Safety and Efficacy of Aficamten in Patients With Nonobstructive Hypertrophic Cardiomyopathy: A 96-Week Analysis From FOREST-HCM

Ahmad Masri MD, MS, Mark V. Sherrid MD, Lubna Choudhury MD, Pablo Garcia-Pavia MD, PhD, Christopher M. Kramer MD, Roberto Barriales-Villa MD, Robert M. Cooper MBChB, PhD, Perry M. Elliott MBBS, MD, Sheila M. Hegde MD, MPH, Martin S. Maron MD, Michael E. Nassif MD, Artur Oreziak MD, PhD, Anjali T. Owens MD, Scott D. Solomon MD, Albree Tower-Rader MD, Stephen B. Heitner MD, Daniel L. Jacoby MD, Stuart Kupfer MD, Fady I. Malik MD, PHD, Chiara Melloni MD, MHSc, Tyrell Simkins DO, PHD, Jenny Wai PHD, Sara Saberi MD, the FOREST-HCM Investigators

Journal of Cardiac Failure
From Failure to Function

**OpenCi of Open Health Application was well of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**OpenCi of Open Health Application was need 10 Cardiacs

**Open Health Application was need 10 Cardi

PII: \$1071-9164(25)00431-2

DOI: https://doi.org/10.1016/j.cardfail.2025.09.016

Reference: YJCAF 5872

To appear in: Journal of Cardiac Failure

Received date: 23 July 2025
Revised date: 5 September 2025
Accepted date: 6 September 2025

Please cite this article as: Ahmad Masri MD, MS, Mark V. Sherrid MD, Lubna Choudhury MD, Pablo Garcia-Pavia MD, PhD, Christopher M. Kramer MD, Roberto Barriales-Villa MD, Perry M. Elliott MBBS, MD, Robert M. Cooper MBChB, PhD, Sheila M. Hegde MD, MPH, Martin S. Maron MD, Michael E. Nassif MD, Artur Oreziak MD, PhD, Anjali T. Owens MD, Scott D. Solomon MD, Albree Tower-Rader MD, Stephen B. Heitner MD, Daniel L. Jacoby MD, Stuart Kupfer MD, Fady I. Malik MD, PHD, Chiara Melloni MD, MHSc, Tyrell Simkins DO, PHD, Jenny Wai PHD, Sara Saberi MD, the FOREST-HCM Investigators, Safety and Efficacy of Aficamten in Patients With Nonobstructive Hypertrophic Cardiomyopathy: A 96-Week Analysis From FOREST-HCM, Journal of Cardiac Failure (2025), doi: https://doi.org/10.1016/j.cardfail.2025.09.016

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Safety and Efficacy of Aficamten in Patients With Nonobstructive Hypertrophic Cardiomyopathy: A 96-Week Analysis From FOREST-HCM

Ahmad Masri, MD, MS^a; Mark V. Sherrid, MD^b; Lubna Choudhury, MD^c; Pablo Garcia-Pavia, MD, PhD^d; Christopher M. Kramer, MD^e; Roberto Barriales-Villa, MD^f; Robert M. Cooper, MBChB, PhD^g; Perry M. Elliott, MBBS, MD^h; Sheila M. Hegde, MD, MPHⁱ; Martin S. Maron, MD^j; Michael E. Nassif, MD^k; Artur Oreziak, MD, PhD^l; Anjali T. Owens, MD^m; Scott D. Solomon, MDⁱ; Albree Tower-Rader, MDⁿ; Stephen B. Heitner, MD^o; Daniel L. Jacoby, MD^o; Stuart Kupfer, MD^o; Fady I. Malik, MD, PhD^o; Chiara Melloni, MD, MHSc^o; Tyrell Simkins, DO, PhD^o; Jenny Wei, PhD^o; Sara Saberi, MD^p; the FOREST-HCM Investigators

From the ^aOregon Health and Science University, Portland, OR, USA; ^bLeon H. Charney Division of Cardiology, NYU Langone Health, New York, NY, USA; ^cNorthwestern University Feinberg School of Medicine, Chicago, IL, USA; ^dHospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, and Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; ^eCardiovascular Division, Department of Medicine University of Virginia Health System Charlottesville, VA, USA; ^fComplexo Hospitalario Universitario de A Coruña, A Coruña, Spain; ^gLiverpool John Moores University, Liverpool, UK; ^hBarts Heart Centre and University College London, London, UK; ⁱBrigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; ⁱLahey Hospital and Medical Center, Burlington, MA, USA; ^kUniversity of Missouri Kansas City Healthcare Institute for Innovations in Quality and Saint Luke's Mid America Heart Institute, Kansas City, MO, USA; ⁱNational Institute of Cardiology, Warsaw, Poland; ^mUniversity

of Pennsylvania, Philadelphia, PA, USA; ⁿMassachusetts General Hospital, Boston, MA, USA;

°Cytokinetics, Incorporated, South San Francisco, CA, USA; PUniversity of Michigan Medical

Center, Ann Arbor, MI, USA.

Address for Correspondence: Dr Ahmad Masri, Hypertrophic Cardiomyopathy Center, Knight

Cardiovascular Institute, Oregon Health & Science University, Mail code: UHN-62, 3181 SW Sam

Jackson Rd, Portland, OR 97239, USA. Email: masria@ohsu.edu

ORCID: 0000-0002-6390-6526

Key words: non-obstructive hypertrophic cardiomyopathy, aficamten, clinical trial, patient-

reported outcomes

Acknowledgments

The authors thank the study participants and their families, as well as all investigators. Editorial

support for the preparation of this manuscript was provided by David Sunter, on behalf of

Engage Scientific Solutions, Inc, and was funded by Cytokinetics, Incorporated.

Funding

This study was funded by Cytokinetics, Incorporated.

Disclosures of Interest

2

Dr Masri has received consultant/advisor fees from Tenaya, Attralus, Cytokinetics Incorporated, Bristol Myers Squibb, Eidos, Pfizer, Lexicon, Alnylam, Haya, Intellia, and Ionis; and has received research grants from Ionis, Akcea, Pfizer, Cytokinetics Incorporated, Ultromics, and the Wheeler Foundation. Dr Sherrid has received consultant fees/honoraria from Pfizer; and has served as a consultant for Cytokinetics Incorporated, without payment. Dr Choudhury has received advisor fees from Cytokinetics Incorporated. Pablo Garcia-Pavia has received speakers' bureau fees from Bristol Myers Squibb, Pfizer, BridgeBio, Ionis, AstraZeneca, Novo Nordisk, Intellia, and Alnylam; has received consulting fees from Bristol Myers Squibb, Cytokinetics Incorporated, Rocket Pharma, Lexeo Therapeutics, Pfizer, Bayer, BridgeBio, Daiichi-Sankyo, Neurimmune, Alnylam, AstraZeneca, Novo Nordisk, Attralus, Intellia, Idoven, General Electric, and Alexion; and has received research/educational support to their institution from Pfizer, BridgeBio, Novo Nordisk, AstraZeneca, Intellia, and Alnylam. Dr Kramer has received research grants from Bristol Myers Squibb and Eli Lilly; and has served as a consultant for Eli Lilly. Dr Barriales-Villa has received consultant/advisor fees from MyoKardia/Bristol Myers Squibb, Pfizer, Sanofi, Alnylam, and Cytokinetics Incorporated. Dr Cooper has received consulting fees from Bristol Myers Squibb, Bayer, Pfizer, and Alnylam. Dr Elliott has received consulting fees from Bristol Myers Squibb, Pfizer, and Cytokinetics Incorporated; has received speaker fees from Pfizer; and has an unrestricted grant from Sarepta. Dr Hegde's institution has received fees for core lab services from Cytokinetics Incorporated and Bristol Myers Squibb; and has received advisor fees from Cytokinetics Incorporated. Dr Maron has received consultant/advisor fees from Imbria, Edgewise, and BioMarin; and has received steering committee fees for SEQUOIA-HCM from Cytokinetics Incorporated. Dr Nassif has received research and grant support to their institution

from Cytokinetics Incorporated and Bristol Myers Squibb. Dr Oreziak has received investigator fees from Cytokinetics Incorporated and MyoKardia/Bristol Myers Squibb. Dr Owens has received consultant/advisor fees from Alexion, Bayer, BioMarin, Bristol Myers Squibb, Cytokinetics Incorporated, CorVista, Edgewise, Imbria, Lexeo, Stealth, and Tenaya; and has received research grants from Bristol Myers Squibb. Dr Solomon has received consultant/advisor fees from Abbott, Action, Akros, Alnylam, Amgen, Arena, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Cardior, Cardurion, Corvia, Cytokinetics Incorporated, Daiichi-Sankyo, GSK, Eli Lilly, Merck, MyoKardia, Novartis, Roche, Theracos, Quantum Genomics, Cardurion, Janssen, Cardiac Dimensions, Tenaya, Sanofi-Pasteur, Dinagor, Tremeau, CellProthera, Moderna, American Regent, Sarepta, Lexicon, AnaCardio, Akros, and Puretech Health; and has received research grants from Actelion, Alnylam, Amgen, AstraZeneca, Bellerophon, Bayer, Bristol Myers Squibb, Celladon, Cytokinetics Incorporated, Eidos, Gilead, GSK, Ionis, Eli Lilly, Mesoblast, MyoKardia, NIH/NHLBI, Neurotronik, Novartis, Novo Nordisk, Respicardia, Sanofi-Pasteur, Theracos, and US2.Al. Albree Tower-Rader has received research grants from Bristol Myers Squibb and Cytokinetics Incorporated. Drs Heitner, Jacoby, Kupfer, Malik, Melloni, Simkins, and Wei are employees of Cytokinetics Incorporated and hold stock in Cytokinetics Incorporated. Dr Saberi has received consulting fees from Bristol Myers Squibb and Cytokinetics Incorporated.

Author Contributions

Drs. Masri, Saberi, and Wei had full access to all the data in the study and take responsibility for the integrity of the data and accuracy of the data analysis

Concept and design: Drs. Masri and Saberi

Acquisition, analysis, or interpretation of data: All authors

Drafting of the manuscript: Dr. Masri

Critical revision of the manuscript for important intellectual content: All authors

Statistical analysis: Dr. Wei

Obtained funding: Cytokinetics, Incorporated

Data Availability Statement

Qualified researchers may submit a request containing the research objectives,

endpoints/outcomes of interest, statistical analysis plan, data requirements, publication plan,

and qualifications of the researcher(s). In general, Cytokinetics Inc. does not grant external

requests for individual patient data for the purpose of reevaluating safety and efficacy issues

already addressed in the product labeling. Requests are reviewed by a committee of internal

advisors, and if not approved, may be further arbitrated by a Data Sharing Independent Review

Panel. Upon approval, information necessary to address the research question will be provided

under the terms of a data sharing agreement. This may include anonymized individual patient

data and/or available supporting documents, containing fragments of analysis code where

provided in analysis specifications. Requests may be submitted to

medicalaffairs@cytokinetics.com.

Nonobstructive hypertrophic cardiomyopathy (nHCM) affects a significant proportion of

patients with HCM and is without proven therapies. Cardiac myosin inhibitors (CMIs) target the

5

hypercontractility and impaired myocardial relaxation that underlie the pathophysiology in HCM. CMIs have been shown to be effective in treating patients with obstructive HCM (oHCM) and, owing to the shared underlying pathophysiology, have been proposed to treat nHCM.¹ Mavacamten, the first-in-class CMI, recently reported failure to improve patient-reported symptoms and peak oxygen consumption (pVO₂) for patients with symptomatic nHCM in a placebo-controlled trial (ODYSSEY-HCM, NCT05582395) and demonstrated a limited efficacy signal in the preceding phase 2 trial MAVERICK-HCM (NCT03442764). Moreover, of those patients opting to participate in the MAVA-LTE study (NCT03723655), the long-term extension study for patients originating in MAVERICK-HCM, one-third of patients developed left ventricular ejection fraction (LVEF) ≤50% despite a dosing strategy targeting 2 prespecified plasma mavacamten concentrations.²

Aficamten is a next-in-class CMI with a distinct pharmacologic profile.³ The phase 2 study REDWOOD-HCM Cohort 4 (NCT04219826), which enrolled 41 patients with nHCM, found aficamten was well tolerated over 10 weeks, with improvement in symptoms and biomarkers as well as infrequent LVEF <50% events.⁴ These findings were similarly observed over 36 weeks of aficamten treatment in the long-term, open-label FOREST-HCM study (NCT04848506)⁵. If aficamten is found to be effective, safe, and achieves regulatory approval, the intended use would be chronic, therefore; long-term safety and efficacy data are critical in this patient population. As such, here we report the 96-week experience with aficamten in nHCM patients enrolled in FOREST-HCM.

The detailed study design has been previously published.⁵ Of the original 41 patients enrolled in REDWOOD-HCM Cohort 4 (1 subject in the safety analysis was excluded from

efficacy analysis due to site Good Clinical Practice violations), 7 patients did not participate in FOREST-HCM. One patient died during REDWOOD-HCM (previously reported). Reasons for non-participation included one screen fail due to arrythmia and the remaining 5 did not enroll due to site closure (1), personal reasons (2), or PI decision (2). None of these were related to heart failure, reduced LVEF, or AEs related to aficamten. Patients were initiated on 5 mg of aficamten and could dose-escalate in 5-mg increments to a maximum of 20 mg at ≥2-week intervals.

Decisions to dose-escalate were based on echocardiographically determined LVEF and were at the investigator's discretion after integrating clinical assessments. The following criteria were used: increase dose by 5 mg if LVEF ≥55%; maintain if LVEF 50%–54%; decrease dose by 5 mg if LVEF 40% to <50%; and interrupt if LVEF <40%. Outcome measures included New York Heart Association (NYHA) class, Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score (KCCQ-CSS), LVEF, cardiac biomarkers N-terminal pro—B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin I (hs-cTnI), and safety parameters. Data are presented as mean ± standard deviation (SD) or median (interquartile range [IQR]) as appropriate.

All 34 patients enrolled in FOREST-HCM (age 57.2 ± 15.3 years, 62% were women) were followed for 96 weeks. Baseline characteristics have previously been published⁵ and patients were highly symptomatic with abnormal markers of myocardial wall stress. At the end of titration, most patients were on 20 mg daily⁵ and generally remained at stable doses over the 96 weeks (11.8%, 11.8%, 17.6%, and 58.8% respectively for 5, 10, 15, and 20 mg daily). At 96 weeks, NYHA improved by at least one class in 27 patients (79.4%), of whom 20 (58.8%) became asymptomatic, with reduction in severely symptomatic patients (NYHA class III) from 41.2% at baseline to 11.8% at Week 96 (**Figure**). KCCQ-CSS mean ± SD improved by 11.2 ± 14.3

points (P<0.0001 relative to baseline), with 22 patients (64.7%) reporting improvements ≥5 points. Similar symptomatic changes were seen at 36 weeks of treatment, thus demonstrating continued durability of these effects. ⁵ NT-proBNP rapidly declined by Week 12⁵ and remained low through 96 weeks (median [IQR]: -753.0 pg/mL [-1034.7, -471.3], P<0.0001; proportional decrease - geometric mean [95% CI]: 0.3 [0.2-0.4], P=0.0002). While there the reduction from baseline in hs-cTnl by Week 36⁵ was not significant, by Week 96 this was now significant (median [IQR]: -7.3 ng/L [-11.7, -2.9]; P<0.005). There was a modest reduction in LVEF from baseline hyperdynamic state (70% ± 6%) to normal range at Week 12 (LVEF: 63% ± 8%, change from baseline: $-6.2\% \pm 7.9\%$; P<0.0001) following titration, which remained stable within normal range up to Week 96 (LVEF: $64\% \pm 6\%$, change from baseline: $-5.3\% \pm 6.7\%$; P<0.0001). Over the entire treatment period LVEF <50% was observed in four patients (range: 35%–49%; exposure-adjusted event rate: 5.4/100 patient-years), of whom two were previously reported.⁵ The new cases occurred during the ensuing 60-weeks, both being asymptomatic. All episodes of LVEF <50% demonstrated reversibility after downtitration or short duration interruption (one subject had two non-sequential interruptions of a maximum of 23 days but has safely restarted and remained on aficamten; reduction in LVEF occurred in the setting of a recent acute illness and recurrent persistent atrial fibrillation).

These long-term data from FOREST-HCM demonstrate that, for ~2 years, aficamten was well tolerated in these nHCM patients, with most achieving the highest available dose and demonstrating sustained improvements in heart failure symptoms and marked improvements in cardiac biomarkers. Although this is an open-label trial, the magnitude of benefit observed on NYHA class and KCCQ-CSS likely exceeds that observed in placebo groups previously⁶, and

this is mirrored by favourable and significant improvements in quantitative measures of important cardiac biomarkers.^{1,7} Importantly, the exposure-adjusted event rate for LVEF <50%, the primary on-target potential toxicity for CMIs, was modest, and only two instances occurred without potential confounders (atrial fibrillation and pulmonary vein isolation were temporally related in two others). These patients were managed largely by simple dose reduction without the need to discontinue therapy.

These findings are supportive of the ongoing phase 3 pivotal trial ACACIA-HCM (NCT06081894), which employs similar eligibility criteria and dosing strategies to those evaluated in FOREST-HCM. As primary endpoints, ACACIA-HCM evaluates exercise capacity as assessed with cardiopulmonary exercise testing and symptom improvement; exercise capacity was not evaluated in FOREST-HCM. Findings from the SEQUOIA-HCM trial in patients with oHCM demonstrate the magnitude of early reduction in NT-proBNP and hs-cTnI along with improvement in symptoms (NYHA, KCCQ) may be predictors of improvement in peak oxygen uptake, all of which are seen in this nHCM population in FOREST-HCM. However, it is unknown if these correlations from an oHCM population will translate to a nHCM population — a question that may be answered in ACACIA-HCM. Finally, it is important to note the current results reflect an optimized dosing strategy, enabled by the favourable pharmacologic properties of aficamten, which aimed at maximizing dose without compromising safety. Taken together, this 96-week overview of aficamten treatment for patients with symptomatic nHCM in FOREST-HCM provides support for the ongoing, pivotal randomized controlled trial ACACIA-HCM.

References

- 1. Haraf R, Habib H, Masri A. The revolution of cardiac myosin inhibitors in patients with hypertrophic cardiomyopathy. Can J Cardiol. 2024;40(5):800-19.
- 2. Owens A, Sherrid M, Rader F, Wong T, Wever-Pinzon O, Choudhury L, et al. Cumulative long-term efficacy and safety of mavacamten treatment in nonobstructive hypertrophic cardiomyopathy: updated interim analysis from the MAVERICK cohort of the MAVA-long-term extension (LTE) study up to 120 weeks. J Cardiac Fail. 2024;30(Suppl 1):S2-S3.
- 3. Chuang C, Collibee S, Ashcraft L, Wang W, Vander Wal M, Wang X, et al. Discovery of aficamten (CK-274), a next-generation cardiac myosin inhibitor for the treatment of hypertrophic cardiomyopathy. J Med Chem. 2021;64(19):14142-52.
- 4. Masri A, Sherrid MV, Abraham TP, Choudhury L, Garcia-Pavia P, Kramer CM, et al. Efficacy and safety of aficamten in symptomatic nonobstructive hypertrophic cardiomyopathy: results from the REDWOOD-HCM trial, cohort 4. J Card Fail. 2024;30(11):1439-48.
- 5. Masri A, Barriales-Villa R, Elliott P, Nassif ME, Oreziak A, Owens AT, et al. Safety and efficacy of aficamten in patients with non-obstructive hypertrophic cardiomyopathy: a 36-week analysis from FOREST-HCM. Eur J Heart Fail. 2024;26(9):1993-8.
- 6. Maron MS, Masri A, Nassif ME, Barriales-Villa R, Abraham TP, Arad M, et al. Impact of Aficamten on Disease and Symptom Burden in Obstructive Hypertrophic Cardiomyopathy: Results From SEQUOIA-HCM. J Am Coll Cardiol. 2024;84(19):1821-31.
- 7. Maron MS, Masri A, Nassif ME, Barriales-Villa R, Arad M, Cardim N, et al. Aficamten for symptomatic obstructive hypertrophic cardiomyopathy. N Engl J Med. 2024;390(20):1849-61.
- 8. Lee MMY, Masri A, Nassif ME, Barriales-Villa R, Abraham TP, Claggett BL, et al. Aficamten and cardiopulmonary exercise test performance: a substudy of the SEQUOIA-HCM randomized clinical trial. JAMA Cardiol. 2024;9(11):990-1000.

Figure Legend

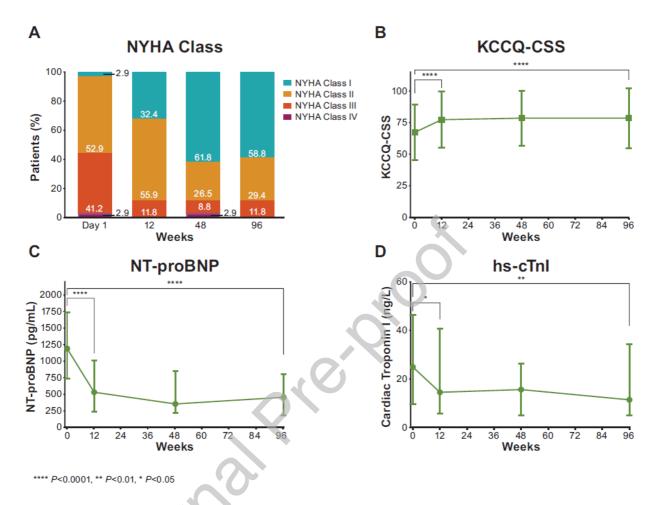


Figure. Efficacy endpoints in the nonobstructive HCM cohort of the FOREST-HCM trial. (A)

NYHA functional class, (B) KCCQ-CSS, (C) NT-proBNP, and (D) hs-cTnl.

KCCQ-CSS are mean ± SD; NT-proBNP and hs-cTnI are median ± interquartile range.

hs-cTnI, high-sensitivity cardiac troponin I; KCCQ-CSS, Kansas City Cardiomyopathy

Questionnaire-Clinical Summary Score; NT-proBNP, N-terminal pro–B-type natriuretic peptide;

NYHA, New York Heart Association.

John Ried Control