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 A B S T R A C T

We propose a novel Bayesian optimization framework for interval selection in Partial Least Squares (PLS) 
regression. Unlike traditional iPLS variants that rely on fixed or grid-based intervals, our approach adaptively 
searches over the discrete space of interval positions of a pre-defined width using a Gaussian Process surrogate 
model and an acquisition function. This enables the selection of one or more informative spectral regions 
without exhaustive enumeration or manual tuning. Through synthetic and real-world spectroscopic datasets, 
we demonstrate that the proposed method consistently identifies chemically relevant intervals, reduces model 
complexity, and improves predictive accuracy compared to full-spectrum PLS and stepwise interval selection 
techniques. A Monte Carlo study further confirms the robustness and convergence of the algorithm across 
varying signal complexities and uncertainty levels. This flexible, data-efficient approach offers an interpretable 
and computationally scalable alternative for chemometric applications.
1. Introduction

Chemometrics, particularly the analysis of spectral data, has driven 
the development of various algorithms for interval selection. Yet, many 
of these methods do not fully integrate Partial Least Squares (PLS) as 
a central modelling framework—despite PLS being one of the most 
widely used and effective techniques in spectroscopic data analysis; 
see Yun et al. [1] for a comprehensive review. PLS is especially suitable 
for high-dimensional data with multicollinearity among predictors, as it 
extracts latent components that maximize covariance between predic-
tors and response variables. However, its global modelling approach 
may be suboptimal for interpretability or prediction in spectroscopy 
when the informative signal is confined to one or more specific spectral 
regions [2].

While PLS is a powerful tool for full-spectrum analysis, its pre-
dictive performance and interpretability can often be enhanced by a 
preceding variable selection step. The chemometrics literature provides 
a vast array of such methods, often classified based on their interac-
tion with the modelling algorithm into filter, wrapper, and embedded 
techniques [3,4]. Common strategies include sequential searches that 
iteratively add or remove variables [5,6], and more sophisticated wrap-
per approaches based on intelligent optimization algorithms (IOA) such 
as Genetic Algorithms [7,8]. A further key distinction in spectroscopy is 
whether methods select individual variables (Wavelength Point Selection) 
or contiguous blocks of variables (Wavelength Interval Selection) -see Yun 
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et al. [1] for a thorough review. Interval selection is often preferred as 
it respects the continuous nature of spectral bands and can improve 
model interpretation. Our work contributes to the domain of WIS by 
introducing a novel Bayesian Optimization framework to guide the 
search for informative intervals, aiming to overcome the limitations of 
simpler sequential or exhaustive search strategies.

To address this, the Interval Partial Least Squares (iPLS) method 
was proposed by Nørgaard et al. [2]. IPLS partitions the spectrum 
into fixed-width intervals and evaluates each subregion by fitting lo-
calized PLS models, allowing the identification of the most informa-
tive spectral ranges. This approach enhances both interpretability and 
prediction, particularly in settings where relevant chemical informa-
tion is concentrated in narrow spectral bands. However, the standard 
iPLS implementations, such as those in Kucheryavskiy [9], are often 
limited to equal-width subintervals or a fixed number of intervals 
with automatically defined positions. While simple to implement, these 
constraints can disrupt the underlying correlation structure of the 
spectrum and limit the method’s adaptability, especially in the absence 
of prior information. Moreover, the combinatorial space of possible 
subintervals grows rapidly with dimensionality, making exhaustive 
search computationally impractical.

Flexibility in both interval width and location is particularly im-
portant in near-infrared (NIR) spectroscopy, where informative spec-
tral regions may be narrow, noncontiguous, or located in chemically 
meaningful subregions. Rigid partitioning may overlook such features, 
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leading to suboptimal interpretation and performance. This motivates 
the need for an adaptive, data-driven approach that can efficiently 
explore a broader range of candidate intervals.

The main contribution of this paper is to introduce a novel interval 
selection algorithm for PLS modelling based on Bayesian optimization. 
This approach overcomes the limitations of fixed grid search by using a 
Gaussian Process (GP) surrogate model to approximate the performance 
landscape over the space of possible intervals. Starting from an initial 
random set of sampled intervals, the algorithm iteratively proposes 
new candidates by balancing exploration and exploitation using an 
acquisition function. This probabilistic modelling strategy enables a 
guided search through the discrete (but almost continuous) space of 
interval configurations, facilitating the discovery of high-performing 
regions without requiring exhaustive evaluation.

Through simulation experiments where the true informative in-
tervals are known, we demonstrate that the method efficiently con-
verges to the correct spectral regions. We further validate the algo-
rithm on several real-world NIR spectroscopy datasets, showing that 
it achieves competitive or superior predictive performance compared 
to full-spectrum PLS and established iPLS variants, while maintaining 
strong interpretability and computational efficiency.

The remainder of this paper is organized as follows. Section 2 
provides an overview of existing interval selection techniques in iPLS. 
Section 3 presents the proposed Bayesian optimization framework. 
Sections 4 and 5 report empirical results from simulation studies and 
real NIR datasets, respectively. A discussion and concluding remarks 
are given in Section 6.

2. Overview of interval specification techniques

In the realm of chemometrics and spectroscopic analysis, effective 
feature construction and/or feature selection are crucial for building ro-
bust predictive models. In the case of feature construction, PLS regres-
sion has gained prominence for its ability to handle high-dimensional 
data while uncovering latent structures [10]. Interval PLS combines 
feature selection with the traditional PLS methodology by evaluating 
specific spectral intervals, thereby underpinning a more detailed un-
derstanding of the data [2]. In this section we highlight the three main 
procedures for interval specification within the iPLS framework: Stan-
dard iPLS, Forward iPLS, and Backward iPLS. Each of these methods 
offers distinct strategies for identifying relevant spectral regions, and 
each has strengths and limitations in the context of feature selection. By 
examining these approaches, we can better understand how to optimize 
interval selection to enhance model performance and interpretability in 
complex datasets.

Standard iPLS, Nørgaard et al. [2] divides the entire spectral range 
into a series of non-overlapping equal sized intervals, specified by 
choosing either the width or the number of intervals, [9]. In each 
interval, a PLS model is developed to predict the target variable, and 
a metric, such as RMSE, is used to assess each interval’s performance. 
Intervals that yield the highest performance are typically considered to 
contain the most relevant information.

There are two modification of the standard version: Forward iPLS 
(fiPLS) [11] and Backward iPLS (biPLS) [12]. FiPLS takes an incremen-
tal approach, sequentially adding intervals to the model based on their 
individual contribution to performance. The process begins with an 
empty set of intervals, and in each iteration, it selects the interval that 
results in the greatest improvement in model performance when added. 
This process continues until adding further intervals does not yield a 
substantial improvement. On the other hand, biPLS begins with the full 
set of intervals covering the entire spectral range. At each iteration, it 
removes the interval that contributes the least to model performance, 
evaluating the model after each removal. This process continues until 
removing further intervals would degrade model performance beyond 
an acceptable threshold.
2 
While Standard iPLS provides an initial view of informative spectral 
regions, its approach is limited to analysing each interval indepen-
dently, thus missing any potential synergies or interactions between 
different spectral regions. This univariate approach might overlook 
combinations of intervals that collectively contribute significantly to 
model accuracy. Additionally, Standard iPLS evaluates only single in-
tervals, ignoring more complex configurations that could better capture 
relevant spectral features. Consequently, Standard iPLS can yield sub-
optimal results for complex datasets, where relevant information is 
distributed across multiple regions of the spectrum. As demonstrated 
in Munck et al. [13], evaluating combinations of two, three, or four 
intervals captures only a limited portion of the extensive solution space, 
resulting in suboptimal performance.

Forward iPLS works by sequentially adding intervals based on their 
incremental contribution to model performance. However, this step-
wise addition may produce suboptimal interval combinations by pre-
maturely committing to intervals without a global assessment. Further-
more, models constructed using Forward iPLS tend to become overly 
complex, as the algorithm stops only when no further improvement is 
possible, potentially leading to overfitting and increased computational 
burden.

Backward iPLS, by contrast, begins with a full model and iteratively 
removes intervals. Although this approach aims to eliminate redundant 
intervals, it risks prematurely excluding relevant intervals that might 
have performed well in conjunction with others. The initial inclusion 
of all intervals makes Backward iPLS especially sensitive to noise, 
and as shown in Munck et al. [13], it is not ideal for tasks that 
require removing uninformative spectral regions. Its primary strength 
lies in identifying relevant, isolated regions, rather than detecting and 
excluding less significant ones.

3. Interval selection via Bayesian optimization

To overcome the some of the drawbacks of the techniques previ-
ously detailed we propose a novel algorithm for interval selection based 
within the framework of Bayesian Optimization (BO). BO is a powerful 
and flexible optimization technique, particularly suited to finding the 
global minimum (or maximum) of expensive functions that are costly 
or time-intensive to evaluate. Traditional optimization methods, like 
grid search or random sampling, become infeasible for such problems 
due to the exponential growth of the search space with increasing 
dimensions. BO addresses this challenge by efficiently utilizing infor-
mation from past evaluations and uncertainty quantification techniques 
to guide the search towards promising regions in the parameter space, 
minimizing the number of function evaluations required to find an 
optimal solution. BO has proven effective in numerous applications, 
from hyperparameter tuning in machine learning models to real-world 
engineering problems, where each evaluation represents a significant 
time or monetary cost. For a thorough review on the topic see Shahriari 
et al. [14],Garnett [15],Wu et al. [16].

Formally, Bayesian optimization aims to find a global minimizer, 𝑥∗, 
of an objective function 𝑓 (𝑥) over some domain  . In our application, 
the objective function 𝑓 (𝑥) is the Root Mean Squared Error (RMSE) of 
a PLS model, and the input 𝑥 represents the centre wavelength of a 
candidate spectral interval. The goal is thus to find the interval that 
minimizes the prediction error: 

𝑥∗ = argmin
𝑥∈

𝑓 (𝑥) (1)

where  is the design space of interest. In global optimization,  is typ-
ically a compact subset of R𝑑 , but the Bayesian optimization framework 
can be extended to more complex search spaces, such as those with 
categorical or conditional inputs, or even combinatorial search spaces 
involving multiple categorical parameters. In this setup, we assume 
that the function 𝑓 does not have a closed-form representation but can 



N. Hernández et al. Chemometrics and Intelligent Laboratory Systems 267 (2025) 105541 
be evaluated at any arbitrary query point 𝑥 within the domain. Each 
evaluation produces noisy, stochastic outputs 𝑦 ∈ R that satisfy:
E[𝑦 ∣ 𝑓 (𝑥)] = 𝑓 (𝑥),

meaning that we observe the function 𝑓 through unbiased noisy, point-
wise observations 𝑦. In a sequential Bayesian optimization algorithm, 
at each iteration 𝑗 (after the initialization), a location 𝑥𝑗+1 is selected 
to query 𝑓 , resulting in a new observation 𝑦𝑗+1. After 𝐽 queries, the 
algorithm recommends a final point 𝑥𝐽 , which it estimates to be the 
most promising location based on the current surrogate model.

In the application to interval selection in spectroscopy, 𝑓 represents 
the performance of the PLS model under different intervals [𝑎, 𝑏] ∈
 , denoted by interval centre 𝑥, and the stochastic output 𝑦 could 
represent prediction accuracy measured via root mean squared error 
(RMSE). The Bayesian optimization framework is particularly useful in 
scenarios where evaluations of 𝑓 are expensive, where gradients of 𝑓
with respect to 𝑥 are unavailable, and where 𝑓 may be non-convex 
or multimodal. In these cases, it efficiently utilizes the history of the 
optimization to guide the search, making it highly data-efficient. This 
methodology needs two key components that we discuss in the next 
subsections.

3.1. Gaussian processes as surrogate model

The first component is a probabilistic surrogate model, which in-
cludes a prior distribution that reflects our initial beliefs about the 
unknown objective function’s behaviour, along with an observation 
model that describes the data generation process. In this sense Gaussian 
Processes (GPs) are widely used in BO as the surrogate model to approx-
imate the unknown objective function 𝑓 (𝑥), due to their flexibility and 
ability to provide both predictions and uncertainty estimates for the 
objective function across the search space. As a non-parametric model, 
a GP defines a distribution over functions and is fully characterized by a 
mean function and a covariance function (or kernel). The core assump-
tion is that any finite set of function values will follow a multivariate 
normal distribution, which provides a flexible way to model complex 
functions without being restricted to a specific functional form.

The GP surrogate model provides a predictive mean, which acts as 
an estimate of the objective function at a given point, and a predic-
tive variance, which quantifies the uncertainty in that prediction. The 
choice of kernel in the GP plays a pivotal role in defining the smooth-
ness and continuity assumptions of the model; common choices include 
the Radial Basis Function (RBF) kernel and the Matérn kernel, [17], 
both of which allow the model to adapt to a wide variety of objective 
landscapes.

The GP is defined as a distribution over functions, specified by a 
mean function 𝑚(𝑥) and a kernel 𝑘(𝑥, 𝑥′). Here, 𝑥 and 𝑥′ represent 
any two points in the input space (e.g., two different interval centres), 
and the kernel quantifies the similarity between the function’s outputs 
at these points. A high kernel value implies that the RMSEs of PLS 
models built on these two nearby intervals are expected to be strongly 
correlated. The GP is then formally written as 𝑓 (𝑥) ∼ (𝑚(𝑥), 𝑘(𝑥, 𝑥′)). 
Given 𝑗 observations 𝑗 = {(𝑥𝑖, 𝑦𝑖)}

𝑗
𝑖=1, the posterior distribution for the 

function value 𝑓 (𝑥𝑗+1) at a new point 𝑥𝑗+1
𝑝(𝑓 (𝑥𝑗+1)|𝑗 , 𝑥𝑗+1) ∼  (𝜇𝑗 (𝑥𝑗+1), 𝜎2𝑗 (𝑥𝑗+1))

where 𝜇𝑗 (𝑥𝑗+1) and 𝜎2𝑗 (𝑥𝑗+1) are the posterior mean and variance, 
respectively, whose forms are conditioned on the data.

3.2. The acquisition function

The second component is the acquisition function, which guides 
the search for the optimal solution. It determines the next point in 
the search space to evaluate by balancing exploration and exploitation 
of the probabilistic surrogate model. Exploitation means sampling new 
interval centres in regions where our GP surrogate model predicts a low 
3 
Fig. 1. Example: Bayesian optimization framework for interval selection. 
Upper panel: the posterior process conditioned on six exact observations, with 
highlighted regions (light-blue) indicating areas of exploitation (high predicted 
performance) and exploration (high uncertainty). Lower panel its corresponding 
acquisition function (bottom). Next sampling location 𝑥𝑗+1(∙).

RMSE is likely. Exploration means sampling in regions where the GP is 
most uncertain about the RMSE, which are typically areas far from any 
previously evaluated intervals.

The main objective of the acquisition function is to maximize the 
expected improvement over the current best observations. This is ex-
pressed mathematically as: 
𝑥𝑗+1 = argmax

𝑥∈
𝛼(𝑥;𝑗 ) (2)

where 𝑗 is the set of observations up to iteration 𝑗, and 𝛼(𝑥;𝑗 )
denotes the acquisition function.

In BO literature can be found several functional forms for the 
acquisition function (see Garnett [15] for further details). However 
as our loss function is the RMSE, and our optimization problem is a 
minimization one we consider the Lower Credible Bound at a point 𝑥
as the acquisition function defined as follows: 
𝛼(𝑥;𝑗 ) = 𝜅𝜎(𝑥) − 𝜇(𝑥) (3)

where 𝜇(𝑥) and 𝜎(𝑥) are the predicted mean and standard deviation 
(or uncertainty) of the Gaussian Process at point 𝑥 respectively; 𝜅 is 
a positive constant (hyperparameter) that controls the trade-off be-
tween exploration and exploitation. This trade-off parameter balances 
between exploring areas of high uncertainty and exploiting areas of 
low predicted value. Adjusting 𝜅 allows for flexible control of the 
exploration–exploitation dynamics in the optimization process.

Fig.  1 illustrates the core principle of Bayesian optimization (BO): 
selecting the next query point by optimizing an acquisition function. 
The upper plot shows the Gaussian Process posterior fitted to six 
observations, with uncertainty (1.5𝜎) indicated by the shaded region. 
The lower plot displays the acquisition function used to propose the 
next sampling location, 𝑥𝑗+1, which balances exploration and exploita-
tion. Here, the 𝑥-axis represents wavelength, a key input variable in 
spectroscopy that determines the energy of light interacting with a 
material. By modelling the response across different wavelengths, BO 
can efficiently identify the most informative regions of the spectrum for 
further sampling.

3.3. Proposed methodology

Based on our review of the literature and empirical experience, it 
has become clear that selecting appropriate intervals for PLS models in 
the chemometric field is sometimes an important feature to achieving 
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accurate prediction outcomes. The selection of these intervals, par-
ticularly those that contribute to improved predictive performance, 
requires a flexible approach. To address this and leverage the Bayesian 
Optimization framework we propose a novel interval selection method-
ology tailored to the specific challenge of wavelength selection in 
spectral analysis, following the steps in Algorithm 1, (see Appendix  A).

The proposed algorithm aims to identify optimal spectral intervals 
that minimize prediction error in PLS model. It begins by training a 
benchmark PLS model using the full spectrum to establish a baseline er-
ror. To initialize the search, an initial set of interval centres is randomly 
sampled. In practice, we advise tightening the sampling domain at the 
extremes to help bound uncertainty at the edges of the wavelength 
range. PLS models are then fitted to each of these initial points to 
compute their Root Mean Squared Error of Prediction (RMSEP). A 
GP regression model (surrogate model) is then fitted to the observed 
RMSEPs, and its predictive mean and uncertainty are used to define an 
acquisition function. Local maxima of this function are extracted and 
filtered based on whether their lower uncertainty bound lies below a 
threshold-initially set to the full-spectrum RMSEP. These filtered points 
are stored as candidates to be evaluated in the next iteration using new 
PLS models (Bayesian Optimization procedure). The resulting RMSEPs 
are added to the dataset, and the GP model is updated. This process 
repeats, allowing the method to progressively focus on informative re-
gions while balancing exploration and exploitation. The algorithm stops 
when no new candidates improve over previous ones, returning a set 
of intervals with high predictive performance and interpretability. In 
practice, we found that a budget of 10–15 iterations typically provides 
convergence in most settings, as shown in Section 4.

At this point, several key considerations regarding the proposed 
methodology should be highlighted. First, it is important to clarify that 
any initial division of data into training and testing sets (for which 
we recommend a random split or the Kennard-Stone (KS) algorithm) 
is a one-time pre-processing step performed before the optimization 
loop begins. The subsequent BO algorithm then operates exclusively 
on the training portion, using cross-validation to evaluate candidate 
intervals without repeated splitting. Next, defining the kernel function 
is a crucial step, as it embeds prior assumptions about the objective 
function and directly impacts model performance. In this work, we 
use the Matérn kernel with 𝜈 = 3∕2. This choice is motivated by 
its flexibility and widespread adoption as a robust default in the BO 
literature [18]. Unlike the infinitely smooth Radial Basis Function 
(RBF) kernel, the Matérn kernel allows for controlling the smoothness 
assumption of the surrogate model via the parameter 𝜈. The 𝜈 = 3∕2
setting, which assumes the function is once-differentiable, represents a 
more realistic and less restrictive prior for real-world objective func-
tions whose smoothness is unknown [19] (Ch. 2). Our preliminary 
sensitivity analysis confirmed its suitability for this application.

For the acquisition function parameter 𝜅, we consider several sce-
narios 𝜅 = {1.5, 2, 3}, however a common choice is to set 𝜅 = 2 ≈ 1.96
which is the normal (two-tailed) quantile value at 95%. Regarding each 
interval Partial Least Squares (PLS) model, it is important to emphasize 
the optimization of the number of components based on the training 
data to ensure the model captures relevant patterns. Additionally, it is 
advisable to tighten the extremes of the domain, which helps bound 
uncertainty at the edges of the wavelength range.

In this study we have used Root Mean Square Error (RMSE) as the 
criterion to optimize. This is a standard metric for assessing predictive 
performance in regression tasks. There are, of course, other desirable 
properties one might wish to consider at the same time, interpretability 
being the most obvious one. The twin difficulties here would be quan-
tifying this property in a numerical fashion and establishing the trade 
off between RMSE and interpretability in any given application. Setting 
up a formal framework for this is well beyond the scope of this paper, 
but it would be relatively easy for a user who felt unhappy with the 
interpretability of any suggested solution to add constraints that forced 
either the inclusion or exclusion of particular intervals on the grounds 
of interpretability or any other domain-specific criterion.
4 
3.4. Modelling multiple intervals

The proposed approach can be naturally extended to the selection of 
multiple intervals, enabling the model to capture more complex spec-
tral patterns. By considering combinations of informative regions rather 
than a single interval, the method gains flexibility and improves its abil-
ity to identify relevant spectral features across broader or discontinuous 
wavelength ranges. This extension enhances both the interpretability 
and predictive performance of the resulting PLS models [20].

The selection of multiple intervals can be approached using two dis-
tinct strategies: sequential or simultaneous optimization. In the sequen-
tial approach, the process is formalized as a greedy, multi-stage opti-
mization. To clarify the procedure, let the objective function 𝑓 (𝑥1,… , 𝑥𝑘
represent the model’s prediction error (e.g., RMSEP) for a set of 𝑘
intervals centred at 𝑥1,… , 𝑥𝑘. The initial stage identifies the single most 
informative interval by finding the centre, 𝑥∗1, that minimizes the error 
for a single interval:
𝑥∗1 = arg𝑚𝑖𝑛𝑥1𝑓 (𝑥1)

Following this, the second stage finds the best complementary interval 
by performing a new optimization where the first interval’s location is 
fixed. This second search solves for 𝑥∗2 by optimizing the two-interval 
objective function:
𝑥∗2 = arg𝑚𝑖𝑛𝑥2𝑓 (𝑥

∗
1 , 𝑥2)

This process reduces the dimensionality of each search, making it 
computationally simpler than a full simultaneous search. However, 
this greedy strategy is not guaranteed to find the globally optimal 
combination of intervals and may instead converge to a local optimum.

The simultaneous approach conceptually transforms the task from 
a one-dimensional line search into a multi-dimensional optimization 
problem. For selecting two intervals, this creates a 2D search space 
where the axes represent the centre positions of the first (𝑥1) and sec-
ond (𝑥2) intervals, respectively. Every coordinate (𝑥1, 𝑥2) in this space 
corresponds to a unique pair of intervals, and the objective function, 
𝑓 (𝑥1, 𝑥2), can be visualized as a complex performance landscape over 
this 2D plane. The goal of the Bayesian Optimization is to find the 
global minimum-the lowest ‘‘valley’’-in this RMSEP landscape. To do 
this efficiently, we employ a multi-input Gaussian Process surrogate 
model:

𝑓 (𝑥1, 𝑥2) ∼ (𝑚(𝑥1, 𝑥2), 𝑘((𝑥1, 𝑥2), (𝑥′1, 𝑥
′
2)))

This model’s key component is the multi-input covariance function, 
𝑘((𝑥1, 𝑥2), (𝑥′1, 𝑥

′
2)), which measures the similarity between two distinct 

pairs of intervals. This structure is what allows the model to capture 
crucial interaction effects-for instance, determining if the predictive 
power of an interval at 𝑥1 is enhanced or diminished when paired with 
a second interval at 𝑥2.

For the simultaneous selection of multiple intervals, a multi-point, 
filtered-batch Bayesian Optimization strategy is employed. This ap-
proach is designed to enhance exploration by proposing several can-
didate points in each iteration. The process begins after fitting the 
Gaussian Process surrogate model. First, the domain of previously 
evaluated points in the 2D search space is partitioned into a set of 
non-overlapping triangles using Delaunay triangulation. Within each 
triangle, a local search identifies the point that minimizes the acqui-
sition function (the Lower Credible Bound), yielding a large set of 
potential candidates—one from each triangular region.

However, not all these candidates are evaluated. A crucial filtering 
step is applied to ensure that computational effort is focused only on 
points that are genuinely promising. A performance threshold is set to 
the minimum RMSEP observed in the previous iteration’s samples. A 
candidate is only retained for evaluation if its predicted performance 
(i.e., its acquisition function value) is lower than this threshold.

This procedure is visually analogous to the 1D case shown in Fig. 
3, where only the local minima (red dots) that dip below the perfor-
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Fig. 2. Left: Near-infrared transmission spectra of 48 wheat kernel samples plotted against wavelengths (nm). Right: Artificially constructed response variable 
𝑦 showing dependence on wavelengths 900 to 938.
mance benchmark (dashed line) are selected as candidates for the next 
iteration. All candidates that pass this filter are then evaluated in a 
single batch, and the resulting data are used to update the surrogate 
model for the next optimization cycle. This method effectively balances 
broad exploration across the entire space with a focused exploitation of 
regions that promise to outperform the current best solution.

4. Simulation study

4.1. Simulation setup and one–shot experiment

For the simulated experiment, we begin with pre-processed (sec-
ond derivative followed by SNV [21]) transmission spectra from 48 
wheat kernel samples, each measured across 100 wavelengths in 2 nm 
increments, covering a range of 850–1048 nm (see left panel of Fig. 
2), represented by 𝐙 ∈ R𝑛×𝑝 (with 𝑛 = 48 samples and 𝑝 = 100
wavelengths). The spectra are real, but the response variable, 𝐰, was 
artificially constructed to reflect specific dependencies on a particular 
subset of the wavelength domain. To this aim we define the weight 
function 𝛿(𝑥), which gives a non-zero weight to the wavelengths be-
tween 898 and 938 nm (points 25–45 in the normalized scale 0–100), 
as follows:

𝜹 =

⎧

⎪

⎨

⎪

⎩

10 × sin
(

(𝑥−25)𝜋
10

)

for 𝑥 ∈ [25, 45]

0 for 𝑥 ∉ [25, 45]

Then the artificial response variable is defined as:
𝐰 = 𝛿𝑇𝐙 + 𝜀

where 𝜀 ∼  (0, 0.025) is Gaussian noise. The resulting 𝐰 values 
have signal components only for wavelengths between 898 and 938 
(see right panel of Fig.  2). This design introduces a clear relationship 
between 𝐰 and a localized interval in the spectral data.

To simplify the setting and align with the structure of the synthetic 
data, we assume that only one predictive interval exists and therefore 
employ a one-interval selection strategy. The interval width is fixed 
to 21 variables, corresponding to 42 nm in spectral space, and kept 
constant throughout the optimization.

This controlled setup allows for a focused evaluation of the method’s 
ability to identify a single informative region. We acknowledge that us-
ing a fixed interval width is a simplification for this initial study. While 
the interval width could be treated as a second hyperparameter, this 
extension is non-trivial. A variable width can introduce sharp variations 
or discontinuities into the objective function landscape; for instance, 
two intervals with nearly identical centres but different widths might 
include or exclude noisy regions, yielding vastly different prediction 
errors and therefore challenging the standard GP surrogate to model.
5 
Results. The results of the one shot simulated study demonstrate that 
the proposed Bayesian optimization framework effectively identifies 
informative spectral intervals associated with the response variable. As 
shown in Fig.  3, the method progressively converges towards intervals 
near 900–938 nm, which aligns with the underlying structure of the 
artificially generated response given by 𝛿 weight function (Fig.  2-
right). Notably, the optimal interval selected corresponds to position 
32 out of 100, which maps to a central wavelength of 912 nm—
directly overlapping with the true active region, containing 87.5% of 
the wavelengths (nm).

Fig.  3 also displays the evolution of the Bayesian optimization 
procedure for the simulated study case. Each plot shows the predicted 
RMSECV (solid black line) and associated uncertainty bands (shaded 
area) for each iteration. The blue dots represent the initially evalu-
ated intervals. Red points indicate the local minima of the acquisition 
function that were selected as candidates for evaluation in the next 
iteration. In the final iteration, the green star identifies the selected 
optimal interval centre.

Compared to the baseline RMSECV (Root Mean Squared Error of 
Cross-Validation) from the full-spectrum PLS model (0.47), the RM-
SECV obtained using the selected interval is substantially lower, 0.352. 
This highlights that when prior knowledge suggests a sparse informa-
tive structure, the one-interval strategy not only improves predictive 
accuracy but also enhances model interpretability by clearly identifying 
the relevant spectral region. The convergence behaviour, performance 
gain, and localized selection underline the potential of this approach in 
applications where both interpretability and computational efficiency 
are critical, especially in high-dimensional spectral data.

The horizontal dashed line represents the dynamic performance 
threshold used for filtering candidates (see Algorithm 1, Step 7). For 
the first iteration (a), this threshold is the full-spectrum RMSECV, while 
for subsequent iterations it represents the best RMSECV found in the 
preceding step.

4.2. Monte Carlo evidence

To evaluate the robustness of Algorithm 1 under stochastic con-
ditions and varying uncertainty widths, we conducted a Monte Carlo 
(MC) experiment. The goal was to determine whether the algorithm 
consistently detects the correct signal regions, independently of
favourable random iterations, and independently of the tightness of the 
confidence bands (as controlled by the parameter 𝜅).

Each setting was run for 500 MC iterations, with the following 
configurations:

(A) 1 True Interval (Width (21 points) 42 nm): True interval from 
898–938 nm (mapped to [25, 45] on the normalized 100-scale). 
Detection method also used a single interval with ℎ = 42 nm.
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Fig. 3. Predicted posterior mean and uncertainty bands of the RMSECV across several iterations. Sampled interval centres are shown as blue dot (•). In subfigures 
(a-c), candidate intervals for the next evaluation are highlighted in red at the argmin of the lower uncertainty band (•). In subfigure (d), the final selected interval 
is highlighted in (⋆). The horizontal dashed line represents the dynamic performance threshold used for filtering candidates (see Algorithm 1, Step 7). For the 
first iteration (a), this threshold is the full-spectrum RMSECV, while for subsequent iterations it represents the best RMSECV found in the preceding step.
(B) 1 True Interval (Width (21 points) 42 nm): Same true interval 
(898–938 nm / [25, 45]). Detection used two intervals with 
ℎ = 42 nm (each).

(C) 2 True Intervals (Width (11 points) 22 nm): Two true inter-
vals, from 878–898 nm and 958–978 nm (mapped to [15, 25] 
and [55, 65]). Detection method used two intervals with ℎ = 22
nm.

In all settings, data were simulated with noise as defined in Sec-
tion 4.1. The initial sample size was fixed at 𝑆0 = 10. Simulations were 
repeated for two values of 𝜅 = {1.5, 3}: corresponding to 1.5𝜎 and 3𝜎
uncertainty bands. For each configuration, we report the average Root 
Mean Squared Error (RMSE), final sample size, number of iterations, 
and detection accuracy across the 500 repetitions.

The evaluation of interval selection performance is based on four 
key metrics. The Overlap over True is defined as

OverlapTrue =
|𝐼 ∩ 𝐼|
|𝐼|

,

where 𝐼 denotes the true informative interval and 𝐼 the estimated 
one. This metric quantifies the proportion of the true region that was 
successfully recovered. Conversely, the Overlap over Estimated is given 
by

OverlapEstimated =
|𝐼 ∩ 𝐼|

,

|𝐼|

6 
measuring how accurate or specific the predicted region was. Finally, 
we report the Centre Error, which measures the absolute difference 
between the centre of the estimated and true intervals, and the RMSECV 
to evaluate the predictive performance of the model over the test set. 
In addition to these, we also report the final input sample size and the
terminated step of the algorithm to assess its computational behaviour 
and convergence characteristics.
Results. The purpose of this study is to quantitatively assess the al-
gorithm’s accuracy in locating the true informative intervals (Table  1) 
and its computational efficiency (Tables  2) under various conditions. 
These results confirm that the proposed interval selection algorithm 
achieves both high predictive accuracy and efficient convergence across 
all Monte Carlo (MC) scenarios. In Scenario A, where a single true 
interval of width 21 is detected using a single estimated interval, 
the algorithm achieves Overlap over True and Estimated above 88% 
and 83%, respectively, with centre distances below 3.0. Most notably, 
RMSECV is reduced to 0.3574 with 𝜅 = 1.5, representing a substantial 
improvement over RMSECV of 0.531 obtained using a full-spectrum 
PLS model optimized with 7 latent components. This demonstrates 
that even a single adaptively selected interval can yield more accurate 
predictions than a full-spectrum model while significantly reducing 
model complexity.

Scenarios B and C introduce more complex structures that involve 
narrower or multiple informative intervals. Despite this, the method 
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Table 1
Summary of performance metrics across different Monte Carlo (MC) simulation settings, values between brackets represent standard errors. Each scenario (A, B, 
and C) corresponds to a specific combination of true interval configuration, interval selection method, and uncertainty width parameter 𝜅. Scenario A evaluates 
the case where a single true interval of width 21 (located at 898–938 nm) is detected using a single estimated interval of the same width. Scenario B evaluates 
the same true interval as A but assumes detection via two estimated intervals of width 11, capturing more localized features within the same region. Scenario C 
represents the case with two disjoint true intervals: 878–898 nm and 958–978 nm, both of width 11. The detection method here uses two estimated intervals, each 
of width 11. The reported metrics are defined as follows: Overlap over True is the proportion of the true informative region recovered; Overlap over Estimated 
measures the specificity of the selected interval; and Centre Error is the absolute distance between the true and estimated interval centres. All reported RMSECV 
values can be compared against the benchmark RMSECV of 0.531 from a full-spectrum PLS model. Scenario definitions are as follows: (A) A single true interval 
detected with a single estimated interval. (B) A single true interval detected using two narrower intervals. (C) Two disjoint true intervals detected using two 
estimated intervals. Values in parentheses are standard errors.
 MC
scenario

True
interval

ℎ Intervals
selected

𝜅 Overlap
true

Overlap
estimate

Centre
error

RMSECV  

 A 898–938 nm 
[25, 45] 21 1 1.5 0.885 (0.030) 0.843 (0.029) 2.80 (0.60) 0.3574 (0.0162)  

 3.0 0.875 (0.000) 0.833 (0.000) 3.00 (0.00) 0.3521 (0.0000)  
 B 898–938 nm 

[25, 45] 11 2 1.5 – 0.970 (0.080) 2.66 (1.72) 0.3508 (0.0035)  
 3.0 – 1.000 (0.000) 2.00 (0.00) 0.3495 (0.0000)  
 

C

878–898 nm 
[15, 25] 11 2 1.5 0.39 (0.145) 0.355 (0.132) 7.34 (4.61) 0.3777 (0.0087)  

 3.0 0.35 (0.000) 0.318 (0.000) 7.00 (0.00) 0.3696 (0.0013)  
 958–978 nm 

[55, 65] 11 2 1.5 0.768 (0.069) 0.698 (0.062) 2.82 (0.69) 0.3777 (0.0087)  
 3.0 0.751 (0.010) 0.683 (0.009) 2.99 (0.10) 0.3696 (0.0013)  
maintains strong performance: RMSECVs remain below 0.351 in Sce-
nario B, with overlap over estimated intervals reaching up to 1.000 and 
centre errors as low as 2.00. In this setting, where two narrow intervals 
are used to detect a single true interval of width ℎ = 21 (42 nm), 
an Overlap over Estimated of 1.000 indicates that the two selected 
intervals join up to cover the real wider region. In Scenario C, where 
two disjoint intervals must be detected, the algorithm achieves Overlap 
over True exceeding 75% and Overlap over Estimated above 68%, with 
centre errors under 3.0. Predictive performance also remains high, with 
RMSECVs of 0.377 and 0.369 for 𝜅 = 1.5 and 3.0, respectively—both 
outperforming the full-spectrum baseline.

From a computational standpoint, Table  2 shows that the adaptive 
sampling strategy terminates in a small number of steps (typically 
5–8), regardless of scenario complexity. Simpler cases such as Sce-
nario A converge rapidly, requiring only 18–25 final input samples 
and fewer iterations (mean steps between 4.9 and 6.1). In contrast, 
more complex cases like Scenario C demand additional evaluations (up 
to 492 samples), as expected for recovering multiple disjoint regions. 
Importantly, empirical results show that convergence is consistently 
achieved regardless of the initial sample configuration or size, high-
lighting the robustness of the procedure, under both informative and 
non-informative priors.

Even under high uncertainty settings (i.e., when 𝜅 = 3), the algo-
rithm demonstrates stable behaviour across all simulation scenarios. 
The selected intervals remain consistently aligned with the true infor-
mative regions, and both the overlap metrics and centre localization 
errors remain within tight bounds. This robustness under increased 
variance in the confidence bands highlights the method’s ability to 
efficiently balance exploration and exploitation, avoiding overfitting 
to noise while still converging to relevant spectral features. Notably, 
although larger 𝜅 values tend to induce broader uncertainty estimates, 
the algorithm compensates adaptively by requiring only a modest 
increase in the number of sampled points, maintaining convergence 
within a practical number of iterations.

Overall, the algorithm outperforms full-spectrum modelling in both 
performance and parsimony, making it especially suited for high-
dimensional spectroscopic applications, where identifying and focusing 
on informative regions may be important.

5. Real data applications

In this paper we used two sets of NIR datasets, which we detail 
below, to validate our proposed method.
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Table 2
Computational performance and convergence metrics for the Monte Carlo 
simulation. Final input sample size is the total number of unique interval 
centres sampled and evaluated by the algorithm before termination. Termi-
nated step indicates the number of Bayesian optimization iterations required 
for convergence. All values are reported as the mean (and standard deviation 
in parentheses) over 500 MC repetitions.
 Scenario 𝜅 RMSECV Final input

sample size
Terminated
step

 

 
A

1.5 0.3574 
(0.0162)

18.83 
(3.88)

4.94 
(1.69)

 

 3.0 0.3521 
(0.0000)

24.74 
(5.09)

5.20 
(1.10)

 

 
B

1.5 0.3508 
(0.0035)

126.85 
(26.12)

6.99 
(1.22)

 

 3.0 0.3495 
(0.0000)

305.83 
(55.38)

8.20 
(1.12)

 

 
C

1.5 0.3777 
(0.0087)

234.28 
(51.06)

6.88 
(1.09)

 

 3.0 0.3696 
(0.0013)

491.64 
(91.16)

8.23 
(0.89)

 

Corn datasets. Four Near-Infrared (NIR) datasets for corn samples 
were obtained from http://www.eigenvector.com/data/Corn/index.h
tml. Each dataset includes 80 corn samples measured using three 
different NIR spectrometers of the same type, with each raw spectrum 
comprising 700 wavelength points at 2 nm intervals, covering the range 
from 1100 to 2498 nm. Some limited trials with these data suggest 
that pretreatment does not substantially improve the results when using 
the full spectrum, so none was applied here. The properties of interest 
in these datasets are oil, protein, and starch content. Following the 
Kennard-Stone algorithm [22], each dataset was divided into a training 
set (60 samples) and an separate test set (20 samples).
Diesel fuel datasets. Six NIR datasets for diesel fuels were obtained 
from http://www.eigenvector.com/data/SWRI/index.html. Each raw 
spectrum consists of 401 wavelength points taken at 2 nm intervals 
within the range of 750 to 1550 nm. The target properties for analysis 
include the boiling point at 50% recovery (boiling point), density, 
cetane number (CN), freezing temperature (Freeze), total aromatics 
(aromatics), and viscosity. In this data set the train-test distribution was 
not uniform and the partitions were 85/28 (boiling point), 85/28 (CN), 
88/28 (Freeze), 88/30 (aromatics) and 87/29 (viscosity).
Results. The performance of our proposed Bayesian optimization ap-
proach for interval selection was evaluated across multiple datasets 
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Table 3
Comparison of interval selection performance across different sigma-based uncertainty thresholds (2𝜎 and 3𝜎) and interval widths 
(10% and 20%). Results are reported for the Corn (m5) dataset, considering different response variables. Metrics include RMSECV 
(train), RMSEP (test), number of PLS components, and selected intervals centres. The units for all RMSE values are the same as 
the units of the corresponding reference property. The number of PLS components was optimized for each model using 10-fold 
cross-validation on the training set. The row ‘‘Sig. Difference’’ indicates the models (Full PLS = 1, BiPLS = 2, FiPLS = 3) over 
which the proposed method showed statistically significant improvements.
 Dataset Response variable Metrics 2𝜎 3𝜎

 10% 20% 10% 20%  
 

Corn (m5)

Oil

RMSECV (Train) 0.014 0.015 0.014 0.015  
 RMSEP (Test) 0.018 0.018 0.018 0.018  
 Num. Comp. 12 16 12 16  
 Selected intervals (283, 599) (323, 534) (283, 599) (323, 534) 
 Sig. Difference 1 1,2,3 1 1,2,3  
 

Starch

RMSECV (Train) 0.072 0.063 0.072 0.063  
 RMSEP (Test) 0.119 0.062 0.119 0.062  
 Num. Comp. 15 15 15 15  
 Selected intervals (185, 350) (371, 467) (185, 350) (371, 467) 
 Sig. Difference 2,3 1,2,3 2,3 1,2,3  
 

Protein

RMSECV (Train) 0.013 0.029 0.013 0.029  
 RMSEP (Test) 0.010 0.022 0.010 0.022  
 Num. Comp. 16 17 16 17  
 Selected intervals (340, 514) (297, 479) (340, 514) (297, 479) 
 Sig. Difference 1,2,3 1,2,3 1,2,3 1,2,3  
and response variables. Results are presented in terms of RMSEP (test), 
RMSECV (train), number of latent components, and selected intervals, 
under varying uncertainty thresholds and training set proportions. To 
assess whether the observed improvements over benchmark meth-
ods (Full PLS, BiPLS, FiPLS-see Tables  B.1 and B.2) were statistically 
significant, we applied the test proposed [23], which evaluates dif-
ferences in predictive ability based on RMSEP. Statistically significant 
improvements are indicated in the ‘‘Sig. Difference’’ rows of the tables.

For the Corn data set consider one interval method, with interval 
width of 10% (70 nm) and 20% (140 nm), with an uncertainty thresh-
old of 2𝜎 and 3𝜎. Across all four response variables-Oil, Starch, and 
Protein—our method demonstrates consistent and statistically signifi-
cant improvements over baseline methods. For Oil, the RMSEP values 
are consistently lower than Full PLS (0.018 vs. 0.066), and significance 
tests confirm better performance compared to all baselines (1, 2, 3) 
under all settings. In the case of Starch, our method shows gains espe-
cially under the 20% setting (RMSEP 0.062 vs. 0.119 for Full PLS), with 
significance against all three baselines. For Protein, test RMSE drops 
from 0.086 (Full PLS) to 0.013, with consistent statistical superiority (1, 
2, 3) across all settings-showing that our method successfully isolates 
informative wavelength intervals (see Table  3 for a full summary).

For the Diesel data set consider one interval method, with interval 
width of 5% (20 nm), 10% (40 nm) and 20% (80 nm), with an 
uncertainty threshold of 2𝜎 and 3𝜎. Our method achieves competitive 
or superior performance in most cases. In Boiling Point, RMSEP drops 
to 2.249 under the 20% 2𝜎 setting, outperforming Full PLS (4.151) 
and matching BiPLS and FiPLS in most cases. Significant gains are 
observed in rows 2 and 3, particularly where intervals such as (138, 
246) and (198, 324) are selected. For Cetane Number, the method 
holds RMSEP near 2.16 while using only 3 latent components—with 
significant differences against baselines (1, 3), indicating effective di-
mension reduction. In Freeze, the performance is particularly strong: 
RMSEP falls to as low as 1.892, and significance holds across all three 
baselines for all configurations. Density shows extremely low errors 
(RMSEP = 0.00075), matching or outperforming all competitors and 
again achieving significance over all methods. For Total Aromatics, 
our method reduces test error while maintaining low complexity, sig-
nificantly outperforming Full PLS and BiPLS in several configurations. 
Finally, in Viscosity, our method consistently beats Full PLS (0.066 vs. 
0.102 RMSEP), with statistical differences over 2 and 3-confirming its 
robustness even in more challenging regression targets (the full results 
are presented in Table  4).
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6. Discussion

In this paper, we set out to address limitations in interval selection 
for Partial Least Squares analysis of spectral data, aiming to improve 
flexibility and precision in identifying significant spectral regions. The 
primary objective was to develop a method that leverages Bayesian 
optimization within the Interval Partial Least Squares framework, en-
abling a more adaptive interval selection process. Our proposed ap-
proach combines random sampling and GP regression, introducing a 
probabilistic surrogate model that efficiently guides interval selection.

The novelty of this work lies in the application of Bayesian op-
timization to the interval selection process in chemometric analysis. 
Traditional ad-hoc interval selection methods, often lack the adapt-
ability needed to capture the nuanced variations present in spectral 
data. Our Bayesian optimization-based approach, by contrast, is simple 
yet highly flexible, adapting to the data and allowing a more exten-
sive search across potential intervals. This flexibility is particularly 
advantageous in high-dimensional settings, where exhaustive search 
approaches are computationally prohibitive.

A key feature of our algorithm is its ability to quantify uncertainty 
across all possible subintervals without requiring full exploration. The 
GP model serves as a surrogate, mapping sampled intervals to pre-
diction accuracy measures and providing both mean and uncertainty 
estimates of the RMSE for untested intervals. This approach makes ef-
ficient use of available data, allowing us to pinpoint promising spectral 
regions even when only a subset of intervals has been evaluated.

To further assess the stability and robustness of our method, we per-
formed a comprehensive Monte Carlo experiment under varying signal 
complexities and initial sampling conditions. The results demonstrated 
that the algorithm consistently converges to the correct informative 
regions with high accuracy, regardless of the true interval structure or 
the nature of the initial samples—whether informative or not. Across 
all scenarios, the method outperformed full-spectrum PLS in terms of 
predictive accuracy. These findings confirm that Bayesian optimization 
not only guides interval selection effectively, but also provides flexi-
bility with respect to prior knowledge, making the approach broadly 
applicable in practical settings. These results confirm that Bayesian 
optimization not only guides interval selection effectively but also 
provides flexibility in terms of the initial knowledge input.

Moreover, our methodology accommodates the selection of mul-
tiple intervals, either simultaneously or sequentially, being the latter 
more computationally efficient since one can condition on a previ-
ously selected interval. This characteristic broadens the applicability 
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Table 4
Comparison of interval selection performance across different sigma-based uncertainty thresholds (2𝜎 and 3𝜎) and interval widths (10% and 20%). Results are 
reported for the Diesel dataset, considering different response variables. Metrics include RMSECV (train), RMSEP (test), number of PLS components, and selected 
intervals. The units for all RMSE values are the same as the units of the corresponding reference property. The number of PLS components was optimized for 
each model using 10-fold cross-validation on the training set. The row ‘‘Sig. Difference’’ indicates the models (Full PLS = 1, BiPLS = 2, FiPLS = 3) for which the 
proposed method showed statistically significant improvements.
 Dataset Response variable Metrics 2𝜎 3𝜎

 5% 10% 20% 5% 10% 20%  
 

Diesel

Boiling Point

RMSECV (Train) 3.858 3.766 3.393 3.956 3.766 3.300  
 RMSEP (Test) 4.151 2.456 3.018 3.656 2.456 3.197  
 Num. Comp. 12 8 12 11 8 13
 Selected intervals (158, 376) (138, 246) (198, 324) (158, 368) (138, 246) (198, 321)
 Sig. Difference 2,3 2,3  
 

Cetane Number

RMSECV (Train) 1.968 1.974 1.956 1.968 1.974 1.963
 RMSEP (Test) 2.178 2.169 2.161 2.178 2.169 2.169
 Num. Comp. 3 3 3 3 3 3
 Selected intervals (135, 383) (125, 373) (105, 353) (135, 383) (125, 373) (105, 352)
 Sig. Difference 1,3 1,2 1 1,3 1,2 1

 

Freeze

RMSECV (Train) 2.244 2.182 2.118 2.244 0.118 2.179
 RMSEP (Test) 1.987 2.023 2.079 1.987 0.072 1.892
 Num. Comp. 6 9 12 6 8 12
 Selected intervals (162, 289) (269, 329) (104, 253) (162, 289) (134, 252) (74, 250)
 Sig. Difference 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3  
 

Density

RMSECV (Train) 0.001 0.001 0.001 0.001 0.001 0.001  
 RMSEP (Test) 0.001 0.001 0.001 0.001 0.001 0.001  
 Num. Comp. 10 14 12 10 15 12  
 Selected intervals (159, 247) (141, 256) (215, 324) (159, 247) (142, 237) (215, 324) 
 Sig. Difference  
 

Total Aromatics

RMSECV (Train) 0.517 0.481 0.501 0.517 0.481 0.501  
 RMSEP (Test) 0.495 0.479 0.538 0.495 0.479 0.538  
 Num. Comp. 13 10 10 13 10 10  
 Selected intervals (138, 391) (129, 377) (109, 355) (138, 391) (129, 377) (109, 355) 
 Sig. Difference 1,3 1,3 2 1,2 1,3 2  
 

Viscosity

RMSECV (Train) 0.121 0.118 0.119 0.123 0.126 0.119  
 RMSEP (Test) 0.102 0.072 0.081 0.121 0.066 0.081  
 Num. Comp. 14 8 14 14 7 14  
 Selected intervals (155, 228) (134, 252) (62, 156) (152, 228) (137, 247) (62, 156)  
 Sig. Difference 2,3 2,3  
Table B.1
Performance comparison between Full PLS, BiPLS, and FiPLS on the Corn (m5) dataset across different and interval widths (10% and 20%) and response variables 
and wavelength retention levels. Metrics reported include RMSE on train/test sets, number of latent variables, and percentage of retained wavelengths.
 Dataset Response variable Metrics Full PLS BiPLS FiPLS

 10% 20% 10% 20%  
 

Corn (m5)

Oil

RMSE Train 0.07342 0.01392 0.06629 0.01673 0.06070 
 RMSE Test 0.06627 0.01403 0.06980 0.01315 0.06980 
 Num. Comp. 7 14 8 12 9  
 Retained Wavelength (%) 100 10 40 20.3 60.4  
 

Starch

RMSE Train 0.824 0.119 0.837 0.095 0.861  
 RMSE Test 0.817 0.146 0.817 0.086 0.817  
 Num. Comp. 1 13 1 15 1  
 Retained Wavelength (%) 100 20.3 20.1 30.4 80.6  
 

Protein

RMSE Train 0.1277 0.019 0.077 0.016 0.056  
 RMSE Test 0.0863 0.013 0.079 0.013 0.034  
 Num. Comp. 11.0000 15 15 15 15  
 Retained Wavelength (%) 100.0 10.1 20.1 20.3 40.3  
of our approach to cases where multiple spectral regions contribute to 
predictive accuracy, providing a more comprehensive view of the data.

Our Bayesian optimization-based interval selection method demon-
strated consistent and statistically significant improvements over Full 
PLS, BiPLS, and FiPLS across multiple datasets and response variables. 
Using the RMSEP-based significance test described in Fearn [23], we 
confirmed that the selected intervals led to better predictive perfor-
mance in most scenarios. On the Corn dataset, the method showed 
notably lower test errors – especially for Protein and Starch – while 
maintaining low model complexity. In the Diesel dataset, our approach 
performed competitively across all targets, with strong results for Boil-
ing Point, Freeze, and Density. These findings highlight the method’s 
9 
ability to identify informative spectral regions and enhance prediction 
accuracy across diverse chemometric applications.

While our results demonstrate the effectiveness of the proposed 
framework, it is important to acknowledge its current limitations and 
avenues for future research. A key simplification in this study was 
the use of a fixed, pre-defined interval width. As noted, this may not 
be optimal when informative spectral bands differ in size. A major 
advantage of our BO approach is the potential handling of the interval 
width as a parameter in the surrogate model. However, this is a 
non-trivial extension. It would introduce a second dimension to the 
optimization and could create a more complex objective function where 
small changes in width lead to large changes in performance. Therefore, 
our focus on a fixed-width approach serves as a crucial first step in 
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Table B.2
Performance comparison between Full PLS, BiPLS, and FiPLS on the Diesel dataset across different and interval widths (10% and 20%) and response variables 
and wavelength retention levels. Metrics reported include RMSE on train/test sets, number of latent variables, and percentage of retained wavelengths.
 Dataset Response variable Metrics Full PLS BiPLS FiPLS

 5% 10% 20% 5% 10% 20%  
 

Diesel

Boiling Point
RMSE Train 3.599 3.626 3.735 3.579 3.176 3.552 3.707  

 RMSE Test 2.439 2.302 2.503 2.573 2.390 2.494 2.249  
 Num. Comp. 12 8 11 9 15 10 13  
 Retained Wavelength (%) 100 57.6 61.3 60.6 20.9 81.8 80.8  
 

Cetane Number
RMSE Train 2.097 1.931 2.135 2.005 1.984 1.905 2.019  

 RMSE Test 2.189 2.163 2.174 2.136 2.181 2.142 2.137  
 Num. Comp. 2 5 3 6 4 6 6  
 Retained Wavelength (%) 100 31.4 51.1 60.6 20.9 40.9 60.6  
 

Freeze

RMSE Train 2.463 2.423 2.342 2.414 2.180 2.285 2.416  
 RMSE Test 2.238 2.223 2.234 2.143 2.122 2.260 2.562  
 Num. Comp. 12 10 9 9 10 8 5  
 Retained Wavelength (%) 100 36.7 40.9 60.6 20.9 51.1 40.4  
 

Density

RMSE Train 0.00109 0.00088 0.00103 0.00106 0.00099 0.00104 0.00113 
 RMSE Test 0.00075 0.00060 0.00061 0.00057 0.00066 0.00077 0.00075 
 Num. Comp. 15 15 15 15 13 15 15  
 Retained Wavelength (%) 100 31.4 81.8 40.4 47.1 71.6 101.0  
 

total Aromatics
RMSE Train 0.603 0.531 0.507 0.563 0.514 0.539 0.515  

 RMSE Test 0.538 0.530 0.479 0.549 0.491 0.518 0.498  
 Num. Comp. 12 13 15 13 13 13 15  
 Retained Wavelength (%) 100 41.9 20.4 40.4 26.2 61.3 40.4  
 

Viscosity

RMSE Train 0.126 0.122 0.125 0.204 0.116 0.120 0.238  
 RMSE Test 0.071 0.059 0.062 0.163 0.063 0.065 0.157  
 Num. Comp. 11 12 12 7 11 13 3  
 Retained Wavelength (%) 100 89.0 71.6 40.4 78.6 61.3 60.6  
establishing the viability of BO for this problem. Future work will 
concentrate on this simultaneous optimization of interval position and 
width to enhance the method’s adaptability.

A key advantage of the proposed method is its computational strat-
egy. Rather than fitting models for every possible interval or combina-
tion, Bayesian optimization leverages a probabilistic model to prioritize 
regions with high expected gains. This reduces the number of PLS 
evaluations required and eliminates the need for manual tuning of 
thresholds or stopping criteria, making the method both efficient and 
fully automated.

It is also important to discuss the computational cost in more 
detail. The primary efficiency gain of our framework is in sample 
efficiency—that is, minimizing the number of expensive function eval-
uations (fitting and validating a PLS model), rather than raw CPU 
time. An exhaustive grid search might evaluate hundreds of intervals, 
whereas our method intelligently selects only the most promising candi-
dates. Our Monte Carlo study provides a quantitative illustration of this 
efficiency. As shown in Table  2, the algorithm consistently converges 
in a small number of iterations, typically between 5 and 8 steps. For 
a single-interval search, this required the evaluation of only 20–25 
PLS models on average to find the optimal region. This stands in stark 
contrast to grid-based methods, whose cost scales linearly for a single 
interval but grows combinatorially when searching for multiple inter-
vals, quickly becoming computationally prohibitive. This highlights the 
practical value and scalability of the Bayesian Optimization approach.
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Algorithm 1 Bayesian optimization for Interval Selection in PLS
1: Require: Spectral data 𝐙 ∈ R𝑛×𝑝; Response vector 𝐰 ∈ R𝑛; Interval 
width ℎ; Exploration parameter 𝜅; Initial sample size 𝑆0; Max 
iterations 𝐽max.

2: Initialization 
Step 0: Train a benchmark PLS model using the full spectrum and 
compute the baseline RMSECV, denoted 𝑦
Step 1: Randomly sample 𝑆0 initial interval centres 𝐱 =
{𝑥1,… , 𝑥𝑆0

} from the spectral domain, ensuring boundary cover-
age.
Step 2: For each initial centre 𝑥𝑖, train a PLS model on the interval 
[𝑥𝑖 − ℎ∕2, 𝑥𝑖 + ℎ∕2] and compute its corresponding 𝑦 =RMSECV.
Step 3: Form the dataset 0 = {(𝑥𝑖, 𝑦𝑖)}

𝑆0
𝑖=1

3: Bayesian optimization Loop
Set iteration counter 𝑗 = 0.
Repeat the following steps:
Step 4 (Fit Surrogate): Fit a Gaussian Process model to the current 
dataset 𝑗 )
Step 5 (Acquisition Function): Use the fitted GP to compute the 
acquisition function over the entire domain, 𝛼(𝑥;𝑗 ) = 𝜅𝜎(𝑥)−𝜇(𝑥).
Step 6 (Find Candidates): Identify all local minima of the acqui-
sition function 𝛼(𝑥;𝑗 ). Denote this set of candidate centres as 
{𝑥𝑗,𝑘}

𝐾𝑗
𝑘=1

Step 7 (Filter Candidates): For each candidate 𝑥𝑗,𝑘, retain it only if 
its Lower Credible Bound satisfies the following condition:

𝜇(𝑥𝑗,𝑘) − 𝜅𝜎(𝑥𝑗,𝑘) <

⎧

⎪

⎨

⎪

⎩

𝑦 , if 𝑗 = 1
min
𝑘′

𝑦𝑗−1,𝑘′ , if 𝑗 > 1

Let the set of filtered candidates be {𝑥̃𝑗,𝑘}
𝐾̃𝑗
𝑘=1

Step 8 (Check Convergence): If the set of filtered candidates is 
empty (𝐾̃𝑗 = 0), or a pre-defined maximum number of iterations 
is reached, terminate the loop.
Step 9 (Evaluate & Update): For each filtered candidate 𝑥̃𝑗,𝑘, train 
a new PLS model and compute its RMSECV, 𝑦̃𝑗,𝑘
Step 10: Augment the dataset: 𝑗+1 = 𝑗 ∪

{

(𝑥̃𝑗,𝑘, 𝑦̃𝑗,𝑘)
}𝐾̃𝑗
𝑘=1

Step 11: Increment iteration counter: 𝑗 ← 𝑗 + 1.
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