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Abstract—Automated Market Maker (AMM)-based Decentral-
ized Exchanges (DEXs) are crucial in Decentralized Finance
(DeFi), but Ethereum implementations suffer from high trans-
action costs and price synchronization challenges. To address
these limitations, we compare the XRP Ledger (XRPL)-AMM-
Decentralized Exchange (DEX), a protocol-level implementation,
against a Generic AMM-based DEX (G-AMM-DEX) on Ethereum,
akin to Uniswap’s V2 AMM implementation, through agent-
based simulations using real market data and multiple volatility
scenarios generated via Geometric Brownian Motion (GBM).
Results demonstrate that the XRPL-AMM-DEX achieves superior
price synchronization, reduced slippage, and improved returns
due to XRPL’s lower fees and shorter block times, with benefits
amplifying during market volatility. The integrated Continuous
Auction Mechanism (CAM) further mitigates impermanent loss
by redistributing arbitrage value to Liquidity Providers (LPs).
To the best of our knowledge, this study represents the first
comparative analysis between protocol-level and smart contract
AMM-based DEX implementations and the first agent-based
simulation validating theoretical auction mechanisms for AMM-
based DEXs.

Index Terms—Automated Market Maker, XRP Ledger, Decen-
tralized Finance, Continuous Auction Mechanism

I. INTRODUCTION

Decentralized Finance (DeFi) has transformed financial ser-
vices by using blockchain technology to offer new, transparent
financial services without traditional intermediaries [1]—[7] like
banks [8], lending platforms [9]-[11], centralized exchanges
[12]-[14], insurance companies [15], [16], and wealth managers
[17], [18]. A key part of DeFi are DEXs powered by Automated
Market Makers (AMMs), first introduced by Bancor in 2017
and made popular by Uniswap [19], [20]. These DEXs use
smart contracts and algorithms to enable trading without
traditional market makers. The most common type of AMM
used by DEXSs is the Constant Function Market Maker (CFMM),
with Uniswap V2’s Constant Product Market Maker (CPMM)
being the most widely used [20], [21].

Most AMM-based DEXs run on Ethereum and face several
problems: high fees, large price changes during trades (slip-
page), impermanent loss for liquidity providers, and outdated
prices compared to other markets [12], [22], [23]. These issues
originate from AMM-based DEXs’ design and their underlying
infrastructure, which can lead to losses when off-chain prices
move [23]-[25]. Because AMM-based DEXs often quote
outdated prices compared to real-time Centralized Exchanges
(CEXs), arbitrageurs can profit from these differences, which
usually results in impermanent losses for LPs, as the opportunity
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cost of providing liquidity often outweighs the fees earned [23]-
[25], particularly in Uniswap V3 [26]-[28]. While profiting
from price discrepancies, arbitrageurs face slippage losses
when the effective trade price differs from the initially quoted
price. This occurs because AMM-based DEXs prices do not
immediately update to reflect external market changes or new
transactions between trade submission and finalization.

Learning from these issues, the XRPL-AMM-DEX [29]
presents an alternative to existing AMM-based DEXs. It works
on the XRP Ledger and aims to reduce price slippage during
trades, keep prices in line with other external off-chain markets,
and work more efficiently. Unlike Ethereum-based DEXs that
work using smart contracts, the XRPL-AMM-DEX is integrated
directly at the protocol level of the XRP Ledger. It also
has a special feature called Continuous Auction Mechanism
that seeks to reduce impermanent losses for LPs by giving
them extra fees from traders who want to profit from price
differences by participating in auctions to get a 24-hour zero-
fee trading slot. This fundamental difference in infrastructure
and features provides an interesting opportunity to analyze how
these approaches affect AMM-based DEXs performance and
characteristics.

Our study compares the XRPL-AMM-DEX with a G-AMM-
DEX based on Uniswap V2, which dominates 60% of the
DEXSs market [30]. While Uniswap V3 introduces concentrated
liquidity in price ranges [P,, P,], it behaves similarly to V2’s
[0, 00] distribution for trades within the same price range.
Therefore, returns and losses scale with concentration, assuming
the pool’s current price stays within the same price range,
and especially considering that most retail LPs often provide
passive liquidity around current prices due to the challenges
of active management in V3 [31]. Given these similarities and
theoretical considerations, our findings would likely apply to
Uniswap V2 and V3 when benchmarking the G-AMM-DEX
to the XRPL-AMM-DEX.

Our methodology uses agent-based simulations', building
on literature analyzing AMM-based DEXs’ performance and
design trade-offs [27], [28] and drawing from literature on
the relationship between LPs’ impermanent losses and traders’
price slippage [32]-[35], a relationship Milionis et al. [25],
[36] show applies to all AMMs. Additionally, to the best of
our knowledge, we conduct the first agent-based simulation of
an auction mechanism for AMM-based DEXs, benchmarking
the XRPL-AMM-DEX’s CAM feature under various volatility
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scenarios. This builds on research into LPs’ impermanent
losses [23], [27], [28], [37] and auction mechanism proposals
and theoretical implications for AMM-based DEXs to reduce
impermanent losses [38]-[40]. We simulate the underlying
infrastructure of the G-AMM-DEX on Ethereum due to its
DeFi popularity, layer 1 blockchain status like the XRP Ledger,
and role in popularizing smart contracts [41], in which most
AMM-based DEXs are built.

Our experimental results show that the XRPL-AMM-DEX,
leveraging the XRP Ledger infrastructure, reduces slippage,
improves price synchronization with external markets, and
enhances operational efficiency. These findings highlight the
importance of shorter block confirmation times for AMM-based
DEXs, aligning with Fritsch and Canidio’s empirical findings
[23] and Milionis et al.’s theoretical modeling [42]. Also, our
experiments show that as volatility increases and arbitrage
opportunities grow, the CAM feature in the XRPL-AMM-DEX
helps reduce LPs’ impermanent losses by distributing additional
fees from arbitrageurs’ auctions. These results are consistent
with theoretical proposals for other AMM-based DEXs auction
mechanisms seeking to capture Maximal Extractable Value
(MEV) value from arbitrageurs and redistribute it to LPs [38]—
[40].

II. RELATED WORK
A. AMM-based DEX

AMM-based DEXs have revolutionized DeFi, providing
innovative ways to exchange assets and provide liquidity [12],
[43]. The CPMM model, popularized by Uniswap V2 [21],
forms the basis of many AMM-based DEXs [12], [21]. This
model uses a simple bonding curve to set asset prices [12]. As
the field has grown, various AMM-based DEXs designs have
emerged, each addressing specific market needs. These include
Uniswap V3’s concentrated liquidity, Balancer’s multi-asset
pools, Curve.fi’s focus on similar-valued assets, and DODO’s
use of external price feeds [12]. Despite these innovations, most
AMMs remain adaptations of the CPMM model, highlighting
its importance in DeFi [12], [21].

A key challenge in AMM-based DEX design is balancing
LPs and traders’ interests. Milionis et al. [25], [42] show that
LPs’ impermanent losses stem from price slippage, as AMMs
only update prices during trades, unlike Limited Order Books
(LOBs) market makers who actively adjust quotes in response to
buy and sell orders activity [44]. This limitation often results in
suboptimal pricing, with trading fees frequently insufficient to
offset LPs for arbitrage losses [23], [37], especially in Uniswap
V3 [45], where active liquidity management may disadvantage
retail investors [31].

Proposed solutions include reducing block time to minimize
arbitrage opportunities and associated LPs losses [23], imple-
menting dynamic fee structures that adjust based on market
volatility [28], and introducing governance mechanisms for fee
adjustment, such as Uniswap V3’s DAO voting system? and

Zhttps://gov.uniswap.org/t/uniswap-v3-fees-factory-owner-
amendment/23187
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Fig. 1: XRPL-AMM-DEX’s CAM slot price-schedule algorithm

the XRPL-AMM-DEX’s votable trading fee governance [29].
Other innovations involve developing auction mechanisms for
fee-setting rights [38], similar to traditional market-making
practices in LOBs for setting bid-ask spreads according to
volatility [46]-[49], batch auctions [39], and auctions to get
the right for a trade to be placed first in a block of transactions
[40]. Among these auction mechanisms, the XRPL-AMM-DEX
proposes a CAM [29] for auctioning daily zero-fee trading
slots (Fig. 1).

B. Performance evaluation

AMM-based DEXs performance evaluation employs various
techniques, with GBM commonly generating price data for
analyzing impermanent loss, price slippage, and price synchro-
nization with an external market [25], [27], [28]. Agent-based
simulations examine LPs-trader dynamics [27], [28] with some
research incorporating stochastic volatility [25] or historical
price data [23]. Our methodology builds on this foundation
by employing GBM for stochastic price data generation and
Binance data for realistic market conditions. However, unlike
[25], we model fee-paying arbitrageurs. Additionally, we
test the XRPL-AMM-DEX’s CAM under specific volatility
scenarios.

Most existing AMM-based DEXs research predominantly
focuses on Ethereum-based DEXs [12] because of Ethereum’s
pivotal role in the popularization of smart contracts [41], in
which most DEXs are built. These DEXs based on smart
contracts execute on top of a blockchain via, most of the
time, the Ethereum Virtual Machine (EVM). This architecture
often lags in transaction execution speed compared to native
transactions [12], leading to increased slippage. Therefore, to
the best of our knowledge, no other AMM-based DEXs exist
at the protocol level of a blockchain, making this inaugural
study particularly valuable for understanding the performance
implications of protocol-level integration versus traditional
smart contract implementations.

1II. AMM-BASED DEX ON THE XRP LEDGER (XRPL)

We used the CPMM at the core of our G-AMM-DEX for
benchmark with the XRPL-AMM-DEX’s Geometric Mean



Market Maker (G3M) constant product formula. The G3M is
similar to CPMM for ensuring constant liquidity and enables
algorithmic pricing based on the ratio of two tokens in the
pool [32]:

C=Qy* xQp” ()

The reserves (Q4 and @) in the pool before and after
each trade must have the same normalized weight (W) with C'
remaining constant. The price at the current state of the pool
(or time tg) is the Spot-Price (SP), which is the slope of the
conservation function or, to be more exact, the weighted ratio
of the tokens A and B balances in the current state of the pool.
The SP also needs to incorporate the trading fee (up to 1%)
of the liquidity pool (T'Fee), which is charged on the portion
of the trade that changes the ratio of tokens in a pool. Then,
the SP is defined as:

SpPE = ivi oL @
A7 Q4 7 1 TFee )
Wa

Therefore, when a trade removes some amount of asset
A from the pool, they must put some amount of asset B to
preserve C' represented in the following swapping functions:

a) Swap Out: Minimum amount Ap of token B to put
into the pool to receive A4 amount of token A:
Qa  Wa 1
Ap = A Wy | 3
B QB[(QA*AA) B 1= TFee 3
b) Swap In: Maximum amount of A, to receive for
paying Ap amount of token B:

Qs wE
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Particularly, the less liquidity there is in the pool, the more
a single trade/swap may affect the price:

Ay =Qa {1—(

Pricepost-swap

Price Impact = -1 5)

Pricepre-swap
During the swapping of tokens A and B, considering that
the transaction is submitted at time ¢y but executed at time ¢,
the actual executed price differs from the Spot-Price. Therefore,
the actual executed price or Effective Price (EP) of the trade
is:
Ap

B e —
EP; = A (6)

This relationship between the Spot-Price and Effective Price
is the slippage, which may occur because of market movements
between the delay (fo — £1) when the trade transaction is
submitted (ty) versus finalized (¢1):

Effective Price

Sli =—F" -1 7
ppage Spot-Price ™

Slippage is one of the main MEV issues faced by AMM-
based DEXs [50], [51]. On the other hand, similar to traders
experiencing slippage, LPs face impermanent loss from oppor-
tunity costs due to price volatility of their supplied assets in
DEXs, with volatility significantly intensifying in DEXs during
market shocks [52].

TABLE I: Simulation parameters for different scenarios: XRPL-AMM-DEX vs. G-AMM-
DEX (Test-1 and Test-2) and XRPL-AMM-DEX’s CAM.

XRPL-AMM-

Pa 1 Test-2
arameter esf DEX’s CAM

XRPL network fees (USD Coin (USDC)) 1 0.00001 0.00001
Ethereum network fees (USDC) 1 4

XRPL block interarrival time (seconds) 4 8 4
Ethereum block interarrival time (seconds) 12 8 12
Safe profit margin (%) 1.5 1.5 L5
Maximum slippage (%) 4 4 4

A. Continuous Auction Mechanism

The XRPL-AMM-DEX’s CAM (Fig. 1) enables LPToken
holders to bid for daily zero-fee trading slots, attracting
arbitrageurs while maintaining standard access for other users.
Winners retain slots until outbid or until the 24-hour period
expires (Fig. 1).

IV. TESTING METHODOLOGY
A. Data and environment modelling

For our analysis, we choose the ETH/USDC pair, a top-
ten Uniswap pool based on Total Value Locked (TVL) [53],
[54], using USDC as numéraire. To evaluate the XRPL-AMM-
DEX (with and without its CAM) against a G-AMM-DEX,
we combine two types of price data: 1) simulated data via
GBM and 2) real market data from Binance. Our goal is to
test how each AMM-based DEX design responds to different
market conditions for fee structures, block times, and market
volatilities, focusing on price synchronization, LPs returns, and
arbitrage metrics (slippage, profits).

1) Simulated GBM data: We use GBM to generate 5,000
price points over five days, starting with 1,000 USDC per
ETH, consistent with Black and Scholes [55] ’s groundbreaking
options pricing model and Merton [56] ’s application of it to
corporate debt valuation modeling [55], [56] while in AMM-
based DEXs research, GBM is used for analyzing impermanent
loss, slippage, and price synchronization with an external
market [25], [27], 2[28], [57]. GBM is described by the formula:
Sy = Sy - elt=TItHeWe where S, is the price at time t,
Sp is the initial price, p is the drift or expected return, o
is the volatility of returns, ¢ is the time elapsed, and W; is
a Wiener process, introducing random normal noise into the
model. Following empirical evidence [58]-[60], we set the
initial daily GBM mean to 0.8% and volatility to 7.7%. Also,
by adjusting drift (1) and volatility (o), we can test the XRPL-
AMM with CAM under low, moderate, or high volatility.

2) Real market price data: To confirm whether GBM-like
patterns hold in actual market conditions for the AMM-based
DEXs, we also replicate our tests (Table I) using five days of
historical Binance ETH/USDC prices® (1-5 January 2024).

3) Environment and tests: We ran two tests on a shared
reference market, excluding the CAM feature of the XRPL-
AMM-DEX. In test-1, both networks have a 1 USDC fee,
doubling the XRPL minimum fee of 0.00001 USDC used
in test-2 to anticipate fee fluctuations. In test-2, block times
are equalized at eight seconds [61], [62], while safe profit

3https://data.binance.vision/data/spot/daily/klines/ ETHUSDC/1s/



margin and maximum slippage values reflect realistic ranges
(0.5%—5% [63]). Next, we analyze the CAM feature of the
XRPL-AMM-DEX through two strategies (§IV-BOb): XRPL-
AMM-DEX-CAM-A (optimal for LPs) and XRPL-AMM-DEX-
CAM-B (optimal for arbitrageurs). We set u = 1% for these
simulations and choose three volatility levels (5%, 12.5%, and
20%), simplifying each auction slot to a single user. Table I
summarizes the parameters.

B. Agent-based simulation

We adopt agent-based modeling* to examine how both
AMM-based DEXs designs affect trading, liquidity, and price
discovery under various conditions. This approach, common in
Finance and Economics when modeling heterogeneous market
participants who interact in stochastic and sometimes non-linear
ways [64], [65], captures behaviors like herd [66], contrarian
[67], and arbitrage strategies (particularly relevant for testing
the XRPL-AMM-DEX ’s CAM). These interactions are often
complex to capture in closed-form equilibrium models and can
be obscured in live blockchain systems because of network
congestion and delays, dynamic transaction fees, etc.

We simulate block interarrival times to approximate each
DEX’ underlying infrastructure, removing the frictions of smart
contracts and other blockchain-specific limitations but focusing
on core design differences, including the XRPL-AMM-DEX’s
CAM (Fig. 1). We set a 0.3% trading fee, matching four of
the top five Uniswap pools.’ Our two agents are:

a) Exchange users: Perform swap transactions, exchang-
ing one asset for another. To reflect high market volatility and
herd mentality [66], users have an 80% chance to trade ETH
and a 20% chance to abstain. Users are influenced by previous
actions, with a 60% probability of mimicking and 40% of
acting contrary, representing the mix of herd and contrarian
behaviors in these markets [67]. Order sizes range from 0.01
to 2 ETH.

b) Arbitrageurs: Following rational arbitrage theory [68]
with risk-adjusted profit targeting, these agents act as “price
balancers”, exploiting price differences between the AMM
and external markets. They buy ETH or USDC from the
pool when prices diverge, aiming to sell for profit else-
where. Their strategy involves: 1) Identify price difference:
|Priceap v — PricegaternalMarket| > 0. 2) If a discrepancy
exists, determine asset quantity for price alignment using equa-
tions (3) and (4). 3) Compute potential profits by re-selling in
the external market: PTOﬁtspotential = A ssetOut — A:ssetln B
networkFees. 4) Market microstructure research [69], [70]
demonstrates that arbitrageurs need minimum profit margins
to cover transaction costs and inventory risks, particularly in
DEXs, where these costs are amplified by MEV competition
[51], [71]. Therefore, arbitrageurs execute when risk-adjusted
returns exceed a risk-premium threshold, named as “Safe Profit
Margin™: W > SafeProfitMargin

assetln

“https://github.com/dlt-science/xrpl-amm
Shttps://app.uniswap.org/explore/pools

Then, the arbitrage condition can be expressed in Iverson
bracket notation®:

[|Priceanm —PricepaternatMarket| > 0]

— networkFees

|I A;ssetOut
+

assetln

— 1 > SafeProfitMargin] = 1

In addition to the above, arbitrageurs on the XRPL-AMM-
DEX-CAM (XRPL-AMM-DEX with CAM) can bid for the
discounted trading fee based on two distinct strategies:

1) Case A: XRPL-AMM-DEX-CAM-A: This scenario favors
liquidity providers over arbitrageurs, but their interaction is
more complex than a zero-sum game. Arbitrageurs often bid
for and hold slots for entire blocks. The simulation starts
on day three, providing arbitrageurs with historical data to
estimate profits under a 0% trading fee scenario. This approach
aligns historical and simulated data at Sy (1000 USDC/ETH),
mimicking real market conditions where traders may use the
available information (including past) to guide their strategies.
So, the weighted average bid limit, P, is determined using
exponential smoothing to prioritize recent data. Arbitrageurs
cap their bids at P and adjust them based on daily profit trends
until the minimum bid price, M, exceeds P. They calculate
the LPToken value relative to USDC as follows:

SPY -Qa+Qp

LPTokenReiativePrice =
QLPTokens

where A = ETH and B = USDC'. The expected outcomes
from this strategy are (a) decreased arbitrageurs profits and (b)
increased LPs returns.

2) Case B: XRPL-AMM-DEX-CAM-B: This scenario favors
arbitrageurs over liquidity providers, with minimal competition.
An arbitrageur secures the slot at the minimum bid M when
empty (Fig. 1) and controls it for 24 hours, repeating until the
simulation ends. The anticipated outcomes from this structure
are (a) maximal profits for arbitrageurs and (b) minimal returns
for liquidity providers.

3) Number of arbitrageurs: In Case A (§1V-B1), arbitrageurs
bid continuously until M > P, yielding the same outcome re-
gardless of arbitrageur count. In Case B (§IV-B2), daily bidding
produces equivalent results, whether from multiple arbitrageurs
or one renewing daily. Still, we conducted simulations with
varying numbers, consistently obtaining similar results. We
settled on using five arbitrageurs in our final simulations.

C. Set up

All scenarios begin with initial pool reserves of 50,000 ETH
and 49,850,000 USDC, setting the initial ETH price for GBM
pricing at 1,000 USDC to match the external market price
(Sp) and 2,281.57 USDC using real market price data. Table I
summarizes key parameters: network fees, block times, safe
profit margin, and so on, used to compare the XRPL-AMM-
DEX (with and without CAM) and the G-AMM-DEX. We
repeat the simulations on both GBM (multiple volatility levels)
and Binance data.

The Iverson bracket notation denotes that [P] = 1 if the proposition P is
true and O otherwise.



V. RESULTS

Given that the results for arbitrageur profits, LPs returns,
and impermanent loss are nearly identical, we consolidated
XRPL-AMM-DEX-CAM-A and B as XRPL-CAM for clarity
in figures and reports. Similarly, we abbreviate XRPL-AMM-
DEX to XRPL-AMM using both terms interchangeably, but
both referring to the AMM-based DEX in the XRP Ledger.
Results are averages from multiple simulations due to random
transaction processing, the results of which vary slightly
between tests. While specific values may vary, the key insights
lie in the relative performance differences between the AMM-
based DEXs across various market scenarios with simulated
and historical price data.

1) Trading Volume: Trading volumes’ increase with market
volatility for both XRPL-CAM and G-AMM-DEX, with XRPL-
CAM consistently outperforming G-AMM-DEX by an average
of 4% across all volatility regimes. At ¢ = 5%, XRPL-
CAM registered 157,979,186 USDC versus G-AMM-DEX’s
155,723,926 USDC; at ¢ = 12.5%, volumes increased to
191,209,656 versus 182,497,061 USDC; and at ¢ = 20%,
trading activity escalated substantially to 289,189,151 versus
273,181,521 USDC, respectively.

In test-1 and test-2, trading volumes show remarkable
similarity across both AMM-based DEXs using simulated and
historical price data. With equalized network fees and different
block interarrival times (test-1), XRPL-AMM-DEX volume
was 170,746,887 USDC versus G-AMM-DEX’s 170,721,881
USDC, a 0.015% difference. With varied fees and equalized
block interarrival times (test-2), the difference increased to
0.23%: XRPL-AMM-DEX at 170,277,799 USDC and G-AMM-
DEX at 169,890,854 USDC.

2) Price Synchronization: XRPL-CAM consistently outper-
forms G-AMM-DEX in price alignment across all volatility
levels. Comparing 80th percentile price gaps at o = 5%, XRPL-
CAM achieves 1.7% versus G-AMM-DEX’s 1.9% (11.8%
difference); at o = 12.5%, the gap widens to 1.9% versus
2.3% (21% difference); and at o = 20%, this divergence further
amplifies to 2.1% versus 2.7% (28.6% difference).

Using a moving average, XRPL-CAM shows superior
stability, never exceeding 2.4% divergence across all scenarios,
versus G-AMM-DEX’s 4.5%. Fig. 7 illustrates this trend. In
test-1, with equal network fees but different block interarrival
times, XRPL-AMM-DEX outperformed G-AMM-DEX in 90%
of cases. In test-2, this advantage dropped to 60% with equal
block interarrival times but different fees (Fig. 2).

3) Price Impact: Price impact increases with market volatil-
ity for all AMM-based DEXs, with the gap between XRPL-
CAM and G-AMM-DEX widening at higher volatilities (Fig. 5
illustrates these trends). At o = 5%, both mechanisms show
similar average impacts, though G-AMM-DEX exhibits more
outliers. At o = 12.5%, XRPL-CAM maintains a lower, more
consistent mean price impact. This divergence amplifies at

7

7 All analyses throughout the paper include normal users’ trading volume and
fees. Their difference is negligible as identical transactions are simultaneously
placed on both AMM-based DEXGs.

TABLE II: Average arbitrageurs’ profits, transaction costs & transaction frequency for
XRPL-CAM vs. G-AMM-DEX with different volatilities.

Transaction Count

Volatility Profits (USDC) Fees (USDC)
Realized (%) Unrealized
XRPL-CAM-A 97,251
o =5% XRPL-CAM-B 180.303 0.0002 16 (31.4%) 3
G-AMM-DEX 174,686 53 13 (4%) 311
XRPL-CAM-A 235937
> 2
o =12.5% XRPL-CAM-B 823,910 0.001 72 (18:3%) 322
G-AMM-DEX 760,056 230 58 (4.8%) 1,150
XRPL-CAM-A 468,500 o
o =20% XRPL-CAM-B 2,159.411 0.002 159 (154%) 875
G-AMM-DEX 1,985,052 512 128 (4.2%) 2938

TABLE III: Average LPs’ returns under different volatilities for XRPL-CAM vs. G-
AMM-DEX.

Returns (USDC)

Volatility Scenario

CAM Bids Trading Fees Total

XRPL-CAM-A 96,528 (10%)
XRPL-CAM-B 12,233
G-AMM-DEX -

875,883 (90%)
877,947
900,401

972,411
890,180
900,401

o =5%

XRPL-CAM-A 526,500 (38%)
XRPL-CAM-B 10,269
G-AMM-DEX -

870,565 (62%)
871,100
948,282

1,397,065
881,369
948,282

o =12.5%

XRPL-CAM-A 1,980,951 (64%)
XRPL-CAM-B 14,566
G-AMM-DEX -

1,113,244 (36%)
1,104,358
1,264,858

3,094,195
1,118,924
1,264,858

o =20%

o = 20%, where G-AMM-DEX’s mean price impact exceeds
XRPL-CAM by 10.3%, indicating superior price stability in
the latter mechanism under elevated market volatility.

In test-1, XRPL-AMM-DEX showed less price impact than
G-AMM-DEX with equal network fees and varying block
time: 80% of values remained below 3.3% for XRPL-AMM-
DEX, versus 3.55% for G-AMM-DEX - a 7.6% difference.
Test-2, with equal block times and different fees, shows
similar price impact distributions for both AMM-based DEXs.
Fig. 4 confirms this, with overlapping Cumulative Distribution
Function (CDF) curves in test-2.

4) Slippage: XRPL-CAM consistently shows lower slippage
than G-AMM-DEX. Comparing 80th percentile slippage values
at 0 = 5%, XRPL-CAM records 1.36%versus G-AMM-DEX’s
1.67% (22.3% difference); at 0 = 12.5%, values of 1.58%
versus 1.82% (15.2% difference) are observed; and at o = 20%),
the disparity reaches 1.73% versus 2.07% (19.7% difference).

For test-1 and test-2, CDFs (Fig. 3) show that with equal
interarrival block times, slippage is nearly identical on both
AMMs. However, with realistic block times for the XRP Ledger
and Ethereum, XRPL-AMM-DEX exhibits less slippage. In
test-1, 80% of slippages on G-AMM-DEX approach just below
1.8%, while on XRPL-AMM-DEX, they are around 1.65% —
an 8.8% reduction.

5) Impermanent/divergent Loss: Table 1II shows LPs’ re-
turns increase with market volatility, primarily from CAM bids
and trading fees. Despite lower trading fee returns, XRPL-
CAM-A outperforms XRPL-CAM-B and G-AMM-DEX in
high volatility. XRPL-CAM-A achieves 67% higher returns
than G-AMM-DEX, while XRPL-CAM-B exhibits marginally
inferior performance with returns 7.25% below those of G-
AMM-DEX. This differential performance underscores the
protocol-specific sensitivity to volatility regimes and liquidity
dynamics.
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Fig. 10: Divergence loss/gain for XRPL-CAM vs. G-AMM-DEX with different volatilities.

CAM contributions to total returns in XRPL-CAM-A to reach
64% at o = 20%, indicating aggressive arbitrageur bidding
in volatile markets, taking advantage of price fluctuations. At
all volatility levels, LPs in XRPL-CAM-A consistently show
more divergence gain than XRPL-CAM-B while G-AMM-DEX
experienced divergence loss:
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Fig. 11: LPs’ divergence gains for XRPL-AMM-DEX (with and without CAM) vs.
G-AMM-DEX (CDF) using historical price data from Binance

e 0 = 5%: XRPL-CAM-A +1.8%, G-AMM-DEX +1.75%,
XRPL-CAM-B +1.72%

e 0 = 125%: XRPL-CAM-A +1.18%, G-AMM-DEX

+0.7%, XRPL-CAM-B +0.6%

o 0 =20%: XRPL-CAM-A +1.9%, G-AMM-DEX —0.5%,

XRPL-CAM-B +0.2%

Fig. 10 illustrates growing disparities between XRPL-CAM-
A and others as volatility increases. XRPL-CAM-B closely
mirrors G-AMM-DEX, indicating comparable worst-case sce-
narios for LPs.

For test-1 and test-2, LPs on XRPL-AMM-DEX outper-
formed G-AMM-DEX in 7 out of 10 simulations, with a
marginal 0.35% advantage. In test-1, XRPL-AMM-DEX’s LPs
earned average returns of 954,394 USDC with a +1.22%
divergence gain, while G-AMM-DEX yielded 951,561 USDC
returns and a +1.21% divergence gain. Test-2 showed XRPL-
AMM-DEX’s LPs achieving 951,984 USDC returns with a
+1.23% divergence gain, compared to G-AMM-DEX’s 948,364
USDC returns and +1.26% divergence gain. Despite similar
overall results, test-2 revealed a 2.4% higher divergence gain
for LPs on G-AMM-DEX. Fig. 9 depicts divergence gain
distributions for both tests. Test-1 shows minimal difference,
while test-2 reveals a skew to the right for G-AMM-DEX
values compared to XRPL-AMM-DEX, indicating marginally
higher divergence gains.

6) Arbitrageurs’ Profits, Transaction Cost & Transaction
Frequency: In XRPL-CAM-B (best-case scenario for arbi-
trageurs), profits exceed G-AMM-DEX 70% of the time at
o = 5%, and 90% at ¢ = 12.5% and ¢ = 20%. By



Test-1
o N
Test-1
o

Test-1
—~o

Q9 a q
® » w
s © ©
0 0 0
s 1 s 1 <1
< < / <
o (&) (@]
z z z
—— XRPL-AMM —— XRPL-AMM —— XRPL-AMM
§ 0 — G-AMM % 0 — G-AMM % 0 — G-AMM
0 2 4 6 8 10 0.011 0.012 0.013 0.014 0.015 0.016 0.0300 0.0305 0.0310 0.0315 0.0320 0.0325

Price Variation (%)

Fig. 12: Price Sync. with Reference Market for
XRPL-AMM-DEX (with and without CAM) vs. G-
AMM-DEX (CDF) using historical price data from
Binance.

TABLE IV: Test-1 and Test-2 average arbitrageurs’ profits, transaction costs & transaction
frequency for XRPL-AMM-DEX vs. G-AMM-DEX.

Transaction Count

Test Profits (USDC) Fees (USDC)

Realized (%) Unrealized

mes  XRPL-AMM-DEX 384,410 29 29 (10%) 260
s G-AMM-DEX 382,696 28 28 (4%) 634
Testa  XRPL-AMM-DEX 376,272 0.0003 27 (5%) 476
ests G-AMM-DEX 360,581 107.6 27 (6%) 454

TABLE V: Average arbitrageurs’ profits, transaction costs & transaction frequency for
XRPL-CAM vs. G-AMM-DEX with different volatilities.

Transaction Count

Volatility Profits (USDC) Fees (USDC)
Realized (%) Unrealized
XRPL-CAM-A 97.251
o =5% XRPL-CAM-B 180,303 0.0002 16 (31.4%) »
G-AMM-DEX 174,686 53 13 (4%) 311
XRPL-CAM-A 235937
9
o =12.5% XRPL-CAM-B 823,910 0.001 72 (18.3%) 322
G-AMM-DEX 760,056 230 58 (4.8%) 1,150
XRPL-CAM-A 468,500
" 2
o = 20% XRPL-CAM-B 2,159,411 0.002 159 (15.4%) 875
G-AMM-DEX 1,985,052 512 128 (4.2%) 2,938

contrast, XRPL-AMM-DEX-CAM-A (worst-case scenario for
arbitrageurs) never outperforms G-AMM-DEX since most of
the profits they could have made went to liquidity providers.
Table V reveals:

e Profits: XRPL-CAM-B averages 7% higher than G-AMM-
DEX, while XRPL-CAM-A is 208% lower. This gap
narrows with increased volatility, with increased arbitrage
opportunities leading to higher profits.

e Transaction Costs: XRPL-CAM fees are significantly
lower. At ¢ = 12.5%, G-AMM-DEX fees (230 USDC)
are 23 million percent higher than XRPL-CAM (0.001
USDC). This disparity grows with volatility, with XRPL-
CAM experiencing a slight rise in fees and G-AMM-DEX
seeing a more noticeable surge.

e Transaction Count: Both AMMs see increased transactions
(realized and unrealized) with higher volatility. G-AMM-
DEX typically records more unrealized transactions at all
volatility levels, suggesting frequent slippage condition
violations. XRPL-CAM’s realized transaction percentage
decreases with volatility, while G-AMM-DEX consistently
shows a lower realization rate of transactions.

Slippage (%)

Fig. 13: Slippage for XRPL-AMM-DEX (with
and without CAM) vs G-AMM-DEX (CDF) using
historical price data from Binance.

Price Impact (%)

Fig. 14: Price Impact for XRPL-AMM-DEX (with
and without CAM) vs. G-AMM-DEX (CDF) using
historical price data from Binance.

For test-1 and test-2, XRPL-AMM-DEX arbitrageurs showed
60% higher profitability across both scenarios. With equalized
network fees, the profit difference was minimal (0.45%) but
widened to 4.4% with varied fees (Table IV). In test-2, G-
AMM-DEX arbitrageurs paid 35,866,567% more in transaction
fees for the same number of transactions placed on the XRPL-
AMM-DEX. Despite G-AMM-DEX recording 2.3 times more
placed transactions, only 4% were realized versus 10% on
XRPL-AMM-DEX.

7) Findings using Real Market Price Data: We also replicate
Test-1, Test-2, and CAM tests to capture realistic market
conditions using historical Binance price data. This allows
us to validate our findings under empirical price dynamics.
Across divergence gains, price impact, price variation, and
slippage, XRPL-AMM outperforms G-AMM-DEX consistently,
and XRPL-AMM-CAM further narrows price deviations:

a) Divergence gains: (Fig. 11): Divergence gains show
minimal differences between the AMMs, with XRPL-AMM
maintaining a slight edge across all scenarios (40.555 vs
+0.552 in Test-1; +0.552 vs 4-0.550 in Test-2). Adding CAM
maintains this marginal advantage (+0.555 vs 40.552).

b) Price impact: (Fig. 14): The XRPL-AMM and G-
AMM-DEX demonstrate nearly identical price impact in both
tests (3.05% vs 3.06%), and this efficiency persists with CAM
implementation (3.056% vs 3.052%).

c) Price synchronization: (Fig. 12): The XRPL-AMM
achieves better price alignment in both tests (4.22% and 4.54%
deviation) compared to G-AMM-DEX (4.38% and 4.59%),
with the XRPL-AMM-DEX’s CAM feature further reducing
deviation to 4.02%.

d) Slippage: (Fig. 13): XRPL-AMM consistently outper-
forms G-AMM-DEX across all tests (1.35% vs 1.52% in Test-
1; 1.36% vs. 1.51% in Test-2), with its CAM feature further
reducing slippage to 1.21% while G-AMM-DEX remains at
1.51%, representing a 20% improvement.

Overall, these real-data tests confirm the earlier simulation
trends. Using historical Binance data, XRPL-AMM outperforms
G-AMM-DEX in price alignment (4.22% vs 4.38%), slippage
(1.35% vs 1.52%), and divergence gains (4+0.555 vs +0.552),
with similar price impact (3.05% vs 3.06%). The CAM further



improves performance, reducing price synchronization to 4.02%
and slippage by 20%.

VI. DISCUSSION

Our comparison of XRPL-AMM-DEX (without CAM) and
G-AMM-DEX reveals that XRP Ledger ’s faster block times
[72] lead to better price synchronization, higher transaction
realization, reduced slippage, and lower price impact. These
findings align with recent empirical and theoretical studies [23],
[42], highlighting the importance of shorter block confirmation
times for AMM-based DEXs.

Why does blockchain infrastructure matter so much for
AMM-based DEXs, and why should it be a consideration for
their design? Unlike market makers’ active role responding to
trading activity in LOBs [44], AMMSs update prices only when
trades occur against the liquidity pools of their DEX. Intuitively,
a blockchain infrastructure that processes transactions faster
allows AMM-based DEXs to react faster to market changes
with an external market, keeping prices in sync and reducing
slippage. This ripple effect even touches impermanent loss,
given its relationship with price slippage [25]. Our results
validate this intuition.

Even with faster infrastructure, AMM-based DEXs face
another issue: MEV attacks. For instance, Ethereum-based
DEXs are particularly vulnerable because Ethereum’s transpar-
ent mempool and miner-controlled ordering [73], [74] create a
playground for attackers. Miners can cherry-pick transactions
order, sparking a high-stakes race among arbitrageurs and
attackers competing for prime positions in the next block [50],
[51], [75]. By contrast, the XRPL-AMM-DEX leverages the
XRP Ledger’s pseudo-random transaction ordering®, signif-
icantly reducing the risk of front-running attacks [76]—[78].
While this does not make it immune — sandwich attacks, for
example, remain a threat [78] — it is a substantial defensive
boost that could reduce price slippage.

Beyond speed and security, the underlying infrastructure
affects AMM-based DEXs in other crucial ways. Most AMM-
based DEXs run on smart contracts competing for computa-
tional resources. These smart contracts can be resource-hungry,
potentially consuming more gas fees than native transactions,
depending on their complexity and data payloads. This re-
source competition could directly impact transaction costs and
execution speed. Moreover, the blockchain’s fee structure is
pivotal in market dynamics. XRPL-AMM-DEX’s lower network
fees boost arbitrageur profits and trading volume (§V). This
increased activity helps keep prices aligned with external
markets. In contrast, G-AMM-DEX’s higher fees lead to
broader price impact spreads, indicating more significant trade-
induced market disturbances. These fee differences highlight
how infrastructure choices can significantly shape an AMM-
based DEX’s market efficiency and liquidity.

The XRPL-AMM-DEX’s CAM further enhances these ad-
vantages. For LPs, XRPL-CAM yields higher returns and lower
divergence loss in their best-case scenarios, while arbitrageurs

8https://github.com/XRPLF/XRPL-Standards/discussions/34

see more profits in their best-case scenario. In typical conditions,
LPs benefit from higher earnings and reduced divergence loss,
especially in volatile markets. This aligns with theoretical
proposals for auction mechanisms in AMM-based DEXs [38]-
[40]. Interestingly, as volatility increases, the proportion of
transactions executed by auction slot holders decreases from
86% at 0 = 5% to 51% at ¢ = 20%. This trend likely
results from increased competition and slippage constraints.
A fascinating insight is that when we level the playing field
by equalizing transaction fees and block times, the XRPL-
AMM-DEX performs remarkably similar to G-AMM-DEX.
This highlights how crucial the underlying infrastructure is in
shaping AMM-based DEXs dynamics.

VII. LIMITATIONS AND FUTURE WORK

Our agent-based simulations use simplifying assumptions
such as fixed Ethereum fees, one GBM-generated price path,
constant pool sizes, single users per auction slot, and no dy-
namic voting or pathfinding [29]. Despite these simplifications,
our results align with recent research on slippage, impermanent
loss, and auction mechanisms [38]-[40], [42], highlighting how
faster block times, lower fees, and built-in auctions improve
market efficiency in AMM-based DEXs. Additionally, we
used block interarrival times as a proxy for infrastructure
efficiency to level the playing field in benchmarking the G-
AMM-DEX, akin to Uniswap V2 that runs in smart contracts,
versus the XRPL-AMM-DEX implemented at the protocol-
level. Future studies could integrate more intricate factors, such
as dynamic fees, diverse pool sizes, and multiple concurrent
auction participants. It is important to note that the XRPL-
AMM-DEX is relatively new, launching in early 2024 [79]
with $80.37 million TVL [80], compared to Ethereum’s $50.06
billion [81] at the time of this writing. As it grows, it may
face unforeseen challenges [82], and real-world adoption could
impact its price synchronization and liquidity differently.

VIII. CONCLUSION

Our findings, using simulated and real market price data,
show that the XRPL-AMM-DEX leverages two key elements to
reduce impermanent loss and price slippage: the XRP Ledger’s
shorter block times for rapid price synchronization, and its
CAM feature to incentivize beneficial arbitrage during volatility.
These elements benefit both arbitrageurs and LPs, enhancing
overall market efficiency. This inaugural study ventures into the
unexplored domain of AMM-based DEXs in the XRP Ledger
and provides, to the best of our knowledge, the first agent-
based simulation of an auction mechanism for AMM-based
DEXs, experimentally validating implications from theoretical
proposals [38]-[40]. However, as the XRPL-AMM-DEX is
still in its early stages, at the time of this writing, its long-
term success will depend on adoption rates, real-world market
conditions, and its adaptability to the evolving DeFi landscape.
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