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Abstract— To achieve dynamic legged locomotion, real-time
acquisition of the robot floating base state is critical. However,
current full-coupled state estimation solutions may suffer from
convergence issues. To address this, a two-stage state estimator
that uses proprioceptive sensors is proposed to estimate the
floating base’s velocity and pose. The approach decomposes
the floating-base state estimation problem into base orien-
tation estimation and base velocity and position estimation,
resulting in a two-stage multi-sensor fusion algorithm with
stability guarantees. Additionally, a covariance inflation method
is introduced to consider the influences of contact switching
by adjusting noise covariances. The proposed state estimator
has been successfully implemented and verified on a real
quadrupedal robot, supporting dynamic motions such as multi-
gaited locomotion and push recovery.

I. INTRODUCTION

Legged robots excel in highly unstructured environments
thanks to their intermittent contact, which complicates loco-
motion control. A key challenge for dynamic legged locomo-
tion is accurately estimating the robot’s floating base velocity
and pose in real-time. Current state estimation algorithms for
legged robots fall into two categories: filtering methods [1]–
[9] and smoothing methods [10]–[16]. While many of these
methods are popular, their stability—particularly during con-
tact switching—receives limited attention.

Filtering methods predict the robot’s state with previous
measurements and correct it with new ones. The first filtering
method [1] for legged robots is the Extended Kalman Filter
(EKF) based state estimator fusing Inertial Measurement
Units (IMU) readings and encoder measurements, elimi-
nating the need for prior knowledge of terrain and robot
dynamics, but potentially suffering from observability and
divergence issues. To overcome these, an invariant EKF [2]
based on invariant observer theory [17] is proposed, and its
stability conditions are provided [5]. However, the invariant
property is forfeited when the IMU biases are considered.
In short, the filtering method has no stability guarantee, and
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Fig. 1. Overview of the two-stage proprioceptive state estimator.

the impact of contact switching on stability has not been
discussed.

Smoothing methods estimate the robot’s state at a specific
time using all previous measurements and some future ones.
The work in [10] is the first one to apply smoothing to
legged robot state estimation, presenting a fusion of inertial,
kinematic and contact information into a factor graph frame-
work. Initially, focusing on a single contact point, the authors
later extended it in [11] to accommodate multiple footsteps.
Several enhancements have improved the reliability of the
smoothing method under challenging conditions [12], [13],
ultimately developing a legged navigation system tailored for
all-terrain legged robots [14]. While the smoothing method
is gaining popularity, none of these studies provide a stability
analysis that considers the impact of contact switching.

To address stability issues in filtering and smoothing
methods for legged robot state estimation, we propose a
two-stage state estimator for legged robots shown in Fig. 1,
validated using the A1 robot. The state estimation is de-
composed into two stages: a complementary filter-based base
orientation estimation and a linear Kalman filter-based base
velocity and position estimation, importantly, both stages
undergo rigorous stability analysis. The key contribution of
this research is that a two-stage state estimator with stability
guarantee for dynamic legged locomotion is proposed that
only need proprioceptive sensors and are validated through
real-world experiments.

This paper is structured as follows: Section II introduces
the system and sensor models and outlines the estimator’s
structure. Section III and Section IV present the estimator’s
submodules and stability analysis. Experiments are detailed
in Section V, and Section VI concludes the article.



Fig. 2. Illustration of the required coordinate systems including the inertial
frame ΣI , base frame ΣB and estimator frame ΣE .

II. PROBLEM FORMULATION
This section presents the system and sensor models for a

legged robot, along with the structure of the proprioceptive
state estimator. Fig. 2 depicts the required coordinate systems
comprising the inertial frame ΣI and the base frame ΣB . The
state estimator computes the base frame velocity and pose
relative to the inertial frame with sensor measurements.

A. System Model
The origin of ΣB is located at the center of mass of the

robot base with the x-axis pointing to the robot’s front, the
y-axis pointing to the left, and the z-axis pointing upward.
The system model can be represented as follows:

I ṗB = IvI,B ,
I v̇I,B = IaI,B , (1)

IṘB = IRB
Bω∧

I,B , (2)

where IpB , IvI,B , and IaI,B are the base’s absolute posi-
tion, velocity, and acceleration, respectively. IRB and BωI,B

are the base’s orientation and angular velocity, and BωI,B is
expressed in ΣB . Operators (·)∧ and (·)∨ convert 3D vectors
to skew-symmetric matrices and vice versa.

B. Sensor Models
The state estimator relies on proprioceptive sensors and

their stochastic measurement models, assuming measure-
ments are corrupted by additive white Gaussian noise.

1) Inertial Sensors: IMU measures base angular velocity
Bω̃B and acceleration B c̃B , respectively, in ΣB . These
measurements are affected by noise [1], [16]

Bω̃I,B = BωI,B + bg +wg, wg ∼ N (03,1, σg) , (3)
B c̃I,B = BcI,B + ba +wa, wa ∼ N (03,1, σa) , (4)

where BωI,B and BcI,B denote the true angular velocity
and proper acceleration of ΣB relative to ΣI , respectively.
bg and ba are the gyroscope and acceleration biases.

2) Joint Encoders: Encoders provide angles and velocities
of all nj joints. The encoder measurements θ̃ of joint angles
θ and ˜̇

θ of velocities θ̇ are corrupted by noises [1], [16]:

θ̃ = θ +wθ, wθ ∼ N
(
0nj ,1, σθ

)
, (5)

˜̇
θ = θ̇ +wθ̇, wθ̇ ∼ N

(
0nj ,1, σθ̇

)
. (6)

3) Contact Force Sensors: The pneumatic pressure sensor
is often placed at each foot of a legged robot. The measure-
ment f̃i of the ith foot’s contact force fi is affected by noise
[18]:

f̃i = fi + wfi , wfi ∼ N (0, σfi) . (7)

C. Structure of State Estimator

The two-stage proprioceptive state estimator fuses mea-
surements from inertial sensors, joint encoders, and force
sensors, and contains a base orientation estimator and a
base velocity and position estimator submodule. Its overall
procedure is succinctly summarized in Algorithm 1. Further
elaboration on these submodules can be found in the subse-
quent sections.

Algorithm 1 Two-Stage Multi-Sensor Fusion Algorithm

Input: Bω̃I,B , B c̃I,B , θ̃, ˜̇θ, f̃i
Output: IR̂B , I p̂B , I v̂I,B , I p̂Ci

1: procedure EST(Bω̃I,B ,
B c̃I,B : IR̂B)

2: Compute ωcor and IR̂B with Eq. (15).
3: return IR̂B

4: end procedure
5: procedure

EST(IR̂B ,
B c̃I,B , θ̃,

˜̇
θ, f̃i :

I p̂B ,
I v̂I,B ,

I p̂Ci
)

6: Compute u with Eq. (28).
7: Compute z with Eqs. (21) and (23).
8: Inflate W IpCi

, V IrCi
, V I ṙCi

, Vhi with Eq. (34).
9: Compute predicted x̌ and P̌ with Eq. (32).

10: Compute corrected x̂ and P̂ with Eq. (33).
11: Slice I p̂B , I v̂I,B and I p̂Ci

from x̂.
12: return I p̂B , I v̂I,B , I p̂Ci

13: end procedure

III. BASE ORIENTATION ESTIMATION

A. Complementary Filtering on SO(3)

Classical complementary filtering on Euclidean space has
been extended to the SO(3) manifold, leveraging its natural
Lie group structure [19]. Given the orientation IRB and
angular velocity BωI,B of a rigid body, dynamics of the
true system are

IṘB = IRB
Bω∧

I,B =
(
IRB

BωI,B

)∧ IRB , (8)

where IRB
BωI,B transforms BωI,B to IωI,B . Since the

true orientation IRB evolves on SO(3), its estimate IR̂B

is required to evolve on SO(3) and has a similar dynamics
form. Since the true value IRB is not available, an alternative
needs to be used. If the estimate IR̂B is used, the filter is
called a passive complementary filter.

The dynamics of passive complementary filters [19] is

I ˙̂RB =
(
IR̂B

BωI,B + κcor
IR̂Bωcor

)∧
IR̂B

= IR̂B

(
BωI,B + κcorωcor

)∧
,

(9)

where κcor > 0 is a gain, ωcor is correction term, and
IR̂B(0) = R̂0 is initial value. The correction term ωcor

expressed in ΣE is a nonlinear approximation of the orien-
tation error between the true rotation IRB and its estimate
IR̂B .



B. IMU-based Orientation Estimation

The base orientation estimator, as the first stage of the pro-
posed state estimator, fuses IMU gyroscope and accelerome-
ter readings. The gyroscope provides high-frequency gravity
direction measurements, while the accelerometer provides
low-frequency linear acceleration measurements, enabling
complementary filters for orientation estimation.

The accelerometer measures the non-gravitational linear
accelerations, given by BcI,B = IRT

B

(
IaI,B − ag

)
, where

ag = −ge3 is the gravitational field, g is the gravitational
constant, and e3 = [0, 0, 1]T is the unit vector expressed in
ΣI . Therefore, for the direction of gravity in frame ΣB ,

v1 := −IRT
Be3 = IRT

B (−e3) =
IRT

Bvg, (10)

where vg is the direction of gravity in frame ΣI . There is a
reasonable low-frequency estimate calculated from the IMU
acceleration measurement, given by

v̂1 :=
B c̃I,B

∥B c̃I,B∥
= IR̂

T

B

(
IaI,B − ag

∥B c̃I,B∥

)
= IR̂

T

Bvg, (11)

where B c̃I,B is the acceleration measurement, and IR̂B

is the estimated orientation. The error between the true
direction of gravity v1 and its estimate v̂1 is

Ev = 1− ⟨v̂1,v1⟩ = 1− tr
(
v̂1v

T
1

)
= 1− tr (ηMg) (12)

where η = IR̂
T

B
IRB is the estimation error, Mg =

IRT
Bvgv

T
g
IRB is positive semi-definite.

With two available measurements, Eq. (10) and Eq. (11),
the passive complementary filter can be designed as follows:

I ˙̂RB = IR̂B

(
BωI,B + κcorωcor

)∧
, (13)

ωcor = − (v̂1 × v1) . (14)

In practice, the above filter can be made more robust and
easier to implement with a few tricks, such as replacing the
true rotation IRB in Eq. (10) with its estimate IR̂B . With the
zero-order hold assumption, the above continuous dynamics
can be discretized as
IR̂B,k = IR̂B,k−1Exp

[(
Bω̃I,B,k + κcorωcor,k

)
∆t

]
ωcor,k =

B c̃I,B,k

∥B c̃I,B,k∥
×
(
IR̂

T

B,k−1e3

) (15)

where ∆t = tk − tk−1, Exp (·) is the exponential map,
κcor = 0.1 is a constant, and max and min are functions
that return the maximum or minimum of two inputs.

C. Stability Analysis

To analyze the stability of the filter from equations (13)
and (14), we introduce a candidate Lyapunov function

V (η) = Ev = 1− tr (ηMg) . (16)

The correction term ωcor can be expressed as

ω∧
cor = − (v̂1 × v1)

∧
= v̂∧

1 v
∧
1 − v∧

1 v̂
∧
1 = 2πa (ηMg)

(17)
where πa (S) =

1
2 (S − ST) and πs (S) =

1
2 (S + ST) are

the antisymmetric and symmetric projection operators.

The derivative of the estimation error is given by

η̇ =I ˙̂RT
B
IRB + IR̂

T

B
IṘB

=IR̂
T

B
IRB

Bω∧
I,B − Bω∧

I,B
IR̂

T

B
IRB

+ κcor (ω
∧
cor)

T IR̂
T

B
IRB

=ηBω∧
I,B − Bω∧

I,Bη + κcor (ω
∧
cor)

T
η.

(18)

Using the fact that the trace of a commutator is zero,
tr
([
η,Bω∧

I,B

])
= 0, and that for any symmetric matrix πs

and any antisymmetric matrix πa, tr (πsπa) = 0, we can
obtain the time derivative of the Lyapunov function as

V̇ (η) = −tr
(
η̇Mg + ηṀg

)
= −tr

([
ηMg,

Bω∧
I,B

]
− κcorω

∧
corηMg

)
= κcortr [ω

∧
cor (πa(ηMg) + πs(ηMg))]

= −2κcor∥πa(ηMg)∥2,

(19)

which is negative semi-definite. Therefore, Lyapunov’s direct
method completes the proof, and we can conclude that the
filter is asymptotically stable.

IV. BASE VELOCITY AND POSITION
ESTIMATION

A. Forward Differential Kinematics

The generalized coordinates for a robot is denoted by q,
and the generalized velocities by v. Let ΣCi

be the ith foot-
end frame, then the homogeneous transformation between
the foot-end frame ΣCi and the inertial frame ΣI is

IHCi
(q) =

[
IRCi

(q) IpCi
(q)

0 1

]
(20)

where IpCi
(q) and IRCi(q) are the relative position and

orientation. The relative position of foot i is
IrCi

:= IpCi
− IpB . (21)

Since the body velocity of frame ΣCi
can be computed with

CiV I,Ci
=

[
CiωI,Ci
CivI,Ci

]
=

(
IH−1

Ci
(q)IḢCi

(q)
)∨

, (22)

the relative velocity of foot i is given by
I ṙCi

:= IRCi

CivI,Ci
− IRB

BvI,B . (23)

B. Kinematics-Based Velocity and Position Estimation

The second stage of the proposed estimator estimates the
base velocity IvI,B and position IpB using the orientation
estimate IR̂B and leg kinematics measurements. With the
orientation estimated, the second stage can be formulated as
a linear Kalman filter. To maintain consistent prediction and
correction equations, the state variable of the filter includes
the absolute position of the base center IpB , its velocity
IvI,B , and the absolute foot positions, IpCi

, to account for
leg kinematics. The state variables are represented as

x =
[
IpT

B ,
IvT

I,B ,
IpT

C1
, . . . , IpT

Cn

]T
, (24)

where n is the number of feet.



The prediction equations are modeled as

I ˙̌pB = IvI,B +wp, (25)
I ˙̌vI,B = IR̂B

B c̃I,B + ag +wv, (26)
I ˙̌pCi

= wd ∀i = {1, · · · , n}, (27)

where (̌·) denotes a priori quantity. wp, wv and wd are the
white noise terms characterizing the process noise in the base
position, velocity, and feet positions variability, respectively.
The term

u = IR̂B
B c̃I,B + ag (28)

can be viewed as an input to the system because it can be
computed ahead of time.

The correction equations are modeled as

IrCi
= (I p̌Ci

−I p̌B) + vr, (29)
I ṙCi

= (−I v̌I,B) + vṙ, (30)

hi = eT3
I p̌Ci

+ vh, (31)

where IrCi
, I ṙCi

and hi represent the relative position,
relative velocity, and foot height of foot i respectively, and
are obtained from leg forward kinematics using Eq. (21) and
Eq. (23). The base position and velocity, I p̌B , I v̌I,B , and
the position of foot i, I p̌Ci

are predicted in the previous
prediction process from Eq.(25) to (27). The terms vr,
vṙ, and vh represent the white noise terms characterizing
the measurement noise in the relative foot position and
velocity, and absolute foot height. The above three correction
equations are applicable for every foot.

With the zero-order hold assumption, the filter for a legged
robot can be reformulated as a discrete-time linear Kalman
filter, which involves a prediction step:

x̌k = F kx̂k−1 +Bkuk

P̌ k = F kP̂ k−1F
T
k +W k

(32)

where P k is the estimate covariance matrix, (̂·) denotes a
posterior quantity, and

F k =


I ∆tI
0 I

0

0
I · · · 0
...

. . .
...

0 · · · I

 ,Bk =


1
2∆t2I
∆tI
0
...
0

 ,

W k = diag
(
W IpB ,k,W IvI,B ,k,W IpC1

,k, · · · ,W IpCn
,k

)
are the state transition matrix, the control-input matrix and
the covariance of process noise. The correction step involves
the following equations:

ỹk = zk −Hkx̌k

Sk = HkP̌ kH
T
k + V k

Kk = P̌ kH
T
kS

−1
k

x̂k = x̌k +Kkỹk

P̂ k = (I−KkHk) P̌ k

(33)

where zk =



IrC1,k

...
IrCn,k
I ṙ1,k

...
I ṙn,k
h1

...
hn


,Hk =



−I 0
...

...
−I 0

I · · · 0
...

. . .
...

0 · · · I
0 −I
...

...
0 −I

0

0
eT3 · · · 0
...

. . .
...

0 · · · eT3


,

V k = diag(V IrC1,k
, · · · ,V IrCn,k

,

V I ṙC1,k
, · · · ,V I ṙCn,k

, Vh1,k
, · · · , Vhn,k

),

are the measurement, the observation matrix, and the covari-
ance of the observation noise.

The covariance inflation method adjusts the covariance
matrices W k and V k by inflating certain state covariances
to large values to reduce their effect. The equation:

M b = (1 + (1− κi,k)C)M
0
b , (34)

where κi,k = min(max(f̃i,k/fthre, 0), 1), fthre = mg/n
represents the threshold value determined by the gravity of
the entire robot (mg) and the number of legs (n). f̃i,k denotes
the measured normal force of foot i at timestep tk. C is a
large constant, usually 1000. M b stands for matrix blocks
W IpCi

,k, V IrCi
,k, V I ṙCi

,k and Vhi,k, and M0
b stands for

constant covariance W 0
IpCi

, V 0
IrCi

, V 0
I ṙCi

and V 0
h for the

foot in stance. Each covariance is represented as a diagonal
matrix with uniform diagonal entries, as noted in [1].

C. Stability Analysis

The Kalman filter is typically used in linear Gaussian
systems, and its stability and robustness are independent of
stochastic issues [20]. These properties are related only to the
deterministic continuous-time or discrete-time Riccati equa-
tion. Thus, we perform stability analysis using deterministic
form of the filter given by Eqs. (32) and (33), shown as{

ẋ = F (t)x+B(t)u

m = H(t)x
(35)

where F (t), B(t) and H(t) are well-defined continuous and
bounded matrix-valued functions.

A Riccati observer is a linear time-varying system of the
above form, given by

˙̂x = F (t)x̂+B(t)u+K(t) (m−H(t)x̂) , (36)

where the observer gain is calculated using

K(t) = κr(t)P r(t)H
TQr(t), κr ≥ 0.5. (37)

Here, P r(t) is the solution to the continuous Riccati equation

Ṗ r = FP r + P rF
T − P rH

TQrHP r +Rr (38)

with P r(0) being any positive definite matrix, and Qr, and
Rr being positive semi-definite matrices that need to be
specified. The Kalman filter is a special case of Riccati
observer where κr = 1 and the matrices Rr and Q−1

r are
covariance matrices.



With estimation error x̃ := x− x̂, the error equation is

˙̃x = (F (t)−K(t)H(t)) x̃. (39)

A candidate Lyapunov function can then be defined as

V (x̃) = x̃TP−1
r x̃. (40)

Using the fact that the time-derivative of P−1
r is given by

Ṗ
−1

r = −P−1
r F − FTP−1

r +HTQrH − P−1
r RrP

−1
r ,
(41)

it is easy to verify that the time-derivative of V (x̃) is

V̇ (x̃) = −x̃T
(
(2κr − 1)HTQrH + P−1

r RrP
−1
r

)
x̃

≤ −x̃T
(
P−1

r RrP
−1
r

)
x̃ ≤ − pinf

psup
rinfV (x̃) ≤ 0,

(42)
where pinf, psup are the infimum and supremum over time of
the smallest and largest eigenvalues of the function P r. rinf
is the infimum over time of the smallest of Rr. Covariance
inflation shown in Eq. (34) adds a bounded positive definite
matrix, keeping W k and V k bounded and positive definite.
Thus, P r is always positive definite and satisfies

pinfI ≤ P r ≤ psupI, with psup ≥ pinf ≥ 0. (43)

Lyapunov’s direct method completes the proof, and the filter
is asymptotically stable.

V. EXPERIMENTAL RESULTS

To evaluate the proposed estimator, a planning and control
framework [21] was used to generate and stabilize motions
on the A1 robot. Laboratory experiments were conducted in
a cage with an OptiTrack motion capture system, while field
experiments took place in a real-world environment.

A. Laboratory Experiments

In the first experiment, the robot twisted floating-base
with its feet fixed on the ground and an unchanged base
position to verify the orientation estimator’s effectiveness. In
the second experiment, it performed an S-turn in a trotting
gait to validate the velocity and position estimator. Both
experiments, shown in Fig. 3, used ground truth from the
OptiTrack system.

OptiTrack motion 

capture system

Robot

Fig. 3. OptiTrack system and A1 robot used in the experiment.

Fig. 4 presents snapshots of the robot performing the body
twisting motion, rotating in the x-, y-, and z-directions.
Fig. 5 compares the estimated orientation Re from Eq. (15)
with the OptiTrack ground truth Rm. The estimator provides
precise orientation estimates, with maximum absolute errors
of 0.025 rad and 0.015 rad in the z-, x-, and y-directions.

t = 1.00 s t = 2.00 s t = 4.00 s

t = 5.00 s t = 7.00 s t = 8.00 s

t = 1.00 s t = 2.00 s t = 4.00 s t = 5.00 s t = 7.00 s t = 8.00 s

Fig. 4. Snapshots of the robot performing the body-twisting motion.
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Fig. 5. Comparison between estimated orientation and the ground truth.

Fig. 6 displays the S-turn motion, which includes forward
movement, S-turn, and straight motion. Fig. 7 compares the
estimated position with the ground truth. In the top and
middle sub-pictures, there is a slight drift in the estimates
in the x- and y-directions, which is inevitable since pro-
prioceptive sensors cannot provide position measurements
to correct predictions. However, no drift occurs in the z-
direction, with a maximum error of 0.01 m, owing to the
pseudo measurements from Eq. (31) that correct the base
height. Position estimates in z-direction fluctuate due to
intermittent ground contact.

t = 0.00 s t = 3.00 s t = 5.00 s

t = 8.00 s t = 10.00 s t = 12.00 s

t = 0.00 s t = 3.00 s t = 5.00 s t = 8.00 s t = 10.00 s t = 12.00 s

Fig. 6. Snapshots of the robot performing the S-turn motion.
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Fig. 7. Comparison between the estimated position and the ground truth.

B. Field Experiments
Two field experiments were conducted to assess the esti-

mator’s performance in real-world environments. The multi-
gaited locomotion experiment involved the robot running
at varying speeds, adopting static-walk, walking-trot, trot,
flying-trot, trot, walking-trot, and static-walk gaits in se-
quence. In the push recovery experiment, the robot was
kicked and recovered twice while trotting in place.



Fig. 8 shows the robot‘s multi-gait locomotion, and Fig. 9
shows base position variations across gaits. The z- direc-
tion estimates exhibit larger amplitudes in trot (0.015 m)
and flying-trot (0.020 m), but smaller ones in static-walk
(0.005 m) and walking-trot (0.010 m), reflecting shorter
contact times and fewer grounded feet in dynamic gaits. This
experiment showed the estimator could handle arbitrary gaits,
independent of the number of grounded feet.

Static-Walk

Walking-Trot

Trot

Flying-Trot

Static-Walk Walking-Trot Trot Flying-Trot

Fig. 8. Snapshots of the robot locomoting with multiple gaits.
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Fig. 9. Graph showing the gait type, contact state, base velocity in z-
direction, and base position in z- direction.

Fig. 10 presents the push recovery motion, and Fig. 11
displays base and foot position variations. Within the two
gray oval boxes, the black line crossing red and blue lines
indicates the robot base’s center exceeding the area enclosed
by the four feet during sidekicks. Despite this, the estimator
accurately estimated the robot’s stat, enabling for the motion
controller to restore balance. The sudden change in the base’s
position from 0.00 m to -0.30 m increases the proportion
of the base position control task in motion controller tasks,
leading the robot to walk back to its start position after strong
sidekicks. This experiment showed the estimator’s capability
to estimate the base state even under strong disturbances.

t = 1.00 s t = 3.00 s t = 5.00 s

t = 8.00 s t = 9.00 s t = 12.00 s

t = 1.00 s t = 3.00 s t = 5.00 s t = 8.00 s t = 9.00 s t = 12.00 s

Fig. 10. Snapshots of the push recovery experiment.
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Fig. 11. Estimated base and foot positions in y- direction.

VI. CONCLUSION

This paper presents a two-stage proprioceptive state esti-
mator for legged robots, enabling dynamic locomotion and
improved resistance to external disturbances. The estimator
decomposes the challenging floating base state estimation
problem into two components: base orientation estimation
and base velocity/position estimation. These two compo-
nents are implemented with complementary filter and linear

Kalman filter, respectively. By leveraging this decomposition,
the proposed estimator provides a stability guarantee, a cru-
cial feature lacking in existing filtering and smoothing meth-
ods. Validated on a quadrupedal robot performing dynamic
motions like multi-gaited locomotion and push recovery,
the estimator shows promise for challenging environments.
Future work includes integration with perception systems and
comparative experiments with existing methods.
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