1 Conservative Oxygen Therapy in Mechanically Ventilated Critically

2 III Adult Patients: The UK-ROX Randomized Clinical Trial

- 3 Authors: Daniel S. Martin, PhD^{1,2}; Doug W. Gould, PhD³; Tasnin Shahid, BSc³; James C.
- 4 Doidge, PhD³; Alex Cowden, MSc³; Zia Sadique, PhD⁴; Julie Camsooksai, BSc³; Walton N.
- 5 Charles, MSc³; Miriam Davey, PGDip⁵; Amelia Francis Johnson, MSc³; Roger M. Garrett,
- 6 PhD⁶; Michael P. W. Grocott, MD⁷; Joanne Jones, RN⁵; Lamprini Lampro, MSc³; Diane M.
- 7 Mackle, PhD⁸; B. Ronan O'Driscoll, MD⁹; Alvin Richards-Belle, BSc³; Anthony J. Rostron,
- 8 PhD¹⁰; Tamas Szakmany, PhD¹¹; Alex Warren, MBBS^{3,12,13}; Paul J. Young, MD, PhD^{14,15,16};
- 9 Kathryn M. Rowan, PhD³; David A. Harrison, PhD³; Paul R. Mouncey, MSc³ on behalf of the
- 10 UK-ROX Investigators
- 11 Authors' affiliations are listed at the end of the manuscript
- 13 **Corresponding author:**
- 14 Daniel S. Martin

12

- 15 Peninsula Medical School, University of Plymouth
- 16 John Bull Building, 16 Research Way
- 17 Plymouth, PL6 8BU
- 18 United Kingdom
- 19 Email: daniel.martin@plymouth.ac.uk
- 21 Word count (abstract): 344
- Word count (main manuscript): 3504
- 23 Date of revision: 20 May 2025

KEY POINTS

25	Question
26	Does reducing exposure to supplemental oxygen through a strategy of conservative oxygen
27	therapy by using a peripheral oxygen saturation (SpO ₂) target of 90% (range 88-92%)
28	reduce 90-day all-cause mortality in mechanically ventilated adult patients receiving
29	supplemental oxygen in intensive care units?
30	Findings
31	In this randomized clinical trial of 16 500 participants, there was no statistically significant
32	difference between the groups with 35.4% of patients randomized to conservative oxygen
33	therapy having died by 90 days compared with 34.9% of patients receiving usual oxygen
34	therapy.
35	Meaning
36	The findings do not support an approach of reducing oxygen exposure by targeting an SpO ₂
37	of 90% in mechanically ventilated adults receiving oxygen on an intensive care unit.
38	
39	

40 ABSTRACT

41	Importance
42	Supplemental oxygen is frequently given to patients in intensive care units (ICUs); however,
43	there is insufficient evidence to guide its therapeutic use and to minimize the potential harm
44	caused by administering too little or too much.
45	Objective
46	To determine whether reducing exposure to supplemental oxygen through a strategy of
47	conservative oxygen therapy by using a peripheral oxygen saturation (SpO ₂) target of 90%
48	(range 88-92%) reduces mortality at 90 days in mechanically ventilated adult patients
49	receiving supplemental oxygen in the ICU.
50	Design, Setting and Participants
51	Multi-center, pragmatic, randomized clinical trial conducted in 97 ICUs in the United Kingdom
52	including 16 500 mechanically ventilated patients receiving supplemental oxygen.
53	Participants were enrolled between May 2021 and November 2024. Follow-up was
54	completed in February 2025.
55	Interventions
56	Participants randomized to conservative oxygen therapy (n=8258) received the lowest
57	fraction of inspired oxygen possible to maintain their SpO ₂ at 90%. Participants randomized
58	to usual oxygen therapy (n=8242) received oxygen therapy at the discretion of the treating
59	clinician.
60	Main Outcomes and Measures
61	The primary outcome was all-cause mortality at 90 days. Secondary outcomes included
62	duration of ICU and acute hospital stay among survivors, days alive and free from organ
63	support at 30 days, and mortality at other timepoints

Of 16 500 randomized patients, primary outcome data were available for 16 394 (8211 in the conservative and 8183 in the usual oxygen therapy group). Randomized groups were similar, with a median (IQR) age of 60 (48-71) and 38.2% females in both groups. Exposure to supplemental oxygen was 29% lower for participants in the conservative oxygen therapy group compared with the usual oxygen therapy group. By 90 days, 2908 (35.4%) participants in the conservative oxygen therapy group had died compared with 2858 (34.9%) in the usual oxygen therapy group. After adjustment for pre-specified baseline variables, this gave a risk difference of 0.7 percentage points (95% CI –0.7 to 2.0; *P*=.28).

Conclusions and Relevance

In adult ICU patients receiving mechanical ventilation and supplemental oxygen, minimizing oxygen exposure through conservative oxygen therapy did not significantly reduce all-cause mortality at 90 days.

Trial Registration: <u>ISRCTN13384956</u>

INTRODUCTION

Oxygen is one of the most commonly administered drugs to patients in intensive care units
(ICUs). Traditionally, hypoxemia was avoided to minimize the risk of causing cellular
hypoxia and organ dysfunction. In response to this, a liberal approach to oxygen therapy
was commonplace for critically ill patients, however, excessive administration of
supplemental oxygen may also lead to harm. ³ Achieving a balance between too little and too
much oxygen could therefore be essential to optimize clinical outcomes for patients.
Clinical trials to date have been unable to determine whether administering less, rather than
more, oxygen to patients is beneficial. Several clinical trials have shown no difference in
outcome between a conservative compared with a more liberal approach to oxygen therapy
in critically ill patients. ⁴⁻⁸ However, in patients admitted to ICU with COVID-19 and severe
hypoxemia, conservative oxygen therapy resulted in more days alive without life support in
ICU.9 Moreover, in mechanically ventilated children receiving supplemental oxygen in a
pediatric ICU, conservative oxygen therapy resulted in a reduction in a composite of organ
support at 30 days or death. 10 A recent systematic review and meta-analyses of 13 clinical
trials including 10 632 adult patients reported no significant mortality difference between
conservative and liberal oxygen therapy. 11 For such a widely used intervention, even a small
survival benefit could translate into large numbers of lives saved. Therefore, further evidence
from large-scale trials is required to determine whether conservative oxygen therapy is
beneficial to patients receiving mechanical ventilation.
The UK-ROX randomized clinical trial assessed whether reducing exposure to supplemental
oxygen through a strategy of conservative oxygen therapy by targeting a peripheral oxygen
saturation (SpO ₂) of 90% (range 88-92%) reduced mortality at 90 days, when compared with
usual oxygen therapy, in mechanically ventilated adults receiving supplemental oxygen in
the ICU.

METHODS

106

107 Trial Design and Oversight 108 UK-ROX was a multi-center, pragmatic, registry-embedded, randomized clinical trial (RCT). 109 The protocol was approved by the South Central – Oxford C Research Ethics Committee 110 (Reference: 20/SC/0423) and the UK Health Research Authority and has been published previously. 12 The UK National Institute for Health and Care Research (NIHR) funded the trial. 111 112 The Intensive Care National Audit & Research Centre (ICNARC) Clinical Trials Unit 113 managed the trial, with independent oversight by a trial steering committee and a data 114 monitoring and ethics committee. The trial is reported in accordance with the CONSORT 2010 statement on reporting guidelines for parallel-group randomized trials.¹³ 115 Trial Sites and Study Population 116 117 The trial was conducted in 97 National Health Service (NHS) adult, general ICUs that 118 participate in the Case Mix Programme (CMP) national clinical audit for adult ICUs in 119 England, Wales and Northern Ireland. The study population comprised critically ill adults 120 aged ≥18 years, enrolled within 12 hours of meeting the following criteria: receiving invasive 121 mechanical ventilation following an unplanned admission to ICU or where invasive 122 mechanical ventilation was started in the ICU; and receiving supplemental oxygen. Patients 123 were excluded if randomized to UK-ROX in the previous 90 days, if in receipt of 124 extracorporeal membrane oxygenation, or if the treating clinician considered that the 125 intervention was either clinically indicated or contraindicated. Randomization and blinding 126 127 Randomization occurred as soon as possible after confirmation of eligibility. Participants 128 were allocated 1:1, via a concealed central 24-hour telephone/web randomization system, to 129 conservative oxygen therapy or usual oxygen therapy. Randomization used permuted blocks 130 with variable block sizes, stratified by site and the following (hierarchical) diagnostic

subgroups: hypoxic-ischemic encephalopathy (HIE); sepsis; acute brain injury (except HIE); or none of the pre-specified subgroups, as defined by the treating clinician. Treatment allocation was not blinded.

Interventions

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Aiming to minimize exposure to supplemental oxygen, participants in the conservative oxygen therapy group received the lowest fraction of inspired oxygen (F₁O₂) of oxygen possible to maintain their pulse oximeter derived SpO₂ at 90%. Sites were instructed to set monitor alarms to sound below 88% and above 92%, once the patient was within range. The upper limit alarm could be deactivated once the patient was receiving an F₁O₂ of 0.21. Deviations were allowed if: there were major discrepancies with the arterial blood gas derived oxygen saturation (SaO₂) and the SpO₂; a high FiO₂ was needed to prevent an acute life-threatening illness; or a change in clinical circumstances occurred that would have precluded eligibility to the trial. Adherence to the conservative oxygen therapy group was defined as a reduction in supplemental oxygen when the SpO₂ was above 92% or an increase in oxygen when below 88%. Clinicians were permitted to alter other therapies as required. Full descriptions of the assessment of treatment exposure and adherence are in Supplement 2 page 3. In the usual oxygen therapy group, participants received supplemental oxygen at the discretion of the treating clinician. No minimum F₁O₂ was mandated and no upper SpO₂ limit monitor alarm was set. Interventions were continued until 90 days post-randomization or discharge from ICU, whichever was sooner. If readmitted to the ICU during this time period,

Consent procedures

units were advised to recommence.

In accordance with the approved emergency waiver of consent under the relevant Mental Capacity Acts in England and Wales and in Northern Ireland, a 'research without prior consent' approach was used, which allowed agreement to be obtained from a personal or

nominated consultee as soon as appropriate following randomization. If the patient regained mental capacity, informed consent was obtained. If the patient had capacity prior to randomization, verbal consent could be obtained. All data collected up to refusal or withdrawal of consent were retained. In addition, approvals were obtained to allow the primary outcome to be collected on all participants, other than those who requested that all data be removed. Secondary outcomes were available for those who provided consent to allow data linkage. All procedures are in Supplement 2 pages 4-6.

Outcome measures

The primary outcome was all-cause mortality at 90 days after randomization. Secondary outcomes were: duration of ICU and acute hospital stay (censored at 90 days); days alive and free from organ support (respiratory, cardiovascular or renal support) at 30 days; mortality at ICU and hospital discharge (censored at 90 days); and 60-day and one-year mortality. All definitions are in Supplement 2 pages 7-8. The integrated health-economic evaluation will be reported separately.

Sample size calculations

Based on CMP data (N=96 028, April 2017 to March 2019) and the Risk II study dataset (N=82 075, April 2014 to March 2016), ¹⁴ 90-day all-cause mortality was anticipated to be 37% for usual oxygen therapy. Assuming 6% loss to follow-up, a sample size of 16 500 provided 90% power at *P*<.05 to detect an absolute risk reduction of 2.5 percentage points to 34.5% with conservative oxygen therapy. Two interim analyses were performed after 4500 and 10 000 participants using a Peto-Haybittle stopping rule (*P*<.001) for effectiveness or harm.

Data collection

For efficiency of trial delivery, the majority of data were obtained from linked, routine data sources: the CMP (for baseline data, ICU and hospital outcomes) and Civil Registrations of

Death (for mortality post-hospital discharge). ¹⁵ To understand oxygen administration and adherence to the intervention, SpO_2 and FiO_2 were collected hourly on a sample of enhanced data collection participants for ten days post-randomization. Total exposure to supplemental oxygen was calculated by the amount administered above room air (FiO_2 of 0.21). For example, one hour on FiO_2 = 1.0 or two hours on FiO_2 = 0.605 are calculated as one 100%-equivalent hour as both equate to an additional 79% of oxygen (the maximum for a single hour). Enhanced data were collected for approximately 15% of participants: the first ten participants at each site, to ensure the protocol was being adhered to, followed by a random sample of 10% of subsequent participants. If adherence was deemed unacceptable, enhanced data collection was extended.

Participants were analyzed according to their randomized group, following a pre-specified

Statistical Analysis

statistical analysis plan (Supplement 1). All statistical tests were two-sided with significance set at *P*<.05 unless otherwise specified. Effect estimates are reported with 95% confidence intervals (CI). There was no adjustment for multiple testing.

The primary analyses were adjusted for the stratification variables (site; and diagnostic subgroup) and for additional pre-specified baseline covariates that were deemed strong predictors of outcome (age; SpO₂ at randomization; PaO₂/FiO₂ ratio at randomization; confirmed/highly suspected COVID-19; and date of randomization). Effects were estimated using logistic regression for binary outcomes, Fine-Gray subdistribution hazards regression for durations of ICU and hospital stay among survivors (with death as a competing risk), and ordered logistic regression for days alive and free of organ support. Time to death was analyzed using Cox proportional hazards regression with censoring at the earliest of withdrawal, 365 days or the end of trial. All models accounted for clustering by site, and were adjusted for diagnostic subgroup (stratification variable) and for the same pre-specified baseline predictors of outcome. Risk differences and relative risks were estimated using marginal standardization. Multivariate imputation by chained equations was used to

account for missing data, incorporating at least the primary outcome as an auxiliary variable to support imputation of secondary outcomes.

The primary outcome was also analyzed by pre-specified subgroups (diagnostic subgroup; confirmed/highly suspected COVID-19 versus not; and ethnic group). For each subgroup, the primary outcome analysis was repeated including an interaction between conservative oxygen therapy and the subgroup variable (for multinomial subgroup variables, one interaction term for each dummy variable). Subgroup effects were tested (jointly for any subgroup variables with more than two categories) on the odds ratio (OR) scale.

Additional post hoc analyses included subgroup analyses by severity of illness (tertile of predicted risk of death; tertile of Acute Physiology And Chronic Health Evaluation [APACHE] II score;¹⁷ and categories of PaO₂/FiO₂ ratio aligned with acute respiratory distress syndrome definitions)¹⁸ and by data collection subset (first ten patients and random enhanced data collection sample versus standard data collection).

All statistical analyses were conducted in Stata/MP version 18.0 (StataCorp). 19

RESULTS

Sites and Participants

A total of 52 747 critically ill patients receiving invasive mechanical ventilation were screened at the 97 sites between 4 May 2021 and 27 November 2024, of whom 38 479 were potentially eligible and 16 500 were enrolled (Figure 1 and eFigure 1 and eTable 1 in Supplement 2). Sixty-six participants (0.4%) requested removal of all data and were excluded from the analysis. The primary outcome was unable to be determined for a further 40 participants (0.2%), as data could not be linked, who remained in the multiply imputed primary analysis of 16 434 participants (8230 conservative oxygen therapy, 8204 usual oxygen therapy; 8211 and 8183 with primary outcome recorded, respectively). Ninety-day

follow-up was completed in February 2025, with linkage to death registrations conducted in March 2025, at which time 13 052 participants had reached 12 months' follow-up. The randomized groups were similar at baseline (Table 1 and eTable 2 in Supplement 2) and were representative of the wider ICU population on key demographic factors (eTable 3 in Supplement 2). In both groups, the median (IQR) age was 60 (48-71) years and 38.2% were female. Participants were randomized shortly after first receiving invasive mechanical ventilation in ICU, with a median (IQR) time to randomization of 5 (2-8) hours in both groups. Prior to randomization, median (IQR) SpO₂ was 97% (94-99%) in the conservative oxygen therapy group and 96% (94-99%) in the usual oxygen therapy group. A total of 1504 (9.2%) were admitted due to HIE, 5443 (33.1%) due to sepsis, and 363 (2.2%) due to acute brain injury, with the remaining 9124 (55.5%) not in any of the pre-specified subgroups of interest. Of all participants, 1099 (6.7%) had confirmed or highly suspected COVID-19 on enrolment. Of the 16 434 participants included in the primary analysis, 2489 (1252 conservative oxygen therapy, 1237 usual oxygen therapy) were selected for enhanced data collection. Due to the timing of the start of the trial, there was a higher proportion of patients who had confirmed or highly suspected COVID-19 in the non-random first ten enhanced data collection patients from each site (13.4%) compared with the subsequent randomly selected patients (5.3%) and the standard data collection patients (6.4%). Otherwise, these groups were similar (eTable 4 in Supplement 2)

Oxygen exposure

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

Exposure to supplemental oxygen was lower for participants in the conservative oxygen therapy group, with a mean (SD) of the median F_1O_2 of 0.31 (0.14) compared with 0.35 (0.15) for those in the usual oxygen therapy group. Total exposure to supplemental oxygen was 29.3% lower in participants in the conservative oxygen therapy group compared with participants in the usual oxygen therapy (20.3 vs 28.7 100%-equivalent hours, respectively;

Arterial oxygenation was lower in the conservative oxygen therapy group with a mean (SD) of the median SpO_2 of 93.3% (2.8%) and mean (SD) of the median PaO_2 of 71.5 (13.9) mmHg compared with 95.1% (2.4%) and 79.5 (17.9) mmHg, respectively, for the usual oxygen therapy group. Participants in the conservative oxygen therapy group spent a mean (SD) of 62.6 (62.3) hours within the SpO_2 target range (88 to 92%) compared with 27.2 (39.1) hours for the usual oxygen therapy group. Whilst above the target range, a mean (SD) 39.7 (55.1) hours was spent on room air in the conservative oxygen therapy group, compared with 26.1 (45.1) hours in the usual oxygen therapy group. Participants had an SpO_2 below 88% for a mean (SD) of 3.2 (6.5) hours in the conservative oxygen therapy group and 2.3 (7.3) hours in the usual oxygen therapy group (Figure 2 and eFigures 2 and 3 and eTable 5 in Supplement 2). Separation was maintained across all enhanced data collection patient groups (eTable 6 in Supplement 2) and when plotted across calendar time and patient sequence to understand any potential contamination into usual care (eFigure 4 in Supplement 2).

difference -8.4 hours, 95% CI -10.8 to -6.0) (Figure 2 and eFigures 2 and 3 and eTable 5 in

Adherence to the Protocol

Of participants allocated to conservative oxygen therapy and selected for enhanced data collection, 526 (42.1%) had one or more periods of non-adherence, representing 10.6% of their time in ICU. There were a total of 2271 periods of non-adherence ≥3 hours. The main reasons included: staffing issues and lack of awareness, n=857; other clinical priorities, n=413; responding to low PaO₂, n=127; clinical decision to suspend intervention (not supported by the protocol), n=265; and reason not documented, n=609.

Primary and Secondary Outcomes

In the conservative oxygen therapy group, 2908 (35.4%) participants died compared with 2858 (34.9%) in the usual oxygen therapy group. After adjustment for pre-specified baseline

variables, this gave a risk difference of 0.7 percentage points (95% CI −0.7 to 2.0; *P*=.28) compared with an unadjusted risk difference of 0.5 percentage points (95% CI -1.0 to 2.0). (Table 2). There were no missing data among the baseline variables used for adjustment, other than for PaO₂/F₁O₂ ratio which was singly imputed from SpO₂/F₁O₂ ratio (eTable 7 in Supplement 2). Secondary mortality outcomes at ICU discharge, 60 days and one year were not significantly different by treatment group (Table 2). Time to death (adjusted hazard ratio 1.01, 95% CI 0.96 to 1.05; eFigure 4 in Supplement 2), and duration of ICU and acute hospital stay among survivors were not significantly different between the groups. Survivors in the conservative oxygen therapy group stayed a median (IQR) of 20 (11-40) days in acute hospital compared to 21 (10-42) days in the usual oxygen therapy group (hazard ratio 0.98; 95% CI 0.94 to 1.02). Days alive and free from organ support at 30 days were not significantly different in the conservative oxygen therapy group compared to the usual oxygen therapy group (proportional OR 1.01; 95% CI 0.96 to 1.07) (Table 2 and eFigure 6 and eTable 8 in Supplement 2). In the conservative oxygen therapy group, 58 (0.7%) participants had serious adverse events reported compared to 29 (0.4%) in the usual oxygen therapy group (eTable 9 in Supplement 2). Tests for interaction were not statistically significant for diagnostic subgroup, confirmed/highly suspected COVID-19 or ethnic group (Figure 3), or for post-hoc subgroups by severity of illness (eFigure 7 in Supplement 2). In the post-hoc analysis by data collection subgroup, there was weak evidence of increased harm from conservative oxygen therapy among the first ten patients in each site but no difference for the random enhanced data collection sample compared with standard data collection (eFigure 7 in Supplement 2).

DISCUSSION

In this RCT of mechanically ventilated critically ill adult patients receiving supplementary oxygen in UK ICUs, minimizing oxygen exposure through conservative oxygen therapy did

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

not reduce all-cause mortality at 90 days compared to usual oxygen therapy. The observed reduction in exposure to oxygen translated to a 0.7 percentage point adjusted absolute increase in mortality at 90 days with a 95% CI from a 0.7 percentage point reduction to a 2.0 percentage point increase. We found no significant differences in prespecified or exploratory subgroup analyses of the primary outcome or in any of the secondary outcomes. The findings are consistent with other RCTs of conservative oxygen therapy reporting mortality⁴⁻⁸ and a recent systematic review and meta-analysis of trials.¹¹ The trial design differed from others by having a usual care comparator rather than protocolized liberal oxygen therapy. Prior data had shown that the average SpO₂ of adult ICU patients in the UK was approximately 96%²⁰ and the findings of our feasibility RCT indicated that clinicians would be unwilling to maintain a minimum F₁O₂ in the comparator group.²¹ Arterial oxygenation data from the usual oxygen therapy group suggest a more conservative approach to oxygen administration than was observed in other countries in the last two decades.^{2,22} Our findings add to the understanding of oxygenation targets in critically ill patients by evaluating oxygen therapy in more participants than all prior trials combined. The results of an ongoing larger RCT comparing conservative oxygen therapy to protocolized liberal oxygen therapy (minimum acceptable F₁O₂ of 0.3) are awaited.²³ The goal of conservative oxygen targets is to minimize exposure to oxygen, yet most trials haven't achieved their specified arterial oxygenation targets.²⁴ In part, this is because SpO₂ often exceeds the upper target limit, even when no additional oxygen is given. Separation was observed between groups in all oxygen metrics, however, it was smaller than reported in other similar trials (eTable 10 in Supplement 2). This was in part due to usual care being more conservative than liberal comparator groups in previous trials, potentially reflecting the more recent trend towards giving less oxygen in ICU. It is plausible that oxygen therapy has a differing effect according to patients' characteristics.²⁵ Machine learning techniques have demonstrated that patients predicted to benefit from lower oxygenation targets had a higher prevalence of acute brain injury, whilst

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

patients predicted to benefit from higher targets had a higher prevalence of sepsis.²⁶ In a trial enrolling patients with COVID-19, a lower oxygenation target was beneficial.⁹ The direction of the signals detected in our COVID-19 and sepsis cohorts align with these. An analysis of heterogeneity of treatment effect in the UK-ROX trial using machine learning techniques was pre-specified in the statistical analysis plan and will be reported separately.

The trial has several strengths. The size of the trial ensured adequate power to detect the small absolute risk reduction hypothesized to be associated with conservative oxygen therapy. Additionally, the high precision of the results means that a clinically important reduction of mortality from conservative oxygen therapy is very unlikely. The trial benefited from an efficient design, using linkage to available registries to significantly reduce its cost, thereby supporting a large sample. This sample was highly representative of the whole potentially eligible UK ICU population enhancing generalizability. Patients were rapidly enrolled into the trial following eligibility, reducing the likelihood of inappropriate oxygen therapy on ICU prior to randomization.

Limitations

Like other trials of conservative oxygen therapy, clinicians and patients could not be blinded to treatment intervention, and other aspects of care were at the discretion of clinicians. However, the primary outcome of the trial is unlikely to be subjected to bias. Clinicians excluded a sizable proportion of potential participants due to the intervention being either indicated or contraindicated, which could have meant patients who may have benefited were not included. It also may reduce the generalizability of the findings. A proportionate approach to data collection was necessary to allow a trial of this size to be delivered; however, it means that oxygenation cannot be confirmed for all patients on the trial. The use of a usual care comparator, essential as clinicians were unwilling to give potentially unnecessary oxygen therapy, could increase the risk of contamination; however, we found no evidence of this as separation was sustained over the trial. Other than adjusting for baseline SpO₂ and

PaO₂/F₁O₂ ratio, prior oxygen administration could not be accounted for and, for some patients, could have been significant. Regarding protocol adherence, among enhanced data patients, episodes of non-adherence occurred in 42.1%. However, these episodes accounted for a small proportion of ICU hours and overall separation on oxygen exposure between groups was substantial.

CONCLUSION

370 In mechanically ventilated adults admitted to an ICU, minimizing oxygen exposure by 371 targeting an SpO₂ of 90% did not reduce all-cause mortality at 90 days compared to usual 372 oxygen therapy.

Figure Legends/footnotes

Figure 1. Screening, randomization and follow-up

374 375

378 379

380

381 382

373

364

365

366

367

368

369

376 F₁O₂, fraction of inspired oxygen

377 ^a As assessed by the treating clinician

^b Commonly reported clinical decisions included: imminent extubation, imminent discharge/transfer, imminent death/treatment withdrawal

^c Approval to obtain anonymised primary outcome data without consent

d 40 patients had data that was unable to be linked for the primary outcome (e.g. not an NHS patient)

e 3382 patients had not reached 12 months

383 384 385

386

387

Figure 2. (A) Separation in fraction of inspired oxygen (F₁O₂) and peripheral oxygen saturation (SpO₂) when receiving supplemental oxygen, (B) categorized SpO₂, and (C) cumulative exposure to supplemental oxygen over first 10 days after randomization.

388 389 390

d, days

391 392 393

Figure 3. Subgroup analyses of primary outcome

394 395

CI, confidence interval; HIE, hypoxic-ischemic encephalopathy.

^a Adjusted for site, diagnostic subgroup, age, SpO₂, PaO₂/F₁O₂ ratio, confirmed/highly suspected 396 397 COVID-19, and date of randomization 398

^b P value for test of interactions in the odds ratio in adjusted multilevel logistic regression model

399 Tables

Table 1. Patient baseline characteristics by oxygen therapy group.

	Conservative oxygen	Usual oxygen therapy
	therapy group (n = 8230)	group (n = 8204)
Age, median (IQR) [No.], y	60 (48-71) [8230]	60 (48-71) [8204]
Sex		
Female	2803/7340 (38.2)	2849/7465 (38.2)
Male	4537/7340 (61.8)	4616/7465 (61.8)
Ethnic group		
Asian	263/7340 (3.6)	243/7465 (3.3)
Black	138/7340 (1.9)	153/7465 (2.0)
Mixed	52/7340 (0.7)	60/7465 (0.8)
White	6072/7340 (82.7)	6207/7465 (83.1)
Other ^a or not stated	815/7340 (11.1)	802/7465 (10.7)
Body mass index, kg/m ²		
<18.5	264/7111 (3.7)	259/7225 (3.6)
18.5-<25	2291/7111 (32.2)	2299/7225 (31.8)
25-<30	2129/7111 (29.9)	2250/7225 (31.1)
30-<40	1918/7111 (27.0)	1881/7225 (26.0)
≥40	509/7111 (7.2)	536/7225 (7.4)
Pre-existing severe respiratory disease b	171/7310 (2.3)	172/7436 (2.3)
Prior length of hospital stay,	1 (1-3) [7293]	1 (1-3) [7419]
median (IQR) [No.], d		
Prior duration of invasive mechanical	5 (2-8) [8230]	5 (2-8) [8204]
ventilation in ICU °, median (IQR) [No.], h	, , , , , ,	
Current or suspected diagnosis d		
Sepsis	2738/8230 (33.3)	2705/8204 (33.0)
HIÉ	754/8230 (9.2)	750/8204 (9.1)
Acute brain injury (except HIE)	183/8230 (2.2)	180/8204 (2.2)
None of the pre-specified subgroups	4555/8230 (55.3)	4569/8204 (55.7)
Confirmed/highly suspected COVID-19	536/8230 (6.5)	563/8204 (6.9)
SpO ₂ , median (IQR) [No.], %	97 (94-99) [8230]	96 (94-99) [8204]
F _{IO2} , median (IQR) [No.]	0.45 (0.35-0.60) [8230]	0.45 (0.35-0.60) [8204]
PaO ₂ , median (IQR) [No.], mm Hg	90 (75-116) [7638]	89 (74-114) [7620]
PaO ₂ /F ₁ O ₂ ratio, mm Hg	/	/ -
≤100	933/7638 (12.2)	936/7620 (12.3)
>100-≤200	2635/7638 (34.5)	2664/7620 (35.0)
>200-≤300	1978/7638 (25.9)	1977/7620 (25.9)
>300	2092/7638 (27.4)	2043/7620 (26.8)
ICNARC _{H-2023} model predicted risk of death ^e ,	0.35 (0.29) [6882]	0.34 (0.29) [7014]
mean (SD) [No.]	[[[(0.20) [[0002]	[(0.20) [. 0]
APACHE II score [†] , median (IQR) [No.]	16 (12-21) [7317]	16 (12-21) [7437]

Values are No./Total no. (%) unless otherwise indicated.

APACHE II, Acute Physiology and Chronic Health Evaluation II; F_1O_2 , fraction of inspired oxygen; HIE, hypoxic-ischemic encephalopathy; ICNARC, Intensive Care National Audit & Research Centre; ICU, intensive care unit; IQR, interquartile range; PaO_2 , partial pressure of oxygen in the arterial blood; SD, standard deviation; SpO_2 , peripheral oxygen saturation.

SI conversion factors: To convert PaO₂ and PaO₂/F₁O₂ ratio to kPa, multiply values by 0.133.

- Other includes those in the Chinese ethnic group, and those not in the groups otherwise listed, collected as per the National Health Service Data Dictionary definitions for 'Ethnic category'.
- b. Shortness of breath with light activity due to pulmonary disease and evident within the six months prior to admission.
- ^c Calculated since admission to critical care.
- d. For stratified randomisation, hierarchical classification was used to select at most one subgroup for each patient (from highest to lowest priority: HIE, sepsis, acute brain injury except HIE).

ICNARC_{H-2023} was calculated using physiological measures, age, past medical history, dependency, cardiopulmonary resuscitation prior to admission, mechanical ventilation receipt, source of and primary reason for admission. Other than PaO₂ and F₁O₂ values (last prior to randomisation), physiological measures reflect information from the first 24 hours in critical care.
 APACHE II score (range, 0–71; higher scores indicate greater severity) was calculated using physiological measures, age and previous health status. Other than PaO₂ and F₁O₂ values (last prior to randomization), physiological measures reflect information from the first 24 hours in critical care.

Table 2. Primary and secondary clinical outcomes.424

Outcome	Conservative oxygen therapy group	Usual oxygen therapy group	Adjusted effect estimate (available case) (95% CI) ^a	Adjusted effect estimate (multiply imputed) (95% CI) b	P value
Primary outcome					
90-d mortality, No./Total (%)	2908/8211 (35.4)	2858/8183 (34.9)	RD: +0.7 (-0.6 to +2.1)	RD: +0.7 (-0.7 to +2.0)	.28
			RR: 1.02 (0.98 to 1.06)	RR: 1.02 (0.98 to 1.06)	
			OR: 1.04 (0.97 to 1.11)	OR: 1.04 (0.97 to 1.11)	
Secondary outcomes					
Duration of ICU stay, d					
Overall, median (IQR) [No.]	6.6 (3.1 to 13.3) [7333]	6.8 (3.1 to 13.8) [7448]			
ICU survivors, median (IQR) [No.]	7.3 (3.6 to 14.9) [5211]	7.7 (3.8 to 15.3) [5290]	SHR: 1.00 (0.96 to 1.04)	sHR: 1.00 (0.96 to 1.04)	.97
ICU non-survivors, median (IQR) [No.]	4.9 (1.7 to 10.4) [2122]	4.6 (1.7 to 9.8) [2158]			
Duration of acute hospital stay, Median (IQR) [No.], d					
Overall, median (IQR) [No.]	14 (7 to 30) [7323]	14 (7 to 31) [7434]			
Hospital survivors, median (IQR) [No.]	20 (11 to 40) [4791]	21 (10 to 42) [4906]	sHR: 0.98 (0.94 to 1.02)	sHR: 0.98 (0.94 to 1.02)	.27
Hospital non-survivors, median (IQR) [No.]	7 (3 to 14) [2532]	7 (3 to 13) [2528]			
Days alive and free from organ support at 30 d, median (IQR) [No.], d °	16 (-1 to 25) [7327]	16 (-1 to 25) [7444]	POR: 1.00 (0.95 to 1.06)	POR: 1.01 (0.96 to 1.07)	.64
30-d mortality, No./Total (%)	2435/7449 (32.7)	2427/7573 (32.0)			
Days free from organ support at 30 d among survivors, median (IQR) [No.], d	23 (16 to 26) [4933]	23 (15 to 26) [5054]			
Mortality at ICU discharge, No./Total (%)	2122/7334 (28.9)	2161/7453 (29.0)	RD: +0.2 (-1.2 to +1.6)	RD: -0.1 (-1.3 to 1.1)	.94
Mortality at acute hospital discharge, No./Total (%)	2533/7335 (34.5)	2535/7458 (34.0)	RD: +0.9 (-0.6 to +2.3)	RD: +0.5 (-0.8 to +1.9)	.46
60-d mortality, No./Total (%)	2637/7449 (35.4)	2617/7573 (34.6)	RD: +1.1 (-0.2 to +2.5)	RD: +0.8 (-0.6 to 2.2)	.25
1-y mortality, No./Total (%)	2295/5636 (40.7)	2314/5755 (40.2)	RD: +1.0 (-0.7 to +2.6)	RD: +3.3 (-0.7 to 7.3)	.34

- CI, confidence interval; sHR: subdistribution hazard ratio calculated using the Fine and Gray method to account for competing risk of death; ICU, intensive care unit; IQR, interquartile range; OR: odds ratio; POR: proportional odds ratio; RD: risk difference; RR: risk ratio.
 - a. Regression models adjusted for stratified randomization factors of ICU site and diagnostic stratum, plus confirmed/highly suspected COVID-19 and restricted cubic splines of age, SpO₂, PaO₂/F₁O₂ ratio and date of randomization.
 - Primary analysis: adjusted as above, with multiple imputation of missing data, except for duration of ICU and acute hospital stay, where patients with missing time to discharge were included as censored 1 hour post-randomization.
- ^{c.} Ordinal composite outcome with patients who died on or before day 30 assigned the worst possible score of −1. Surviving patients were ranked according to the number of calendar days on which any respiratory, cardiovascular or renal support was received at any time during that day, starting from day 1 (the day of randomization) up to and including day 30. Following rows show individual components: 30-day mortality and days free from organ support at 30 days among survivors.

ACKNOWLEDGEMENTS

437

Funding 438 This trial was funded by the UK National Institute for Health and Care Research (NIHR) 439 440 Health Technology Assessment (HTA) programme (project number: NIHR130508). ICNARC 441 was the trial sponsor. The views expressed are those of the authors and not necessarily 442 those of the NIHR or the Department of Health and Social Care. The funder and Sponsor 443 had no role in any aspect of the design or conduct of the study, writing of this article or the 444 decision to submit the manuscript for publication. This research was conducted during the tenure of a Health Research Council of New Zealand Clinical Practitioner Fellowship held by 445 PY and NIHR Pre-doctoral Fellowship in Epidemiology (NIHR302788) held by WNC. 446 Authors' affiliations 447 ¹Peninsula Medical School, University of Plymouth, Plymouth, UK: ²Intensive Care Unit. 448 University Hospitals Plymouth NHS Trust, Plymouth, UK; ³Clinical Trials Unit, Intensive Care 449 National Audit & Research Centre (ICNARC), Napier House, London, UK; ⁴Department of 450 Health Services Research and Policy, London School of Hygiene & Tropical Medicine, 451 London, UK: ⁵Critical Care, Maidstone and Tunbridge Wells NHS Foundation Trust, Kent. 452 UK; ⁶Patient and Public Representative, Bristol, UK; ⁷Perioperative and Critical Care Theme, 453 454 NIHR Southampton Biomedical Research Centre, University Hospital Southampton/ University of Southampton, Southampton, UK; ⁸Medical Research Institute of New Zealand, 455 Wellington, New Zealand; ⁹Respiratory Medicine, Northern Care Alliance NHS Foundation 456 Trust, Salford Royal University Hospital, Salford, UK; 10 Integrated Critical Care Unit, South 457 Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK; ¹¹Critical Care, Aneurin 458 Bevan University Health Board, Cwmbran, UK; ¹²Critical Care, Queen Mary's University 459 London, UK; ¹³Adult Critical Care Unit, St Batholomew's Hospital, London, UK; ¹⁴Intensive 460 Care Unit, Wellington Hospital, Wellington, New Zealand; ¹⁵Australian and New Zealand 461

462 Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia;

¹⁶Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia.

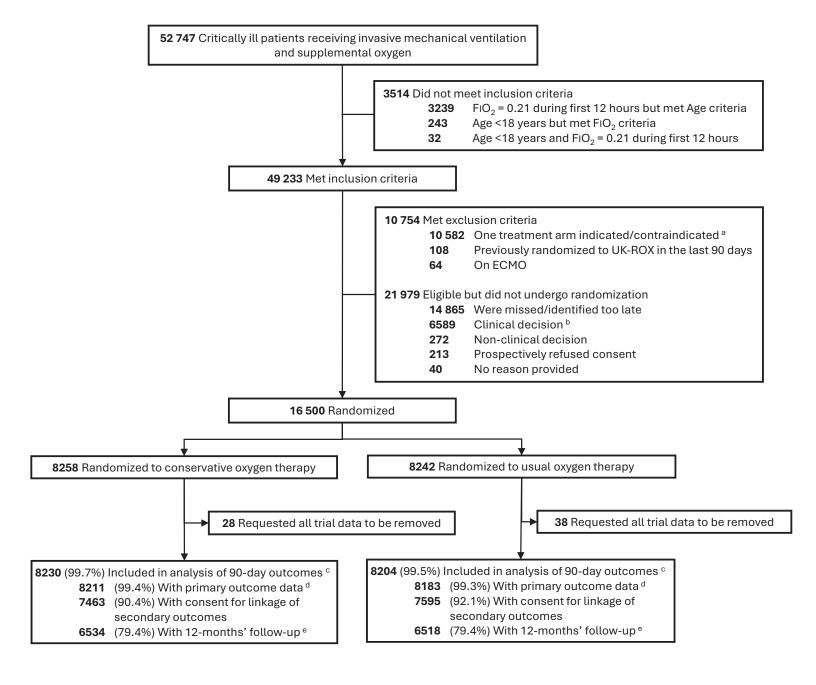
Authors' contributions

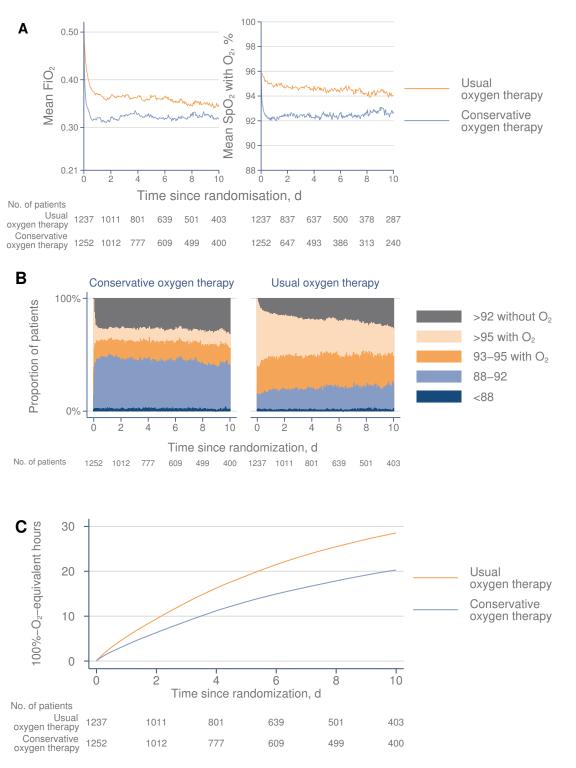
JD and DH had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. DM, MG, KR and PM conceived and led the design of the trial. Management, including acquisition of data, was led by TS with support from DG, JC, WC, LL, ARB, AFJ. JD, AC, ZS, WC, AW, DH led and delivered the analysis. RG provided input from a former patient. DM, MD, MG, JJ, ROD, AR, TS, PY provided clinical input and oversight. All authors contributed to interpretation of the data and critically reviewed the manuscript. DM and PM wrote the first draft of the manuscript.

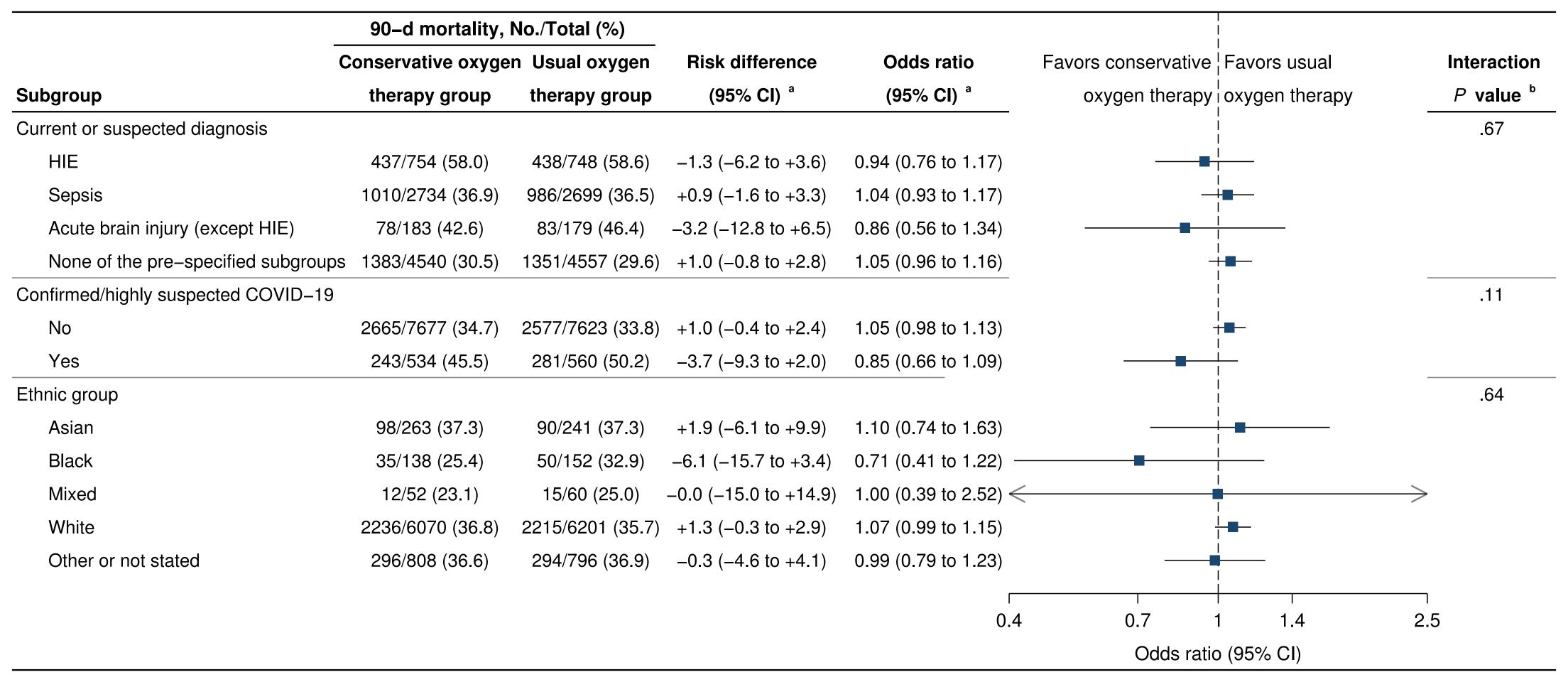
Disclosures

DM is Editor in Chief of the Journal of the Intensive Care society and has received NIHR funding: 135577,135577 and 129318. MG is in part funded by the NIHR Southampton Biomedical Research Centre and in part funded by the NIHR Senior Investigator Scheme. MG has served on the medical advisory board of Edwards Lifesciences Ltd and received honoraria and unrestricted study funding from Edwards Lifesciences Ltd. TS has received speaker fees from Thermofisher Ltd, and from Biotest AG. TS is Editor-in-Chief for Critical Care Explorations, Trustee for the Intensive Care National Audit and Research Centre and has received the following NIHR funding: 131784, 132254. KR is Director of the NIHR Health and Social Care Delivery Research Programme. DH is a member of the NIHR Health Technology Assessment programme general funding committee.

Data sharing


A data sharing statement provided by the authors is available with the full text of this article in Supplement 3.


486	Group information
487	Chief investigator and co-investigators: Daniel Martin, PhD (Chief Investigator); Paul
488	Mouncey, MSc (co-Lead Investigator); Miriam Davey, PGDip; James Doidge, PhD; Roger
489	Garrett, PhD; Doug Gould, PhD; Michael Grocott, MD; David Harrison, PhD; Joanne Jones,
490	RN; Ronan O'Driscoll, MD; Alvin Richards-Belle, BSc; Kathryn Rowan, PhD; Zia Sadique,
491	PhD; and Paul Young, PhD.
492	Trial Steering Committee: Tim Walsh, MD (Chair, independent); Felix Achana, PhD
493	(independent); Jeremy Dearling (independent); Kathryn Puxty, MD (independent); Anthony
494	Gordon, MD (independent); Sarah Vollam, PhD (independent); Daniel Martin, PhD (non-
495	independent); and Paul Mouncey, MSc (non-independent).
496	Data Monitoring and Ethics Committee: John Norrie, PhD (Chair); Anders Perner, PhD; and
497	Todd Rice, MD.
498	Trial Management Group: Daniel Martin, PhD; Paul Mouncey, MSc; Doug Gould, PhD;
499	Tasnin Shahid, BSc; James Doidge, PhD; Zia Sadique, PhD; Miriam Davey, PGDip; Roger
500	M Garrett, PhD; Michael Grocott, MD; Joanne Jones, RN; Diane Mackle, PhD; B Ronan
501	O'Driscoll, MD; Alvin Richards-Belle, BSc; Anthony Rostron, PhD; Tamas Szakmany, PhD;
502	Paul Young, PhD; Kathryn Rowan, PhD; and David Harrison, PhD.
503	Additional clinical trials unit contributors
504	Hannah Chester, Hannah Sedgwick, Millie Parke, Naomi Lau, Carly Au, Alexina Mason,
505	Lorna Miller
506	


507		Reference List
508		
509 510	1.	Bitterman H. Bench-to-bedside review: oxygen as a drug. <i>Crit Care</i> . 2009;13(1):205. doi:10.1186/cc7151
511	2.	de Jonge E, Peelen L, Keijzers PJ, et al. Association between
512 513		administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. <i>Crit Care</i> . 2008;12(6):R156.
514		doi:10.1186/cc7150
515	3.	Palmer E, Post B, Klapaukh R, et al. The Association between Supraphysiologic
516		Arterial Oxygen Levels and Mortality in Critically III Patients. A Multicenter
517		Observational Cohort Study. Am J Respir Crit Care Med. Dec 01 2019;200(11):1373-
518		1380. doi:10.1164/rccm.201904-0849OC
519	4.	Schjørring OL, Klitgaard TL, Perner A, et al. Lower or Higher Oxygenation Targets for
520		Acute Hypoxemic Respiratory Failure. N Engl J Med. Apr 08 2021;384(14):1301-
521		1311. doi:10.1056/NEJMoa2032510
522	5.	Semler MW, Casey JD, Lloyd BD, et al. Oxygen-Saturation Targets for Critically III
523		Adults Receiving Mechanical Ventilation. N Engl J Med. Nov 10 2022;387(19):1759-
524		1769. doi:10.1056/NEJMoa2208415
525	6.	van der Wal LI, Grim CCA, Del Prado MR, et al. Conservative versus Liberal
526		Oxygenation Targets in Intensive Care Unit Patients (ICONIC): A Randomized
527		Clinical Trial. Am J Respir Crit Care Med. Oct 01 2023;208(7):770-779.
528		doi:10.1164/rccm.202303-0560OC
529	7.	Gelissen H, de Grooth HJ, Smulders Y, et al. Effect of Low-Normal vs High-Normal
530		Oxygenation Targets on Organ Dysfunction in Critically III Patients: A Randomized
531		Clinical Trial. <i>JAMA</i> . Sep 14 2021;326(10):940-948. doi:10.1001/jama.2021.13011
532	8.	Mackle D, Bellomo R, Bailey M, et al. Conservative Oxygen Therapy during
533		Mechanical Ventilation in the ICU. N Engl J Med. Mar 12 2020;382(11):989-998.
534		doi:10.1056/NEJMoa1903297
535	9.	Nielsen FM, Klitgaard TL, Siegemund M, et al. Lower vs Higher Oxygenation Target
536		and Days Alive Without Life Support in COVID-19: The HOT-COVID Randomized
537		Clinical Trial. <i>JAMA</i> . Apr 09 2024;331(14):1185-1194. doi:10.1001/jama.2024.2934
538	10.	Peters MJ, Gould DW, Ray S, et al. Conservative versus liberal oxygenation targets
539		in critically ill children (Oxy-PICU): a UK multicentre, open, parallel-group,
540		randomised clinical trial. <i>Lancet</i> . Jan 27 2024;403(10424):355-364.
541		doi:10.1016/S0140-6736(23)01968-2

- 542 11. Li XY, Dai B, Hou HJ, et al. Conservative versus liberal oxygen therapy for intensive
- care unit patients: meta-analysis of randomized controlled trials. *Ann Intensive Care*.
- 544 Apr 26 2024;14(1):68. doi:10.1186/s13613-024-01300-7
- 545 12. Martin DS, Shahid T, Gould DW, et al. Evaluating the clinical and cost-effectiveness
- of a conservative approach to oxygen therapy for invasively ventilated adults in
- intensive care: Protocol for the UK-ROX trial. *J Intensive Care Soc.* May
- 548 2024;25(2):223-230. doi:10.1177/17511437241239880
- 549 13. Schulz KF, Altman DG, Moher D, Group C. CONSORT 2010 statement: updated
- guidelines for reporting parallel group randomized trials. Ann Intern Med. Jun 01
- 551 2010;152(11):726-32. doi:10.7326/0003-4819-152-11-201006010-00232
- 552 14. Ferrando-Vivas P, Shankar-Hari M, Thomas K, et al. Improving risk prediction model
- quality in the critically ill: data linkage study. Health and Social Care Delivery
- 554 Research. 2022;10(39)doi:10.3310/EQAB4594
- 555 15. NHS England. Civil Registrations of Death. https://digital.nhs.uk/services/data-
- 556 access-request-service-dars/dars-products-and-services/data-set-catalogue/civil-
- registrations-of-death
- 558 16. Kleinman LC, Norton EC. What's the Risk? A simple approach for estimating
- adjusted risk measures from nonlinear models including logistic regression. *Health*
- 560 Serv Res. Feb 2009;44(1):288-302. doi:10.1111/j.1475-6773.2008.00900.x
- 561 17. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of
- 562 disease classification system. Crit Care Med. Oct 1985;13(10):818-29.
- 563 18. Matthay MA, Arabi Y, Arroliga AC, et al. A New Global Definition of Acute Respiratory
- 564 Distress Syndrome. Am J Respir Crit Care Med. Jan 1 2024;209(1):37-47.
- 565 doi:10.1164/rccm.202303-0558WS
- 566 19. StataCorp LLC. Stata Corp. Stata Statistical Software: Release 18. 2021;
- 567 20. Post B, Palmer E, Harris S, Singer M, Martin D. Oxygenation of the critically ill in
- 568 selected intensive care units in the UK: are we usual? *Br J Anaesth*. Sep
- 569 2020;125(3):e277-e279. doi:10.1016/j.bja.2020.06.033
- 570 21. Martin DS, McNeil M, Brew-Graves C, et al. A feasibility randomised controlled trial of
- 571 targeted oxygen therapy in mechanically ventilated critically ill patients. *J Intensive*
- 572 Care Soc. Nov 2021;22(4):280-287. doi:10.1177/17511437211010031
- 573 22. Eastwood G, Bellomo R, Bailey M, et al. Arterial oxygen tension and mortality in
- 574 mechanically ventilated patients. *Intensive Care Med.* Jan 2012;38(1):91-8.
- 575 doi:10.1007/s00134-011-2419-6
- 576 23. Young PJ, Arabi YM, Bagshaw SM, et al. Protocol and statistical analysis plan for the
- 577 mega randomised registry trial research program comparing conservative versus
- liberal oxygenation targets in adults receiving unplanned invasive mechanical

579		ventilation in the ICU (Mega-ROX). Crit Care Resusc. Jun 06 2022;24(2):137-149.
580		doi:10.51893/2022.2.OA4
581	24.	Martin DS, McKenna HT, Rowan KM, et al. The effect of conservative oxygen therapy
582		on mortality in adult critically ill patients: A systematic review and meta-analysis of
583		randomised controlled trials. J Intensive Care Soc. Nov 2023;24(4):399-408.
584		doi:10.1177/17511437231192385
585	25.	Martin DS, Grocott MPW. Heterogeneity of treatment effect: the case for
586		individualising oxygen therapy in critically ill patients. Crit Care. Jan 28
587		2025;29(1):50. doi:10.1186/s13054-025-05254-5
588	26.	Buell KG, Spicer AB, Casey JD, et al. Individualized Treatment Effects of Oxygen
589		Targets in Mechanically Ventilated Critically III Adults. JAMA. Apr 09
590		2024;331(14):1195-1204. doi:10.1001/jama.2024.2933

