Investigating implicit and explicit expectations in perceptual decision making

Ari Khoudary (ari.khoudary @uci.edu)

Aaron Bornstein* (aaron.bornstein @uci.edu)

Megan Peters* (megan.peters @uci.edu)
Department of Cognitive Sciences
University of California, Irvine

Abstract

Expectations, or the prior probability of a choice outcome, are
powerful sources of evidence for improving decision making
under uncertainty. Most expectations in the real world are
learned implicitly on the basis of statistical properties of ob-
servers’ environments. However, most studies investigating
effects of expectations on perceptual decisions explicitly in-
struct observers on prior probabilities within the experiment,
and thus fail to capture the experience-dependent uncertainty
of real-world expectation learning. Here, we report data from
a novel expectation-guided perceptual decision making task
specifically designed to address this gap. Human observers
(n=21) learned, through experience, probabilistic relationships
between cues and images. Then, they explicitly reported both
an estimate of each cue’s prediction and a confidence rating
in that estimate before performing a cued perceptual decision
task. We find that, although these measurements are highly
correlated, confidence in an explicit report is the primary fac-
tor that interacts with implicit expectations to shape perceptual
decisions.

Keywords: evidence accumulation; perceptual decision mak-
ing; confidence; statistical learning

Introduction

Expectations in many perceptual decision making studies are
operationalized as the prior probability that one of two pos-
sible choice outcomes is correct or will be rewarded. The
standard approach for measuring effects of expectations in
the lab either explicitly instructs humans about prior prob-
ability or trains non-human animals on thousands of trials in
order to ensure they have learned that probability (e.g., Hanks
et al.,, 2011). While this approach to ensuring a stable es-
timate of prior probability has many practical advantages, it
may obscure the role of experience-dependent uncertainty of
the sort inherent to perceptual expectations acquired outside
of the lab. These sorts of more naturalistic expectations may
influence decisions by a dynamic estimation process, such as
aggregating across related experiences stored in memory to
infer the prior probability of a particular choice outcome in a
context-specific manner (Bornstein et al., 2023).

Indeed, previous studies using both the standard and more
naturalistic approaches have identified neural and behavioral
evidence of expectations that affect perceptual decisions dy-
namically over the course of a single choice (Hanks et al.,
2011, Bornstein et al., 2023). Although each study explained
their results using different evidence accumulation models,
we recently showed that both effects can be explained by a
single model that generates decisions by performing dynamic
precision-weighted integration of parallel streams of mem-

ory and sensory evidence (Khoudary et al., 2022). This dy-
namic integration theory posits that when observers have un-
certainty about (i) the difficulty of an upcoming perceptual
decision, (ii) which prior probability to use for that decision,
and (iii) what the true value of that prior probability is, they
perform an automatic reliability estimation process to deter-
mine how much to weight information from each evidence
source (expectation and sensation).

To complement our existing simulation-based support for
the theory, we designed a novel expectation-guided percep-
tual decision task to test its key prediction: that the effect of
expectations derived from memory increases at points in time
when visual evidence is highly uncertain. This paper presents
a series of regression analyses investigating how our novel
measurements of uncertainty about learned expectations (1)
relate to the true value of those implicit expectations and (2)
impact subsequent expectation-guided perceptual decisions.

Methods

In our task, observers first learn implicit expectations by ob-
serving an interleaved series of probabilistic cue-image pair-
ings. Immediately after learning, they explicitly report an
estimate of each cue’s predictive probability followed by a
confidence rating in that estimate. After making subjective
reports for all learned cues, observers perform a cued percep-
tual decision task that stochastically manipulates the reliabil-
ity of sensory evidence in a trial-by-trial manner.

Stimuli and participants

Stimuli  Visual evidence consisted of two grayscale scene
images. There were two sets of possible scene images (i.e.,
four images total), with pairs of images and their mappings
to keyboard responses randomized across participants. The
probability of a given image being the ‘dominant’ image in a
“stream” of visual evidence displayed to the observer on each
trial varied across three possible conditions, which were com-
municated to the observer via a colored border that circum-
scribed the visual evidence during the stream. There were two
sets of possible borders, with each set comprised of of triadic
colors (setl =red, blue, yellow; set2 = orange, green, purple).
The set of border colors, along with the borders’ assignments
to dominance probabilities for particular images in the visual
evidence stream, were randomized across participants.
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Figure 1: Task design. (A) Participants first learn that different colored borders make different predictions about the probability
of observing one of two possible scene images. The objective probability of each cue is defined by the frequency with which
it is followed by one of the two scene images. (B) After learning, participants use a slider to report their subjective estimate
of each cue’s probability followed by a confidence rating in that estimate. (C) In the last phase of the experiment, participants
are presented with stochastic visual evidence inside of the colored borders. Their task to report which image is dominant (i.e.,
presented more frequently) in a 60Hz stream of visual evidence, followed by a confidence rating in that perceptual decision.

Participants A sample of 22 undergraduate students (age
M=20.5 years; SD=1.86 years; 16 female, 4 male, 2 non-
binary) were recruited from the authors’ university. One sub-
ject was excluded from analysis because of a coding error
in the experiment, resulting in a sample size of n=21 for all
reported analyses. Participants were compensated for their
time either with course credit or a pro-rated cash payment of
$15/hour. This study was approved by the Institutional Re-
view Board at the authors’ University and all subjects pro-
vided written informed consent.

Task design

Data were collected in a single experimental session ranging
between 60-90 minutes. Each session began by instructing
participants on the mapping between the two scene images
and the 1 and 2 number keys on a US keyboard.

Calibration We used two interleaved QUEST staircases
(Watson and Pelli, 1983) to identify values of visual evidence
coherence that, for each image, resulted in 70% accuracy on
the perceptual decision task (described in more detail below).
Evidence coherence was defined as the proportion of signal
frames in the visual evidence stream that contained the tar-
get stimulus. The calibration procedure ensured that decision
difficulty in the Cued Inference phase would be identical for
both target stimuli, effectively controlling for low-level visual
differences between the images that might systematically bias
choices toward one of the options. Participants completed 80
trials of the decision task (40 trials per staircase) during the
calibration procedure and received feedback on their choices.

Cue Learning Next, participants learned the predictive
probability of each cue (i.e., each colored border) by observ-
ing a series of cue-image pairings in which the cue was pre-

sented prior to the image it was probabilistically paired with
(Figure 1A). To ensure active engagement—and to build up
associative motor memories—participants were instructed to
respond on each trial indicating which image appeared on
screen after the cue using the previously-learned image-key
mappings. Participants were told that there was a predictive
relationship between the cues and scene images, and that their
broader goal for this phase of the experiment was to learn
that relationship. Finally, participants were also told that they
were permitted to respond in the inter-stimulus interval (ISI)
between the onset of the cue and scene image if they de-
sired. Regardless of when participants responded, they re-
ceived feedback on their response accuracy on each trial.

In order to maximally align learning and decision environ-
ments, we permitted the ISI between cue and image onset to
vary across trials according to a truncated exponential dis-
tribution. This approach ensures a fixed hazard rate across
learning trials, such that participants are maximally uncertain
about the temporal onset of scene images across learning tri-
als (Peters and Maniscalco, 2024). ISIs ranged from 750ms
to 1500ms (mean = 892ms, mode = 783ms). After a scene
image appeared on screen, participants had up to 1500ms to
make their response. Post-trial feedback was displayed for
1500ms, and participants were told that they should respond
faster on the next trial if the feedback screen appeared before
they made a response.

Each cue was presented a total of 30 times and the order of
cues was fully randomized, providing participants 90 total ob-
servations of cue-image pairings. The objective probability of
each cue was defined as the frequency with which it preceded
one of the two scene images: each 80% cue thus preceded
its dominant image 24/30 times it was presented and the 50%
cue preceded each image 15 times. Colors were randomly



assigned to cue probabilities.

Subjective Report of Learned Probabilities To obtain ex-
plicit reports of learned cue probabilities, participants were
presented with each colored border and used a sliding scale
to report their best estimate of a cue’s predictive probability
based on the associations observed in the immediately pre-
ceding Cue Learning phase (Figure 1B). Their estimates were
permitted to range from 50-100% and the slider was initial-
ized to 50% on each trial. Both the subjective estimate and
subsequent confidence rating (1-4; not confident-quite confi-
dent) were self-paced.

Cued Inference In the final phase of the experiment, partic-
ipants observed a rapidly-alternating (60Hz) “stream” of the
two scene images interleaved with pure noise frames (phase-
scrambled superpositions of the images) (Figure 1C). Ob-
servers’ task was to report which of the two scene images
was presented more frequently (i.e., was the “target”) on each
trial. The proportion of target frames on each trial was de-
fined by the calibrated coherence value for that target’s trial,
as estimated during the preceding Calibration phase. Cru-
cially, this visual evidence was presented inside the colored
borders, ensuring that information about the prior probability
was always accessible to the observer. Participants were told
that the predictive relationships they just learned between the
colored borders and scene images also applied in this phase
of the experiment (i.e., “the correct answer is usually the one
predicted by the cue”). They were also instructed to respond
as quickly and accurately as possible. However, because we
also elicited decision confidence ratings on each trial, partic-
ipants did not get feedback about their choice accuracy.

We incorporated two periods of stochastic visual noise into
each Cued Inference trial. The durations of these noise peri-
ods, as well as the brief signal period in between them, were
all drawn from separate truncated exponential distributions in
order to guarantee a fixed hazard rate across trials (Peters and
Maniscalco, 2024). The maximum duration of any trial was
3333ms, and any remaining time after the second noise period
consisted of threshold-level visual evidence. Immediately af-
ter making a decision, participants had up to 3000ms to report
their confidence in that decision’s accuracy on a scale of 1-
4 (not confidence-quite confident). Trials were separated by
1000ms intertrial interval.

Each subject completed 150 trials for each 80% cue and
75 trials for the 50% cue, thus completing 375 trials in total.
The assignment of cue and target was fully randomized across
trials, with the probability of a scene image being a target for
a particular cue being defined by that cue’s true probability.
This means that, for 20% of trials with an 80% cue, the cue
was incongruent with respect to the true trial target (i.e., its
effective prediction was 0.2).

Analyses

Software All behavioral data were analyzed using R ver-
sion 4.4.2. Regression models were fit using the lme4

package, statistical tests on coefficient values were per-
formed using the lmerTest package, marginal means and
pairwise contrasts of fitted models were obtained using the
emmeans package, correlation coefficients and p-values were
obtained using the Hmisc package, and performance met-
rics for fitted models (BIC & R?) were obtained using the
compare_performance () function from the performance
package. Correlation coefficients were z-transformed prior to
being used as predictors in regression analyses, and all regres-
sion models included a random intercept for each subject.

Results

Our analyses aimed to answer the following questions:

1. How well do explicit reports correspond to implicitly
learned probabilities? We answer this by computing two
metrics of the accuracy of explicit reports relative to the
true value of implicitly learned probabilities, and then ex-
amining which factors drive confidence in explicit proba-
bility reports.

2. How do implicit and explicit expectations impact per-

ceptual decisions under uncertainty? We answer this
by examining effects of each expectation type, along with
metrics of explicit expectation accuracy, on behavior in the
Cued Inference phase.

1. Learned Probability Reporting: Accuracy and
Confidence of Reported Cue Probabilities

Accuracy of cue estimates Figure 2 depicts two comple-
mentary metrics of the accuracy of explicit reports of implic-
itly learned cue probabilities. The cueDif f metric quantifies,
for each cue, the difference between the true probability as
defined by the structure of the Cue Learning phase (trueCue)
and an observer’s explicit report of what they learned that
probability to be (subjectiveCue). As shown in Figure 2A,
participants tended to overestimate the probability of the 50%
cue relative to its true value and underestimate the probability
of the 80% cues relative to their true values. Two independent
t-tests against O confirmed the significance of these deviations
(50% cue: t4; = 6.33, p < .001; 80% cue: t33 = 8.92, p <
.001). The cueCorr metric quantifies, for each observer, the
linear correlation between frueCue and sub jectiveCue. Fig-
ure 2B illustrates the heterogeneity in cue estimation accuracy
across participants. Whereas some participants reported sub-
jective estimates that perfectly matched the true probability
of the cue, others systematically mis-estimated probabilities
across all of the cues.

Confidence in cue estimate We turned next to examin-
ing the factors driving observers’ confidence ratings in their
sub jectiveCue reports (i.e., cueCon fidence). To do this, we
conducted formal model comparison on 4 nested linear mod-
els. As shown by the BIC values in Table 1, a model estimat-
ing cueCon fidence using only sub jectiveCue (the observer’s
report of a cue’s probability) best trades off complexity with
goodness-of-fit. The marginal increase in R? values as a
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Figure 2: Metrics quantifying the accuracy of reported cue probabilities. (A) Participants overestimated the true probability
of the 50% cue and underestimated the true probability of the 80% cue. (B) The linear correlation between a cue’s true predictive
probability as defined in the Cue Learning phase (frueCue) and subjects’ report of that probability (sub jectiveCue) varies across
individual subjects. Cool colors represent positive cueCorr values, warm colors represent negative cueCorr values.

function of model complexity further indicate the strength of
sub jectiveCue as a predictor for variability in cueCon fidence
judgments. The winning model reveals a strong positive re-
lationship between sub jectiveCue and cueConfidence (P =
0.602, t53 = 6.654, p < .001), indicating that confidence in a
probability report scaled positively with the magnitude of the
reported probability itself.

Effects Structure BIC R?

trueCue 139.3 0.162
subjectiveCue 1159 0433
trueCue + subjectiveCue 1172 0.458
trueCue * sub jectiveCue  120.5  0.465

Table 1: Comparing predictors of confidence in reported
cue probabilities. Best values for each metric are bolded.
The winning linear model uses only the reported probabil-
ity (subjectiveCue) to predict cueConfidence and returns
a strong positive relationship between cueCon fidence and
sub jectiveCue magnitude.

2. Cued Inference: Choice Behavior and Timing

We now turn to investigating how implicitly learned cue prob-
abilities (trueCue), explicit subjective reports of those proba-
bilities (sub jectiveCue), and the overall accuracy of those re-
ports (cueDif f and cueCorr) interact to shape behavior dur-
ing perceptual decision making. Here, we split our analy-
ses to examine choice behavior (A) on the basis of expec-
tations alone (i.e., during the anticipation period before vi-
sual evidence onset; see Methods & Figure 1), and (B) when
memory-based expectations were integrated with incoming
sensory information once visual evidence became available.

A. Responses driven by expectations alone We began our
analysis by computing linear correlations among five vari-
ables of interest: (1) trueCue: each cue’s true predictive
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Figure 3: Linear correlations among possible predictors
of early responding. Stars indicate significance of a t-test
against 0; * p < .05, ** p < .01, ***p < .001

probability as learned implicitly during Cue Learning; (2)
sub jectiveCue: observers’ explicit report of each cue’s prob-
ability; (3) cueConfidence: observers’ confidence in their
sub jectiveCue report; (4) cueDiff: the difference between
subjectiveCue and trueCue; and (5) cueCorr: the overall
correlation between an observer’s sub jectiveCue reports and
their corresponding frueCue values. Figure 3 shows that
cueConfidence and cueDif f both exhibit significant corre-
lations with trueCue and subjectiveCue, whereas cueCorr
does not appear strongly correlated with any other variables.
We used this correlation analysis to narrow down the space
of possible fixed effects structures and avoid issues of multi-
collinearity when fitting regression models.

The first round of regression analyses examined which
fixed effects structure best explains the probability that ob-
servers made an early response, which occurred on 373/7682
(4.85%) Cued Inference trials. Table shows that a linear
combination of cueCorr (z-transformed) and subjectiveCue
explained the most variance in the data (marginal R> =
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Figure 4: Choice behavior on the basis of expectation alone. Errorbars correspond to standard error of model estimates. In
C & D, the size of individual points corresponds to how many observations contributed to that point. (A) The probability of
making a choice without perceiving any visual evidence increases independently as a function of cueCon fidence and trueCue.
(B) Empirical biases for choices based only on expectations accord with predictions of optimal decision theory. (C) Choice
bias predictions based on explicit expectations (preferred by BIC). (D) Choice bias predictions based on implicit expectations.

0.191), whereas a linear combination of cueConfidence
and trueCue best balanced complexity with goodness-of-
fit (BIC=1600.9). Further, the second-best model by
BIC used only cueConfidence to predict early responding
(BIC=1605.1), underscoring the utility of this factor for pre-
dicting early responding. The winning model by BIC re-
turned a significant main effect both for cueCon fidence (p =
0.462, 77354 = 4.25,p < .001) and trueCue (B = 2.4436,
77354 = 3.504, p < .001), such that observers were more likely
to make early responses when trueCue was 80% or when they
had higher confidence in their sub jectiveCue estimate for that
80% cue (Figure 4A).

The next round of regression analyses investigated how
the same set of fixed effects structures fared in predicting
RT trends for early responses. Reaction times were log-
transformed and z-scored prior to model fitting. As shown in
Table 2, several fixed effects structures exhibited highly simi-
lar performance both in terms of BIC and R?. The best model
by BIC consisted of a fixed effect only of cueCon fidence
(BIC=220.9), whereas the model with the greatest R> value
used an additive combination of cueCorr, trueCue, and
subjectiveCue (R*> = 0.006). The winning model by BIC
returned a null effect of cueConfidence on RTs for early
responses (B = 0.024,1,04 = 0.782, p = 0.43), and the win-
ning model by R? returned null effects for all three predictors
(BtrueCue = —0.145, 1353 = —0.786, p = 0.432; BsubjectiveCue =
0.219,1366 = 0.809,]) = 0.419; BcueCorr = —0.0105,1955 =
—0.262, p = 0.799), suggesting that factors other than those
investigated in these analyses (e.g., decision threshold) were
the primary drivers of RT variability for responses made be-
fore the onset of visual evidence.

The final set of regressions investigated whether observers
exhibited systematic biases in the choices made before the
onset of visual evidence. Optimal decision theory states that,
as the prior probability of one option approaches 1 and the
inter-stimulus interval is sufficiently short, observers should
forego any evidence accumulation and always respond ac-
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Figure 5: Choice behavior on the basis of integrated
expectations and sensory evidence. Errorbars corre-
spond to standard error of model estimates (A) Accuracy
was best explained by an interaction between frueCue and
cueConfidence. (B) Reaction times were best explained by
an additive combination of trueCue and cueCon fidence.

cording to the more likely option (Simen et al., 2009). In
the case of our experiment, early responses should be biased
toward the dominant prediction of 80% cues and not exhibit
any bias toward a particular option for 50% cues. Figure 4B
shows that aggregated response probabilities qualitatively ac-
cord with this prediction. Interestingly, the BIC metric fa-
vored sub jectiveCue as a better predictor of early choice bi-
ases than models that used trueCue on its own or in addi-
tion to sub jectiveCue (Table 2; ABIC = 5.1). The perfor-
mance advantage of sub jectiveCue as a predictor is displayed
in Figures 4C and D. Both models confirmed the statistical
significance of the choice biases displayed in early respond-
ing behavior (Byup jectivecue = 6.071,2370 = 3.02,p = 0.003;
BtrueCue = 2~6443Z370 =0.051).

B. Responses integrating memory and sensory evidence
We next used formal model comparisons to investigate (i)
factors driving choices made on the basis of integrated ex-
pectation and sensory evidence as well as (ii) the effect of



Expectations Only

p(earlyResponse)
Effect Structure BIC Marginal R?
trueCue 1649.8 0.021
subjectiveCue 1643.0 0.043
cueCorr 1682.5 0.149
cueConfidence 1605.1 0.040
cueDif f 1686.0 0.002
cueCorr +trueCue 1653.6 0.167
cueCorr+ subjectiveCue 1647.4 0.191
trueCue + sub jectiveCue 1643.1 0.038
cueConfidence +trueCue 1600.9 0.040
cueCorr+trueCue + sub jectiveCue 1647.5 0.182

reaction time

Effect Structure BIC Marginal RZ

trueCue 2224 1.54e-04
sub jectiveCue 2224  2.24e-04
cueCorr 2224  2.24e-04
cueConfidence 220.9 4.16e-04
cueDif f 221.8  4.97e-04
cueCorr+ trueCue 228.4 0.005
cueCorr + sub jectiveCue 228.4 0.005
trueCue + sub jectiveCue 231.7 5.82e-04
cueConfidence + trueCue 226.0 7.92e-04
cueCorr + trueCue + sub jectiveCue 233.7 0.006
choice bias

Effect Structure BIC Marginal R®

trueCue 305.9 0.009

sub jectiveCue 300.8 0.031

trueCue + sub jectiveCue 304.08 0.041

Expectations + Sensory Evidence

accuracy
Effect Structure BIC Marginal R”
trueCue 7398.4 0.015
subjectiveCue 7458.7 0.004
cueCorr 7470.8  1.35e-04
cueConfidence 7067.5 0.007
cueDif f 7469.9 2.73e-04
cueCorr +trueCue 7407.3 0.015
cueCorr+ subjectiveCue 7467.5 0.016
trueCue + sub jectiveCue 7401.5 0.017
cueConfidence + trueCue 7010.4 0.021
cueConfidence * trueCue 6930.5 0.042
cueCorr +trueCue + sub jectiveCue 7410.3 0.017
reaction time
Effect Structure BIC Marginal R°
trueCue 152554 0.002
subjectiveCue 15238.9 0.005
cueCorr 15282.5 1.58e-04
cueConfidence 14704.4 0.005
cueDif f 15282.4  2.24e-06
cueCorr+trueCue 15264.4 0.002
cueCorr + sub jectiveCue 15247.9 0.005
trueCue + sub jectiveCue 15228.6 0.005
cueConfidence +trueCue 14692.0  0.006
cueConfidence x trueCue 14694.0 0.006
cueCorr +trueCue + sub jectiveCue 15237.6 0.005

Table 2: Regression model comparisons. Bolded values in-
dicate the winning value for each metric. All models included
a random intercept for subjects.

the stochastic noise period on this behavior. This introduces
cue validity—whether the cue’s prediction was correct relative
to the visual evidence stream—as another dimension that can
modulate behavior. We model cue validity by adding a level
of 0.2 to the rrueCue variable, which captures the trials for
which the 80% cue made an invalid prediction with respect to
the true answer as given by visual evidence.

Table 2 (bottom) shows that accuracy for choices made
after the anticipation period were best captured by an in-
teraction between cueCon fidence and trueCue, whereas re-
action times were best captured by an additive effect of
cueConfidence and trueCue. Figure 5SA shows how confi-
dence in an explicit cue estimate significantly interacted with
trueCue to modulate choice accuracy (ByueCuescueCon fidence =
1.3635,z6984 = 9.245,p < .001): high cueConfidence en-
hanced accuracy on valid cue trials (trueCue = 0.8) but im-
paired accuracy on invalid cue trials (trueCue = 0.2), whereas
the opposite pattern obtained on trials for which observers
had low confidence in their explicit cue estimate. Figure
5B shows how cueConfidence and trueCue are combined
in guiding reaction times. RTs were faster when observers
had high confidence in their explicit probability estimate
(BcueConfidence = —0.071,16979 = —6.50, p < .001), and also
became faster as a function of that cue’s predictiveness about
the correct answer (Byryecue = —0.168, 16966 = —4.60,p <
.001).

These findings, together with those from early responding
behavior, demonstrate a key role for both implicit and ex-
plicit cue probabilities in perceptual decisions. Specifically,
our results suggest that confidence in an explicit probability
estimate—a quantity that is highly correlated with, but concep-
tually distinct from, the magnitude of the explicit estimate—is
even more useful than the explicit expectation itself for cap-
turing quantitative trends in the data.

Discussion

We measured human behavior on a task that required ob-
servers to learn expectations from experience, make explicit
reports and confidence judgments about their estimates of
each cue’s probability, and then use those cues to make per-
ceptual decisions under uncertainty. We used a series of re-
gression models to investigate which factors best accounted
for quantitative trends in the behavioral data, and found that
most behavior is best described by a combination of im-
plicitly learned and explicitly reported probability informa-
tion. These findings indicate a key role for the experience-
dependent properties of implicit expectations that previous
tasks were not sensitive enough to measure.

We also found a substantive amount of variability in the
accuracy of explicit expectation reports, and did not have
the statistical power to detect effects of expectations on reac-
tion times. Future work will use develop sequential sampling
models to investigate the factors driving variability in each of
these outcome variables in order to deepen understanding of
implicit and explicit probability information are dynamically
combined in the service of adaptive behavior.
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