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ARTICLE INFO ABSTRACT

MSC: We propose a novel Bayesian optimization framework for interval selection in Partial Least Squares (PLS)
62J05 regression. Unlike traditional iPLS variants that rely on fixed or grid-based intervals, our approach adaptively
62K20 searches over the discrete space of interval positions of a pre-defined width using a Gaussian Process surrogate
62P30 model and an acquisition function. This enables the selection of one or more informative spectral regions
Keywords: without exhaustive enumeration or manual tuning. Through synthetic and real-world spectroscopic datasets,
L‘fgr"al selection we demonstrate that the proposed method consistently identifies chemically relevant intervals, reduces model
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complexity, and improves predictive accuracy compared to full-spectrum PLS and stepwise interval selection
techniques. A Monte Carlo study further confirms the robustness and convergence of the algorithm across
varying signal complexities and uncertainty levels. This flexible, data-efficient approach offers an interpretable

and computationally scalable alternative for chemometric applications.

1. Introduction

Chemometrics, particularly the analysis of spectral data, has driven
the development of various algorithms for interval selection. Yet, many
of these methods do not fully integrate Partial Least Squares (PLS) as
a central modelling framework—despite PLS being one of the most
widely used and effective techniques in spectroscopic data analysis;
see Yun et al. [1] for a comprehensive review. PLS is especially suitable
for high-dimensional data with multicollinearity among predictors, as it
extracts latent components that maximize covariance between predic-
tors and response variables. However, its global modelling approach
may be suboptimal for interpretability or prediction in spectroscopy
when the informative signal is confined to one or more specific spectral
regions [2].

While PLS is a powerful tool for full-spectrum analysis, its pre-
dictive performance and interpretability can often be enhanced by a
preceding variable selection step. The chemometrics literature provides
a vast array of such methods, often classified based on their interac-
tion with the modelling algorithm into filter, wrapper, and embedded
techniques [3,4]. Common strategies include sequential searches that
iteratively add or remove variables [5,6], and more sophisticated wrap-
per approaches based on intelligent optimization algorithms (IOA) such
as Genetic Algorithms [7,8]. A further key distinction in spectroscopy is
whether methods select individual variables (Wavelength Point Selection)
or contiguous blocks of variables (Wavelength Interval Selection) -see Yun
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et al. [1] for a thorough review. Interval selection is often preferred as
it respects the continuous nature of spectral bands and can improve
model interpretation. Our work contributes to the domain of WIS by
introducing a novel Bayesian Optimization framework to guide the
search for informative intervals, aiming to overcome the limitations of
simpler sequential or exhaustive search strategies.

To address this, the Interval Partial Least Squares (iPLS) method
was proposed by Nergaard et al. [2]. IPLS partitions the spectrum
into fixed-width intervals and evaluates each subregion by fitting lo-
calized PLS models, allowing the identification of the most informa-
tive spectral ranges. This approach enhances both interpretability and
prediction, particularly in settings where relevant chemical informa-
tion is concentrated in narrow spectral bands. However, the standard
iPLS implementations, such as those in Kucheryavskiy [9], are often
limited to equal-width subintervals or a fixed number of intervals
with automatically defined positions. While simple to implement, these
constraints can disrupt the underlying correlation structure of the
spectrum and limit the method’s adaptability, especially in the absence
of prior information. Moreover, the combinatorial space of possible
subintervals grows rapidly with dimensionality, making exhaustive
search computationally impractical.

Flexibility in both interval width and location is particularly im-
portant in near-infrared (NIR) spectroscopy, where informative spec-
tral regions may be narrow, noncontiguous, or located in chemically
meaningful subregions. Rigid partitioning may overlook such features,
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leading to suboptimal interpretation and performance. This motivates
the need for an adaptive, data-driven approach that can efficiently
explore a broader range of candidate intervals.

The main contribution of this paper is to introduce a novel interval
selection algorithm for PLS modelling based on Bayesian optimization.
This approach overcomes the limitations of fixed grid search by using a
Gaussian Process (GP) surrogate model to approximate the performance
landscape over the space of possible intervals. Starting from an initial
random set of sampled intervals, the algorithm iteratively proposes
new candidates by balancing exploration and exploitation using an
acquisition function. This probabilistic modelling strategy enables a
guided search through the discrete (but almost continuous) space of
interval configurations, facilitating the discovery of high-performing
regions without requiring exhaustive evaluation.

Through simulation experiments where the true informative in-
tervals are known, we demonstrate that the method efficiently con-
verges to the correct spectral regions. We further validate the algo-
rithm on several real-world NIR spectroscopy datasets, showing that
it achieves competitive or superior predictive performance compared
to full-spectrum PLS and established iPLS variants, while maintaining
strong interpretability and computational efficiency.

The remainder of this paper is organized as follows. Section 2
provides an overview of existing interval selection techniques in iPLS.
Section 3 presents the proposed Bayesian optimization framework.
Sections 4 and 5 report empirical results from simulation studies and
real NIR datasets, respectively. A discussion and concluding remarks
are given in Section 6.

2. Overview of interval specification techniques

In the realm of chemometrics and spectroscopic analysis, effective
feature construction and/or feature selection are crucial for building ro-
bust predictive models. In the case of feature construction, PLS regres-
sion has gained prominence for its ability to handle high-dimensional
data while uncovering latent structures [10]. Interval PLS combines
feature selection with the traditional PLS methodology by evaluating
specific spectral intervals, thereby underpinning a more detailed un-
derstanding of the data [2]. In this section we highlight the three main
procedures for interval specification within the iPLS framework: Stan-
dard iPLS, Forward iPLS, and Backward iPLS. Each of these methods
offers distinct strategies for identifying relevant spectral regions, and
each has strengths and limitations in the context of feature selection. By
examining these approaches, we can better understand how to optimize
interval selection to enhance model performance and interpretability in
complex datasets.

Standard iPLS, Ngrgaard et al. [2] divides the entire spectral range
into a series of non-overlapping equal sized intervals, specified by
choosing either the width or the number of intervals, [9]. In each
interval, a PLS model is developed to predict the target variable, and
a metric, such as RMSE, is used to assess each interval’s performance.
Intervals that yield the highest performance are typically considered to
contain the most relevant information.

There are two modification of the standard version: Forward iPLS
(fiPLS) [11] and Backward iPLS (biPLS) [12]. FiPLS takes an incremen-
tal approach, sequentially adding intervals to the model based on their
individual contribution to performance. The process begins with an
empty set of intervals, and in each iteration, it selects the interval that
results in the greatest improvement in model performance when added.
This process continues until adding further intervals does not yield a
substantial improvement. On the other hand, biPLS begins with the full
set of intervals covering the entire spectral range. At each iteration, it
removes the interval that contributes the least to model performance,
evaluating the model after each removal. This process continues until
removing further intervals would degrade model performance beyond
an acceptable threshold.
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While Standard iPLS provides an initial view of informative spectral
regions, its approach is limited to analysing each interval indepen-
dently, thus missing any potential synergies or interactions between
different spectral regions. This univariate approach might overlook
combinations of intervals that collectively contribute significantly to
model accuracy. Additionally, Standard iPLS evaluates only single in-
tervals, ignoring more complex configurations that could better capture
relevant spectral features. Consequently, Standard iPLS can yield sub-
optimal results for complex datasets, where relevant information is
distributed across multiple regions of the spectrum. As demonstrated
in Munck et al. [13], evaluating combinations of two, three, or four
intervals captures only a limited portion of the extensive solution space,
resulting in suboptimal performance.

Forward iPLS works by sequentially adding intervals based on their
incremental contribution to model performance. However, this step-
wise addition may produce suboptimal interval combinations by pre-
maturely committing to intervals without a global assessment. Further-
more, models constructed using Forward iPLS tend to become overly
complex, as the algorithm stops only when no further improvement is
possible, potentially leading to overfitting and increased computational
burden.

Backward iPLS, by contrast, begins with a full model and iteratively
removes intervals. Although this approach aims to eliminate redundant
intervals, it risks prematurely excluding relevant intervals that might
have performed well in conjunction with others. The initial inclusion
of all intervals makes Backward iPLS especially sensitive to noise,
and as shown in Munck et al. [13], it is not ideal for tasks that
require removing uninformative spectral regions. Its primary strength
lies in identifying relevant, isolated regions, rather than detecting and
excluding less significant ones.

3. Interval selection via Bayesian optimization

To overcome the some of the drawbacks of the techniques previ-
ously detailed we propose a novel algorithm for interval selection based
within the framework of Bayesian Optimization (BO). BO is a powerful
and flexible optimization technique, particularly suited to finding the
global minimum (or maximum) of expensive functions that are costly
or time-intensive to evaluate. Traditional optimization methods, like
grid search or random sampling, become infeasible for such problems
due to the exponential growth of the search space with increasing
dimensions. BO addresses this challenge by efficiently utilizing infor-
mation from past evaluations and uncertainty quantification techniques
to guide the search towards promising regions in the parameter space,
minimizing the number of function evaluations required to find an
optimal solution. BO has proven effective in numerous applications,
from hyperparameter tuning in machine learning models to real-world
engineering problems, where each evaluation represents a significant
time or monetary cost. For a thorough review on the topic see Shahriari
et al. [14],Garnett [15],Wu et al. [16].

Formally, Bayesian optimization aims to find a global minimizer, x*,
of an objective function f(x) over some domain X. In our application,
the objective function f(x) is the Root Mean Squared Error (RMSE) of
a PLS model, and the input x represents the centre wavelength of a
candidate spectral interval. The goal is thus to find the interval that
minimizes the prediction error:

x* = argmin f(x) (€D)]
xEX

where X is the design space of interest. In global optimization, X is typ-
ically a compact subset of R?, but the Bayesian optimization framework
can be extended to more complex search spaces, such as those with
categorical or conditional inputs, or even combinatorial search spaces
involving multiple categorical parameters. In this setup, we assume
that the function f does not have a closed-form representation but can
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be evaluated at any arbitrary query point x within the domain. Each
evaluation produces noisy, stochastic outputs y € R that satisfy:

Ely [ f()l = f(x),

meaning that we observe the function f through unbiased noisy, point-
wise observations y. In a sequential Bayesian optimization algorithm,
at each iteration j (after the initialization), a location x i1 18 selected
to query f, resulting in a new observation y,,,. After J queries, the
algorithm recommends a final point x,;, which it estimates to be the
most promising location based on the current surrogate model.

In the application to interval selection in spectroscopy, f represents
the performance of the PLS model under different intervals [a,b] €
X, denoted by interval centre x, and the stochastic output y could
represent prediction accuracy measured via root mean squared error
(RMSE). The Bayesian optimization framework is particularly useful in
scenarios where evaluations of f are expensive, where gradients of f
with respect to x are unavailable, and where f may be non-convex
or multimodal. In these cases, it efficiently utilizes the history of the
optimization to guide the search, making it highly data-efficient. This
methodology needs two key components that we discuss in the next
subsections.

3.1. Gaussian processes as surrogate model

The first component is a probabilistic surrogate model, which in-
cludes a prior distribution that reflects our initial beliefs about the
unknown objective function’s behaviour, along with an observation
model that describes the data generation process. In this sense Gaussian
Processes (GPs) are widely used in BO as the surrogate model to approx-
imate the unknown objective function f(x), due to their flexibility and
ability to provide both predictions and uncertainty estimates for the
objective function across the search space. As a non-parametric model,
a GP defines a distribution over functions and is fully characterized by a
mean function and a covariance function (or kernel). The core assump-
tion is that any finite set of function values will follow a multivariate
normal distribution, which provides a flexible way to model complex
functions without being restricted to a specific functional form.

The GP surrogate model provides a predictive mean, which acts as
an estimate of the objective function at a given point, and a predic-
tive variance, which quantifies the uncertainty in that prediction. The
choice of kernel in the GP plays a pivotal role in defining the smooth-
ness and continuity assumptions of the model; common choices include
the Radial Basis Function (RBF) kernel and the Matérn kernel, [17],
both of which allow the model to adapt to a wide variety of objective
landscapes.

The GP is defined as a distribution over functions, specified by a
mean function m(x) and a kernel k(x,x’). Here, x and x’ represent
any two points in the input space (e.g., two different interval centres),
and the kernel quantifies the similarity between the function’s outputs
at these points. A high kernel value implies that the RMSEs of PLS
models built on these two nearby intervals are expected to be strongly
correlated. The GP is then formally written as f(x) ~ GP(m(x), k(x, x")).
Given j observations D; = {(x;, y,)}le, the posterior distribution for the
function value f(x;,,) at a new point x;,,

P DIDy X ) ~ N (1 (1), 07 (X4)

where u;(x;,,) and aj?(xj +1) are the posterior mean and variance,
respectively, whose forms are conditioned on the data.

3.2. The acquisition function

The second component is the acquisition function, which guides
the search for the optimal solution. It determines the next point in
the search space to evaluate by balancing exploration and exploitation
of the probabilistic surrogate model. Exploitation means sampling new
interval centres in regions where our GP surrogate model predicts a low
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Fig. 1. Example: Bayesian optimization framework for interval selection.
Upper panel: the posterior process conditioned on six exact observations, with
highlighted regions (light-blue) indicating areas of exploitation (high predicted
performance) and exploration (high uncertainty). Lower panel its corresponding
acquisition function (bottom). Next sampling location x,, ().

RMSE is likely. Exploration means sampling in regions where the GP is
most uncertain about the RMSE, which are typically areas far from any
previously evaluated intervals.

The main objective of the acquisition function is to maximize the
expected improvement over the current best observations. This is ex-
pressed mathematically as:

Xjp = argrPea/{)( a(x; D)) (2)

where D, is the set of observations up to iteration j, and a(x;D;)
denotes the acquisition function.

In BO literature can be found several functional forms for the
acquisition function (see Garnett [15] for further details). However
as our loss function is the RMSE, and our optimization problem is a
minimization one we consider the Lower Credible Bound at a point x
as the acquisition function defined as follows:

a(x; D)) = ko(x) — pu(x) 3)

where u(x) and o(x) are the predicted mean and standard deviation
(or uncertainty) of the Gaussian Process at point x respectively; x is
a positive constant (hyperparameter) that controls the trade-off be-
tween exploration and exploitation. This trade-off parameter balances
between exploring areas of high uncertainty and exploiting areas of
low predicted value. Adjusting x allows for flexible control of the
exploration-exploitation dynamics in the optimization process.

Fig. 1 illustrates the core principle of Bayesian optimization (BO):
selecting the next query point by optimizing an acquisition function.
The upper plot shows the Gaussian Process posterior fitted to six
observations, with uncertainty (1.5¢) indicated by the shaded region.
The lower plot displays the acquisition function used to propose the
next sampling location, x;,, which balances exploration and exploita-
tion. Here, the x-axis represents wavelength, a key input variable in
spectroscopy that determines the energy of light interacting with a
material. By modelling the response across different wavelengths, BO
can efficiently identify the most informative regions of the spectrum for
further sampling.

3.3. Proposed methodology
Based on our review of the literature and empirical experience, it

has become clear that selecting appropriate intervals for PLS models in
the chemometric field is sometimes an important feature to achieving
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accurate prediction outcomes. The selection of these intervals, par-
ticularly those that contribute to improved predictive performance,
requires a flexible approach. To address this and leverage the Bayesian
Optimization framework we propose a novel interval selection method-
ology tailored to the specific challenge of wavelength selection in
spectral analysis, following the steps in Algorithm 1, (see Appendix A).

The proposed algorithm aims to identify optimal spectral intervals
that minimize prediction error in PLS model. It begins by training a
benchmark PLS model using the full spectrum to establish a baseline er-
ror. To initialize the search, an initial set of interval centres is randomly
sampled. In practice, we advise tightening the sampling domain at the
extremes to help bound uncertainty at the edges of the wavelength
range. PLS models are then fitted to each of these initial points to
compute their Root Mean Squared Error of Prediction (RMSEP). A
GP regression model (surrogate model) is then fitted to the observed
RMSEPs, and its predictive mean and uncertainty are used to define an
acquisition function. Local maxima of this function are extracted and
filtered based on whether their lower uncertainty bound lies below a
threshold-initially set to the full-spectrum RMSEP. These filtered points
are stored as candidates to be evaluated in the next iteration using new
PLS models (Bayesian Optimization procedure). The resulting RMSEPs
are added to the dataset, and the GP model is updated. This process
repeats, allowing the method to progressively focus on informative re-
gions while balancing exploration and exploitation. The algorithm stops
when no new candidates improve over previous ones, returning a set
of intervals with high predictive performance and interpretability. In
practice, we found that a budget of 10-15 iterations typically provides
convergence in most settings, as shown in Section 4.

At this point, several key considerations regarding the proposed
methodology should be highlighted. First, it is important to clarify that
any initial division of data into training and testing sets (for which
we recommend a random split or the Kennard-Stone (KS) algorithm)
is a one-time pre-processing step performed before the optimization
loop begins. The subsequent BO algorithm then operates exclusively
on the training portion, using cross-validation to evaluate candidate
intervals without repeated splitting. Next, defining the kernel function
is a crucial step, as it embeds prior assumptions about the objective
function and directly impacts model performance. In this work, we
use the Matérn kernel with v = 3/2. This choice is motivated by
its flexibility and widespread adoption as a robust default in the BO
literature [18]. Unlike the infinitely smooth Radial Basis Function
(RBF) kernel, the Matérn kernel allows for controlling the smoothness
assumption of the surrogate model via the parameter v. The v = 3/2
setting, which assumes the function is once-differentiable, represents a
more realistic and less restrictive prior for real-world objective func-
tions whose smoothness is unknown [19] (Ch. 2). Our preliminary
sensitivity analysis confirmed its suitability for this application.

For the acquisition function parameter «, we consider several sce-
narios k = {1.5,2,3}, however a common choice is to set k = 2 ~ 1.96
which is the normal (two-tailed) quantile value at 95%. Regarding each
interval Partial Least Squares (PLS) model, it is important to emphasize
the optimization of the number of components based on the training
data to ensure the model captures relevant patterns. Additionally, it is
advisable to tighten the extremes of the domain, which helps bound
uncertainty at the edges of the wavelength range.

In this study we have used Root Mean Square Error (RMSE) as the
criterion to optimize. This is a standard metric for assessing predictive
performance in regression tasks. There are, of course, other desirable
properties one might wish to consider at the same time, interpretability
being the most obvious one. The twin difficulties here would be quan-
tifying this property in a numerical fashion and establishing the trade
off between RMSE and interpretability in any given application. Setting
up a formal framework for this is well beyond the scope of this paper,
but it would be relatively easy for a user who felt unhappy with the
interpretability of any suggested solution to add constraints that forced
either the inclusion or exclusion of particular intervals on the grounds
of interpretability or any other domain-specific criterion.
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3.4. Modelling multiple intervals

The proposed approach can be naturally extended to the selection of
multiple intervals, enabling the model to capture more complex spec-
tral patterns. By considering combinations of informative regions rather
than a single interval, the method gains flexibility and improves its abil-
ity to identify relevant spectral features across broader or discontinuous
wavelength ranges. This extension enhances both the interpretability
and predictive performance of the resulting PLS models [20].

The selection of multiple intervals can be approached using two dis-
tinct strategies: sequential or simultaneous optimization. In the sequen-
tial approach, the process is formalized as a greedy, multi-stage opti-
mization. To clarify the procedure, let the objective function f(x,, ..., x;)
represent the model’s prediction error (e.g., RMSEP) for a set of k
intervals centred at xy, ..., x;. The initial stage identifies the single most
informative interval by finding the centre, x}, that minimizes the error
for a single interval:

x] =arg miny f(x;)

Following this, the second stage finds the best complementary interval
by performing a new optimization where the first interval’s location is
fixed. This second search solves for xJ by optimizing the two-interval
objective function:

x5 = argminy, f(x},Xy)
This process reduces the dimensionality of each search, making it
computationally simpler than a full simultaneous search. However,
this greedy strategy is not guaranteed to find the globally optimal
combination of intervals and may instead converge to a local optimum.
The simultaneous approach conceptually transforms the task from
a one-dimensional line search into a multi-dimensional optimization
problem. For selecting two intervals, this creates a 2D search space
where the axes represent the centre positions of the first (x;) and sec-
ond (x,) intervals, respectively. Every coordinate (x;, x,) in this space
corresponds to a unique pair of intervals, and the objective function,
f(xy,x,), can be visualized as a complex performance landscape over
this 2D plane. The goal of the Bayesian Optimization is to find the
global minimum-the lowest “valley”-in this RMSEP landscape. To do
this efficiently, we employ a multi-input Gaussian Process surrogate
model:

F(x1.x0) ~ GP(m(xy, x,), k((x1, ). (X}, x5)))

This model’s key component is the multi-input covariance function,
k((xy, x,), (x; , x’z)), which measures the similarity between two distinct
pairs of intervals. This structure is what allows the model to capture
crucial interaction effects-for instance, determining if the predictive
power of an interval at x; is enhanced or diminished when paired with
a second interval at x,.

For the simultaneous selection of multiple intervals, a multi-point,
filtered-batch Bayesian Optimization strategy is employed. This ap-
proach is designed to enhance exploration by proposing several can-
didate points in each iteration. The process begins after fitting the
Gaussian Process surrogate model. First, the domain of previously
evaluated points in the 2D search space is partitioned into a set of
non-overlapping triangles using Delaunay triangulation. Within each
triangle, a local search identifies the point that minimizes the acqui-
sition function (the Lower Credible Bound), yielding a large set of
potential candidates—one from each triangular region.

However, not all these candidates are evaluated. A crucial filtering
step is applied to ensure that computational effort is focused only on
points that are genuinely promising. A performance threshold is set to
the minimum RMSEP observed in the previous iteration’s samples. A
candidate is only retained for evaluation if its predicted performance
(i.e., its acquisition function value) is lower than this threshold.

This procedure is visually analogous to the 1D case shown in Fig.
3, where only the local minima (red dots) that dip below the perfor-
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Fig. 2. Left: Near-infrared transmission spectra of 48 wheat kernel samples plotted against wavelengths (nm). Right: Artificially constructed response variable

y showing dependence on wavelengths 900 to 938.

mance benchmark (dashed line) are selected as candidates for the next
iteration. All candidates that pass this filter are then evaluated in a
single batch, and the resulting data are used to update the surrogate
model for the next optimization cycle. This method effectively balances
broad exploration across the entire space with a focused exploitation of
regions that promise to outperform the current best solution.

4. Simulation study
4.1. Simulation setup and one—shot experiment

For the simulated experiment, we begin with pre-processed (sec-
ond derivative followed by SNV [21]) transmission spectra from 48
wheat kernel samples, each measured across 100 wavelengths in 2 nm
increments, covering a range of 850-1048 nm (see left panel of Fig.
2), represented by Z € R™ (with n = 48 samples and p = 100
wavelengths). The spectra are real, but the response variable, w, was
artificially constructed to reflect specific dependencies on a particular
subset of the wavelength domain. To this aim we define the weight
function 6(x), which gives a non-zero weight to the wavelengths be-
tween 898 and 938 nm (points 25-45 in the normalized scale 0-100),
as follows:

10 x sin (%) for x € [25,45]

5=
0 for x ¢ [25,45]
Then the artificial response variable is defined as:
w=56Z+e¢

where ¢ ~ N(0,0.025) is Gaussian noise. The resulting w values
have signal components only for wavelengths between 898 and 938
(see right panel of Fig. 2). This design introduces a clear relationship
between w and a localized interval in the spectral data.

To simplify the setting and align with the structure of the synthetic
data, we assume that only one predictive interval exists and therefore
employ a one-interval selection strategy. The interval width is fixed
to 21 variables, corresponding to 42 nm in spectral space, and kept
constant throughout the optimization.

This controlled setup allows for a focused evaluation of the method’s
ability to identify a single informative region. We acknowledge that us-
ing a fixed interval width is a simplification for this initial study. While
the interval width could be treated as a second hyperparameter, this
extension is non-trivial. A variable width can introduce sharp variations
or discontinuities into the objective function landscape; for instance,
two intervals with nearly identical centres but different widths might
include or exclude noisy regions, yielding vastly different prediction
errors and therefore challenging the standard GP surrogate to model.

Results. The results of the one shot simulated study demonstrate that
the proposed Bayesian optimization framework effectively identifies
informative spectral intervals associated with the response variable. As
shown in Fig. 3, the method progressively converges towards intervals
near 900-938 nm, which aligns with the underlying structure of the
artificially generated response given by § weight function (Fig. 2-
right). Notably, the optimal interval selected corresponds to position
32 out of 100, which maps to a central wavelength of 912 nm—
directly overlapping with the true active region, containing 87.5% of
the wavelengths (nm).

Fig. 3 also displays the evolution of the Bayesian optimization
procedure for the simulated study case. Each plot shows the predicted
RMSECV (solid black line) and associated uncertainty bands (shaded
area) for each iteration. The blue dots represent the initially evalu-
ated intervals. Red points indicate the local minima of the acquisition
function that were selected as candidates for evaluation in the next
iteration. In the final iteration, the green star identifies the selected
optimal interval centre.

Compared to the baseline RMSECV (Root Mean Squared Error of
Cross-Validation) from the full-spectrum PLS model (0.47), the RM-
SECV obtained using the selected interval is substantially lower, 0.352.
This highlights that when prior knowledge suggests a sparse informa-
tive structure, the one-interval strategy not only improves predictive
accuracy but also enhances model interpretability by clearly identifying
the relevant spectral region. The convergence behaviour, performance
gain, and localized selection underline the potential of this approach in
applications where both interpretability and computational efficiency
are critical, especially in high-dimensional spectral data.

The horizontal dashed line represents the dynamic performance
threshold used for filtering candidates (see Algorithm 1, Step 7). For
the first iteration (a), this threshold is the full-spectrum RMSECV, while
for subsequent iterations it represents the best RMSECV found in the
preceding step.

4.2. Monte Carlo evidence

To evaluate the robustness of Algorithm 1 under stochastic con-
ditions and varying uncertainty widths, we conducted a Monte Carlo
(MC) experiment. The goal was to determine whether the algorithm
consistently detects the correct signal regions, independently of
favourable random iterations, and independently of the tightness of the
confidence bands (as controlled by the parameter «).

Each setting was run for 500 MC iterations, with the following
configurations:

(A) 1 True Interval (Width (21 points) 42 nm): True interval from
898-938 nm (mapped to [25, 45] on the normalized 100-scale).
Detection method also used a single interval with 4 =42 nm.
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Fig. 3. Predicted posterior mean and uncertainty bands of the RMSECV across several iterations. Sampled interval centres are shown as blue dot (+). In subfigures
(a-c), candidate intervals for the next evaluation are highlighted in red at the argmin of the lower uncertainty band (+). In subfigure (d), the final selected interval
is highlighted in (). The horizontal dashed line represents the dynamic performance threshold used for filtering candidates (see Algorithm 1, Step 7). For the
first iteration (a), this threshold is the full-spectrum RMSECV, while for subsequent iterations it represents the best RMSECV found in the preceding step.

(B) 1 True Interval (Width (21 points) 42 nm): Same true interval
(898-938 nm / [25, 45]). Detection used two intervals with
h =42 nm (each).

(C) 2 True Intervals (Width (11 points) 22 nm): Two true inter-
vals, from 878-898 nm and 958-978 nm (mapped to [15, 25]
and [55, 65]). Detection method used two intervals with 4 = 22
nm.

In all settings, data were simulated with noise as defined in Sec-
tion 4.1. The initial sample size was fixed at .S, = 10. Simulations were
repeated for two values of x = {1.5,3}: corresponding to 1.5¢ and 3¢
uncertainty bands. For each configuration, we report the average Root
Mean Squared Error (RMSE), final sample size, number of iterations,
and detection accuracy across the 500 repetitions.

The evaluation of interval selection performance is based on four
key metrics. The Overlap over True is defined as

[inI|

Overlapye = i

where I denotes the true informative interval and I the estimated
one. This metric quantifies the proportion of the true region that was
successfully recovered. Conversely, the Overlap over Estimated is given
by

1FnI|

Overlapggimated = | f|

5

measuring how accurate or specific the predicted region was. Finally,
we report the Centre Error, which measures the absolute difference
between the centre of the estimated and true intervals, and the RMSECV
to evaluate the predictive performance of the model over the test set.
In addition to these, we also report the final input sample size and the
terminated step of the algorithm to assess its computational behaviour
and convergence characteristics.

Results. The purpose of this study is to quantitatively assess the al-
gorithm’s accuracy in locating the true informative intervals (Table 1)
and its computational efficiency (Tables 2) under various conditions.
These results confirm that the proposed interval selection algorithm
achieves both high predictive accuracy and efficient convergence across
all Monte Carlo (MC) scenarios. In Scenario A, where a single true
interval of width 21 is detected using a single estimated interval,
the algorithm achieves Overlap over True and Estimated above 88%
and 83%, respectively, with centre distances below 3.0. Most notably,
RMSECYV is reduced to 0.3574 with x = 1.5, representing a substantial
improvement over RMSECV of 0.531 obtained using a full-spectrum
PLS model optimized with 7 latent components. This demonstrates
that even a single adaptively selected interval can yield more accurate
predictions than a full-spectrum model while significantly reducing
model complexity.

Scenarios B and C introduce more complex structures that involve
narrower or multiple informative intervals. Despite this, the method
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Table 1

Summary of performance metrics across different Monte Carlo (MC) simulation settings, values between brackets represent standard errors. Each scenario (A, B,
and C) corresponds to a specific combination of true interval configuration, interval selection method, and uncertainty width parameter «. Scenario A evaluates
the case where a single true interval of width 21 (located at 898-938 nm) is detected using a single estimated interval of the same width. Scenario B evaluates
the same true interval as A but assumes detection via two estimated intervals of width 11, capturing more localized features within the same region. Scenario C
represents the case with two disjoint true intervals: 878-898 nm and 958-978 nm, both of width 11. The detection method here uses two estimated intervals, each
of width 11. The reported metrics are defined as follows: Overlap over True is the proportion of the true informative region recovered; Overlap over Estimated
measures the specificity of the selected interval; and Centre Error is the absolute distance between the true and estimated interval centres. All reported RMSECV
values can be compared against the benchmark RMSECV of 0.531 from a full-spectrum PLS model. Scenario definitions are as follows: (A) A single true interval
detected with a single estimated interval. (B) A single true interval detected using two narrower intervals. (C) Two disjoint true intervals detected using two

estimated intervals. Values in parentheses are standard errors.

MC True h Intervals K Overlap Overlap Centre RMSECV

scenario interval selected true estimate error

A 898-938 nm 21 1 1.5 0.885 (0.030) 0.843 (0.029) 2.80 (0.60) 0.3574 (0.0162)
[25, 45] 3.0 0.875 (0.000) 0.833 (0.000) 3.00 (0.00) 0.3521 (0.0000)

B 898-938 nm 1 9 1.5 - 0.970 (0.080) 2.66 (1.72) 0.3508 (0.0035)
[25, 45] 3.0 - 1.000 (0.000) 2.00 (0.00) 0.3495 (0.0000)
878-898 nm 11 9 1.5 0.39 (0.145) 0.355 (0.132) 7.34 (4.61) 0.3777 (0.0087)
[15, 25] 3.0 0.35 (0.000) 0.318 (0.000) 7.00 (0.00) 0.3696 (0.0013)
958-978 nm 11 9 1.5 0.768 (0.069) 0.698 (0.062) 2.82 (0.69) 0.3777 (0.0087)

C [55, 65] 3.0 0.751 (0.010) 0.683 (0.009) 2.99 (0.10) 0.3696 (0.0013)

maintains strong performance: RMSECVs remain below 0.351 in Sce-
nario B, with overlap over estimated intervals reaching up to 1.000 and
centre errors as low as 2.00. In this setting, where two narrow intervals
are used to detect a single true interval of width A~ = 21 (42 nm),
an Overlap over Estimated of 1.000 indicates that the two selected
intervals join up to cover the real wider region. In Scenario C, where
two disjoint intervals must be detected, the algorithm achieves Overlap
over True exceeding 75% and Overlap over Estimated above 68%, with
centre errors under 3.0. Predictive performance also remains high, with
RMSECVs of 0.377 and 0.369 for ¥ = 1.5 and 3.0, respectively—both
outperforming the full-spectrum baseline.

From a computational standpoint, Table 2 shows that the adaptive
sampling strategy terminates in a small number of steps (typically
5-8), regardless of scenario complexity. Simpler cases such as Sce-
nario A converge rapidly, requiring only 18-25 final input samples
and fewer iterations (mean steps between 4.9 and 6.1). In contrast,
more complex cases like Scenario C demand additional evaluations (up
to 492 samples), as expected for recovering multiple disjoint regions.
Importantly, empirical results show that convergence is consistently
achieved regardless of the initial sample configuration or size, high-
lighting the robustness of the procedure, under both informative and
non-informative priors.

Even under high uncertainty settings (i.e., when « = 3), the algo-
rithm demonstrates stable behaviour across all simulation scenarios.
The selected intervals remain consistently aligned with the true infor-
mative regions, and both the overlap metrics and centre localization
errors remain within tight bounds. This robustness under increased
variance in the confidence bands highlights the method’s ability to
efficiently balance exploration and exploitation, avoiding overfitting
to noise while still converging to relevant spectral features. Notably,
although larger «x values tend to induce broader uncertainty estimates,
the algorithm compensates adaptively by requiring only a modest
increase in the number of sampled points, maintaining convergence
within a practical number of iterations.

Overall, the algorithm outperforms full-spectrum modelling in both
performance and parsimony, making it especially suited for high-
dimensional spectroscopic applications, where identifying and focusing
on informative regions may be important.

5. Real data applications

In this paper we used two sets of NIR datasets, which we detail
below, to validate our proposed method.

Table 2

Computational performance and convergence metrics for the Monte Carlo
simulation. Final input sample size is the total number of unique interval
centres sampled and evaluated by the algorithm before termination. Termi-
nated step indicates the number of Bayesian optimization iterations required
for convergence. All values are reported as the mean (and standard deviation
in parentheses) over 500 MC repetitions.

Scenario « RMSECV Final input Terminated

sample size step
1.5 0.3574 18.83 4.94

A (0.0162) (3.88) (1.69)
3.0 0.3521 24.74 5.20

(0.0000) (5.09) (1.10)
1.5 0.3508 126.85 6.99

B (0.0035) (26.12) (1.22)
3.0 0.3495 305.83 8.20

(0.0000) (55.38) (1.12)
1.5 0.3777 234.28 6.88

c (0.0087) (51.06) (1.09)
3.0 0.3696 491.64 8.23

(0.0013) (91.16) (0.89)

Corn datasets. Four Near-Infrared (NIR) datasets for corn samples
were obtained from http://www.eigenvector.com/data/Corn/index.h
tml. Each dataset includes 80 corn samples measured using three
different NIR spectrometers of the same type, with each raw spectrum
comprising 700 wavelength points at 2 nm intervals, covering the range
from 1100 to 2498 nm. Some limited trials with these data suggest
that pretreatment does not substantially improve the results when using
the full spectrum, so none was applied here. The properties of interest
in these datasets are oil, protein, and starch content. Following the
Kennard-Stone algorithm [22], each dataset was divided into a training
set (60 samples) and an separate test set (20 samples).

Diesel fuel datasets. Six NIR datasets for diesel fuels were obtained
from http://www.eigenvector.com/data/SWRI/index.html. Each raw
spectrum consists of 401 wavelength points taken at 2 nm intervals
within the range of 750 to 1550 nm. The target properties for analysis
include the boiling point at 50% recovery (boiling point), density,
cetane number (CN), freezing temperature (Freeze), total aromatics
(aromatics), and viscosity. In this data set the train-test distribution was
not uniform and the partitions were 85/28 (boiling point), 85/28 (CN),
88/28 (Freeze), 88/30 (aromatics) and 87/29 (viscosity).

Results. The performance of our proposed Bayesian optimization ap-
proach for interval selection was evaluated across multiple datasets


http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/SWRI/index.html

N. Herndndez et al.

Table 3

Chemometrics and Intelligent Laboratory Systems 267 (2025) 105541

Comparison of interval selection performance across different sigma-based uncertainty thresholds (26 and 3¢) and interval widths
(10% and 20%). Results are reported for the Corn (m5) dataset, considering different response variables. Metrics include RMSECV
(train), RMSEP (test), number of PLS components, and selected intervals centres. The units for all RMSE values are the same as
the units of the corresponding reference property. The number of PLS components was optimized for each model using 10-fold
cross-validation on the training set. The row “Sig. Difference” indicates the models (Full PLS = 1, BiPLS = 2, FiPLS = 3) over
which the proposed method showed statistically significant improvements.

Dataset Response variable Metrics 20 30
10% 20% 10% 20%
RMSECV (Train) 0.014 0.015 0.014 0.015
RMSEP (Test) 0.018 0.018 0.018 0.018
0il Num. Comp. 12 16 12 16
Selected intervals (283, 599) (323, 534) (283, 599) (323, 534)
Sig. Difference 1 1,2,3 1 1,2,3
RMSECV (Train) 0.072 0.063 0.072 0.063
RMSEP (Test) 0.119 0.062 0.119 0.062
Corn (m5) Starch Num. Comp. 15 15 15 15
Selected intervals (185, 350) (371, 467) (185, 350) (371, 467)
Sig. Difference 2,3 1,2,3 2,3 1,2,3
RMSECV (Train) 0.013 0.029 0.013 0.029
RMSEP (Test) 0.010 0.022 0.010 0.022
Protein Num. Comp. 16 17 16 17
Selected intervals (340, 514) (297, 479) (340, 514) (297, 479)
Sig. Difference 1,2,3 1,2,3 1,2,3 1,2,3

and response variables. Results are presented in terms of RMSEP (test),
RMSECV (train), number of latent components, and selected intervals,
under varying uncertainty thresholds and training set proportions. To
assess whether the observed improvements over benchmark meth-
ods (Full PLS, BiPLS, FiPLS-see Tables B.1 and B.2) were statistically
significant, we applied the test proposed [23], which evaluates dif-
ferences in predictive ability based on RMSEP. Statistically significant
improvements are indicated in the “Sig. Difference” rows of the tables.

For the Corn data set consider one interval method, with interval
width of 10% (70 nm) and 20% (140 nm), with an uncertainty thresh-
old of 26 and 3. Across all four response variables-Oil, Starch, and
Protein—our method demonstrates consistent and statistically signifi-
cant improvements over baseline methods. For Oil, the RMSEP values
are consistently lower than Full PLS (0.018 vs. 0.066), and significance
tests confirm better performance compared to all baselines (1, 2, 3)
under all settings. In the case of Starch, our method shows gains espe-
cially under the 20% setting (RMSEP 0.062 vs. 0.119 for Full PLS), with
significance against all three baselines. For Protein, test RMSE drops
from 0.086 (Full PLS) to 0.013, with consistent statistical superiority (1,
2, 3) across all settings-showing that our method successfully isolates
informative wavelength intervals (see Table 3 for a full summary).

For the Diesel data set consider one interval method, with interval
width of 5% (20 nm), 10% (40 nm) and 20% (80 nm), with an
uncertainty threshold of 2¢ and 3¢. Our method achieves competitive
or superior performance in most cases. In Boiling Point, RMSEP drops
to 2.249 under the 20% 20 setting, outperforming Full PLS (4.151)
and matching BiPLS and FiPLS in most cases. Significant gains are
observed in rows 2 and 3, particularly where intervals such as (138,
246) and (198, 324) are selected. For Cetane Number, the method
holds RMSEP near 2.16 while using only 3 latent components—with
significant differences against baselines (1, 3), indicating effective di-
mension reduction. In Freeze, the performance is particularly strong:
RMSEP falls to as low as 1.892, and significance holds across all three
baselines for all configurations. Density shows extremely low errors
(RMSEP = 0.00075), matching or outperforming all competitors and
again achieving significance over all methods. For Total Aromatics,
our method reduces test error while maintaining low complexity, sig-
nificantly outperforming Full PLS and BiPLS in several configurations.
Finally, in Viscosity, our method consistently beats Full PLS (0.066 vs.
0.102 RMSEP), with statistical differences over 2 and 3-confirming its
robustness even in more challenging regression targets (the full results
are presented in Table 4).

6. Discussion

In this paper, we set out to address limitations in interval selection
for Partial Least Squares analysis of spectral data, aiming to improve
flexibility and precision in identifying significant spectral regions. The
primary objective was to develop a method that leverages Bayesian
optimization within the Interval Partial Least Squares framework, en-
abling a more adaptive interval selection process. Our proposed ap-
proach combines random sampling and GP regression, introducing a
probabilistic surrogate model that efficiently guides interval selection.

The novelty of this work lies in the application of Bayesian op-
timization to the interval selection process in chemometric analysis.
Traditional ad-hoc interval selection methods, often lack the adapt-
ability needed to capture the nuanced variations present in spectral
data. Our Bayesian optimization-based approach, by contrast, is simple
yet highly flexible, adapting to the data and allowing a more exten-
sive search across potential intervals. This flexibility is particularly
advantageous in high-dimensional settings, where exhaustive search
approaches are computationally prohibitive.

A key feature of our algorithm is its ability to quantify uncertainty
across all possible subintervals without requiring full exploration. The
GP model serves as a surrogate, mapping sampled intervals to pre-
diction accuracy measures and providing both mean and uncertainty
estimates of the RMSE for untested intervals. This approach makes ef-
ficient use of available data, allowing us to pinpoint promising spectral
regions even when only a subset of intervals has been evaluated.

To further assess the stability and robustness of our method, we per-
formed a comprehensive Monte Carlo experiment under varying signal
complexities and initial sampling conditions. The results demonstrated
that the algorithm consistently converges to the correct informative
regions with high accuracy, regardless of the true interval structure or
the nature of the initial samples—whether informative or not. Across
all scenarios, the method outperformed full-spectrum PLS in terms of
predictive accuracy. These findings confirm that Bayesian optimization
not only guides interval selection effectively, but also provides flexi-
bility with respect to prior knowledge, making the approach broadly
applicable in practical settings. These results confirm that Bayesian
optimization not only guides interval selection effectively but also
provides flexibility in terms of the initial knowledge input.

Moreover, our methodology accommodates the selection of mul-
tiple intervals, either simultaneously or sequentially, being the latter
more computationally efficient since one can condition on a previ-
ously selected interval. This characteristic broadens the applicability
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Comparison of interval selection performance across different sigma-based uncertainty thresholds (26 and 3¢) and interval widths (10% and 20%). Results are
reported for the Diesel dataset, considering different response variables. Metrics include RMSECV (train), RMSEP (test), number of PLS components, and selected
intervals. The units for all RMSE values are the same as the units of the corresponding reference property. The number of PLS components was optimized for
each model using 10-fold cross-validation on the training set. The row “Sig. Difference” indicates the models (Full PLS = 1, BiPLS = 2, FiPLS = 3) for which the

proposed method showed statistically significant improvements.

Dataset Response variable Metrics 20 30
5% 10% 20% 5% 10% 20%
RMSECV (Train) 3.858 3.766 3.393 3.956 3.766 3.300
RMSEP (Test) 4.151 2.456 3.018 3.656 2.456 3.197
Boiling Point Num. Comp. 12 8 12 11 8 13
Selected intervals (158, 376) (138, 246) (198, 324) (158, 368) (138, 246) (198, 321)
Sig. Difference 2,3 2,3
RMSECV (Train) 1.968 1.974 1.956 1.968 1.974 1.963
RMSEP (Test) 2.178 2.169 2.161 2.178 2.169 2.169
Cetane Number Num. Comp. 3 3 3 3 3 3
Selected intervals (135, 383) (125, 373) (105, 353) (135, 383) (125, 373) (105, 352)
Sig. Difference 1,3 1,2 1 1,3 1,2 1
RMSECV (Train) 2.244 2.182 2.118 2.244 0.118 2.179
RMSEP (Test) 1.987 2.023 2.079 1.987 0.072 1.892
Freeze Num. Comp. 6 9 12 6 8 12
Selected intervals (162, 289) (269, 329) (104, 253) (162, 289) (134, 252) (74, 250)
Sig. Difference 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3
RMSECV (Train) 0.001 0.001 0.001 0.001 0.001 0.001
Diesel RMSEP (Test) 0.001 0.001 0.001 0.001 0.001 0.001
Density Num. Comp. 10 14 12 10 15 12
Selected intervals (159, 247) (141, 256) (215, 324) (159, 247) (142, 237) (215, 324)
Sig. Difference
RMSECV (Train) 0.517 0.481 0.501 0.517 0.481 0.501
RMSEP (Test) 0.495 0.479 0.538 0.495 0.479 0.538
Total Aromatics Num. Comp. 13 10 10 13 10 10
Selected intervals (138, 391) (129, 377) (109, 355) (138, 391) (129, 377) (109, 355)
Sig. Difference 1,3 1,3 2 1,2 1,3 2
RMSECV (Train) 0.121 0.118 0.119 0.123 0.126 0.119
RMSEP (Test) 0.102 0.072 0.081 0.121 0.066 0.081
Viscosity Num. Comp. 14 8 14 14 7 14
Selected intervals (155, 228) (134, 252) (62, 156) (152, 228) (137, 247) (62, 156)
Sig. Difference 2,3 2,3
Table B.1

Performance comparison between Full PLS, BiPLS, and FiPLS on the Corn (m5) dataset across different and interval widths (10% and 20%) and response variables
and wavelength retention levels. Metrics reported include RMSE on train/test sets, number of latent variables, and percentage of retained wavelengths.

Dataset Response variable Metrics Full PLS BiPLS FiPLS
10% 20% 10% 20%
RMSE Train 0.07342 0.01392 0.06629 0.01673 0.06070
RMSE Test 0.06627 0.01403 0.06980 0.01315 0.06980
0Oil Num. Comp. 7 14 8 12 9
Retained Wavelength (%) 100 10 40 20.3 60.4
RMSE Train 0.824 0.119 0.837 0.095 0.861
RMSE Test 0.817 0.146 0.817 0.086 0.817
Corn (m5) Starch Num. Comp. 1 13 1 15 1
Retained Wavelength (%) 100 20.3 20.1 30.4 80.6
RMSE Train 0.1277 0.019 0.077 0.016 0.056
RMSE Test 0.0863 0.013 0.079 0.013 0.034
Protein Num. Comp. 11.0000 15 15 15 15
Retained Wavelength (%) 100.0 10.1 20.1 20.3 40.3

of our approach to cases where multiple spectral regions contribute to
predictive accuracy, providing a more comprehensive view of the data.

Our Bayesian optimization-based interval selection method demon-
strated consistent and statistically significant improvements over Full
PLS, BiPLS, and FiPLS across multiple datasets and response variables.
Using the RMSEP-based significance test described in Fearn [23], we
confirmed that the selected intervals led to better predictive perfor-
mance in most scenarios. On the Corn dataset, the method showed
notably lower test errors — especially for Protein and Starch — while
maintaining low model complexity. In the Diesel dataset, our approach
performed competitively across all targets, with strong results for Boil-
ing Point, Freeze, and Density. These findings highlight the method’s

ability to identify informative spectral regions and enhance prediction
accuracy across diverse chemometric applications.

While our results demonstrate the effectiveness of the proposed
framework, it is important to acknowledge its current limitations and
avenues for future research. A key simplification in this study was
the use of a fixed, pre-defined interval width. As noted, this may not
be optimal when informative spectral bands differ in size. A major
advantage of our BO approach is the potential handling of the interval
width as a parameter in the surrogate model. However, this is a
non-trivial extension. It would introduce a second dimension to the
optimization and could create a more complex objective function where
small changes in width lead to large changes in performance. Therefore,
our focus on a fixed-width approach serves as a crucial first step in
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Performance comparison between Full PLS, BiPLS, and FiPLS on the Diesel dataset across different and interval widths (10% and 20%) and response variables
and wavelength retention levels. Metrics reported include RMSE on train/test sets, number of latent variables, and percentage of retained wavelengths.

Dataset Response variable Metrics Full PLS BiPLS FiPLS
5% 10% 20% 5% 10% 20%
RMSE Train 3.599 3.626 3.735 3.579 3.176 3.552 3.707
RMSE Test 2.439 2.302 2.503 2.573 2.390 2.494 2.249
Boiling Point Num. Comp. 12 8 11 9 15 10 13
Retained Wavelength (%) 100 57.6 61.3 60.6 20.9 81.8 80.8
RMSE Train 2.097 1.931 2.135 2.005 1.984 1.905 2.019
RMSE Test 2.189 2.163 2.174 2.136 2.181 2.142 2.137
Cetane Number Num. Comp. 2 5 3 6 4 6 6
Retained Wavelength (%) 100 31.4 51.1 60.6 20.9 40.9 60.6
RMSE Train 2.463 2.423 2.342 2.414 2.180 2.285 2.416
RMSE Test 2.238 2.223 2.234 2.143 2.122 2.260 2.562
Freeze Num. Comp. 12 10 9 9 10 8 5
Retained Wavelength (%) 100 36.7 40.9 60.6 20.9 51.1 40.4
Diesel RMSE Train 0.00109 0.00088 0.00103 0.00106 0.00099 0.00104 0.00113
RMSE Test 0.00075 0.00060 0.00061 0.00057 0.00066 0.00077 0.00075
Density Num. Comp. 15 15 15 15 13 15 15
Retained Wavelength (%) 100 31.4 81.8 40.4 47.1 71.6 101.0
RMSE Train 0.603 0.531 0.507 0.563 0.514 0.539 0.515
RMSE Test 0.538 0.530 0.479 0.549 0.491 0.518 0.498
total Aromatics Num. Comp. 12 13 15 13 13 13 15
Retained Wavelength (%) 100 41.9 20.4 40.4 26.2 61.3 40.4
RMSE Train 0.126 0.122 0.125 0.204 0.116 0.120 0.238
RMSE Test 0.071 0.059 0.062 0.163 0.063 0.065 0.157
Viscosity Num. Comp. 11 12 12 7 11 13 3
Retained Wavelength (%) 100 89.0 71.6 40.4 78.6 61.3 60.6

establishing the viability of BO for this problem. Future work will
concentrate on this simultaneous optimization of interval position and
width to enhance the method’s adaptability.

A key advantage of the proposed method is its computational strat-
egy. Rather than fitting models for every possible interval or combina-
tion, Bayesian optimization leverages a probabilistic model to prioritize
regions with high expected gains. This reduces the number of PLS
evaluations required and eliminates the need for manual tuning of
thresholds or stopping criteria, making the method both efficient and
fully automated.

It is also important to discuss the computational cost in more
detail. The primary efficiency gain of our framework is in sample
efficiency—that is, minimizing the number of expensive function eval-
uations (fitting and validating a PLS model), rather than raw CPU
time. An exhaustive grid search might evaluate hundreds of intervals,
whereas our method intelligently selects only the most promising candi-
dates. Our Monte Carlo study provides a quantitative illustration of this
efficiency. As shown in Table 2, the algorithm consistently converges
in a small number of iterations, typically between 5 and 8 steps. For
a single-interval search, this required the evaluation of only 20-25
PLS models on average to find the optimal region. This stands in stark
contrast to grid-based methods, whose cost scales linearly for a single
interval but grows combinatorially when searching for multiple inter-
vals, quickly becoming computationally prohibitive. This highlights the
practical value and scalability of the Bayesian Optimization approach.
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Algorithm 1 Bayesian optimization for Interval Selection in PLS

1:

Require: Spectral data Z € R"™?; Response vector w € R”; Interval
width h; Exploration parameter k; Initial sample size S,; Max
iterations J,.

: Initialization

Step 0: Train a benchmark PLS model using the full spectrum and
compute the baseline RMSECV, denoted yy

Step 1: Randomly sample S, initial interval centres x =
{x],....xg,} from the spectral domain, ensuring boundary cover-
age.

Step 2: For each initial centre x;, train a PLS model on the interval
[x; — h/2,x; + h/2] and compute its corresponding y =RMSECV.
Step 3: Form the dataset D, = {(x;, y,~)}iS=°l

: Bayesian optimization Loop

Set iteration counter j = 0.

Repeat the following steps:

Step 4 (Fit Surrogate): Fit a Gaussian Process model to the current
dataset D;)

Step 5 (Acquisition Function): Use the fitted GP to compute the
acquisition function over the entire domain, a(x; D;) = ko (x) — p(x).
Step 6 (Find Candidates): Identify all local minima of the acqui-
sition function a(x;D ;). Denote this set of candidate centres as
b

Step 7 (Filter Candidates): For each candidate x ko retain it only if
its Lower Credible Bound satisfies the following condition:

Yrs ifj=1

X; — KkKo(X; < . .
Hxj k) (xj ) miny; ifj>1

Let the set of filtered candidates be {x j’k}kKi .

Step 8 (Check Convergence): If the set of filtered candidates is
empty (K ; =0),0ra pre-defined maximum number of iterations
is reached, terminate the loop.

Step 9 (Evaluate & Update): For each filtered candidate %, ,, train
a new PLS model and compute its RMSECYV, j; ,

- - K;
Step 10: Augment the dataset: D;,; = D; U {(%;4, 5},
Step 11: Increment iteration counter: j « j + 1.
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