Monitoring of offshore wind turbine monopiles for life extension
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ABSTRACT

The rapid expansion of offshore wind electricity generation capacity over the past decades means that many existing wind
farms will soon come to the end of their design life, typically using monopiles as the support structure in medium water
depths. The need for renewable energy generation and lower embodied carbon will in many cases encourage offshore wind
turbine life extension. The viability for lifetime extension was investigated using reliability analysis, leveraging a novel
active learning framework with an ensemble of surrogate models and offering valuable insights for risk-based decision-
making and sustainable management of offshore wind assets. For a reference monopile-supported OWT, this provided
accurate failure probability estimates with significantly reduced computational costs. Results indicate a progressive decline
in OWT reliability over time due to accumulated fatigue damage under cyclic environmental loading. The feasibility of
employing guided ultrasonic waves to monitor the inaccessible, submerged part of the monopiles to detect the development
of critical defects was explored to assess the sensitivity for typical fatigue and corrosion defects at circumferential welds.
The guided wave sensor data could be combined with wind and wave load predictions to facilitate fatigue reliability
analysis based on structural health monitoring.
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1. INTRODUCTION

Offshore wind turbines (OWTS) are a crucial component for the shift towards renewable energy, playing a pivotal role in
reducing carbon emissions and meeting long-term sustainability targets [1]. Monopile-supported OWTs are the most
common offshore installation due to their cost-effectiveness and adaptability up to medium water depths. However, their
structural integrity needs to be ascertained, as cyclic wind, wave, and operational loads can lead to progressive fatigue
damage [2]. Ensuring the long-term reliability of these structures is essential for extending service life and reducing
lifecycle costs [3]. Fatigue failure in OWT monopiles primarily stems from repeated stress cycles caused by dynamic
loading, with critical regions often located near circumferential welds below the mudline. Accurately assessing fatigue life
requires a comprehensive understanding of environmental conditions, material behavior, and loading uncertainties [4].

Conventional fatigue assessment methods mainly rely on time-domain simulations coupled with cumulative damage
models such as the Palmgren-Miner rule. While effective, these approaches are computationally expensive, particularly
for long-term reliability assessments under varying load conditions [5]. To address these challenges, researchers have
explored surrogate-based approaches for efficient fatigue reliability analysis [6]. The commonly used surrogate models
include the response surface method, artificial neural network, polynomial chaos expansion, and Kriging model [7-9].
However, current surrogate-based methods often rely on one-shot sampling techniques, where training samples are
generated beforehand using space-filling designs. This approach fails to dynamically focus on the most critical areas of
the design space, particularly regions near the failure boundaries or those with high uncertainty [10]. Consequently,
computational resources may be inefficiently allocated, and the accuracy of fatigue reliability predictions can be
compromised. Moreover, single surrogate models may struggle to capture the complexities and nonlinearity inherent in
fatigue damage predictions for OWTs, especially under varying environmental conditions [11].

To overcome these limitations, this study proposes the use of ensemble surrogate models, which combine multiple
individual models to leverage their complementary strengths. By integrating different types of surrogates, such as Kriging
[7], Bayesian Support Vector Regression (BSVR) [12], and Polynomial Chaos Kriging (PCK) [13], the ensemble approach
enhances prediction accuracy and robustness, better capturing the complex relationships between environmental factors



and structural responses. Additionally, active learning strategies are introduced to iteratively select the most informative
training samples, focusing on the regions with high uncertainty or near the critical failure points. This dynamic sampling
process ensures that the model is refined efficiently, reducing the need for excessive function evaluations and improving
computational efficiency. Through the combination of ensemble models and active learning, the proposed approach offers
a more accurate, adaptable, and resource-efficient solution for fatigue reliability analysis of OWTSs.

Structural Health Monitoring (SHM) techniques, particularly guided ultrasonic waves, offer a promising solution for real-
time fatigue damage assessment. These techniques could enable the detection of defects in submerged monopile sections,
where direct inspection is challenging. By integrating SHM data with probabilistic fatigue models, the predictive
capabilities could be enhanced and proactive maintenance strategies developed, ultimately supporting the life extension of
offshore wind assets. This study proposes a novel framework combining guided wave-based SHM with an adaptive
ensemble of surrogate models for efficient fatigue reliability analysis of monopile-supported OWTs. The methodology is
designed to improve fatigue life predictions, reduce computational costs, and support risk-informed decision-making for
sustainable offshore wind farm management.

2. NUMERICAL MODEL OF A REFERENCE OWT

To evaluate the fatigue reliability of OWTSs, a robust numerical model is required to capture the complex interactions
between structural dynamics and environmental forces. This study utilizes the well-known NREL 5 MW monopile-
supported reference OWT [14] for the case study, as shown in Fig. la.

The finite element (FE) model of the referenced OWT employs Euler-Bernoulli beam elements to represent the
tower/monopile [15]. Each node has six degrees of freedom (DOFs), encompassing three translational and three rotational
motions. Rayleigh damping is introduced to account for both structural and soil damping, while the nacelle is modeled as
a lumped mass at the tower top, simplifying computations by assuming no rotational inertia. The soil-structure interaction
is captured using lateral soil springs formulated based on p-y curves. Aerodynamic forces are determined via unsteady
blade element momentum theory, while hydrodynamic loads are computed using Morison’s equation. The governing
equation of motion for the coupled system is formulated as described in more detail in [15]:

M(£)ia(t) + (Cseruc(t) + Cson (1) )u(t) + K()u(t) = Fyyina(t) + Fyave (t) €
where u(t) represents the displacement vector, M(t), Csiruc(t), Cson(t) and K(t) are the time-dependent mass, damping,
and stiffness matrices. External forces Fyyinq(t) and Fyy,ye (t) correspond to wind and wave loads.
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Figure 1. Schematics of: (a) 5 MW monopile-supported reference OWT; (b) corresponding numerical model.
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To enhance computational efficiency, an aerodynamically decoupled approach is employed, where the aerodynamic forces
from the rotor are linearized at the tower top. This introduces an additional aerodynamic damping matrix, which captures
the interactions between fore-aft and side-side motions of the turbine. By employing this approach, the computational cost
is significantly reduced, while maintaining high accuracy in fatigue life predictions. The numerical model is shown in Fig.
1b, and the application of the HHT-a method (extension of the Newmark-# method) ensures numerical efficiency, stability
and accuracy. For further details on the numerical model, please refer to [15].

3. RELIABILITY ANALYSIS WITH ADAPTIVE ENSEMBLE OF SURROGATES

This section introduces a new method for structural reliability analysis using an adaptive ensemble of surrogate models
(AEOS), with the overall workflow depicted in Fig. 2. In this approach, multiple surrogate models are combined into a
single ensemble model, where each model is assigned a weight that reflects its contribution to the overall prediction. The
ensemble model g5 (x) is expressed as follows:

geg(x) = X2 wigi(x), where X, w; =1 3

where g§;(x) represents the i-th surrogate model, w; is its corresponding weight factor, and m denotes the total number of
surrogate models in the ensemble. In this study, three surrogate models (Kriging, BSVR, and PCK) are used, each chosen
for their unique advantages.

Unlike traditional AEOS methods where weights calculation is primarily focused on global error metrics, both global error
EF (in terms of leave-one-out-error) and local error EF (in terms of the sum of prediction variance in critical regions) are
considered to determine the appropriate weights for each model. The weight factor w; for each surrogate in the AEOS can
be calculated using the following equation:
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To avoid the difficulty in choosing appropriate learning functions, a learning function allocation strategy based on a reward
mechanism is proposed. This approach continuously adjusts the selection of learning functions based on their historical
performance and effectiveness in identifying informative samples to improve model accuracy. The reward function r; (k)

for the Ith learning function in the kth iteration is defined as:
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where X; is the newly selected sample from the Ith learning function, f(x;) is the probability density of X;, d(x;) denotes
the Euclidean distance to the existing samples in the design of experiments (DoE), and /i, (x) represents the predicted
mean of each surrogate g;(x) in the ensemble model.
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Figure 2. Overall workflow of proposed AEOS methodology.



This reward function is designed to prioritize sample selection near the limit state surface and in regions with high
probability density while preventing excessive clustering with existing samples in the DoE, which is crucial for enhancing
computational efficiency in active learning [16, 17]. In this study, six learning functions (! = 6) are used, and two samples
are added in each iteration of AEOS to enable parallelization. With the availability of the surrogate model, failure
probability is calculated using Monte Carlo Simulation (MCS) in each iteration.

The following stopping criterion for the active learning process is used:
APf <yp, APFT<yp, APfP<yp, i23
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where Aﬁf = denotes the difference between the lower Pf‘ and upper Pf’“ bounds of failure probability, 3;, f;_,, and

Py
Bi— are the reliability indices (i.e. = —®~*(P;), with ®~*(-) denoting the inverse of standard normal CDF) estimated
in the current, the (i — 1)th, and the (i — 2)th iterations, respectively. The threshold values Ve, and e are taken as 0.1
and 1 x 1073, respectively. In the fatigue reliability analysis of OWTSs, the performance function over T years of operation
can be given as follows [4]:

T+D¢
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where V,,, H, and T,, are mean wind velocity, significant wave height, and wave period, respectively. The distribution
parameters of these variables are summarised in Table 1. Using the stress time series obtained from the FE model, fatigue
damage is assessed through the rainflow counting method to identify stress cycles. The fatigue life is estimated based on
S-N curves. Then, the cumulative damage D, over a given time interval T, is evaluated using the Palmgren-Miner rule.
Following wind turbine design standards, a 600 s simulation is used in this study [4].

c

Table 1. Distribution parameters of random variables in the OWT.

Random variable Distribution Mean Coefficient of variation
Mean wind velocity ¥, Weibull 4.85 m/s 0.6
Significant wave height H, Lognormal 0.35m 0.82
Wave period 7, Lognormal 49s 0.33

4. OWT RELIABILITY PREDICTION

The fatigue reliability of the OWT was evaluated using five methods: importance sampling (1S), subset simulation (SS),
second-order reliability method (SORM), adaptive kriging-based MCS (AK-MCS), and the proposed AEOS. For the case
with T = 20 years, the results of the fatigue reliability analysis using different methods are listed in Table 2. The reference
result is calculated from importance sampling and the failure probability is estimated as 0.1159 with a coefficient of
variation of 2.5% using 2753 FE simulations, requiring over 40 hours of computational time.

Table 2. Fatigue reliability analysis results (T=20) of the OWT using different methods.

~

Methods Iif B N, €5, (%) Time

IS 0.1159 1.196 2753 - 40h44m20s
SS 0.1158 1.196 1813 0.09 27h27m2s
SORM 0.1070 1.242 76 7.68 1h3m39s
AK-MCS 0.1184 1.191 181 2.07 4h59m37s
AEQS 0.1161 1.195 42 0.17 38m58s

As shown in Table 2, SS provides a nearly identical estimate to IS, with a relative error of only 0.09%, but still requires a
high number of FE simulations (1813) and a computational time exceeding 27 hours. Although SORM is computationally
efficient, completing the analysis in approximately 1 hour, it underestimates the failure probability by 7.68%,
demonstrating its limitations in capturing the nonlinear failure surface.
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Figure 3. Variation of fatigue failure probability and reliability index of the OWT over time.

AK-MCS improves computational efficiency compared to IS and SS while maintaining an estimation with acceptable
accuracy, reducing the required FE simulations to 181. However, it still requires nearly 5 hours to obtain the results, which
may limit its practicality for large-scale applications. In contrast, the proposed AEOS method achieves a highly accurate
failure probability estimate with a relative error of only 0.17% while significantly reducing computational cost. AEOS
requires only 42 FE simulations and completes the analysis in approximately 39 minutes, demonstrating its superior
efficiency and suitability for rapid fatigue reliability assessment.

The variation of failure probability and reliability index over the operational lifespan of the OWT is depicted in Fig. 3. The
results indicate a progressive increase in failure probability, rising from 4.11><1075 in year 1 to 0.1639 in year 60, while the
reliability index declines correspondingly from 3.94 to 0.98. The most significant reduction in reliability occurs within the
first 10 years, where the reliability index g declines from 3.94 to 1.41, reflecting the early-stage accumulation of fatigue
damage under cyclic environmental loading. Beyond 20 years, the decline in reliability slows, with # decreasing marginally
from 1.27 at year 20 to 1.06 at year 50, suggesting that the remaining structural capacity continues to degrade but at a
reduced rate. The proposed AEOS framework provides an efficient tool for conducting rapid reliability assessments to
support decision-making in OWT design and lifecycle management, facilitating the exploration of life extension strategies
to ensure continued safe operation beyond the intended design life.
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Figure 4. Schematic diagram and photograph of scaled monopile prototypes (dimensions in mm).



5. GUIDED WAVE MONITORING

Low frequency guided waves can propagate long distances [18], e.g., downwards along the monopile from permanently
installed, piezoelectric sensors (between transition piece and splash zone), recording reflections at welds, corrosion, and
developing fatigue cracks. Compared to traditional sensors, these can remotely monitor defects at critical locations below
the mudline, thereby allowing a better characterization of the asset’s remaining useful life (RUL) and updating of reliability
analysis. However, the applicability of guided wave monitoring for large diameter monopiles with frequent circumferential
welds as required by the manufacturing methodology has not been systemically investigated. Scaled prototypes for the
laboratory testing were commissioned and manufactured, as shown in Fig. 4. Two different manufacturing techniques were
employed to achieve the specific geometry and to ensure the prototype dimensions provided a sensible scaling of as-
installed OWT monopiles. Preliminary measurements were conducted employing a laboratory setup [19] to quantify the
guided wave propagation along the steel prototypes.

6. CONCLUSIONS

This study presents an adaptive ensemble of surrogate models (AEOS) for fatigue reliability analysis of offshore wind
turbines (OWTSs). The effectiveness of AEOS was demonstrated for the fatigue reliability assessment of a reference
monopile-supported OWT. AEOS provided highly accurate failure probability estimates with significantly reduced
computational costs, highlighting its potential for large-scale structural reliability evaluations. The results indicate a
progressive decline in OWT reliability over time due to accumulated fatigue damage under cyclic environmental loading.
This underscores the need for enhanced fatigue-resistant design, proactive maintenance strategies, and life extension
measures to ensure continued safe operation. The feasibility of employing guided ultrasonic waves to monitor the
inaccessible, submerged part of the monopiles to detect the development of critical defects was proposed. By integrating
SHM data with probabilistic fatigue analysis, the proposed approach offers a powerful tool for risk-informed decision-
making, supporting the sustainable management of offshore wind assets beyond their original design life.
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