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Abstract

Understanding human thoughts is a key goal of cognitive sci-
ence. Behavioral observations alone limit insight into cog-
nition. The think-aloud protocol, where participants verbal-
ize thoughts, offers a direct probe into reasoning but is un-
derutilized due to challenges in subjectivity and scalability.
Advancements in natural language processing (NLP) enable
computational analysis of think-aloud data, yet little work ex-
plores its role in strategy learning. We test whether think-
aloud reports reveal strategy use in a stochastic learning task
where participants verbalized their strategies. Our results
show diverse strategy usage, with a preference for persistent
choices. Think-aloud analysis suggests participants rely on
distinct meta-strategies to guide learning. Clustering and pre-
dictive modeling reveal strong alignment between choices and
verbalized strategies. These findings highlight think-aloud as a
scalable tool with NLP techniques for studying high-level cog-
nition, shedding light on a promising paradigm for cognitive
sciences.
Keywords: Think Aloud, Natural Language Processing,
Strategies, Learning, Reasoning

Introduction
Understanding human thoughts is an ultimate goal of cogni-
tive science. For a long time, cognitive scientists have relied
on designing experiments and observing human behavior to
infer underlying mental processes. Typically, scientists form
hypotheses and test them either by manipulating variables in
experiments or by proposing computational models to ana-
lyze behavioral data. However, this framework can be bi-
ased and may limit long-term understanding of the human
mind, especially for high-level cognition, whose processes
are often intractable from pure choice behavior. These indi-
rect probes into cognitive processes can, to a large extent, be
mitigated by the Think Aloud protocol—a traditional method
in which participants verbalize their thoughts during an ex-
periment (Simon & Ericsson, 1984). Despite its advantages,
the qualitative nature of think-aloud data makes its analysis
subjective, labor-intensive, and difficult to scale, which hin-
ders its broader contribution to modern cognitive science and
psychology research paradigms.

With advancements in Natural Language Processing (NLP)
and Large Language Models (LLMs), there is now potential
to revisit this traditional protocol using modern quantitative
methods, enabling a more efficient and scalable approach to

1Equal contribution.
2Corresponding author: rwilson337@gatech.edu

handling think-aloud data. Indeed, recent research has lever-
aged neural network models to decode cognitive variables
from think-aloud text embeddings in a risky decision-making
task (Xie, Xiong, & Wilson, 2023). More advanced and di-
verse approaches include using LLMs directly as cognitive
models to predict choice behavior (Xie, Xiong, & Wilson,
2024a) or translating think-aloud data into code-like symbolic
cognitive models to predict behavior (Xie, Xiong, & Wilson,
2024b). Despite these advancements, little attention has been
paid to the role of strategy usage in the learning process.

Learning is central to human development and adaptation
to uncertain environments. Humans not only learn which ac-
tions yield the most benefits from the environment (model-
free learning) but also infer the underlying rules governing
the environment (model-based learning). These ”hypothe-
sized” rules, often referred to as ”strategies” in the learn-
ing process, are difficult to extract from pure choice behavior
alone. Past studies have developed various approaches to ap-
proximate these rules based on behavioral observations, such
as information-theoretic measures of choices and behav-
ior (Trepka et al., 2021), hidden Markov models (HMMs)
(Guennouni & Speekenbrink, 2021), and neural network
models (Rmus, Pan, Xia, & Collins, 2024). However, all
these methods approximate human mental processes by mak-
ing inferences solely from behavioral data, providing only in-
direct insight into underlying cognitive mechanisms.

Therefore, our study aims to investigate strategy usage
through the think-aloud protocol in a strategic stochastic
learning task (i.e., the matching pennies game (Barraclough,
Conroy, & Lee, 2004)). The original study demonstrated that
monkeys attempt to ”learn” rules in a random rewarding task
with their own biases. These biases drive spontaneous strat-
egy hypotheses, testing, and shifts (recrafting), making the
task an ideal paradigm for exploring diverse strategy usage.
In our research, we seek to determine whether human strat-
egy usage, identified through behavior data, maps onto ver-
balized think-aloud responses. By bridging the gap between
subjective introspection and objective measurement, this ap-
proach ultimately offers a powerful framework for uncover-
ing the nuanced cognitive mechanisms underlying learning
and adaptation in uncertain environments.
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Methods
Experiment and Participants
To elicit diverse strategy usage, we employed a modified
version of the matching-pennies game, inspired by a previ-
ous study on monkeys (Barraclough et al., 2004). In this
task, participants see two options on each trial—a yellow star
and a green star (see Figure 1A). Similar to classical bandit
paradigms, participants must select one option, after which
they receive feedback indicating whether they earned a re-
ward (1 point) or not. Crucially, the two options have iden-
tical underlying probabilities of reward, making the task fun-
damentally stochastic and devoid of any true “optimal” strat-
egy. To maintain engagement and discourage rapid conver-
gence to random guessing, our cover story instructs partici-
pants that they are playing against a “highly intelligent com-
puter agent,” and must “match” this agent’s choice to gain
rewards. This narrative encourages participants to hypoth-
esize—and revise—the complex strategies they believe the
computer might be using.

Unlike more typical learning tasks, after every 10 trials,
participants are prompted to describe the strategies they just
used verbally and those they plan to use in the subsequent 10
trials. These verbal reports are recorded as audio and then
transcribed automatically using OpenAI’s Whisper speech-
to-text model (Radford et al., 2023).

We recruited N = 68 undergraduate students from the uni-
versity to complete the task online. All participants provided
informed consent before starting the study and were fully de-
briefed upon completion regarding the task’s true nature. The
study protocol was approved by the university’s Institutional
Review Board, ensuring that all ethical guidelines were fol-
lowed.

Behavioral Metrics
To measure human participants’ behavior in the task, we use
some simple and heuristic measurements, like the probability
of stay and reward-conditioned probability of stay (aka. win-
stay or lose-stay). These metrics will help us to know a basic
behavior pattern as well as their reaction to reward feedback.
So specifically, for the probability of stay, we define it as:

p(stay) =
∑

T
t=2 I

(
at = at−1

)
T −1

.

While win-stay and lose-stay consider the conditional
probability of stay given the reward outcome is positive or
negative:

p(stay|win) =
∑

T
t=2 I

(
at = at−1 ∧ rt−1 = 1

)
∑

T
t=2 I(rt−1 = 1)

.

And:

p(stay|lose) =
∑

T
t=2 I

(
at = at−1 ∧ rt−1 = 0

)
∑

T
t=2 I(rt−1 = 0)

.

Where:

• at : The choice made by the participant at time t.

• at−1: The choice made by the participant at time t −1.

• rt−1: The reward received at time t − 1 (1 for a reward, 0
for no reward).

• T : Total number of trials.

Computational Models of Choice Behaviors
To quantitatively characterize participants’ learning strate-
gies, we proposed five simple heuristic models to fit behav-
ior: (1) Random, (2) Win-Stay Lose-Switch (WSLS), (3) Re-
inforcement Learning (RL), (4) Choice Kernel (CK) and (5)
RL-CK Model.

Random model simply estimates each participant’s choice
proportion based on the observations.

Win-Stay Lose-Switch (WSLS) model estimates the
trend that participants use a win-stay-lose-switch strategy,
and attribute the rest of the actions to noises:

p(at | at−1,rt−1;ε) =



1− ε

2 , if rt−1 = 1 and at = at−1,

ε

2 , if rt−1 = 1 and at ̸= at−1,

ε

2 , if rt−1 = 0 and at = at−1,

1− ε

2 , if rt−1 = 0 and at ̸= at−1.
(1)

Here, (1− ε) corresponds to a pure WSLS strategy, while
ε captures occasional deviations, attributing them to noise or
exploratory choices.

Reinforcement learning model considers the reward
learning process in the task. Specifically, we use model-
free learning, assuming participants simply bonding values
of each option to the rewards, without explicit models about
the task structure. We use Rescolar-Wagner (RW) model as
such:

Vt+1(at) =Vt(at)+α
(
rt −Vt(at)

)
, (2)

Where:

• Vt+1(at): The value of option at at time t + 1, which is
updated based on the reward received at time t.

• Vt(at): The value of option at at time t, representing the
current estimate of the option’s value.

• α ∈ [0,1]: The learning rate, a parameter that determines
how quickly the value of the option is updated based on
the new reward.

• rt : The reward received at time t, where rt is typically 1 for
a reward and 0 for no reward.

The probability of choosing option i on trial t is then given
by a softmax function:
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p(at = i) =
exp

(
βVt(i)

)
∑ j exp

(
βVt( j)

) . (3)

Choice kernel model, however, only considers the internal
repetition trend of one’s behaviors. Therefore, it only consid-
ers the last action that the participant has done.

CKk
t+1 = CKk

t + αc

(
ak

t − CKk
t

)
. (4)

where αc ∈ [0,1] is a learning rate that adjusts the kernel
toward 1 if option k was chosen, and toward 0 otherwise. The
probability of choosing option k on trial t follows a softmax
function like above (3).

Finally, the RL-CK model is a hybrid model. While con-
sidering both the updates for values (2) and kernel (4), the
model combines both values in the decision-making process
with an integrated softmax function:

p(at = i) =
exp

(
β
[
Vt(i)+wCKi

t
])

∑ j exp
(

β
[
Vt( j)+wCK j

t
]) . (5)

All the parameters in the five models are estimated by Max-
imum Likelihood Estimation (MLE) with the Python package
’optimize’ on an individual basis. The dynamic of likelihood
is post-hoc simulations from the estimated parameters.

Think-Aloud Data Analysis
For all transcriptions of think-aloud audios, we first prepro-
cess the text data, including punctuations, removing uncom-
mon symbols, and correcting misspellings and capitalization.
To quantify the semantic meaning of those think-aloud texts,
we used an embedding model to convert think-aloud texts
into text embeddings. Text embeddings are high-dimensional
vectors that represent relative semantic meaning in the vast
training dataset. We used text-embedding-ada-002, which
returns each think-aloud text as a 1536-dimensional vector.
These vectors are then visualized in 2D space with t-SNE.
We apply an elbow test to determine the number of k-mean
and use K-mean clustering to cluster all think-aloud text em-
beddings into four clusters for post-block descriptions and
pre-block planning, respectively. These clusters will help us
understand underlying strategies that participants may reveal
and their mappings to specific behavioral patterns.

We also deployed machine learning classifier models, in-
cluding Random Forest (200 estimators, maximum depth
of 10, balanced class weights), Support Vector Machines
(SVM, RBF kernel, balanced class weights, probability esti-
mation), and Logistic Regression (1000 iterations, balanced
class weights) to see whether text embeddings are predic-
tive for block-wise strategies (the best model for each partic-
ipant at each block). To address class imbalance, we applied
SMOTE (Synthetic Minority Over-sampling Technique) to
resample the training data, ensuring a balanced distribution
of strategies in the dataset. The training process is conducted

with 5-fold cross-validation to ensure the models are not over-
fitting. The models were evaluated using accuracy as the pri-
mary metric, along with standard error calculated from the
cross-validation results. Additionally, confusion matrices and
other classification metrics were used to assess model perfor-
mance.

Figure 1: A. Experimental Procedure. On each trial, par-
ticipants choose between two options to maximize rewards.
After each choice, the outcome is displayed. Every ten trials,
participants are asked to think aloud about past strategies and
future plans. B. Behavioral Tendency. Participants tend to
repeat their previous choice, especially after receiving a re-
ward. C. Computational Modeling Results. Five models
were fit to participants’ behavior; RL-CK models best ex-
plained the majority. D. Temporal Dynamics. Block-wise
likelihoods show population-level shifts in strategy over time.

Results
Identifying Strategies from Choice Behaviors
To analyze the behavioral patterns of participants in this task,
we first computed several basic behavioral metrics. As shown
in Figure 1B, participants exhibited a probability of staying
higher than chance levels, as well as a conditioned probabil-
ity of staying after both winning and losing outcomes, all of
which were significantly above chance (p(stay): p < 0.001,
p(stay|win): p < 0.001, p(stay|lose): p = 0.001). This sug-
gests that participants display strong persistent behaviors, re-
gardless of whether they win or lose.
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To further quantify participants’ behaviors more precisely,
we fit each participant’s choice data to five proposed compu-
tational models (see Method 2.3, Computational Models of
Choice Behaviors). These models range from naive statisti-
cal models to reward-based learning models. As shown in
Figure 1C, most participants were best described by the RL-
CK model, indicating that their behaviors are both reward-
sensitive and persistent in relation to their previous choices.
Notably, a relatively large proportion of participants followed
heuristic win-stay-lose-switch (WSLS) strategies or exhib-
ited simple persistence. The most classical reinforcement
learning model accounted for only 10.29% of participants,
indicating minimal reliance on this strategy in the task.

We further analyzed model performance by simulating the
likelihood of participants’ behaviors using fitted parameters,
aggregated by blocks (every 10 trials). As shown in Fig-
ure 1D, during the first block, the WSLS model was the dom-
inant strategy. However, as the task progressed, both CK and
RL-CK models became more dominant, while WSLS rapidly
declined in model performance. This trend suggests that strat-
egy structures evolve from simpler to more complex ones,
echoing the persistent choice behaviors observed in the basic
metrics.

Think-Aloud Contents Reveal Diverse Strategies

Figure 2: Think-Aloud Cluster Analysis and Visualiza-
tions. A. Think-aloud embedding clusters related to planning
for the next blocks. B. Think-aloud embedding clusters re-
lated to strategy usage in previous blocks.

To quantitatively analyze Think-Aloud text data, we used
an embedding model to convert each think-aloud response

into a high-dimensional vector (see Method 2.4, Think-Aloud
Data Analysis). We then applied t-SNE to reduce these high-
dimensional vectors into a 2D space, allowing us to visualize
their distribution (Figure 2). To further interpret the semantic
meaning of these embeddings, we applied K-means cluster-
ing to divide the embeddings into four clusters, each repre-
sented by a different color. We then visually inspected actual
think-aloud responses in each cluster to conduct a preliminary
qualitative analysis.

Pre-block Think-Aloud One prominent cluster in the pre-
block data represents participants who frequently switched
choices due to difficulty identifying a stable pattern (i.e.,
Cluster 1 in yellow in Figure 2). A key characteristic of this
group is their uncertainty regarding the reward structure, as
reflected in statements like:

“So, I feel like it’s more like, whether it’s my own bias or
not, but I feel like they wouldn’t typically pick the same
one in a row by chance, because that would be a 25%
chance should they pick one of two options twice in a
row.”

Participants in this cluster struggled to determine whether
their choices were based on an actual pattern or just random
fluctuations in rewards.

Another cluster in the pre-block data represents partici-
pants who committed to a single choice, potentially as an ex-
ploratory strategy (i.e., Cluster 0 in blue in Figure 2). This is
exemplified by statements such as:

“I’m gonna just press all stars again.”

Rather than attempting to detect a pattern, these partici-
pants adopted a simple, fixed-choice strategy, selecting the
same option repeatedly in an attempt to test whether it yielded
consistent rewards.

A separate pre-block cluster captures participants who fo-
cused on an exploration strategy. These participants at-
tempted to find a better strategy by making slight variations
from their previous choices (i.e., Cluster 3 in red in Figure 2).
One example is:

“I plan to use the same strategy that I use with switch-
ing off if it’s the same, but I’m going to start with green
again.”

This cluster reflects participants who aimed to maximize
rewards by revising their strategy.

Finally, a distinct pre-block cluster consists of participants
who did not provide any verbal report, leading to a “No text”
category.

Post-block Think-Aloud There are similar strategy clus-
ters in post-block think-aloud responses as in pre-block think-
aloud responses. One post-block cluster represents partici-
pants who focused on a single-choice strategy with alternat-
ing patterns but struggled to identify a clear structure. These
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participants attempted systematic switching but remained un-
certain about whether a discernible pattern existed. One par-
ticipant expressed this difficulty:

“That time I actually did use the strategy I was talking
about before. I just went with the stars and it happened
to be literally all stars. So it kind of gave me a little
confidence, but you know, in the previous ones, I also
wasn’t, I didn’t do very well. So confidence is there, but
it’s not going to last very long.”

This suggests that while some participants committed to
a structured choice strategy, they continued to question its
effectiveness due to inconsistent outcomes.

Another post-block cluster captures participants who ex-
plicitly recognized their strategy as ineffective and sought to
adjust it. These individuals reflected on their approach and
acknowledged the need for change, as exemplified by the fol-
lowing statement:

“Okay, the strategy has changed. Or the sequence has
changed. I think I’m putting too much thought into this,
but I’m pretty sure the sequence just changed on me.”

This cluster highlights participants who perceived shifts in
the reward structure, leading them to rethink and modify their
decision-making strategies.

A separate post-block cluster consists of participants who
engaged in alternating and double-alternating strategies, ac-
tively attempting to refine their approach through systematic
pattern detection. One participant described their evolving
method:

“So I’ve tried alternating, double alternating, and now
I’ve tried star, star, green, star, green, star... I feel like it
worked in the beginning. Then halfway through, it might
switch to double greens, then star, then double green,
then star. So I’m going to try that one next.”

These participants demonstrated a deliberate effort to un-
cover a hidden rule, using increasingly complex alternation
patterns in an attempt to anticipate future rewards.

For the last cluster, it remains the same as in the pre-block
phase, in which no verbal response was recorded.

These patterns reveal a more complex model that partic-
ipants may be attempting to build—action sequences (also
known as successor representations (Momennejad et al.,
2017)). This may explain why the CK model outperforms
the pure RL model in capturing decision-making behavior.

Linking Behavioral Strategies to Introspective
Descriptions
To investigate the relationship between participants’ learn-
ing strategies and their introspective descriptions, we ana-
lyzed how the best-fitting computational models were dis-
tributed across think-aloud clusters. Additionally, we as-
sessed whether text embeddings derived from verbal reports

could predict participants’ decision-making strategies. For
pre-block and post-block think-aloud clusters, we calculated
the proportion of each model that best fits each block for each
participant. The results show distinctive distributions in the
best-fitting model across think-aloud clusters, whether pre-
block or post-block (Figure 3A and B).

Specifically, Cluster 0 and Cluster 1 are dominated by
blocks where the best-fitting model is the WSLS model, while
Cluster 2 is dominated by blocks best described by the CK
model. Cluster 3 is primarily associated with blocks best
captured by the RL-CK model. This distribution aligns with
findings from the qualitative analysis of clusters: Cluster 0
reflects persistent choice behavior, while Cluster 1 represents
switching due to failed outcomes, both of which correspond
to the WSLS model. Similarly, Cluster 3 captures partici-
pants attempting to refine their strategy, which aligns with
the RL-CK model. Meanwhile, Cluster 2, which mainly con-
tains blocks with no verbal responses, may indicate that par-
ticipants either repeated or switched their choices without ac-
tively engaging in the task. Similar patterns were observed in
the post-block strategic descriptions.

To further test whether participants’ verbal reports con-
tained meaningful information for predicting their strate-
gies across blocks, we trained classification models using
think-aloud text embeddings as features. Using 5-fold cross-
validation, we found that all three models performed above
the chance level (20%), with Random Forest achieving the
highest accuracy (Figure 3C). The classification accuracy was
comparable between pre-block and post-block embeddings,
suggesting that participants’ verbalized strategies before and
after each block contained stable, meaningful patterns reflec-
tive of their actual decision-making models. Notably, post-
block think-aloud text data was more predictive than pre-
block think-aloud text data, likely due to variations between
participants’ initial plans and their actual behavior.

These results suggest that introspective verbaliza-
tions—though subjective—encode structured information
that aligns with computationally inferred learning strategies.
By linking text-based insights to behavioral models, this
approach offers a novel way to integrate qualitative and
quantitative perspectives in cognitive science research.

Discussion
Understanding human thoughts is at the heart of cognitive
science. In this study, we investigated human strategies in a
stochastic learning task using think-aloud protocols. Behav-
iorally, we found that participants employed a diverse range
of strategies, from heuristic win-stay-lose-switch (WSLS)
to reinforcement learning with choice kernels (RL-CK). By
tracking model likelihoods over time, we observed a transi-
tion in strategies at the population level.

To analyze think-aloud data, we applied visualization and
cluster analysis on text embeddings, allowing us to inspect
different strategy patterns. Our findings suggest that clus-
ters in the embedding space reflect distinct strategies, such
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Figure 3: Linking Behavioral Strategies to Think-Aloud Descriptions. (A) Best-fitting model proportions across pre-block
think-aloud clusters. (B) Best-fitting model proportions across post-block think-aloud clusters. (C) Model accuracy in predict-
ing decision-making strategies using think-aloud embeddings.

as switching actions, persisting in a chosen action, or vary-
ing strategies over time. When combining behavioral model
fitting with cluster analysis on think-aloud data, we found a
strong alignment: for instance, one cluster was dominated
by the WSLS model, while another aligned with the RL-CK
model. This suggests a meaningful link between participants’
verbalized thoughts and their actual decision-making strate-
gies. Furthermore, by training machine learning models on
think-aloud text embeddings, we demonstrated that these ver-
bal descriptions can predict behavioral strategies with high
accuracy. These results highlight the potential of think-aloud
data as a rich source of information about human cognition in
learning tasks.

While our findings confirm that think-aloud data can map
onto behavioral strategies, it is important to acknowledge that
these strategies are approximations based purely on observed
behavior. A key next step is to explore how introspective de-
scriptions might lead to even better approximations of both
behavior and cognitive processes. One promising direction
is leveraging Large Language Models (LLMs) to infer par-
ticipants’ strategies in the form of programmatic code (i.e.,
program induction) (Xie et al., 2024b). This approach could
generate block-wise models tailored to individuals rather than
imposing a one-size-fits-all framework, potentially offering
a more precise and hypothesis-free alignment with partici-
pants’ own descriptions.

Another important avenue for future research is under-
standing how strategies evolve over time. In our task, par-
ticipants actively refined their strategies to maximize re-
wards, constructing and updating mental models of the task.
This process of mental exploration and subsequent testing
through real-world actions (Johnson-Laird, 1983) could pro-
vide deeper insights into meta-learning. Investigating how
these evolving strategies manifest in both think-aloud data
and behavior would further clarify the cognitive mechanisms
underlying learning and adaptation.

Overall, our study presents a preliminary yet promising
step toward bridging think-aloud text data with behavioral
strategies in a learning task. By demonstrating how verbal-
ized thoughts align with computational models of learning,
we highlight the value of think-aloud protocols in studying
higher-level cognition.
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