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Abstract—Fluid antenna is a promising wireless communica-
tion technology that enhances communication rate by changing
the antenna positions. This article proposes a new communica-
tion system that combines multiple-input single-output (MISO)
fluid antennas with traditional fixed-position antennas, utilizing
antenna position optimization to improve energy harvesting
efficiency. In this model, we consider simultaneous wireless infor-
mation and power transfer (SWIPT) which transmits identical
signals from the base station to both information receiver (IR)
and energy receiver (ER). We strive to enhance the power
delivered to the ER by fine-tuning the positions of transmit and
receive fluid antennas, along with optimizing the transmit covari-
ance matrix, subject to a given minimum signal-to-interference-
plus-noise ratio (SINR) constraint at the IR. Simulation results
indicate that fluid antenna systems significantly enhance the
energy harvesting efficiency of the ER compared to traditional
fixed-position antennas.

Index Terms—Fluid antenna sysyem, MISO system, energy
harvesting, simultaneous wireless information and power trans-
fer (SWIPT).

I. INTRODUCTION

IN the past few decades, wireless communication has
developed rapidly and has significantly changed our lives.

Throughout the development of wireless communication
systems, enhancing communication rate has always been
a primary goal. To improve communication efficiency,
fluid antenna systems (FASs) capable of flexibly adjusting
antenna positions along one-dimensional (1D) lines have
been proposed [1], [2]. Using conductive fluid as the antenna
material makes it possible to freely move the position of the
receive antennas among all potential access points distributed
along a fixed, finite-length line, thereby communication
rate is enhanced. However, the restrictions imposed by
liquid materials dictate that FAS can solely accommodate a
singular fluid antenna, which is capable of movement solely

along a linear path, its capacity to fully capitalize on spatial
variations in the wireless channel is constrained. In order
to fully propose more spatial degrees of freedom (DoFs) to
enhance communication rate, the movable antennas (MAs)
were proposed in [3]. Using flexible cables to connect
MAs to the radio frequency (RF) chains allows real time
adjustment of antenna position by mechanical driving [4],
[5], [6]. Unlike fixed-position antenna systems, this system
reshapes the channel matrix between antennas by changing
the position of the receive/transmit antennas, thus achieving
a higher communication rate.

Simultaneous wireless information and power transfer
(SWIPT) is an integration of combining wireless information
transfer (WIT) and wireless power transfer (WPT). SWIPT
leverages the inherent properties of RF signals, enabling
concurrent transmission of both information and energy
[7], [8]. In 2008, L. R. Varshney introduced the concept
of the energy-information rate trade-off in binary and
Gaussian channels, approaching it through the lens of
information theory in [9], [10], [11], proposing the concept
of SWIPT. Currently, SWIPT technology falls into two
categories: the first where the receiving end simultaneously
performs information decoding and energy harvesting (EH),
and the transmitter carries both information and energy
in the RF signal for transmission [12], [13], the second
category involves separate functions at the receiving end
for information decoding and EH. This implies that there
are recipients for information and beneficiaries for energy
collection, with the transmitter transmitting separate signals
for information and energy [14], [15], [16]. We assume that
perfect channel state information(CSI) is available at both
the transmitter and receiver.



The rest of the article is organized as follows: Section
II introduces the system model and formulates the energy
harvesting problem. Section III provides an alternating
optimization algorithm to solve the formulated problem.
Section IV presents numerical results and discussion. Finally,
Section V provides a summary of this article.

Fig. 1. A MISO fluid antenna system for dual information and energy
transfer.

II. SYSTEM MODEL

A. Fluid Antenna MISO System

As shown in Fig. 1, this paper considers a three-node
wireless multiple-input single-output (MISO) system, base
station equipped with N fluid antennas (FAs), a single FA
at the ER for EH, and an IR with a single traditional fixed-
position antenna. The FAs on the base station and ER are
interfaced with the RF chains via cables, permitting real-time
adjustment of their positions. Define the Cartesian coordinate
tn = [xt,n, yt,n]T ∈ Ct as the nth (n = 1, 2, ...N) transmit
FA position, r = [xr, yr]

T ∈ Cr denotes receive FA position.
The coordinates of the IR can be set to r0 = [x0, y0]T . Ct
represents the two-dimensional (2D) region of the transmis-
sion end, and Cr represents the two-dimensional (2D) region
of the reception end, where FAs can move freely within these
regions.

The paper considers narrow-band channels with slow fad-
ing and focuses on a quasi-static fading block. For the
MISO communication system with FAs, it can obtain a new
channel configuration when the positions of the receive and
transmit FAs are adjusted. Let t = [t1, t2, . . . , tN ] ∈ R2×N

represent the coordinate set of N transmit FAs. Then, the
MISO channel vector from the transmitter to the receiver
is given by h(t, r) ∈ C1×N , which is a function of t
and r in general. The transmit signal vector is defined as

s ∈ CN , and the covariance matrix of the transmit signal is
denoted by Q , E{ssH} ∈ CN×N , Q � 0. We assume an
average power constraint at the base station, represented as
Tr(Q) ≤ P . Therefore, the signal from the transmitter to the
receiver can be modeled by

y(t, r) = h(t, r)s + z, (1)

where z ∼ CN (0, σ2) is an additive white Gaussian noise
(AWGN) vector with power σ2.

B. Field-Response Based Channel Model

For MISO communication systems with FAs, the channel
vectors depend on both the environmental conditions of signal
transmission and FAs’ positions. In this context, we assume
a long-distance transmission model, where the dimensions
of base station and ER are insignificant compared to the
distance over which the signal propagates. Therefore, in the
transmit/receive region, each channel path component exhibits
identical angle of departure (AoD) or angle of arrival (AoA)
and complex path coefficients, the phases of the complex path
coefficients differ across various transmit/receive antennas
pairs positioned at different locations.

In [3], denote the number of transmit paths and receive
paths as Lt and Lr, the field-response vector of one transmit
FA is

g(t) , [ej
2π
λ ρ

1
t (t), ej

2π
λ ρ

2
t (t), · · · , ej 2π

λ ρ
Lt
t (t)]T ∈ CLt . (2)

The field-response matrix for the base station region is

G(t) , [g(t1), g(t2), · · · , g(tN )] ∈ CLt×N . (3)

Similarly, the field-response vector for the receive region
is

f(r) , [ej
2π
λ ρ

1
r(r), ej

2π
λ ρ

2
r(r), · · · , ej 2π

λ ρ
Lr
r (r)]T ∈ CLr . (4)

We establish a path response matrix Σ ∈ CLr×Lt to denote
the path response from the transmit regions origin to that
of the receive region. The path response matrix for the pth
transmit path and qth receive path is denoted by Σ[q, p]. The
channel from the base station to the receiver is

h(t, r)H = f(r)HΣG(t). (5)

The received signal at the IR is

yI = hI(t, r0)s + zI , (6)

where zI ∼ CN (0, σ2
I ) stands for the additive white Gaussian

noise at IR with power σ2
I .

The IR signal-to-interference-plus-noise ratio (SINR) can
be expressed as

γ =
|hI(t, r0)ssHhI(t, r0)H |2

σ2
I

. (7)



The received signal at the ER is

yE = hE(t, r)s + zE , (8)

where zE ∼ CN (0, σ2
E) stands for the additive white Gaus-

sian noise at ER with power σ2
E .

The power harvested by the EH is given by

W = ηtr(hE(t, r)QhE(t, r)H), (9)

where η represents the efficiency of EH. For the purposes of
this paper, we assume a value of 1 for η.

C. Problem Formulation

To prevent interference among transmit antennas, it is
required that the minimum distance between any two antennas
at the transmit region should be set to D, i.e., ‖tk−tl‖2, k, l =
1, 2, ...N, k 6= l [3]. Then, our objective is to maximize the
EH through joint optimization of the transmit covariance Q,
transmit FA position t, and receive position r, subject to
constraints on the minimizing SINR at the IR, minimum
distance constraints on FA positions, and transmitter power
constraints. For optimizing the problem, we can formulate as

(P1) max
t,r,Q

tr(hE(t, r)QhE(t, r)H) (10)

s.t. t ∈ Ct, (10a)
r ∈ Cr, (10b)
‖tk − tl‖2 ≥ D, k, l = 1, 2, . . . , N, k 6= l,

(10c)
|hI(t, r0)s|2

σ2
I

≥ γ̄, (10d)

tr(Q) ≤ P, (10e)
Q � 0. (10f)

Problem (P1) is evidently non-convex because it is non-
convex at the FA positions t and r, and both (10c) and (10d)
are non-convex. Furthermore, Q is associated with both t and
r, which makes the problem difficult to solve.

III. PROPOSED ALGORITHM

We present an alternating optimization algorithm designed
to address the Problem (P1). Firstly, the optimization vari-
ables of the objective function are {tn}Nn=1∪{r}∪Q, which
facilitates our optimization. Then, to solve each of the three
sub-problems, we optimize Q, the energy receiver FA position
r, and one base station FA position tn, keeping the other
variables constant. It can solve these three sub-problems,
yielding at least one locally optimal solution that satisfies the
conditions.

1) Optimization of Q : To optimize Q , we give the
transmit FA positions {tn}Nn=1 and the receive FA position
r. The optimization problem can be represented as

max
Q

tr(hE(t, r)QhE(t, r)H) (11)

s.t.
tr(hI(t, r0)QhI(t, r0)H)

σ2
I

− γ̄ ≥ 0, (11a)

tr(Q) ≤ P, (11b)
Q � 0. (11c)

This is a convex optimization problem about Q, and the
optimal value can be effectively solved through the CVX
toolbox [17].

2) Optimization of r: To optimize the receive FA position
r, we fix the transmit FA positions {tn}Nn=1 and Q. Specifi-
cally, we establish a matrix that is positive definite

An = ΣEG(t)QG(t)HΣH
E . (12)

Notice that An is a constant matrix regardless of r. Conse-
quently, we can obtain the following

(P2) max
r

f(r)HAnf(r) (13)

s.t. r ∈ Cr. (13a)

One can see that the objective function exhibits non-concave
with respect to r. To solve the above problem, we utilize the
successive convex approximation (SCA) method, which can
optimize the position of the receive antenna r . The objective
function is convex with respect to f(r). A convex function
can always be approximated from below by its first-order
Taylor expansion at any point. In the ith iteration of SCA,
we can obtain a lower bound for f(r)HAnf(r) as

x(r) = f(r)HAnf(r) (14)

≥ f(ri)HAnf(ri) + 2Re{f(ri)HAn(f(r)− f(ri))}
= 2Re{f(ri)HAnf(r)} − f(ri)HAnf(ri),

where ri is a constant vector representing the value of r
in the ith iteration, and f(ri)HAnf(r) is a constant term.
Consequently, maximizing f(r)HAnf(r) is equivalent to
maximizing x̄(r) = Re{f(ri)HAnf(r)}. However, it is
not a convex function with respect to r. Therefore, it is
insufficient to construct a lower bound proxy function for
the objective function only based on the first-order Taylor
expansion of x̄(r). We construct a local approximation of the
objective function using the second-order Taylor expansion.
Then we denote the gradient vector of and the Hessian matrix
of x̄(r) over r by ∇x̄(r) ∈ R2 and ∇2x̄(r) ∈ R2×2, and
construct positive real number δ, such that δI2 � ∇2x̄(r).
Please refer expansion to Appendix B in [3] for the proof.



Hence, according to the Taylor theorem, we can obtain the
following bound is x̄(r)

x̄(r) =Re{f(ri)HAnf(r)} (15)

≥x̄(ri) +∇x̄(ri)T (r − ri)− δ

2
(r − ri)T (r − ri)

=− δ

2
rTr + (∇x̄(ri) + δri)Tr −∇x̄(ri)Tri

+ x̄(ri)− δ

2
(ri)Tri,

where −∇x̄(ri)Tri + x̄(ri)− δ
2 (ri)Tri is a constant, max-

imizing x̄(r) is equivalent to maximizing x̃(r) , − δ2r
Tr +

(∇x̄(ri) + δri)Tr. We can obtain the following

(P3) max
r
− δ

2
rTr + (∇x̄(ri) + δri)Tr (16)

s.t. r ∈ Cr. (16a)

The objective function is a concave quadratic function on
r, and without considering constraints (16a), the maximum
global optimal solution is

r∗i+1 =
1

δ
∇x̄(ri) + ri (17)

If r∗i+1 satisfies (16a), it is the global optimum for problem
(P3). If it does not satisfy the constraint conditions, we know
that it is a quadratic programming (QP) problem and can ob-
tain the optimal solution through the quadratic programming
function.

3) Optimization of tn: To optimize the transmit tn, we
give Q, {r}, and {tl, l 6= n}Nl=1 , ∀n ∈ N = {1, 2, · · ·N}.
For the objective function Problem (P1), we can transform it
into

tr(hE(t, r)QhE(t, r)H) (18)

=tr(hE(t, r)ssHhE(t, r)H) = Ptr(hE(t, r)hE(t, r)H).

The problem can be equivalent to maximizing

tr(hE(t, r)hE(t, r)H). (19)

Based on this, we define the nth element of hE(t, r) ∈ C1×N

as hE,n(tn) = f(r)HΣEg(tn), then, we remove hE,n(tn)
from hE(t, r) ∈ C1×N and denote the remaining sub-vector:

ht
E = [hE,1(t1),hE,2(t2), · · · ,hE,n−1(tn−1),hE,n+1(tn+1)

, · · · ,hE(tN )] ∈ C1×(N−1). (20)

Thus, we can obtain the following

tr(hE(t, r)hE(t, r)H) (21)

=tr(ht
E(ht

E)H + hE,n(tn)hE,n(tn)H)

=tr(ht
E(ht

E)H) + tr(hE,n(tn)hE,n(tn)H).

The problem can be equivalent to maximizing

tr(hE,n(tn)hE,n(tn)H) =tr(hE,n(tn)HhE,n(tn)) (22)

=g(tn)HΣH
E f(r)f(r)HΣEg(tn).

We establish a matrix that is positive definite

Bn = ΣH
E f(r)f(r)HΣE . (23)

Therefore, we can obtain the following

(P4) max
tn

g(tn)HBng(tn) (24)

s.t. tn ∈ Ct, (24a)
‖tn − tl‖2 ≥ D, l = 1, 2, . . . , N, l 6= n,

(24b)
tr(hI(t, r0)QhI(t, r0)H)

σ2
I

− γ̄ ≥ 0. (24c)

The optimization process is similar to the second sub-
problem, we are unable to achieve the optimal solution
because of the non-convex constraints (24b) and (24c).

The lower bound proxy function for g(tn)HBng(tn) is

y(tn) = g(tn)HBng(tn) (25)

≥ g(tin)HBng(tin) + 2Re{g(tin)HBn(g(tn)− g(tin))}
= 2Re{g(tin)HBng(tn)} − g(tin)HBng(tin).

Then, we establish a positive real number denoted as βn,
such that βnI2 � ∇2ȳ(tn). Similar to the derivation process
in Problem (P2), we can obtain the following

ȳ(tn) =Re{g(tin)HBng(tn)} (26)

≥ȳ(tin) +∇ȳ(tin)T (tn − tin)− βn
2

(tn − tin)T (tn − tin)

=− βn
2
tTn tn + (∇ȳ(tin) + βnt

i
n)T tn −∇ȳ(tin)T tin

+ ȳ(tin)− βn
2

(tin)T tin,

where −∇ȳ(tin)T tin + ȳ(tin) − βn
2 (tin)T tin is a constant,

maximizing ȳ(tn) is equivalent to maximizing ỹ(tn) ,
−βn2 tTn tn + (∇ȳ(tin) + βnt

i
n)T tn.

At any given point, the global lower bound of any con-
vex function can be approximated by its first-order Taylor
expansion. In the i-th iteration of SCA, given the local point
margin, we obtain a lower bound of ‖tn − tl‖2 ≥ D as

1

‖tin − tl‖2
(tin − tl)

T (tn − tl) ≥ D. (27)

It is a linear constraint about tn, this proof is the same as the
proof in [3] and is omitted for simplicity.

Next, let us find the lower bound surrogate function for the
non-convex constraint (24c):

tr(hI(t, r0)QhI(t, r0)H) (28)

=tr(hI(t, r0)ssHhI(t, r0)H) = Ptr(hI(t, r0)hI(t, r0)H).



The problem can be equivalent to maximizing

tr(hI(t, r0)hI(t, r0)H). (29)

Based on this, we define the nth element of hI(t, r0) ∈
C1×N by hI,n(tn) = f(r0)HΣIg(tn). Then, we remove
hI,n(tn) from hI(t, r0) ∈ C1×N and denote the remaining
sub-vector as

ht
I = [hI,1(t1),hI,2(t2), · · · ,hI,n−1(tn−1),

hI,n+1(tn+1), · · · ,hI(tN )] ∈ C1×(N−1). (30)

We define a positive definite matrix:

Cn = ΣH
I f(r0)f(r0)HΣI . (31)

The derivation process is similar to the objective function of
subproblem three, from which we can obtain

tr(hI,n(tn)hI,n(tn)H) = g(tn)HCng(tn). (32)

Meanwhile, we can also obtain

z(tn) =g(tn)HCng(tn) (33)

≥g(tin)HCng(tin) + 2Re{g(tin)HCn(g(tn)− g(tin))}
=2Re{g(tin)HCng(tn)} − g(tin)HCng(tin).

Then, we establish a positive real number denoted as γn,
such that γnI2 � ∇2z̄(tn). Similar to the derivation process
in Problem (P2), we can obtain the following

z̄(tn) =Re{g(tin)HCng(tn)} (34)

≥z̄(tin) +∇z̄(tin)T (tn − tin)− γn
2

(tn − tin)T (tn − tin)

=− γn
2
tTn tn + (∇z̄(tin) + γnt

i
n)T tn −∇z̄(tin)T tin

+ z̄(tin)− γn
2

(tin)T tin.

We can obtain:

tr(hI(t, r0)hI(t, r0)H) (35)

=− γntTn tn + 2(∇z̄(tin) + γnt
i
n)T tn − 2(∇z̄(tin)T tin)

− γn(tin)T tin + g(tin)HCng(tin) + ht
I(h

t
I)
H .

Finally, in the ith iteration of SCA, we can obtain the
following

max
tn
− βn

2
tTn tn + (∇ȳ(tin) + βnt

i
n)T tn (36)

s.t. tn ∈ Ct, (36a)
1

‖tin − tl‖2
(tin − tl)

T (tn − tl) ≥ D, (36b)

− γntTn tn + 2(∇z̄(tin) + γnt
i
n)T tn

− 2(∇z̄(tin)T tin)− γntin)T tin + g(tin)HCng(tin)

+ ht
I(h

t
I)
H − σ2

I γ̄

P
≥ 0. (36c)

The problem is formulated as a quadratically constrained
quadratic program (QCQP). It can be acquired using the
cplexqcp function [18].

Algorithm 1 Alternating Optimization for Solving Problem
(P1)

1: Input: ΣE , ΣI , P, σI , M , N , Lt, Lr, {θqr}
Lr
q=1,

{φqr}
Lr
q=1, {θpt }

Lt
p=1, {φpt }

Lt
p=1, Cr, Ct, D, ε.

2: Initialize {r} and {tn}Nn=1.
3: while the increase of the power harvested in (10) is above
ε do

4: Obtion the optimal solution for Q in Problem (P1)
given {tn}Nn=1 and {r}.

5: Obtain An via (12).
6: Given Q, {tn}Nn=1, solve Problem (P2) to update {r}.
7: for n = 1→ N do
8: Obtain Bn via (23).
9: Given Q, {tl, l 6= N}Nl=1, and {r} solve Problem

(P4) to update tn.
10: end for
11: end while
12: Output t, r, Q.

Fig. 2. Fluid antenna and fixed-position versus normalized region size.

Fig. 3. Energy harvesting at different powers versus normalized region size.



Fig. 4. FA systems with the number of transmit/receive paths Lr = Lt = 14,
Lr = Lt = 24, versus normalized region size.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical results is shown to validate the
performance of the algorithm. In the simulation, we set N =
4 transmit FAs , M = 1 receive FA and K = 1 receive fixed-
position antenna. The base station transmit region and ER
receive region are defined as square regions with dimensions
A × A. In this paper, we investigate transmission in a
geometric channel model, where the count of transmit and
receive paths is identical, i.e.,Lt = Lr. Using D = λ/2
to represent the minimum distance constraint between fluidic
antennas. The convergence threshold of the objective function
is set to ε.

We set Lt = Lr = 14, P = 20 W, A = 3λ, γ̄ = 1 dB. As is
shown in Fig. 2, when FAs are used in the receive and transmit
regions, the EH efficiency is higher, while it is lowerer when
FAs are used only in the transmit fluid antennas (TFA) and
fixed-position antennas (FPA) are used in the receive region,
scenarios above perform better compared with scenario where
FPA are used in both the transmit and receive regions. This
also demonstrates the superiority and better communication
conditions of FAs.

We consider the performance tradeoff between base station
transmission power and energy harvesting. In Fig. 3, we
assume that the SINR is 1 dB. As the power of the base
station increases, the energy harvested by the ER shows a
significant increase and tends to stabilize with the increase of
the fluid antenna region.

We can infer from Fig. 4 that the ER can harvest more
energy with the increase in the number of receive paths and
transmit paths, where the SINR is 1 dB. This also affirms how
the communication rate of the fluid antenna is influenced by
the number of paths.

V. CONCLUSION

In this paper, we introduce a novel FA-enabled MISO sys-
tem designed for achieving simultaneous wireless information
and power transfer, aiming to enhance EH by optimizing the

antenna positions at the transmit/receive regions. We investi-
gated the maximization of EH for FA-enabled point-to-point
MISO communication, addressing the non-convex problem by
decomposing it into three subproblems to ultimately find a
locally optimal solution. The numerical results demonstrate a
significant improvement in EH compared to traditional FPA-
based MISO systems when using the proposed system and
algorithm.
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