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The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality
control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic
Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential
for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized
two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation
in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile
effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L inter-
actors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins,
including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ,
CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established inter-
actors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin
complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK
but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that
NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1
accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of
ATXNZ2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the
maintenance of differentiated neurons.

1. Introduction 2019; Mandrioli et al., 2020). When cellular growth periods are inter-

rupted by significant damage, the RNP granules coalesce into cytosolic

The quality control of ribonucleoprotein (RNP) granules during long-
distance transport in neurites is crucial for the stimulus-dependent
mRNA translation in synapses (Linder et al., 2015; Sahoo et al., 2018;
Moon et al., 2020; Elaswad et al., 2022; Dhaliwal et al., 2022). Im-
pairments in this pathway cause neurodegeneration preferentially of
motor neurons and cerebellar neurons (Lefebvre et al., 1995; Neumann
et al., 2006; Kwiatkowski Jr et al., 2009; Elden et al., 2010; Guerrero
et al., 2016; Singh et al., 2017; Becker et al., 2017; Klockgether et al.,

stress granules (SG) where surveillance mechanisms decide to repair
individual RNAs or degrade them in P-bodies (Youn et al., 2019; Corbet
and Parker, 2019; Riggs et al., 2020). The trafficking and surveillance
machinery controls association with or dissociation from mRNAs at
adenine-enriched sequences, known as poly(A) stretches (Passmore and
Coller, 2022), or at uracil-enriched sequences, known as AU-rich ele-
ments (ARE) (Chen and Shyu, 1995). It also controls the RNA winding
into double-strand (ds)-hairpins or their unwinding via helicases
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(Hardwick and Luisi, 2013), assesses the RNA posttranscriptional
modifications (Roundtree et al., 2017), and liquid-liquid phase separa-
tion (Krainer et al., 2021).

As a prime member of this SG surveillance machinery (Nonhoff et al.,
2007; Swisher and Parker, 2010; Kaehler et al., 2012; Seidel et al.,
2017a), Ataxin-2 contains a Like-Sm (LSm) domain together with an
LSm associated domain (LSm-AD) sequence to interact with helicases
such as DDX6 (Nonhoff et al., 2007; Kaehler et al., 2012; Lee et al.,
2017a; Inagaki et al., 2021; Wang et al., 2024) and to bind single-
stranded (ss) ARE (Yokoshi et al., 2014; Singh et al., 2021). Further-
more, it contains a PAM2 motif to associate with ss-poly(A) stretches
indirectly via poly(A)-binding-proteins (Albrecht and Lengauer, 2004;
Ralser et al., 2005a; Satterfield and Pallanck, 2006; Kozlov et al., 2010;
Damrath et al., 2012; Jimenez-Lopez and Guzman, 2014). These motifs
enable not only surveillance of mRNAs, but also effects on rRNA,
microRNA and long-noncoding RNA effects have been documented
(McCann et al., 2011; Sudhakaran et al., 2014; Salvi et al., 2014; Li et al.,
2021; Paul et al., 2024). This characteristic combination of sequence
motifs is first detected in eukaryotic organisms, such as in the yeast
ortholog PBP1 (Mangus et al., 1998; Mangus et al., 2004; Kimura et al.,
2013), and exists as a single copy in nematodes such as Caenorhabditis
elegans ATX-2 (Kiehl et al., 2000; Ciosk et al., 2004; Maine et al., 2004;
Bar et al., 2016; Stubenvoll et al., 2016a), or flies such as Drosophila
melanogaster dATX2 (Satterfield et al., 2002; Al-Ramahi et al., 2007;
Vianna et al., 2016). In contrast, land plants contain two gene copies
named CID3 versus CID4 (Jimenez-Lopez and Guzman, 2014; Bravo
et al., 2005; Lopez-Juarez et al., 2021), while mammals also contain two
gene copies known as the less abundant ATXN2 versus the more abun-
dant ATXN2L, with complementary roles for translation oscillations and
SG (Ayache et al., 2015; Zhuang et al., 2023). Under unstressed growth
conditions, Ataxin-2 isoforms are localized with the translation appa-
ratus at the endoplasmic reticulum (Satterfield and Pallanck, 2006;
Lastres-Becker et al., 2008a; van de Loo et al., 2009; Fittschen et al.,
2015; Lastres-Becker et al., 2016; Del Castillo et al., 2019; Inagaki et al.,
2020) and with microtubules (Gnazzo et al., 2016; Stubenvoll et al.,
2016b; Del Castillo et al., 2022; Boeynaems et al., 2023).

ATXN2 was first described, because pathogenic expansions of an N-
terminal polyglutamine (polyQ) stretch from the normal length Q22/
Q23 beyond a size of Q33 cause the autosomal dominantly inherited,
neurodegenerative disorder Spinocerebellar Ataxia type 2 (SCA2)
(Trottier et al., 1995; Pulst et al., 1996; Imbert et al., 1996; Sanpei et al.,
1996), where the glutamatergic corticospinal motor neurons and the
glutamatergic cerebellar granular neuron projections to Purkinje cells
are preferentially affected (Estrada et al., 1999; Lastres-Becker et al.,
2008b; Rub et al., 2013; Velazquez-Perez et al., 2016; Seidel et al.,
2017b; Velazquez-Perez et al., 2017a; Velazquez-Perez et al., 2017b;
Velazquez-Perez et al., 2018; Ruiz-Gonzalez et al., 2020; Glass et al.,
2022). Much more infrequently, a Parkinson’s disease phenotype is
triggered by the same monogenic polyQ expansions due to early loss of
dopaminergic midbrain neurons (Lu et al., 2002; Charles et al., 2007;
Schols et al., 2015; Nkiliza et al., 2016; Kim et al., 2017; Miyaue et al.,
2017; Casse et al., 2023). ATXN2 polyQ expansions of intermediate size
between Q27 and Q33 act as polygenic modifiers that exacerbate the
progression of the adult motor neuron diseases Amyotrophic Lateral
Sclerosis (ALS) and Fronto-Temporal Lobar Dementia (FTLD) (Elden
et al., 2010; Lee et al., 2011; Yu et al., 2011; Gispert et al., 2012; Van
Langenhove et al., 2012; Baumer et al., 2014; van Blitterswijk et al.,
2014; Li et al., 2016; Borrego-Hernandez et al., 2024), and of Parkinson
syndrome (Parkinson plus) (Ross et al., 2011; Sen et al.,, 2016).
Conversely, the knockout (KO) or knockdown (KD) of ATXN2 was
shown to strongly mitigate the progression of such diseases (Becker
et al., 2017; Scoles et al., 2017; Auburger et al., 2017), and this makes
ATXN2 a prime pharmacological target for the prevention of neurode-
generative processes that are triggered by RNA toxicity (van den Heuvel
et al., 2014; Scoles and Pulst, 2018; Amado and Davidson, 2021; Scoles
et al., 2022).
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Although ATXN2L is the more abundant and more important paralog
in cellular life, and although it may play a compensatory role for ATXN2
mutations (Felicio et al., 2023), only a few studies have focused on it so
far. Mice with homozygous deletions of Atxn2l exons 5-8, which results
in the production of an N-terminal fragment but absence of the LSm,
LSm-AD and PAM2 domains until the C-terminus, show mid-embryonic
lethality with brain cortex lamination defects, while the heterozygous
mutants appeared normal (Key et al., 2020). In comparison, the less
abundant ATXN2 paralog would appear barely relevant, since mice with
homozygous deletions of Atxn2 exonl, which results in the production
of a minimal N-terminal fragment but absence of the LSm, LSm-AD and
PAM2 domains until the C-terminus, show only age-associated obesity,
hepatosteatosis, insulin resistance and dyslipidemia, with reduced
fertility and locomotor hyperactivity (Lastres-Becker et al., 2008a;
Fittschen et al., 2015; Lastres-Becker et al., 2016; Kiehl et al., 2006;
Meierhofer et al., 2016). ATXN2L and ATXN2 expression is conversely
modulated by growth factor signaling versus stress conditions (Lastres-
Becker et al., 2016; Key et al., 2020; Lin et al., 2019). Unlike ATXN2, the
human promoter for ATXN2L expression is shown to change confor-
mation upon exposition to G-quadruplex ligands (Abdelhamid et al.,
2019). Again unlike ATXN2, the human transcript for ATXN2L contains
a SINE-VNTR-Alu element, which could modulate exon extension or
alternative transcript regulation by stress events (Kwon et al., 2013). An
intron in the ATXN2L pre-mRNA gives rise to a lariat-derived circRNA
(Robic et al., 2020; Robic et al., 2022). All these observations suggest
that human cells have developed multiple mechanisms to fine-tune the
expression of ATXN2L in dependence on diverse feedbacks, as a highly
relevant molecule. While both, ATXN2L and ATXN2, are found among
the >300 RNA-binding proteins (RBPs) in the stress granule proteome
(Ayache et al., 2015; Markmiller et al., 2018; Marmor-Kollet et al., 2020;
Freibaum et al., 2021), it is unclear so far, with which factors they have
close interaction and share functional cooperation. In the human cer-
vical cancer cell line HeLa, preferential interactions within SG were
reported between ATXN2L, ATXN2, DDX1, FAM98A, and NUFIP2
(Ozeki et al., 2019). Indeed, the relocalization of ATXN2L to SG depends
on PRMT1-mediated arginine methylation (Kaehler et al., 2015), and
FAM98A and DDX1 are activators of this post-translational modification
(Akter et al., 2017), so FAM98A and DDX1 seem to be upstream factors
that determine the trafficking changes of specific ribonucleoproteins
(RNPs) during the switch from growth to stress periods. The role of the
polysome-associated factor and DDX6 interactor NUFIP2 (Bardoni et al.,
2003; Bish et al., 2015) in this SG subcomplex remains unclear. Another
preferential interaction for ATXN2L was claimed with the RNA-binding,
cold shock domain-containing protein YBX1 (Tang et al., 2024; Mor-
dovkina et al., 2020). Variants in the human ATXN2L gene have been
reported in very few live patients so far (Alzahrani et al., 2021; Kaplanis
et al., 2020), who showed developmental delay and macrocephaly.

Here, we performed (i) coimmunoprecipitation and mass spectrom-
etry analyses in WT and ATXN2L-null mouse embryonic fibroblasts
(MEF), (ii) global proteome profiling via label-free mass spectrometry in
wildtype (WT) and ATXN2L-null MEF, (iii) the analysis of ATXN2L
interactor proteins in 14-month-old spinal cords from mice with pro-
gressive ATXN2 aggregation due to the Atxn2-CAG100-KnockIn (KIN)
mutation as established SCA2 model (Damrath et al., 2012; Halbach
et al., 2015; Halbach et al., 2017; Sen et al., 2019a; Sen et al., 2019b;
Arsovic et al., 2020; Canet-Pons et al., 2021; Bux et al., 2023). With this
strategy, we aimed to identify protein interactors that depend on
ATXN2L in their abundance, and undergo changes during the motor
neurodegeneration process in SCA2 models. Our work elucidates the
pathways that are important for the survival of differentiated neurons
under stress.
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2. Materials and methods

2.1. MEF culture, treatment, coimmunoprecipitation, and proteome
profiling

The generation and culture of 5 WT and 5 ATXN2L-null MEF lines
was done as previously reported (Key et al., 2020). For that, at gesta-
tional day 14 of heterozygous breeder mice, the embryos were taken out
and the skin of the embryos was dissected, homogenized, and trypsi-
nized for 10 min at 37 °C. The cells were cultured in DMEM, containing
4.5 g/L D-glucose, 1% L-glutamine, 1% Penicillin/Streptomycin and
10% FCS, and DNA was extracted for genotyping. Their exposure to
sodium arsenite (NaARS) stress also followed published protocols (Sen
et al., 2019b). In these experiments, the cells were plated in 175 cm?
flasks and allowed to grow until they reached about 90% confluence
before being treated with 0.5 mM NaARS (Sigma Aldrich, St. Louis, MO,
USA, #8S7400) for 45 minutes. Then, MEFs were ruptured in a lysis
buffer - 20 mM Tris/HCI pH 8.0, 137 mM NaCl, 2 mM EDTA, 1% NP40,
1% glycerol with Protease-Inhibitor Cocktail cOmplete (Roche Di-
agnostics, Mannheim, Germany) - via 30 min head-to-head rotation at 4
°C. Nuclear debris was removed via centrifugation at full speed at 4 °C
for 20 min. The protein content was determined via BCA (Life Tech-
nologies, Karlsruhe, Germany). A total of 1000 pg of protein lysate was
incubated with 4 pg of pull antibody (anti-ATXN2L from Invitrogen,
Carlsbad, CA, USA #PA5-59601, or normal rabbit IgG from Cell
Signaling Technology, Danvers, MA, USA #2729) and rotated for 2 h at
room temperature (RT). In the meantime, 1.5 mg of Dynabeads (Thermo
Fisher, #10004D) was washed 3 times with PBS/T and added to the
lysate/antibody solution. The mix was rotated head-to-head for 60 min
at RT, to be either analyzed by immunoblot as described in the following
sentences, or by nano LC-MS/MS as described in the subsequent para-
graph. For immunoblots, 5 washes with PBS were performed, then the
tubes were fixed on a magnetic stand and elution was carried out with 40
pL of 50 mM glycine, pH 2.8. The eluate was mixed with a loading
buffer, boiled for 5 min at 90 °C, and loaded for SDS electrophoresis. The
antibodies used for co-IP detection were ATXN2L (Proteintech, Rose-
mont, IL, USA, #24822-1-AP) or PABP (Abcam, Cambridge, UK,
#ab21060).

2.2. “On beads” digest for Co-IP samples

Four MEF coimmunoprecipitation samples on magnetic beads
(Thermo Scientific Pierce, Waltham, MA, MS-Compatible Magnetic IP
Kits, catalogue no: 90409) were washed 3 times in 100 mM ammonium
bicarbonate buffer. This was followed by tryptic digestion including
reduction and alkylation of cysteines. Reduction was performed by
adding tris(2-carboxyethyl)phosphine to a final concentration of 5.5 mM
at 37 °C on a rocking platform (600 rpm) for 30 min in a total volume of
150 pL. For alkylation, chloroacetamide was added to a final concen-
tration of 24 mM at room temperature on a rocking platform (600 rpm)
for 30 min. Proteins were then digested with 100 ng trypsin (Roche,
Basel, Switzerland) per sample at pH 8, shaken at 800 rpm at 37 °C for
18 h. The samples were acidified by adding 3.75 pL of 100% formic acid
(2% final concentration), centrifuged briefly and placed on the magnetic
rack. The supernatants containing the digested peptides were trans-
ferred to a new low-protein binding tube. Peptide desalting was per-
formed on self-packed C18 columns in a tip. Eluates were lyophilized
and reconstituted in 38 pL of 5% acetonitrile and 2% formic acid in
water, briefly vortexed and sonicated in a water bath for 30 sec before
injecting 20 pL onto a nano-LC-MS/MS.

2.3. Global proteomics
10 MEF samples (5 Atxn2] KO and 5 WT) were lysed under dena-

turing conditions in 300 pl of a buffer containing 3 M guanidinium
chloride (GdmClD), 10 mM tris(2-carboxyethyl)phosphine, 40 mM
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chloroacetamide, and 100 mM Tris-HCI pH 8.5. Lysates were denatured
at 95°C for 10 min shaking at 1000 rpm in a thermal shaker and soni-
cated in a water bath for 10 min. The protein concentration of each
sample was measured with a BCA protein assay kit (23252, Thermo
Scientific, USA). 30 pg of each sample was diluted with a dilution buffer
containing 10% acetonitrile and 25 mM Tris-HCl, pH 8.0, to reacha 1 M
GdmCl concentration. Then, proteins were digested with LysC (Roche,
Basel, Switzerland; enzyme to protein ratio 1:50, MS-grade) shaking at
700 rpm at 37°C for 2 hours. The digestion mixture was diluted again
with the same dilution buffer to reach 0.5 M GdmCl, followed by tryptic
digestion (Roche, enzyme to protein ratio 1:50, MS-grade) and incuba-
tion at 37°C overnight in a thermal shaker at 700 rpm. Peptide desalting
was performed according to the manufacturer’s instructions (Pierce C18
Tips, Thermo Scientific, Waltham, MA). Desalted peptides were recon-
stituted in 0.1% formic acid in water and further separated into four
fractions by strong cation exchange chromatography (SCX, 3M Purifi-
cation, Meriden, CT). Eluates were first dried in a SpeedVac, then dis-
solved in 5% acetonitrile and 2% formic acid in water, briefly vortexed,
and sonicated in a water bath for 30 seconds prior injection to nano-LC-
MS/MS.

2.4. LC-MS/MS instrument settings for shotgun proteome profiling and
data analysis

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)
was performed using nanoflow reversed-phase liquid chromatography
(Dionex Ultimate 3000, Thermo Scientific) coupled online to a Q-
Exactive HF Orbitrap mass spectrometer (Thermo Scientific), as previ-
ously reported (Gielisch and Meierhofer, 2015). Briefly, LC separation
was performed using a PicoFrit analytical column (75 pm ID x 50 cm
long, 15 pm tip ID; New Objectives, Woburn, MA) packed in-house with
3 pm C18 resin (Reprosil-AQ Pur, Dr Maisch, Ammerbuch, Germany).
Peptides were eluted using a gradient of 3.8 to 38% solvent B in solvent
A over 120 min at a flow rate of 266 nL per minute. Solvent A was 0.1%
formic acid and solvent B was 79.9% acetonitrile, 20% H50 and 0.1%
formic acid. The nanoelectrospray was generated by applying 3.5 kV. A
cycle of one full Fourier transform scan mass spectrum (300-1750 m/z,
resolution of 60,000 at m/z 200, automatic gain control (AGC) target 1
x 106) was followed by 12 data-dependent MS/MS scans (resolution of
30,000, AGC target 5 x 105) with a normalized collision energy of 25
eV. A dynamic exclusion window of 30 sec was used to avoid multiple
sequencing of the same peptides.

Raw MS data were processed using MaxQuant software (v2.2.0.0)
and searched against the Mus musculus proteome database UniProtKB
UP000000589 with 55,260 protein entries, released in June 2023.
MaxQuant database search parameters were a false discovery rate (FDR)
of 0.01 for proteins and peptides, a minimum peptide length of seven
amino acids, a first search mass tolerance for peptides of 20 ppm, and a
main search tolerance of 4.5 ppm. A maximum of two missed cleavages
was allowed for tryptic digestion. Cysteine carbamidomethylation was
set as a fixed modification, while N-terminal acetylation and methionine
oxidation were set as variable modifications. The MaxQuant processed
output files can be found in Supplementary Table 1, showing peptide
and protein identification, accession numbers, % sequence coverage of
the protein and q values. The mass spectrometry data have been
deposited at the ProteomeXchange Consortium (http://proteomecent
ral.proteomexchange.org) via the PRIDE partner repository (Martens
et al., 2005) with the data set identifier PXD061048 for MEF proteome
profiles, and PXD061161 for MEF Co-IPs.

2.5. Fluorescent immunocytochemistry

The microscopic detection of ATXN2L or ATXN2 compared with
NUFIP2 in MEF cultures, without versus with NaARS-mediated oxida-
tive stress to validate their co-localization in stress granules, was per-
formed as previously described (Sen et al., 2019b). In brief, 5 x 10% cells
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from WT and ATXN2L-null (KO) MEF cultures were seeded on 12 mm
cover slips and cultured over night. The cells were washed and stressed
with 0.5 mM NaARS, supplemented in the DMEM growth medium for
45 min at 37 °C. Control cells were washed and supplemented with only
DMEM growth medium for 45 min. Cells were washed once before fix-
ation with 4% paraformaldehyde/PBS at room temperature (RT) for 20
min, and then permeabilized with 0.1% Triton-X-100/PBS for 20 min at
RT. Blocking was conducted with a 3% BSA/PBS solution for 1 h at RT.
The primary antibody incubation was performed in 3% BSA/PBS for 1 h
at RT, using the following antibodies: ATXN2L (Proteintech, #24822-1-
AP) with NUFIP2 (Proteintech, #67195-1-Ig), ATXN2 (BD Transduction,
#611378) with NUFIP2 (Proteintech, 17752-1-AP). The secondary
antibody was performed in 3% BSA/PBS for 1 h at RT in the dark. The
coverslips were mounted on glass slides with fluorescent mounting
medium (Thermo Fisher) and dried overnight. Cell imaging was per-
formed using Zeiss Axiovert 200 M inverted microscope or confocal
microscope Keyence, BZ-X series, and ImageJ software was used to
merge images. Triple immunofluorescence quantification was done
using ImageJ (v2.14.0/1.54p). A direct line through the center of the
nucleus was straightened with 20 pixel width. Plot profiles from the
entire area were normalized to average intensity for each channel
separately. Graphs were generated with GraphPad Prism 10.

2.6. Breeding, aging, genotyping, and dissection of Atxn2-CAG100-
KnockIn mice

Spinal cord tissues from 14-month-old mice were obtained as pre-
viously described (Sen et al., 2019b; Canet-Pons et al., 2021) and stored
at -80 °C until analysis. The study was ethically assessed by the
Regierungspraesidium Darmstadt, with approval number V54-19¢20/
15-FK/1083. In detail, animals were housed at the Central Animal Fa-
cility (ZFE) of the Goethe University Medical School, Frankfurt am Main.
They were kept in individually ventilated cages ata 12 h-light/12 h-dark
cycle under routine health monitoring and fed ad libitum. During aging,
mice were monitored regularly for health issues, with food and liquid
being supplied at the cage bottom to ensure sufficient nutrition despite
locomotor restrictions. Mice were killed by decapitation or cervical
dislocation and the spinal chords were dissected. To confirm correct
genotype, DNA was isolated from ear punches and the genotyping PCR
was performed. TaKaRa LA Taq-Polymerase (Takara Bio Inc., Japan)
was used to amplify the neomycin cassette excised locus with the primer
pair NOW1-K2 5-TGAGTTGACTCCACAGGGAGGTGAGC-3' and NOW1-
H2 5-CCATCTCGCCAGCCCGTAAGATTC-3' flanking this site. The con-
ditions were: initial denaturation at 94 °C for 3/, followed by 30 cycles of
denaturation at 94 °C for 15", annealing at 68 °C for 4/, elongation at
68 °C for 4, and a final elongation step at 68 °C for 9'. The wild-type
(WT) allele is predicted to yield an amplification product of 793 bp,
while the CAG100 allele yields 948 bp.

2.7. Spinal cord protein extraction and quantitative immunoblotting

Mouse cervicothoracic spinal cord tissues from a total of 10 mice (5
mutant and 5 WT) were homogenized with a motor pestle in 5-10x
weight/volume amount of RIPA buffer consisting of 50 mM Tris-HCl
(pH 8.0), 150 mM NaCl, 2 mM EDTA, 1% Igepal CA-630 (Sigma
Aldrich, St. Louis, MO), 0.5% sodium deoxycholate, 0.1% SDS, cOm-
plete™ Protease Inhibitor Cocktail (Roche), and Halt™ Phosphatase
Inhibitor Cocktail (Thermo Fisher Scientific). Similarly, MEF and human
skin fibroblast pellets were homogenized in RIPA buffer by pipetting.
The resulting protein suspensions were sonicated, and protein concen-
tration was determined in a Tecan Spark plate reader (Tecan Group Ltd,
Maénnedorf, Switzerland) using a Pierce™ BCA protein assay kit
(Thermo Fisher Scientific). 15 to 25 pg of total proteins were mixed with
6x loading buffer consisting of 250 mM Tris-HCI pH7.4, 20% glycerol,
4% SDS, 10% 2-mercaptoethanol, and 0.005% bromophenol blue,
incubated at 90 °C for 5 min, separated on 8-15% polyacrylamide gels at

Neurobiology of Disease 209 (2025) 106903

120 Volts, and transferred to nitrocellulose membranes (0.2 pm) (Bio-
Rad Laboratories, Hercules, CA). The nitrocellulose membranes were
blocked in 5% BSA/TBS-T, and incubated overnight at 4 °C with primary
antibodies. Afterwards, the nitrocellulose membranes were incubated
for 1 h at room temperature, with fluorescently labeled secondary
IRDye® 800CW goat anti-mouse (LI-COR 926-32210, 1:10,000),
IRDye® 800CW goat anti-rabbit (LI-COR 926-32211, 1:10,000), IRDye®
680RD goat anti-mouse (LI-COR 926-68070, 1:10,000) or IRDye®
680RD goat anti-rabbit (LI-COR 926-68071, 1:10,000). Membranes
were scanned using an Odyssey® Classic Imager. Image visualization
and quantification of signal intensities were performed using Image
StudioTM software (version 5.2) (LI-COR Biosciences, Lincoln, NE). The
following primary antibodies were used: ATXN2L (Proteintech, Rose-
mont, IL, USA, #24822-1-AP), ATXN2 (Proteintech, #21776-1-AP),
NUFIP2 (Proteintech, #17752-1-AP), NUFIP1 (Proteintech, #12515-1-
AP), SYNE2 (Invitrogen, #PA5-78438) and DCLK1 (Cell Signaling
Technology, #62257). GAPDH (Calbiochem, San Diego, CA, USA,
#CB1001, 1:10000) served as loading controls. Precision Plus Protein™
All Blue Prestained Protein Standards (Bio-Rad, Hercules, CA, USA,
#1610373) was used as size marker.

2.8. Reverse transcriptase quantitative real-time polymerase chain
reaction (RT-qPCR)

Total RNA isolation from aged spinal cord tissue and MEF pellets was
performed with TRIzol Reagent (Sigma Aldrich) according to manu-
facturer’s instructions. Total RNA yield and purity were quantified using
a Tecan Spark plate reader at 230, 260, and 280 nm, in a NanoQuant
plate. cDNA synthesis was performed from 1 pg of total RNA template
using the SuperScript IV VILO kit (Invitrogen) according to the manu-
facturer’s instructions. Gene expression profiles were assessed by RT-
gqPCR using a StepOnePlusTM (96 well) Real-Time PCR System
(Applied Biosystems, Foster City, CA, USA). RT-qPCRs were run in
technical duplicates on cDNA from 25 ng total RNA, with 1 pl TagMan®
Assay, 10 pl FastStart Universal Probe Master 2x (Rox) Mix (Roche) and
ddH20 up to 20 pl of total volume. The PCR cycling conditions were 50
°C for 2 min, 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 min
and 60 °C for 1 min. The gene expression TagMan® assays (Thermo
Fisher Scientific, Waltham, Massachusetts, USA) used for this study
were: Atxn2 (MmO01199894 m1), Atxn2l (MmO00805548 m1), Cuxl
(MmO01195598_m1), Dclk1 (MmO01545304_m1), Nufip1
(Mm00479126_m1), Nufip2 (MmO01077988_m1), Synel
(MmO04238399_m1), and Syne2 (Mm00621101_m1). The data were
analyzed via the 2722¢ method (Livak and Schmittgen, 2001), using
Thp (Mm00446973_m1) as housekeeping transcript.

2.9. Statistics and graphical presentation

Unpaired Student t-tests with Welch’s correction were used to
establish comparisons for continuous variables between homozygous
Atxn2-CAG100-KIN and WT animals. Bar charts depicting the mean and
standard deviation (S.D.) values were used for data visualization.
GraphPad (Version 10.4.1, for Windows, GraphPad Prism, Boston, MA)
software was used for all statistical analyses and Volcano plot genera-
tion. Significance was assumed at p<0.05 and highlighted with aster-
isks: *p<0.05, **p<0.01, ***p<0.001.

3. Results

3.1. Coimmunoprecipitation of ATXN2L interactors in WT versus
ATXN2L-null MEFs shows novel interactions, stronger than the known
LSM12, ATXN2, PABPC1 and G3BP2 associations

To identify the strongest ATXN2L interactors inside and outside RNA
granules, we used previously described MEF derived from mice with
constitutive deletion of Atxn2l exons 5-8 (Key et al., 2020). Co-IP pulling
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was done with a polyclonal antibody against human ATXN2L residues
456-547 (Invitrogen, PA5-59601) or with unspecific immunoglobulin-G
as negative control (IgG control, Cell Signaling Technology, #2729S).
Comparisons were performed of unstressed WT MEF versus NaARS-
stressed WT MEF, and of WT versus homozygous ATXN2L-null MEF.
Preliminary immunoblot analysis of these samples (1000 pg each) with
antibodies against human ATXN2L residues 712-Cterm (Proteintech,
24822-1-AP) demonstrated the expected presence of ATXN2L with its
known interactor PABPC1 (Figure 1).

After identifying and quantifying the polypeptide components of
these coimmunoprecipitates via LC-MS/MS and MaxQuant software
(Table S1), 29 proteins were found associated with ATXN2L in un-
stressed WT, but neither in IgG ctrl nor ATXN2L-null samples (Table 1),
as the most credible candidates. In comparison with the known ATXN2L
cytosolic interactors and SG components ATXN2, PABPC1 and G3BP2,
24 proteins had higher abundances that approached the high concen-
tration of ATXN2L (Table 1) and were therefore more likely candidates
for equimolar binding. Prominently, the levels of label-free quantifica-
tion (LFQ) as approximate reflection of protein abundance identified
RNA-binding proteins (RBP) PABPN1, NUFIP2, MCRIP2, RBMSI,
LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1,
HNRNPK and HNRNPDL, to show association with ATXN2L at approx-
imately equimolar ratios, with more or similar strength relative to
known interactors such as LSM12, ATXN2, PABPC1, G3BP2, being
completely absent from the KO co-IP. The only non-RNP with this
pattern were the actin complex components SYNE2, LMOD1, ACTA2,
FYB and GOLGAS3, the nuclear histone HIST1H1C, the pore-forming
immunity factor MPEG1, and the peroxidase PRDX1. Clearly, there is
an enrichment of RBP and actin cytoskeleton factors, and this is in
excellent agreement with published Drosophila melanogaster data
implicating dATX2 in polysomal translation and in actin filaments
(Satterfield and Pallanck, 2006; Satterfield et al., 2002). In the discus-
sion below, the detailed comparison of ATXN2L interactor candidates
with relevant literature confirmed the credibility and relevance of the
mass spectrometry data. Thus, these novel observations will deepen our
understanding of ATXN2L functions at the molecular level, and further
validation experiments were done to define which of these proteins
depend on ATXN2L regarding their stability.

MEF exposure to oxidative stress by administration of NaARS trig-
gered strong increases of the protein chaperones HSPB8 / HSPA9 and

IP = ATXN2L ' ——
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Figure 1. Immunoblot analysis of ATXN2L co-IP samples (n=1). Co-IP samples
were pulled with an antibody against ATXN2L or with unspecific
immunoglobulin-G as negative control (IgG). Comparisons were performed of
unstressed WT MEF versus NaARS-stressed WT MEF, and of WT versus homo-
zygous ATXN2L-null MEF. Immunoblot analysis of these samples (1000 pg
each) with antibodies against ATXN2L demonstrated the expected presence of
ATXN2L with its known interactor PABPCI.
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the RNA chaperone HNRNPK (>2.5-fold) in the ATXN2L co-IP, in par-
allel to a strong decrease of SYNE2 amounts (<0.25-fold). These ob-
servations may simply reflect the reduction of RNP granules that are
associated with the cytoskeletal trafficking machinery, with the con-
current induction of refolding efforts in stress granules under conditions
of liquid-liquid phase separation, after cell damage.

Strong colocalization of ATXN2L and ATXN2 with NUFIP2 in stress
granules induced by NaARS administration in MEF cultures was
confirmed in triple immunofluorescence microscopy (Fig. S1 and S2).
Thus, both biochemical and morphological observations are compatible
with the notion that ATXN2L and NUFIP2 might cooperate functionally.
Signal concentration around the nuclear envelope (sometimes at oppo-
site nuclear poles where microtubule organizing centers localize and
SYNE2 assembles (Zhang et al., 2009; Falk et al., 2018), see fluorescent
intensity quantification in Fig. S3), lower signal intensity in nuclear
substructures, and a diffuse or sometimes bundled pattern throughout
the cytoplasm, with occasionally enhanced immunoreactivity at focal
adhesions, was found for both ATXN2L and ATXN2 (direct comparison
also in Fig. S4).

3.2. Global proteome profiling of MEF reveals NUFIP2 and SYNE2
depletion as consequence of ATXN2L absence

To document ATXN2L-null triggered downstream effects on steady
state protein levels across the global proteome, we used the MEF cells
again (Key et al., 2020). This unbiased survey of 5 ATXN2L-null versus 5
WT MEF lines by label free mass spectrometry achieved detection of
4386 proteins, including 280 factors that showed upregulation with
nominal significance versus 292 factors with downregulation (Table S2).
The most credible subset of dysregulated proteins with actual signifi-
cance and at least two-fold change is shown in a volcano plot (Figure 2).
As the main findings, the absence of ATXN2L causes deficiency of two of
its interactors; firstly, the reduction of ATXN2L peptides to 8% caused a
similar decrease to 8% for NUFIP2 (Nuclear Fragile X Mental Retarda-
tion Protein Interacting Protein 2), as DDX6-binding protein with SG
localization (Ozeki et al., 2019; Jia et al., 2023). Secondly, a reduction to
12% was observed for SYNE2 peptides (also known as Nesprin-2) as
actin cytoskeleton movement factor (Luxton et al., 2010; Antoku and
Gundersen, 2018; Goncalves et al., 2020) that is paralogous to SYNE1 as
disease gene responsible for the autosomal recessive ataxia SCAR8
(Gros-Louis et al., 2007; Synofzik et al., 2016). Otherwise, a very large
and significant downregulation to 11% was found for CUX1, as a tran-
scription factor that identifies pyramidal neurons from cortex layers II/
III (Nieto et al., 2004; Cubelos et al., 2008; Cubelos et al., 2010; Cubelos
et al.,, 2015; Rodriguez-Tornos et al., 2016; Weiss and Nieto, 2019;
Ramos et al., 2024). The biggest upregulation to 720% concerned the
microtubule polymerization regulator DCLK1 that is responsible for
retrograde transport and neuronal migration (Deuel et al., 2006; Shin
et al., 2013; Lipka et al., 2016).

Altogether, the loss of the RBP ATXN2L in MEF destabilized NUFIP2
exclusively among its many RBP interactors, and SYNE2 prominently
among the actin filament modulators. While ATXN2L did not appear
essential for the other RNPs, its loss triggered a spectrum of downstream
cytoskeleton dysregulations that range from actin bundling to micro-
tubular transport, involving also vesicle dynamics.

3.3. Validation experiments by quantitative inmunoblots and RT-qgPCR
confirm ATXN2L-null MEFs to show depleted NUFIP2/NUFIP1 protein,
reduced SYNE2 protein and Cux1 mRNA, versus increased DCLK1
expression

Attempting to assess the validity of the principal findings, first the
commercially available antibodies were used in quantitative immuno-
blots (Figure 3A) to demonstrate that two isoforms of ATXN2L near 150
kDa molecular weight were absent in mutant MEFs, while its less
abundant paralog ATXN2 showed significantly elevated levels. NUFIP2
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Table 1
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Mass spectrometry quantifications. Mass spectrometry identification and quantification of ATXN2L co-IP
components in MEF, without stress or after NaARS stress. ATXN2L and its known interactor proteins are
highlighted in yellow cells; novel interactors that are absent from controls in dark grey; potential interactors
with weaker ratios in light grey; protein abundance is illustrated by red background for high values and ratios

above 1, while blue background illustrate ratios below 1; very low ratios are shown in dark blue.
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had a depletion to 10.6%, its paralog NUFIP1 was reduced to 40.2% and
SYNE2 to 61.5%, whereas DCLK1 abundance exhibited a 5-fold eleva-
tion. Antibodies against the paralog SYNE1 and against CUX1 were not
sensitive or specific enough to generate convincing immunoreactivity in
the MEFs.

Employing the RT-qPCR technique to test mRNA expression levels of
these factors, the absence of Atxn2l transcript was confirmed but no
upregulation of its paralog Atxn2 was confirmed (Figure 3B), suggesting
that post-transcriptional mechanisms have to be responsible for the
accumulation of ATXN2 protein in ATXN2L-null MEFs. Interestingly, the
depletion of NUFIP2 protein was not counteracted by its transcriptional
induction, but instead accompanied by reduced Nufip2 mRNA, sug-
gesting that the loss-of-function of NUFIP2 is beneficial for ATXN2L-null

cells. Similarly, the reduced expression of Syne2 and Synel as well as
Cux1 paralleled their lowered protein abundance. Conversely, a strong
increase of Dclk1 transcript levels was observed to underlie the elevated
DCLK1 protein abundance.

Overall, these data reproduce key findings of the proteome profile
and point to a beneficial compensatory role of these dysregulations in
ATXN2L-null MEFs.

3.4. The ribonucleoprotein aggregation process in the spinal cord of 14-
month-old Atxn2-CAG100-KnockIn mice includes the accumulation of
ATXNL2 and NUFIP2 proteins

We reasoned that the above findings may be relevant for SCA2
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Figure 2. Volcano plot of global proteome profile of ATXN2L-null MEF cells.
ATXN2L and its interactor proteins NUFIP2 / SYNE2 as well as pyramidal
neuron marker CUX1 are similarly depleted, and several cytoskeletal trafficking
pathway components (e.g. DYNC1I1, CRMP1, SH3BGRL2, STXBP2, and DCLK1)
appear dysregulated. The position of downregulated factors on the left side was
shown as green dots, upregulated factors on the right side as red dots.

disease mechanisms, in view of the known heteromultimerization of
ATXN2 with ATXN2L in neuronal RNA granules during transport, and in
SG. The polyQ expansion within ATXN2 leads to a ribonucleoprotein
aggregation process that sequestrates ribonucleoprotein interactors like
PABPC1 and TDP-43 into cytosolic inclusion bodies within spinal motor
neurons, possibly also within cerebellar Purkinje neurons (Elden et al.,
2010; Damrath et al.,, 2012; Canet-Pons et al., 2021). Upon testing
ATXN2L with its main protein interactors in mice with ATXN2 polyQ
expansion, aged spinal cord tissues showed the previously reported
reduction in translated soluble ATXN2 (Figure 4). The well-established
ATXN2 aggregation process in aged spinal cord of these KIN mice
(Canet-Pons et al., 2021) resulted in significant accumulation of
ATXN2L (1.53-fold, p=0.0052) similar to TDP-43 (1.57-fold, p=0.003),
together with NUFIP2 monomers (1.56-fold, p=0.021) and homodimers
(3.28-fold, p=0.0007), SYNE1 (1.54-fold, p=0.011; SYNE2 analysis did
not produce convincing immunoreactivity in these tissues, in agreement
with GeneCards database proteome entries that SYNE1 but not SYNE2 is
detected by mass spectrometry in spinal cord) and DCLK1 (1.25-fold,
p=0.048). The sequestration of these factors into the phase-separated
inclusion bodies would reduce their availability in the water-soluble
cytosolic fractions. Thus, a partial loss-of-function due to aggregation
or a gain-of-function due to excess amounts of these ATXN2L interactors
might contribute to the cellular pathology in SCA2 via altered RNA
processing and cytoskeletal dynamics.

4. Discussion

ATXN2L is essential for embryonic development in mice, indicating
its crucial role in cellular survival. However, there is very limited
knowledge about this protein based on patient genetics, biochemistry,
microscopy studies, and bioinformatics predictions. Previously, it was
thought that ATXN2L and ATXN2 function within ribonucleoprotein
complexes, which are relatively stationary in the spliceosome or near the
rough endoplasmic reticulum. They are believed to modulate the ribo-
somal translation pathway during cellular growth phases and assist in
RNA quality control pathways during cellular stress and repair phases.

New evidence from this study indicates two important findings
regarding ATXN2L in mice. First, the association of ATXN2L with
various ribonucleoproteins is essential for NUFIP2. Second, ATXN2L
interacts with SYNE2 and several other components of the actin-
microtubule cytoskeleton, suggesting that it plays a role in RNA sur-
veillance during polarized transport from the nuclear spliceosome to the
tips of cell processes.

In the sections below, we will revisit our experimental data in detail
and integrate it with the current literature to propose a credible scenario
regarding the functions of ATXN2L.
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Figure 3. Validation experiments in ATXN2L-null MEFs. (A) Quantitative im-
munoblots document the abundances of proteins of interest in 4 mutant versus
4 WT samples, normalized to GAPDH as loading control. (B) RT-qPCR quan-
tifies expression of transcripts of interest in 4 mutant versus 4 WT samples,
normalized to Thp mRNA as loading control. Significance was assumed at
p<0.05 and highlighted with asterisks: *p<0.05, **p<0.01, ***p<0.001, ns =
non-significant. Variance is shown with S.D.

4.1. Coimmunoprecipitation findings

In agreement with previous observations that ATXN2L is not exclu-
sively cytosolic like ATXN2 (Auburger et al., 2017), but instead shows
prominent nuclear localization (Kaehler et al., 2015), the ATXN2L
coimmunoprecipitates contained not so much the cytosolic poly(A)
binding protein PABPC1, but mainly the nuclear poly(A) binding protein
PABPNI1 (in control of nuclear exosomal degradation of polyadenylated
RNAs) (Lemay et al., 2010; Beaulieu et al., 2012; Bresson and Conrad,
2013; Muniz et al., 2015; Meola et al., 2016), with >7-fold higher LFQ
intensity as measure of abundance. Furthermore, the ATXN2L co-IP
contained ZMAT3 (also known as Wig-1), which localizes mainly to
the nucleolus, binding to long double-strand RNA (dsRNA) and short
microRNA-like dsRNA to regulate splicing and cell senescence, while
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Figure 4. Validation experiments in the spinal cord of end-stage Atxn2-
CAG100-KnockIn mice. Quantitative immunoblots demonstrating the defi-
ciency of polyQ-expanded ATXN2 in the soluble compartment, together with
accumulation of TDP-43, ATXN2L, NUFIP2 (monomers at 75 kDa, homodimers
at 150 kDa), SYNE1 and DCLK1 in spinal cord homogenates from 14-month-old
Atxn2-CAG100-KnockIn mice (graphs reflect 5 mutant versus 5 WT samples),
using GAPDH as loading normalizer. Significance was assumed at p<0.05 and
highlighted with asterisks: *p<0.05, **p<0.01, ***p<0.001. Variance is shown
with S.D.

shuttling to the cytosol to regulate ARE-mediated RNA decay there
(Vilborg et al., 2011; Kim et al., 2016; Lee et al., 2017b; Bieging-Rolett
et al., 2020; Spinelli et al., 2022). In addition, the ATXN2L co-IP also
comprised a subcomplex consisting of three nuclear speckle-paraspeckle
proteins that modulate selective expression and translation of internal
ribosomal entry site (IRES) sequences (King et al., 2014): (i) THRAP3
(also known as TRAP150), an RNA alternative splicing and nuclear RNA
decay mediator, as well as R-loop resolution factor (Lee et al., 2010;
Kang et al., 2021); (ii) SFPQ (also known as PSF or Polypyrimidine
Tract-Binding Protein-Associated-Splicing Factor that contains a K-ho-
mology domain) as known interactor of THRAP3 and of ALS-associated
NEAT1 IncRNA (Lowery et al., 2007; Hirose et al., 2014; Yarosh et al.,
2015; Modic et al., 2019; Lim et al., 2020; Hogan et al., 2021); (iii)
PTBP1 (also known as HNRNPI or as Polypyrimidine Tract Binding
Protein 1 (Miao et al., 2022; Liu et al., 2023). Providing strong evidence
for the nuclear localization of ATXN2L, the co-IP included the nuclear
linker histone HIST1H1C (which is also known as H1.2, in control of cell
growth versus apoptosis following DNA double-strand breaks, (Munro
and La Thangue, 2017; Schnetler et al., 2020; Lai et al., 2021)). These
observations implicate ATXN2L in nuclear RNA splicing and
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degradation, as well as dsRNA processing, for the adaptation of cells to
stress conditions.

The highest number of ATXN2L interactors were RBPs. Those with
predominant localization in the nucleus included MCRIP2 (also known
as FAM195A, a DDX6 interactor and SG component (Bish et al., 2015)),
HNRNPK (binding to polyC sequences (Zappa et al., 2019; Yao et al.,
2021)), FUBP3 (also known as MARTA2, binding 3’ untranslated region
UAU sequences, containing a K-homology domain (Zivraj et al., 2013;
Gau et al., 2011; Mukherjee et al., 2019)), MBNL2 (as RNA alternative
splicing and localization mediator, which contains a K-homology
domain, binding to the ACACCC zipcode core sequence and to triplet
repeat structures (Pascual et al., 2006; Taliaferro et al., 2016; Huang
et al., 2023)) and HNRNPDL (also known as AU-Rich Element RNA-
Binding Factor or JKTBP, (Doi et al., 1998; Kamei and Yamada, 2002;
Omnus et al., 2011; Li et al., 2019)). Those with distribution throughout
nucleus and cytoplasm were firstly FMR1 (Fragile X Messenger Ribo-
nucleoprotein 1) as mRNA nuclear export / alternative splicing / den-
dritic transport factor that contains a K-homology domain and binds
polyU sequences, again with known SG relocalization (Coyne et al.,
2015; Taha et al., 2021); secondly NUFIP2 (Nuclear FMR1 Interacting
Protein 2, another DDX6 interactor and SG component (Bish et al.,
2015)); thirdly LARP1 (La Ribonucleoprotein 1 Translational Regulator,
again in the DDX6 interactome and SG component, (Taha et al., 2021;
Chatel-Chaix et al., 2013; Mattijssen et al., 2021); and fourth RPS20 (a
component of the small ribosome subunit for mRNA quality control,
which acts in the nucleolus to control cell proliferation (Panas et al.,
20165 Krishnan et al., 2018; Huang et al., 2020)). Mutation of mouse
ATXN2 was previously shown to affect ribosomal protein abundance
(Fittschen et al., 2015), but the very selective ATXN2L interaction with
RPS20 is noteworthy. Binding between Ataxin-2 and DDX6 is well
established from human to flies (Lee et al., 2017a), so also the enrich-
ment of DDX6 interacting proteins in the ATXN2L co-IP is expected.
Predominant cytoplasmic distribution and known SG relocalization was
represented only by G3BP2 (Prentzell et al., 2021; Kipper et al., 2022;
Jin et al., 2022). G3BP2 and G3BP1 are distinct from other SG proteins,
since they contain SH3 domains that are expected to interact with
proline-rich motifs (PRM), and indeed ATXN2L and ATXN2 homologs
across phylogenesis contain at least two conserved functional PRMs
(Jimenez-Lopez and Guzman, 2014; Nonis et al., 2008; Drost et al.,
2013).

The LSm and LSm-AD motifs of ATXN2L act as RNA chaperone that
corrects conformation without consuming ATP energy, and may interact
with DDX6 as RNA helicase that corrects conformation more forcefully
with energy from ATP. Therefore, it seems logical that the ATXN2L
interactome is enriched in other RNA chaperones such as HNRNPI,
HNRNPK, HNRNPDL (Semrad, 2011), together with additional factors
that contain a K-homology domain. Already in bacteria, a cooperation
between the Sm domain containing factor Hfq and the K homology
domain containing factor PNPase (polyribonucleotide nucleotidyl-
transferase) was found crucial for riboregulation (Dendooven et al.,
2021).

Overall, the ATXN2L co-IP findings above are credible and indicate
that the main role of ATXN2L is focused on RNA surveillance, prefer-
entially in the perinuclear area and along the microtubule-actin
cytoskeleton.

In view of the MBNL2 role for RNA relocalization along the cyto-
skeleton, it was interesting to note that the RNA-binding protein RBMS1
appeared together with cytoskeletal ACTA2 (actin alpha 2) in the
ATXN2L co-IPs, with the single-strand [AU]CU[AU][AU]U-sequence
binding RBMS1 known to control ACTA2 transcripts, and to influence
differentiation as well as radial migration of neural progenitors (Kimura
et al., 1998; Habib et al., 2022; Veeraraghavan et al., 2024). The co-IP
presence of LMOD1 as actin-nucleating factor (Kostyukova, 2007;
Dominguez, 2016; Nauen et al., 2020) also suggests a cytoskeleton as-
sociation. The putative ATXN2L interactor SYNE2 (also known as
Nesprin-2) is a component of the LINC (Linker of Nucleoskeleton and
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Cytoskeleton) complex that regulates cell polarity and nuclear move-
ment by association with dynein-dynactin, kinesin and myosin motor
proteins (Zhang et al., 2009; Falk et al., 2018; Luxton et al., 2010;
Goncalves et al., 2020; Dawe et al., 2009; Neumann et al., 2010; Wang
et al., 2015; Arsenovic et al., 2016; Hieda et al., 2021). Therefore,
SYNE2 association represents additional evidence that ATXN2L localizes
near the nuclear envelope along the cytoskeleton. Furthermore, FYB
(also known as ADAP) as potential ATXN2L interactor has a role in actin
rearrangement (Krause et al., 2000; Kliche et al., 2006; Pauker et al.,
2011). In another subcellular context that agrees with the reported Golgi
localization of dATX-2 in Drosophila melanogaster (Sechi et al., 2021),
GOLGA3 as a candidate ATXN2L interactor is implicated in the cell
reorientation by microtubules to a position where membrane and
glycoprotein delivery for neurite extension is optimized. Its mutations
lead to primary ciliary dyskinesia (Di Gioia et al., 2015; Tang et al.,
2019; Shamseldin et al., 2020). Overall, several putative ATXN2L
interactors suggest its involvement in trafficking along the cytoskeleton,
presumably together with RNA granules.

The observation of molecular chaperones is frequent in any co-IP
experiment, so cytosolic HSPB8 and membrane-associated HSPA9 as
heat-shock proteins need not represent a specific ATXN2L function.
However, CSDE1 (also known as UNR) as Golgi-/vesicle- associated cold
shock protein for RNA stem-loop binding, polypyrimidine-tract-
mediated IRES-dependent translation initiation, stress granule assem-
bly and RNA decay appears to be a specific ATXN2L interactor within
the RNA surveillance pathway (Jacquemin-Sablon et al., 1994; Hunt
et al., 1999; Cornelis et al., 2005; Bushell et al., 2006; Kamenska et al.,
2016; Youn et al., 2018).

The ATXN2L associated PRDX1 (Peroxiredoxin 1) is an antioxidant
defence factor, which would modulate SG assembly/disassembly
(Neumann et al., 2009; Bertoldi, 2016).

In contrast, the identification of MPEG1 (also known as Perforin-2) in
the ATXN2L interactome is unrelated to previously mentioned path-
ways, in view of MPEG1 localization to cytoplasmic vesicles / phag-
osomes / lysosomes where it forms pores to mediate bacterial
destruction and the cytosolic escape of bacterial fragments (Jiao et al.,
2022; Yu et al., 2022; Rodriguez-Silvestre et al., 2023). Thus, the pres-
ence of MPEG1 in the ATXN2L co-IP may represent an artefact, or may
be part of stress-triggered innate immune responses to toxic dsRNA or
malformed RNA.

It would be interesting to compare the interactomes of ATXN2L
versus ATXN2, to elucidate the complementary roles played by each
paralog. Close examination of their sequences and domain structures
across phylogenesis reveals that from their protist/algae/fungal ances-
tors until mammalian ATXN2L an approximate length of 900 amino
acids contain the typical combination of RNA processing domains,
together with several proline-rich motifs for actin-association (Jimenez-
Lopez and Guzman, 2014). Mammalian ATXN2 is distinct by its N-ter-
minal additional approximately 350 amino acids that evolved since
fishes/amphibian/reptiles, which include the polyQ domain and three
additional proline-rich motifs. Correspondingly, only for mammalian
ATXN2 several interactions with actin-endosome trafficking factors
were reported by two independent groups in Germany (Nonis et al.,
2008; Drost et al., 2013; Ralser et al., 2005b), and functions of
mammalian ATXN2 to repress endocytosis and to promote exocytosis
were functionally validated lateron by two independent teams in China
(Lu et al., 2019; Bian et al., 2023). The association of mammalian
ATXN2 with endosome dynamics may explain why it can localize to the
Golgi apparatus and perturbate its stability (Huynh et al., 2003).

ATXN2L-null MEF proteome dysregulations:

As the main finding of this paper, NUFIP2 appeared destabilized by
the loss of ATXN2L in MEF, and this mass spectrometry observation was
validated in independent immunoblot experiments. This massive and
selective impact was unexpected, because most ribonucleoprotein in-
teractions within SG are promiscuous, mediated by intrinsically disor-
dered domains (IDR) of proteins and the associated RNAs in liquid-liquid
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phase separation (LLPS). Such an insight about a quite exclusive inter-
action points to a specific function that is performed by ATXN2L
together with NUFIP2 and support from their binding partner DDX6.
Again, not too much has been elucidated about the physiological roles of
NUFIP2, since its initial discovery as a nuclear and cytoplasmic shuttling
factor with ribosomal function within the FMR1 Fragile X protein
complex with RNAs (Bardoni et al., 2003; Taha et al., 2021), and its
subsequent identification as a principal component in the DDX6 protein
interactome (Bish et al., 2015). On the one hand, NUFIP2 was observed
to bind mRNAs within their 3’ untranslated region (Rehage et al., 2018),
and similarly Ataxin-2 was also shown to target the 3’'UTR (Yokoshi
et al., 2014), in particular AU-rich elements (ARE) that are frequent in
growth-regulating mRNAs (Otsuka et al., 2021). On the other hand,
NUFIP2 is recruited to lysosomes (together with G3BP1 and GABARAPs
of the mATG8 family) where it inactivates MTOR (Jia et al., 2023; Jia
et al., 2022), and again Ataxin-2 in yeast, worms and mice was reported
to repress MTOR (Bar et al., 2016; Lastres-Becker et al., 2016; DeMille
et al., 2015; Yang et al., 2019; Kato et al., 2019; Prouteau and Loewith,
2019). Thus, current literature confirms that both NUFIP2 and ATXN2L
are inhibitors of growth signals, and both mediate this effect by binding
to specific sequences shortly upstream the poly(A) tail of mRNAs. Given
that NUFIP2 sequence does not show any specific protein domain
structures that would bind ATXN2L motifs, their interaction is pre-
sumably indirect in a ribonucleoprotein complex, mediated only by
docking at RNAs that are recognized simultaneously by both factors. The
fact that NUFIP2 is downregulated also at its transcript levels in
ATXN2L-null fibroblasts suggests efforts to counteract ATXN2 loss-of-
function by reducing its crucial antagonist. In view of NUFIP2 being
recently identified as co-factor of Roquin in the promotion of RNA
decay, acting at tandem non-canonical stem-loops within the 3’-UTR of
mRNAs (Rehage et al., 2018), our findings are compatible with the
notion that ATXN2L functions as RNA stabilization, survey and repair
factor.

Except for NUFIP2 depletion, the other proteome dysregulations did
not include RNPs. Instead, they affected multiple cytoskeletal transport
factors, among which the actin cytoskeleton movement factor SYNE2
plays the key role as ATXN2L interactor. SYNE2 was depleted in parallel
to ATXN2L, and again this mass spectrometry observation was validated
by immunoblot experiments. SYNE2 (aka Nesprin-2) is crucial for the
tethering of nuclei and their relocation within polarized cells (Falk et al.,
2018; Goncalves et al., 2020; Arsenovic et al., 2016; Hieda et al., 2021;
Cartwright and Karakesisoglou, 2014; Lim et al., 2021; Woychek and
Jones, 2019; Young et al., 2021; Zhou et al., 2024), so its depletion
possibly underlies the increased presence of giant multinucleated cells in
the ATXN2L-null MEF lines (Key et al., 2020). Given that our immu-
nocytochemistry images showed ATXN2L concentrated at perinuclear
sites where SYNE2 interacts with pericentrin at microtubule organizing
centers (MTOC) (Falk et al., 2018; Goncalves et al., 2020), the question
arises how this association is mediated. Thus, it is noteworthy that the
SYNE2 N-terminus is structured as calponin-homology (CH) domain,
and Ataxin-2 was previously shown to bind two proteins with actin-
binding CH domains (Ralser et al., 2005b; Eich et al., 2019). Thus,
ATXN2L may stabilize an outer nuclear envelope complex between
SYNE2, the perinuclear actin cap, and the MTOC sites (Woroniuk et al.,
2018; Wu et al., 2018; Crisp et al., 2006), which act with the Golgi
apparatus to determine polarity of neurite outgrowth and focal adhesion
(Hieda et al., 2021; Zheng et al., 2020; Schneider et al., 2011; Roux
et al., 2009; Vergarajauregui et al., 2020; Kobayashi et al., 2006; Beck,
2005; Chee et al., 2023; Denis et al., 2021; Revach et al., 2015). This
study observed that SYNE2 is downregulated also at transcript level
upon ATXN2L loss-of-function. This finding is compatible with the
notion that cells weaken SYNE2 as mechanical basis for nuclear trans-
location, neurite extension, and focal adhesions, when ATXN2L-
mediated surveillance and repair of RNAs along microtubules is
impaired. SYNE2 is key for the migration and differentiation of post-
mitotic cortical neurons (Yi et al., 2023; David et al., 2019), and this
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indirect effect may contribute to our previous report that ATXN2L-null
mice die in utero with a phenotype of deficient cortex lamination and
neuronal apoptosis (Key et al., 2020). In this context, the down-
regulation of the nuclear transcription factor CUX1, which is selectively
expressed in cortical layer II/IIl neurons, may also contribute to the
embryonic lethality of ATXN2L-null mice and perhaps to the motor
neuron degeneration during postnatal life of SCA2 patients (Nieto et al.,
2004; Cubelos et al., 2008; Cubelos et al., 2010; Cubelos et al., 2015;
Rodriguez-Tornos et al., 2016; Weiss and Nieto, 2019; Ramos et al.,
2024). Although a specific and sensitive antibody to detect CUX1 was
not available to us, its decreased mRNA expression levels could be
demonstrated in validation experiments.

Downstream indirect effects in the proteome, which may represent
pathology effectors or act in compensatory manner, include dysregula-
tions of the microtubule-binding growth cone collapse factor CRMP1
(Yamashita and Goshima, 2012), the actin/spectrin interactor and
migration modulator SH3BGRL2 (Li et al., 2020; Li et al., 2023), the
RNA granule retrograde motor DYNC1I1 (Liu et al., 2016; Lang et al.,
2021), the actin/vesicle dynamics modulator STXBP2 (also known as
MUNC18B) (Kurps and de Wit, 2012), the cytoskeleton-associated
membrane protrusion factor CORO1A (Alvarez Julia et al., 2016), the
cofilin scaffold ARRB2 (Zoudilova et al., 2010), the myosin light chain
regulator STK17B (also known as DRAK2, implicated in several spino-
cerebellar ataxias (Kuwahara et al., 2003; Wu and Kapfhammer, 2022)),
the cytoskeletal transport vesicle component TMED3 (Navarro and
Chamberlin, 2023), the vesicle dynamics modulator SCRN1 (Lindhout
et al., 2019), and the microtubule polymerization regulator DCLK1.

Importantly, downregulation of IGF1R as insulin-like growth factor 1
receptor tyrosine kinase was also documented. This observation is in line
with the known Ataxin-2 modulation of MTOR growth signals, and it is
noteworthy that a loss of function in IGF1R also leads to intrauterine
lethality (Abuzzahab et al., 2003). The reduction of the mitochondrial
deacylase SIRT5 as metabolism modulator in dependence on nutrient
availability (Chalkiadaki and Guarente, 2012; Pirinen et al., 2012; Sack
and Finkel, 2012) also suggests altered MTOR signals. MTOR can
localize at lysosomes to sense nutrient availability and is coregulated
with lysosomal enzymes, explaining the downregulation of MANBA as
lysosomal mannosidase beta A, which is particularly abundant in
adherent fibroblasts.

Finally, the proteome profile also exhibited downregulations of two
factors implicated in inflammatory responses to bacterial infections or
mitochondrial dysfunction. PYCARD contributes to innate immune
response as integral adapter in inflammasome assembly which activates
caspase-1 leading to secretion of pro-inflammatory cytokines
(Matyszewski et al., 2018; Matyszewski et al., 2021; de Souza et al.,
2021). NMES1 (aka COXFA4L3, MOCCI, or C150RF58 in human) con-
sists of only 83 amino acids that are localized to intracellular organelles
that contain DNA and RNA in high concentration (nucleus and mito-
chondria). It is paralogous to mitochondrial respiratory chain factor
NDUFA4 and was found to modulate cytochrome C oxidase during
inflammation, so it is also known as Antiviral Mitochondrial Stress
Response factor (Endou et al., 2020; Lee et al., 2021; Clayton et al.,
2021; Xiong et al., 2024). Via this modulation, it also induces stress-
dependent lysosomal-autophagosomal degradation, upregulates gluta-
thione as antioxidative protection factor, and enhances survival
(Takakura et al., 2024).

Thus, the proteome profile of MEF cells shows that the loss of
ATXN2L leads to the depletion of its protein interactors NUFIP2 and
SYNE2, and to strong indirect downstream protein regulations in the
cytoskeletal transport machinery, in MTOR-dependent growth path-
ways, and in inflammation responses, but not in the RNA processing
apparatus.

It was unexpected to find ATXN2L-null mutation to cause ATXN2
accumulation, since reciprocal regulations between the two paralogs
were not known so far. The apparently post-transcriptional mechanism
might reflect a general unspecific effect on many factors, due to altered
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RNA processing in the nucleus, or altered RNA trafficking, repair, and
translation in the cytosol. It is also possible that post-translational
mechanisms are underlying this effect, e.g. post-translational modifi-
cations such as phosphorylations that regulate redistribution, confor-
mation, interactions, degradation. As a post-translational and highly
specific mechanism, it is conceivable that the loss of ATXN2L is sensed
and leads to a compensatorily reduced activity of a degradation enzyme
that targets ATXN2L but also ATXN2. We have preliminary unpublished
data that polyQ expansions in murine ATXN2 triggers specific dysre-
gulations in the ATXN2L phosphorylation profile, so mutual influences
between the two paralogs seem to exist, beyond their ability to
heterodimerize.

4.2. Atxn2-CAG100-KnockIn pathogenesis involves protein
accumulations

Current literature about the ATXN2 aggregation process that triggers
neurodegeneration in SCA2 and ALS has paid much attention to the
observation that TDP-43 is sequestrated as a factor that is essential for
embryonic life (Elden et al., 2010; Becker et al., 2017; Canet-Pons et al.,
2021; Sephton et al., 2010), and suggested the importance of abnormal
ribonucleoprotein interactions and RNA toxicity in these diseases (Li
et al., 2013; Taylor et al., 2016; McEachin et al., 2020). It was not
appreciated that significant accumulation affects also the ribonucleo-
protein ATXN2L as an abundant ATXN2 interactor, which is also
essential for embryonic life (Key et al., 2020), together with the ribo-
nucleoprotein NUFIP2 and probably DDX6 as well. This sequestration is
likely to trigger a partial loss-of-function for these ribonucleoproteins,
thus impairing neuronal maintenance and survival. Moreover, the novel
findings about accumulations of SYNE1 and DCLK1 protein in the aged
spinal cord of Atxn2-CAG100-KIN mice provide additional evidence that
altered cytoskeletal dynamics may contribute to the disease process in
SCA2 and ALS. This concept is in agreement with recent discoveries of
ALS genes that function in cytoskeletal integrity and axonal transport
(Dulski et al., 1993; Ghasemi and Brown Jr., 2018; Chia et al., 2018).

5. Conclusions

The present study provides evidence that the poorly characterized
ribonucleoprotein ATXN2L associates with numerous other ribonu-
cleoproteins, of which only NUFIP2 depends on its presence. Down-
stream indirect consequences of ATXN2L loss have been shown to affect
the cytoskeletal dynamics, mTOR-dependent growth pathways, and
inflammation responses. The polyQ expansion of ATXN2 leads to an
excess accumulation of ribonucleoproteins ATXN2L / NUFIP2 and of
cytoskeletal factors SYNE1 / DCLK1, a finding with relevance to
neurodegenerative diseases like SCA2 and ALS.

Supplementary data to this article can be found online at https://doi.
0rg/10.1016/j.nbd.2025.106903.
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