Models of confidence to facilitate engaging task designs
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Abstract

Decision confidence models classically depict decision-
making circuitry as: 1) accumulating relative evidence for
each choice alternative and 2) computing confidence esti-
mates from the difference in evidence magnitude favoring
each choice. Recently, however, new evidence suggests
a dissociation between metacognitive (confidence) com-
putations and those supporting low-level perceptual deci-
sions, positing instead that confidence is predominantly
influenced by evidence favoring the selected choice while
simultaneously ignoring evidence for the non-selected
choice. Low-level perceptual tasks completed by neu-
rotypical subjects and/or within controlled experiments,
coupled with computational modeling, have helped reveal
the computations and brain areas involved, but we do not
yet know to what degree these dissociations generalize to
other types of perceptual or cognitive tasks or to clinical,
developmental, or aging populations. Here, we begin to
tackle this issue by proposing a task and computational
modeling comparison framework aimed at understanding
whether perceptual confidence computations are stable
across varying levels of perceptual judgements, in ser-
vice of creating more engaging tasks for use in wider and
more diverse populations.
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Introduction

Traditional models of decision confidence posit that decision-
making circuitry is also responsible for encoding certainty
about decisions, and confidence is the evidential difference
in favor of each choice (Kiani & Shadlen, 2009; Moreno-Bote,
2010; Vickers, 1979). However, recent work suggests that
confidence appears primarily influenced by evidence for the
selected choice but seems to ignore evidence for the non-
selected choice (Maniscalco, Peters, & Lau, 2016; Peters et
al., 2017; Zylberberg, Barttfeld, & Sigman, 2012): a ‘bias’
towards decision-congruent evidence magnitude. This the-
ory has been recently supported by electrocorticography and
modeling work (Maniscalco et al., 2021; Peters et al., 2017).
Currently, we know that: 1) low-level perceptual tasks can
reveal this dissociation between confidence and decision-
making capacity, 2) various models exist which hypothesize
possible computations taking place in responsible brain areas,
and 3) much of this work has been done in neurotypical sub-
jects and/or within highly controlled experimental settings.
Thus, many open questions remain, namely regarding the
generality of our current knowledge. For example, do these
dissociations hold in children, normal aging processes, or
clinical populations? It is known that gray matter volume
(Fleming, Weil, Nagy, Dolan, & Rees, 2010; Fleming, Huijgen,
& Dolan, 2012; McCurdy et al., 2013) and activity (Morales,
Lau, & Fleming, 2018) in the prefrontal cortex correlates with
visual metacognition capacity or differences between memory
and perception metacognition, but we also know that this re-
gion changes significantly across the lifespan and in disease
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and neurodegeneration (Fereshtehnejad et al., 2019; Yang
et al., 2012; Ramanoél et al., 2018; Strikwerda-Brown, Ra-
manan, & Irish, 2019). We also do not know to what degree
these dissociations between metacognitive and first-order pro-
cesses differ between low-level perceptual decisions (e.g. dot-
motion direction) and higher level perceptual decisions (e.g.
attractiveness). Attractiveness is a particularly interesting tar-
get, as it has been shown to be susceptible to a ‘wingman’
effect wherein the attractiveness of other nearby faces can af-
fect the perceived attractiveness of a target face (Furl, 2016);
this ‘divisive-normalization’ pattern suggests that attractive-
ness may also exhibit the same performance-confidence dis-
sociations that have been similarly explained using dot motion
or Gabor patches, given the potential connection to tuned in-
hibition (Maniscalco et al., 2021).

To validate this possibility and expand into other percep-
tual or cognitive domains, we therefore must develop tasks
that ask about the stability of observed metacognitive com-
putations across stimulus types and tasks (dot motion, Ga-
bor patches, facial attractiveness, etc.), and in doing so open
doors for studying how metacognitive computations change
across “non-college-student” populations through more en-
gaging task designs. Therefore, we are developing a task and
computational modeling comparison framework that will allow
us to determine whether perceptual confidence computations
are stable across perceptual judgments of various varieties
(dots, stripes, facial attractiveness, etc.). Here we present the
first of these tasks—facial attractiveness rating—and the fam-
ily of models in development, and discuss how they will be
used to ask whether the same computations can explain con-
fidence in perceptual decisions across multiple types of judg-
ments and populations.

Methods
Behavioral Methods

42 human participants were recruited via the University of Cal-
ifornia, Irvine online subject pool system and gave informed
consent to participate in this online experiment.

Our behavioral task closely resembles (Furl, 2016)’s (Fig.
1). During phase 1, participants rated the attractiveness of
the person shown on the screen on a scale from extremely at-
tractive to extremely unattractive. Participants rated 30 faces,
15 male and 15 female, three times each (a departure from
(Furl, 2016), who asked participants to only rate attractiveness
twice; we made this change for stability of ratings). The av-
erage attractiveness from the 2nd and 3rd rating of each face
were averaged and used as estimates of each participant’s at-
tractiveness judgment for that face for phase 2. The ten most
consistently-rated images were then ranked based on these
average ratings, with 10 being the ‘most attractive’ face and 1
being the ‘least attractive’ face. These 10 ranked faces were
then presented three at a time to the participant in pseudo-
random configuration, and the participant was asked to select
which face was the most attractive and then rate confidence.

We pre-selected the combination of attractiveness ranks
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Figure 1: Behavioral task.

(Fig. 1, ‘trial types’), allowing us to manipulate the perceptual
difficulty of every trial by creating easier or harder trial type
combinations based on the closeness of ranks—e.g., a ‘hard’
trial was one in which the most attractive and second most at-
tractive face were very close in attractiveness rank—as well as
to independently manipulate the overall level of attractiveness
of the most attractive (correct choice) face. This orthogonal
manipulation of difficulty and overall attractiveness is critical
to testing the models; see below.

Models

We developed 7 models, all of which are variants on the
same ‘Bayesian’ theme. All models make type 1 (“which
face is most attractive?”) ratings based on the maximimum

a posteriori estimate, p(F|x) = %, where p(x) =

Y; p(x|F =i)(p(F = i)) with all p(F) = 1. The models differ
in how they make confidence judgments. With F. defined as
the face the observer chose as the most attractive face, each
defines confidence C as:

O oc p(|Fe)p(Fe)
Model 1: C o &5 ) o(F))
Model 2: C o p{Fe)plFe) . where N is the

Y3 p(x|F) (p(Fi)+p(xIN)p(N)
‘pure noise’ distribution (least attractive face possible) cen-
tered at[0,0,0] and p(N) = 0.01, while the a priori probabilities
of the remaining 3 options are set to 1—2701

. O o PEIF)p(F)—p(|F2)p(F2)

Model 3: C o s i ()
the observer believed was the middle attractive face
. (o LPEF)P(F)=px|F2)p(F)

Model 4: C o< &5 i) (p(F) -+ INPN)

Model 5: C o< p(x|F.)p(F.) — p(x|F2) p(F2)

Model 6: C o LUUIPU) SPERIPIE) \where F s the face

the observer believed was the least attractive face

Model 7: C = p(x|F,)

We simulated choices and confidence for all models using
Monte Carlo simulations in Matlab (1e5 trials per condition).
We assume all generating distributions are trivariate Gaussian
with covariance matrix £ = I, the 3d identity matrix. Means
to generate x in each condition were set according to trial
types (Fig. 1). Likelihoods p(x|F) were calculated against
a ‘perfect 10, i.e. comparing x to a canonical case in which
F =[10,0,0], F, =[0,10,0], and F3 = [0,0, 10].

, where F; is the face
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Figure 2: (A) Behavioral results and (B,C) two sample models. Nei-
ther model captures the behavioral data, even qualitatively.

Results

We observed that participants’ capacity to select the face
they previously rated as most attractive depended on the rel-
ative attractiveness of all three faces (Fig. 2A), as expected.
Moreover, task performance followed results reported by (Furl,
2016): the most unattractive face of the triad further modu-
lated performance (e.g. [10 9 8] led to lower % correct than
[10 9 1]). However, confidence did not always monotonically
follow task performance: Despite the highest performance oc-
curring for [7 2 1], this condition was far from the highest con-
fidence, which was occupied by [10 9 1]. This shows a clear
‘decision-congruent evidence’ bias as has been reported pre-
viously using lower level perceptual stimuli (Koizumi, Manis-
calco, & Lau, 2015; Maniscalco et al., 2016; Odegaard et al.,
2018; Samaha, Barrett, Sheldon, LaRocque, & Postle, 2016).

We also present a sample of the models (Fig. 2A & B,
Models 1 and 2) to demonstrate that neither can even qual-
itatively capture the behavioral patterns shown by the human
participants. Ongoing work is developing a full factorial family
of models, and will use hierarchical fitting and formal model
comparison practices to ask whether the same model ‘wins’
in explaining all tasks for a given subject.

Discussion & future directions

Here, we have developed a behavioral task that successfully
replicates findings from lower level perceptual tasks, i.e. that
decision-congruent evidence magnitude appears to overly
drive confidence judgments (Maniscalco et al., 2016). Ongo-
ing work pairs this behavioral task with ‘lower-level’ perceptual
tasks and quantitative model comparisons to ask whether ex-
actly the same computations drive decision-confidence disso-
ciations regardless of whether the task uses random dot kine-
matograms, Gabor patches, or facial attractiveness. This suite
of tools holds exceptional promise for characterizing metacog-
nitive computations across developmental and normal aging
trajectories and in clinical populations who are less tolerant of
many hours of repetitive psychophysics tasks. As we expand
our library of behavioral tasks, our goal is to have a single
participant complete a whole series spanning lower to higher
level perception and to use within-subject comparisons to pro-
vide novel and exciting, generalizable insights into the nature
of confidence computations in perceptual decisions.
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