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Abstract
This paper describes how a biological neural network comprehends narratives, with the goal of applying
these insights to artificial neural networks. To this end, we present our findings, recently published in
Nature Neuroscience, detailing a mechanism by which the human brain processes narratives. Our study
utilized functional Magnetic Resonance Imaging (fMRI) to monitor brain activity in human participants
as they were exposed to narratives. The human brain segments continuous narratives into discrete
events that are represented by neural activity. Using a novel fMRI method and a Distributional Semantic
Model, we revealed that whenever an event ends, the brain binds the representation of that event with
the representations of contextually-relevant past event. This suggests that narrative comprehension
is based on the continuous embedding of new events into the narrative context: newly-formed event
representations are updated based on prior narrative events that are uploaded from memory. This paper
not only summarizes our findings, but also advocates for interdisciplinary collaboration: we aim to
inspire the incorporating of cognitive principles into NLP models, which has the potential to improve
the way NLP models understand and process narratives.
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1. Introduction

What is the cognitive function of narratives? Consider what you know of Albert Einstein.
Your knowledge likely forms a narrative, linking pieces of information related to his life and
work. Now consider what you did yesterday. This knowledge would again translate into a
narrative linking the events of the day. This exemplifies that narratives are more than an efficient
manner of transmitting information between people - they also organize our knowledge. In
fact, narratives may reflect an important design principle of human intelligence.
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The study of narrative processing in the human brain has significant implications for artificial
intelligence, particularly in the context of recent advancements in NLP. The design of language
models has so far focused on the representation of individual words and the prediction of
upcoming words. While these design principles have marked astonishing achievements in both
simple language tasks and human-AI interactions, it remains questionable whether NLP models
understand text in the same way humans do. Such understanding is tightly related to the ability
to represent information in a narrative form, defined as events that are linked together across
time in an inherent structure.

Here, we hope to inspire the NLP research of narratives through insights gained from
studying the human brain. These insights, recently published in Nature Neuroscience[1], offer
a computational framework by which a biological (or artificial) neural network could bind
relevant information across time to subserve the understanding of narratives.

2. Related Literature

A narrative, such as this paper, comprises a continuous stream of words. Psychological literature
suggests that the brain divides this continuous input into discrete units, called ”events”. This
parcellation occurs whenever the brain recognizes a contextual change in the inputs, similar
to a ”cut” between movie scenes. These transitions, that mark the end of one event and the
beginning of another, are termed “event boundaries”[2]. For example, in reading this paper, an
event boundary could occur at the end of each paragraph.

Neuroimaging studies show that each event is represented by a unique pattern of neural
activity, termed brain representations[3, 4]. These brain representations can be thought of as a
mosaic of activity levels across all “neuroimaging pixels” contained in a brain region (Fig. 1a).
These representations are also stable throughout the duration of events in a set of brain regions
termed the Default Mode Network[5, 6, 7]. These brain regions are suggested to hold an internal
representation of the gist of events, that are stored into memory at each event boundary[8].

But to understand narratives, it is not enough to create a separate representation for each
event. We also rely on the ability to interpret each event in light of relevant past events. For
example, one cannot understand why Snow White wakes up when a piece of apple drops from
her mouth, without connecting this part of the narrative to the part where she eats a poisoned
apple. These two events need to be linked together, even though they are not adjacent in time
(in between, the dwarfs come home and discover Snow White, then build a glass coffin, time
passes and then the prince arrives). This suggests that event representations must incorporate
the incoming event-related information with relevant, and possibly remote information stored
in previous event representations.

What mechanism may underlie this linking between event representations? The results pre-
sented below suggest that at event boundaries, the brain reactivates past event representations
that are relevant for understanding the current situation. This can be thought of as if at the
end of each event, after all inputs have been acquired from the environment, the neural activity
representing relevant past events is being uploaded from memory. This prior knowledge is then
integrated with the newly formed event representation, thus supporting the understanding of
an event within the context of its containing narrative.



3. Method

We tested whether the human brain reactivates past event representations at event boundaries.
To this end, we used functional Magnetic Resonance Imaging (fMRI) datasets that measured
brain activity in people watching a movie (n=17 participants)[3] or listening to a story (n=25
participants)[9]. This allowed us to test the inherent reproducibility of our results and their
generalizability across different narrative experiences.

We defined event boundaries as the moments in time when scenes/paragraphs (hereafter,
events) transitioned, and developed a new fMRI analysis method that allowed us to detect
reactivation of past events during these event boundaries. In essence, for each region of the
human brain, we measured the brain representations of whole events and of event boundaries
(Fig. 1a). Reactivation entails the uploading of prior event representations from memory for
updating the current event representation. To detect the expression of past event-representations
at event boundaries, we cross-correlated the representation of event boundaries with the
representations of events. As an estimate for reactivation, we looked for brain areas that show
significantly more correlations between representations of event boundaries and representations
of past events (lower triangular part of the similarity matrix) compared to future events (upper
triangular part of the similarity matrix) (Fig. 1b).

Figure 1: Method schematic. (a) For each brain area (example depicted as a white grid) we extracted
representations for each event (depicted as colored grids) and each event boundary. (b) To detect
reactivations in each brain area, we correlated the representations at event boundaries with event
representations. The lower/upper triangular parts of the resulting similarity matrix held correlations
between representations at event boundaries and their preceding/following events (highlighted in
orange/blue), respectively. We looked for brain areas that showed more reactivations of past compared
to future events by contrasting the two triangular parts of the matrix. (c) To test whether relevant
past events are preferentially reactivated at event boundaries, we represented events using the Bag Of
Words model (illustrated for scenes 4 and 8) and cross-correlated these event representations. We then
correlated the past/future part of the neural similarity matrix with the past/future part of the context
similarity matrix, respectively. Brain areas than show higher past compared to future correlations
between these triangular parts would indicate a selective reactivation of past events.

We next aimed to determine if past events that are relevant for understanding the current



narrative stage are reactivated more than irrelevant ones. We therefore modelled the contextual
similarity between all events in each narrative. We used a Bag of Words model (Fig. 1c) as a
simple test for this hypothesis, under the assumption that events that share the same context
would also have similar word cooccurrences (see Discussion in §5).

The inputs to the Bag of Words model were manual descriptions of scenes (including dialogue
transcript) in the movie[10], and the text of the story. To this end, we created count-based
vectors for each scene/paragraph in each narrative (excluding stop words), and transformed
them into probability vectors. We then used the Jensen-Shannon distance[11, 12] to measure
context similarities between each two cooccurrence-vectors.

This context-similarity matrix was correlated with the neural event-boundary X scene simi-
larity matrix, to find brain areas that reactivate contextually-relevant events more that irrelevant
events. To test if this context-dependent reactivation is specific for past events, we contrasted
the past and future correlation coefficients.

4. Results

Using our novel fMRI method, we found that at event boundaries (whenever an event ends),
regions of the Default Mode Network reactivate temporally-remote events (Fig. 2a).

Of these brain regions, the precuneus also reactivated events selectively. Our Bag of Word
analysis demonstrated that in this region, the representations of events that were relevant to
understanding the current event were reactivated more than irrelevant event representations
(Fig. 2b).

Figure 2: Reactivation of relevant past events at event boundaries. (a) Significant reactivation of past
events was found in regions of the Default Mode Network (corrected for multiple comparisons across
the entire brain). (b) Using a Bag of Words model, we found that in the precuneus (marked with arrows
in (a)), events with semantic context similar to that of the current event were reactivated more than
events with different semantic contexts. Single-participant reactivation effect sizes are represented
as circles and the group mean is represented as a bar. These results demonstrate that reactivation in
the precuneus integrates information that is specifically needed for the understanding of each current
narrative stage. All results were replicated across the two datasets, but for simplicity, we present here
results aggregated across the datasets. LH, left hemisphere; RH, right hemisphere; *** p<0.001.



5. Discussion

Our findings suggest a mechanism by which the human brain understands a narrative. By
reactivating representations of past events, new information is integrated with prior knowledge,
helping us interpret current events in light of our past experiences. These findings are based on
a novel fMRI analysis method supplemented by the simplest language model available. The
simplicity of the Bag of Words model also reflects its strength: it is assumption-free, parameter-
free and requires no training. Furthermore, our choice of this model was also driven by the
assumption that even the most advanced language model currently available cannot mimic
the human understanding of narratives. As such ability is still under development, descriptive
models, such as the Bag of Words, at least provide output that is easily interpretable at face
value (i.e. similar word cooccurrences reflect similar contexts).

While this simple language model was ideally suited for our brain analyses, it is undisputed
that this model is immensely inferior in its potential to emulate human cognition compared to
state-of-the-art NLP models. In fact, we propose that our new mechanistic understanding of
the way the human brain understands narratives could inspire the augmentation of advances
language model with similar abilities. It is tempting to conjecture that a similar in-silico mecha-
nism could be implemented, which would allow an automated parcellation of text into events,
the drawing of relations between contextually-related events (even using the simple heuristic
of similarity in word cooccurrences as a proxy for context similarity) and the updating of event
representations based on prior knowledge. We envision that combining advanced language
models with this narrative-understanding mechanism will lead to a leap in AI performance and
enhanced ability to interact with humans.
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