), encompassing three translational and three rotational 

motions. Rayleigh damping is introduced to account for both structural and soil damping, while the nacelle is modeled as 

a lumped mass at the tower top, simplifying computations by assuming no rotational inertia. The soil-structure interaction 

is captured using lateral soil springs formulated based on p-y curves. Aerodynamic forces are determined via unsteady 

blade element momentum theory, while hydrodynamic loads are computed using Morison’s equation. The governing 

equation of motion for the coupled system is formulated as described in more detail in [15]: 

𝐌(𝑡)𝐮̈(𝑡) + (𝐂Struc(𝑡) + 𝐂Soil(𝑡))𝐮̇(𝑡) + 𝐊(𝑡)𝐮(𝑡) = 𝐅Wind(𝑡) + 𝐅Wave(𝑡)                    (1) 

where 𝐮(𝑡) represents the displacement vector, 𝐌(𝑡), 𝐂Struc(𝑡), 𝐂Soil(𝑡) and 𝐊(𝑡) are the time-dependent mass, damping, 

and stiffness matrices. External forces 𝐅Wind(𝑡) and 𝐅Wave(𝑡) correspond to wind and wave loads.  

 
Figure 1. Schematics of: (a) 5 MW monopile-supported reference OWT; (b) corresponding numerical model. 



 

 
 

 

 

 

To enhance computational efficiency, an aerodynamically decoupled approach is employed, where the aerodynamic forces 

from the rotor are linearized at the tower top. This introduces an additional aerodynamic damping matrix, which captures 

the interactions between fore-aft and side-side motions of the turbine. By employing this approach, the computational cost 

is significantly reduced, while maintaining high accuracy in fatigue life predictions. The numerical model is shown in Fig. 

1b, and the application of the HHT-α method (extension of the Newmark-β method) ensures numerical efficiency, stability 

and accuracy. For further details on the numerical model, please refer to [15]. 

3. RELIABILITY ANALYSIS WITH ADAPTIVE ENSEMBLE OF SURROGATES  

This section introduces a new method for structural reliability analysis using an adaptive ensemble of surrogate models 

(AEOS), with the overall workflow depicted in Fig. 2. In this approach, multiple surrogate models are combined into a 

single ensemble model, where each model is assigned a weight that reflects its contribution to the overall prediction. The 

ensemble model 𝑔̂𝐸(𝒙) is expressed as follows: 

𝑔̂𝐸(𝒙) = ∑𝑚
𝑖=1 𝑤𝑖𝑔̂𝑖(𝒙),    where    ∑𝑚

𝑖=1 𝑤𝑖 = 1                                                         (2) 

where 𝑔̂𝑖(𝒙) represents the 𝑖-th surrogate model, 𝑤𝑖  is its corresponding weight factor, and 𝑚 denotes the total number of 

surrogate models in the ensemble. In this study, three surrogate models (Kriging, BSVR, and PCK) are used, each chosen 

for their unique advantages.  

Unlike traditional AEOS methods where weights calculation is primarily focused on global error metrics, both global error 

𝐸𝑖
𝐺 (in terms of leave-one-out-error) and local error 𝐸𝑖

𝐿 (in terms of the sum of prediction variance in critical regions) are 

considered to determine the appropriate weights for each model. The weight factor 𝑤𝑖  for each surrogate in the AEOS can 

be calculated using the following equation:  

𝑤𝑖 =
𝑤𝑖

∗

∑𝑚
𝑗=1 𝑤𝑗

∗ ,    where    𝑤𝑖
∗ =

exp(−10𝐸𝑖
𝐿)

𝐸𝑖
𝐺 , 𝑖 = 1,2, … , 𝑚

 
                                                 (3)                                          

To avoid the difficulty in choosing appropriate learning functions, a learning function allocation strategy based on a reward 

mechanism is proposed. This approach continuously adjusts the selection of learning functions based on their historical 

performance and effectiveness in identifying informative samples to improve model accuracy. The reward function 𝑟𝑙(𝑘) 

for the lth learning function in the kth iteration is defined as: 

𝑟𝑙(𝑘) = −
|𝜇̂𝑔̂𝐸

(𝒙̂𝑙)|

𝑓(𝒙̂𝑙)∗𝑑2(𝒙̂𝑙)
,    where     𝜇̂𝑔̂𝐸

(𝒙) = ∑𝑚
𝑖=1 𝑤𝑖𝜇̂𝑔̂𝑖

(𝒙)                                              (4) 

where 𝒙𝑙 is the newly selected sample from the lth learning function, 𝑓(𝒙𝑙) is the probability density of  𝒙𝑙, 𝑑(𝒙𝑙) denotes 

the Euclidean distance to the existing samples in the design of experiments (DoE), and 𝜇̂𝑔̂𝑖
(𝒙) represents the predicted 

mean of each surrogate 𝑔̂𝑖(𝒙) in the ensemble model.  

 

Figure 2. Overall workflow of proposed AEOS methodology. 



 

 
 

 

 

 

This reward function is designed to prioritize sample selection near the limit state surface and in regions with high 

probability density while preventing excessive clustering with existing samples in the DoE, which is crucial for enhancing 

computational efficiency in active learning [16, 17]. In this study, six learning functions (𝑙 = 6) are used, and two samples 

are added in each iteration of AEOS to enable parallelization. With the availability of the surrogate model, failure 

probability is calculated using Monte Carlo Simulation (MCS) in each iteration. 

The following stopping criterion for the active learning process is used: 

                                  {
Δ𝑃̂𝑓

𝑖 ≤ 𝛾𝑃𝑓
,    Δ𝑃̂𝑓

𝑖−1 ≤ 𝛾𝑃𝑓
,    Δ𝑃̂𝑓

𝑖−2 ≤ 𝛾𝑃𝑓
,    𝑖 ≥ 3

|
𝛽̂𝑖−𝛽̂𝑖−1

𝛽̂𝑖−1
| < 𝜖𝛽    and    |

𝛽̂𝑖−1−𝛽̂𝑖−2

𝛽̂𝑖−2
| < 𝜖𝛽 ,    𝑖 ≥ 3

  (5) 

where Δ𝑃̂𝑓 =
𝑃̂𝑓

+−𝑃̂𝑓
−

𝑃̂𝑓
 denotes the difference between the lower 𝑃̂𝑓

− and upper 𝑃̂𝑓
+ bounds of failure probability, 𝛽̂𝑖, 𝛽̂𝑖−1, and 

𝛽̂𝑖−2 are the reliability indices (i.e. 𝛽̂ = −Φ−1(𝑃̂𝑓), with Φ−1(⋅) denoting the inverse of standard normal CDF) estimated 

in the current, the (𝑖 − 1)th, and the (𝑖 − 2)th iterations, respectively. The threshold values 𝛾𝑃𝑓
 and 𝜖𝛽 are taken as 0.1 

and 1 × 10−3, respectively. In the fatigue reliability analysis of OWTs, the performance function over T years of operation 

can be given as follows [4]: 

𝑔(𝑉𝑤 , 𝐻𝑠 , 𝑇𝑝) = 1 −
𝑇∗𝒟𝑐

𝑇𝑐
                                                               (6) 

where 𝑉𝑤 , 𝐻𝑠, and 𝑇𝑝 are mean wind velocity, significant wave height, and wave period, respectively. The distribution 

parameters of these variables are summarised in Table 1.  Using the stress time series obtained from the FE model, fatigue 

damage is assessed through the rainflow counting method to identify stress cycles. The fatigue life is estimated based on 

S-N curves. Then, the cumulative damage 𝒟𝑐 over a given time interval 𝑇𝑐 is evaluated using the Palmgren-Miner rule. 

Following wind turbine design standards, a 600 s simulation is used in this study [4]. 

Table 1. Distribution parameters of random variables in the OWT. 

 

4. OWT RELIABILITY PREDICTION 

The fatigue reliability of the OWT was evaluated using five methods: importance sampling (IS), subset simulation (SS), 

second-order reliability method (SORM), adaptive kriging-based MCS (AK-MCS), and the proposed AEOS. For the case 

with 𝑇 = 20 years, the results of the fatigue reliability analysis using different methods are listed in Table 2. The reference 

result is calculated from importance sampling and the failure probability is estimated as 0.1159 with a coefficient of 

variation of 2.5% using 2753 FE simulations, requiring over 40 hours of computational time. 

Table 2. Fatigue reliability analysis results (T=20) of the OWT using different methods. 

 

As shown in Table 2, SS provides a nearly identical estimate to IS, with a relative error of only 0.09%, but still requires a 

high number of FE simulations (1813) and a computational time exceeding 27 hours. Although SORM is computationally 

efficient, completing the analysis in approximately 1 hour, it underestimates the failure probability by 7.68%, 

demonstrating its limitations in capturing the nonlinear failure surface.  



 

 
 

 

 

 

 

Figure 3. Variation of fatigue failure probability and reliability index of the OWT over time. 

AK-MCS improves computational efficiency compared to IS and SS while maintaining an estimation with acceptable 

accuracy, reducing the required FE simulations to 181. However, it still requires nearly 5 hours to obtain the results, which 

may limit its practicality for large-scale applications. In contrast, the proposed AEOS method achieves a highly accurate 

failure probability estimate with a relative error of only 0.17% while significantly reducing computational cost. AEOS 

requires only 42 FE simulations and completes the analysis in approximately 39 minutes, demonstrating its superior 

efficiency and suitability for rapid fatigue reliability assessment. 

The variation of failure probability and reliability index over the operational lifespan of the OWT is depicted in Fig. 3. The 

results indicate a progressive increase in failure probability, rising from 4.11×10−5 in year 1 to 0.1639 in year 60, while the 

reliability index declines correspondingly from 3.94 to 0.98. The most significant reduction in reliability occurs within the 

first 10 years, where the reliability index β  declines from 3.94 to 1.41, reflecting the early-stage accumulation of fatigue 

damage under cyclic environmental loading. Beyond 20 years, the decline in reliability slows, with β decreasing marginally 

from 1.27 at year 20 to 1.06 at year 50, suggesting that the remaining structural capacity continues to degrade but at a 

reduced rate. The proposed AEOS framework provides an efficient tool for conducting rapid reliability assessments to 

support decision-making in OWT design and lifecycle management, facilitating the exploration of life extension strategies 

to ensure continued safe operation beyond the intended design life. 

 

 
Figure 4. Schematic diagram and photograph of scaled monopile prototypes (dimensions in mm). 



 

 
 

 

 

 

5. GUIDED WAVE MONITORING 

Low frequency guided waves can propagate long distances [18], e.g., downwards along the monopile from permanently 

installed, piezoelectric sensors (between transition piece and splash zone), recording reflections at welds, corrosion, and 

developing fatigue cracks. Compared to traditional sensors, these can remotely monitor defects at critical locations below 

the mudline, thereby allowing a better characterization of the asset’s remaining useful life (RUL) and updating of reliability 

analysis. However, the applicability of guided wave monitoring for large diameter monopiles with frequent circumferential 

welds as required by the manufacturing methodology has not been systemically investigated. Scaled prototypes for the 

laboratory testing were commissioned and manufactured, as shown in Fig. 4. Two different manufacturing techniques were 

employed to achieve the specific geometry and to ensure the prototype dimensions provided a sensible scaling of as-

installed OWT monopiles. Preliminary measurements were conducted employing a laboratory setup [19] to quantify the 

guided wave propagation along the steel prototypes.  
 

6. CONCLUSIONS 

This study presents an adaptive ensemble of surrogate models (AEOS) for fatigue reliability analysis of offshore wind 

turbines (OWTs). The effectiveness of AEOS was demonstrated for the fatigue reliability assessment of a reference 

monopile-supported OWT. AEOS provided highly accurate failure probability estimates with significantly reduced 

computational costs, highlighting its potential for large-scale structural reliability evaluations. The results indicate a 

progressive decline in OWT reliability over time due to accumulated fatigue damage under cyclic environmental loading. 

This underscores the need for enhanced fatigue-resistant design, proactive maintenance strategies, and life extension 

measures to ensure continued safe operation. The feasibility of employing guided ultrasonic waves to monitor the 

inaccessible, submerged part of the monopiles to detect the development of critical defects was proposed. By integrating 

SHM data with probabilistic fatigue analysis, the proposed approach offers a powerful tool for risk-informed decision-

making, supporting the sustainable management of offshore wind assets beyond their original design life. 
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