
 

Research Articles | Behavioral/Cognitive   
Contents of visual predictions oscillate at alpha
frequencies 
 

https://doi.org/10.1523/JNEUROSCI.0474-25.2025
 
Received: 6 March 2025
Revised: 28 August 2025
Accepted: 29 August 2025
 

Copyright © 2025 Hetenyi et al.

This is an open-access article distributed under the terms of the Creative Commons

Attribution 4.0 International license, which permits unrestricted use, distribution and
reproduction in any medium provided that the original work is properly attributed.

This Early Release article has been peer reviewed and accepted, but has not been through
the composition and copyediting processes.The final version may differ slightly in style or
formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully
             formatted version of this article is published.

https://www.jneurosci.org/alerts
https://doi.org/10.1523/JNEUROSCI.0474-25.2025
https://doi.org/10.1523/JNEUROSCI.0474-25.2025
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


1 
 

Title 1 

Contents of visual predictions oscillate at alpha frequencies 2 

Short title: Visual predictions oscillate at alpha frequencies 3 

Authors 4 

Dorottya Hetenyi1, Joost Haarsma1,2, Peter Kok1 5 

1Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University 6 
College London, London, UK.  7 

2Department of Cognitive Neuroscience , Faculty Psychology and Neuroscience, Maastricht 8 
University, Maastricht, 6229 ER 9 

Corresponding author 10 

Dorottya Hetenyi, dorottya.hetenyi.21@ucl.ac.uk 11 

Pages 12 

Manuscript: 35 pages 13 

Figures 14 

Manuscript: Figures: 5 + Supplemental figures: 5 15 

Words  16 

Abstract: 135 17 
Introduction: 418 18 
Discussion: 1500 19 
References: 66 20 

Acknowledgements 21 

We would like to thank Gareth Barnes, Ole Jensen, Oscar Ferrante and Benjy Barnett for 22 

advice on MEG analyses, Benjy Barnett for feedback on an earlier version of the manuscript, 23 

and the Imaging Support Team at the Functional Imaging Laboratory for their help with data 24 

collection. This work was supported by a Wellcome/Royal Society Sir Henry Dale Fellowship 25 

[218535/Z/19/Z] and a European Research Council (ERC) Starting Grant [948548] to P.K. The 26 

Wellcome Centre for Human Neuroimaging was supported by core funding from the Wellcome 27 

Trust [203147/Z/16/Z].  28 

Data and code availability 29 

All original MEG data and all original code will be deposited at OSF (https://osf.io) and will be 30 
publicly available upon publication. 31 

Conflict of interests 32 

The authors declare no conflicts of interests.   33 

JN
eurosci

 Acce
pted M

an
uscr

ipt



2 
 

Abstract 34 

Predictions of future events have a major impact on how we process sensory signals. 35 

However, it remains unclear how the brain keeps predictions online in anticipation of future 36 

inputs. Here, we combined magnetoencephalography (MEG) and multivariate decoding 37 

techniques to investigate the content of perceptual predictions and their frequency 38 

characteristics. Thirty-two participants (23 female) were engaged in a shape discrimination 39 

task, while auditory cues predicted which specific shape would likely appear. Frequency 40 

analysis revealed significant oscillatory fluctuations of predicted shape representations in the 41 

pre-stimulus window in the alpha band (10 – 11Hz). Furthermore, we found that this stimulus-42 

specific alpha power was linked to expectation effects on shape discrimination behaviour. Our 43 

findings demonstrate that sensory predictions are embedded in pre-stimulus alpha oscillations 44 

and modulate subsequent perceptual performance, providing a neural mechanism through 45 

which the brain deploys perceptual predictions. 46 

Significance statement 47 

Prior knowledge greatly influences how we perceive the world. However, it is unclear how the 48 

brain maintains and keeps prediction signals in the anticipation of future inputs. Our study 49 

reveals a neural mechanism by which the brain maintains sensory predictions. We 50 

demonstrated that perceptual predictions are encoded in pre-stimulus alpha oscillations (10–51 

11 Hz). These oscillations not only reflect the content of predicted visual shapes but are also 52 

directly linked to enhanced perceptual performance. These findings provide key insights into 53 

how the brain prepares for and improves perception of future sensory inputs, contributing to 54 

our understanding of predictive processing in human cognition. 55 

Keywords 56 

‒ expectation; time-resolved multivariate analysis; perceptual inference; pre-stimulus 57 

oscillations; stimulus templates; predictive processing   58 
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Introduction  59 

Predictions about how the world is structured play an integral role in perception (Friston, 2009; 60 

Bastos et al., 2012; Clark, 2013; de Lange et al., 2018). Our prior knowledge forms the basis 61 

for predictions of future sensory events, which are subsequently integrated with sensory input 62 

to form a perceptual experience. While there is a wealth of evidence supporting the idea that 63 

the brain deploys predictions to guide perception, the mechanisms through which the brain 64 

keeps these predictions online remain largely unknown. One likely candidate for conveying 65 

perceptual predictions are neural oscillations (Arnal and Giraud, 2012; Mayer et al., 2016; 66 

Auksztulewicz et al., 2017; Bastos et al., 2020).  67 

Alpha rhythms (8 – 12Hz) are the predominant oscillations in the awake human brain (Berger, 68 

1929), yet their functional role is controversial (Klimesch et al., 2007; Jensen and Mazaheri, 69 

2010). The amplitude and phase of these ongoing oscillations is known to influence 70 

performance in visual tasks (Ergenoglu et al., 2004; van Dijk et al., 2008; Busch et al., 2009; 71 

Mathewson et al., 2009; Romei et al., 2010; Dugué et al., 2011; VanRullen et al., 2011; 72 

Hanslmayr et al., 2013; Iemi et al., 2019), and have been found to vary with experimental 73 

manipulations that target stimulus predictability (Sherman et al., 2016; Alilović et al., 2019). 74 

Specifically, pre-stimulus alpha oscillations have a similar topography to post-stimulus 75 

responses, implying a shared neural substrate in the processing of pre-existing information 76 

and external stimuli (Shen et al., 2023), alpha phase determines the influence of predictions 77 

on perception (Sherman et al., 2016), and alpha power has been shown to predictively encode 78 

the position of a moving stimulus (Turner et al., 2023). Furthermore, alpha-band activity 79 

modulates sensory processing of both low-level features and high-level object representations 80 

through selective attention, suggesting a hierarchical and predictive role in top-down control. 81 

(Noah et al., 2020; Meyyappan et al., 2024). However, whether these oscillations actually 82 

convey the contents of perceptual predictions remains unknown.  83 

To test this hypothesis, we combined magnetoencephalography (MEG) with multivariate 84 

decoding analyses to resolve visual representations with millisecond resolution, and 85 
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characterise the temporal and frequency characteristics (Kerrén et al., 2018, 2022) of sensory 86 

predictions (Stecher and Kaiser, 2024; Stecher et al., 2025). Participants were engaged in a 87 

shape discrimination task where auditory cues predicted the identity of upcoming abstract 88 

shapes. We identified the neural representations of cued sensory predictions prior to stimulus 89 

onset and tested whether these sensory predictions had an oscillatory nature, as well as 90 

whether the power of such predictive oscillations modulated perceptual performance (Tarasi 91 

et al., 2022). 92 

Materials and Methods 93 

Participants 94 

Sixty-two healthy right-handed participants (43 female) with normal or corrected-to-normal 95 

vision and no history of neurological disorders took part in the behavioural experiment. This 96 

experiment served as a pre-assessment process to familiarise the participants with the task 97 

and select only those whose average performance accuracy on the challenging shape 98 

discrimination task was above 70% across the four runs. Thirty-nine participants (28 female) 99 

met the performance inclusion criteria and participated in the MEG experiment. Seven 100 

participants were excluded from subsequent analyses due to excessive head movement (N=5) 101 

or not completing the full experiment (N=2), leaving thirty-two participants (23 female, age 26 102 

± 5 years, mean ± SD) for the MEG analysis. 103 

Stimuli 104 

The experiment employed the same design as (Kok and Turk-Browne, 2018), wherein 105 

participants discriminated between two consecutively presented shapes which were preceded 106 

by a predictive auditory cue. Each predictive cue was composed of three pure tones (440, 107 

554, and 659Hz; 80ms per tones; 5ms intervals), played with rising or falling pitch, with a total 108 

duration of 250ms. Visual stimuli were generated using MATLAB (The MathWorks Inc., 109 

version 2021b) and Psychophysics Toolbox (Brainard, 1997). The visual stimuli consisted of 110 

complex abstract shapes defined by radial frequency components (RFCs), a method where 111 
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shape contours are created by modulating the radius of a circle as a function of angular 112 

position (Zahn and Roskies, 1972). This technique allows for precise control of shape 113 

complexity and variation by adjusting the frequency and amplitude of sinusoidal modulations 114 

around the shape’s circumference. To generate the contours of the stimuli, seven RFCs 115 

(0.55Hz, 1.11Hz, 4.94Hz, 3.39Hz, 1.54Hz, 3.18Hz, 0.57Hz) were used which were based on 116 

a subset of stimuli from Op de Beeck et al.'s work (Op de Beeck et al., 2001); see their Fig. 117 

1A). To construct a two-dimensional shape space, we systematically varied the amplitudes of 118 

two RFCs (specifically the 1.11Hz and 1.54Hz components) while keeping the amplitudes of 119 

the other components constant (indicated by the arrows on Fig.1D). These variations created 120 

the four distinct abstract shapes such as: shape A (baseline amplitudes, amplitude of 1 x 121 

1.11Hz = 8; 1 x 1.54Hz = 8); shape B (amplitude of 1 x 1.11Hz = 8; 4 x 1.54Hz = 26 ; shape 122 

C (amplitude of 4 x 1.11Hz = 26; 1 x 1.54Hz = 8) and shape D (amplitude of 4 x 1.11Hz = 26; 123 

4 x 1.54Hz = 26). These shapes were designed such that discrimination between shapes A 124 

and D (both amplitudes changed) was orthogonal to the discrimination between shapes B and 125 

C (only one amplitude varied), defining a clear two-dimensional shape space (Fig. 1D). As 126 

explained above, the shapes were designed in a very precise and controlled way, accounting 127 

for discrimination accuracy perceptually and neuronally. This allowed us to study signals 128 

reflecting complex visual shapes, rather than conventional gratings, yet in an experimentally 129 

controlled manner. Additionally, RFC-based warping was used to generate moderately 130 

distorted versions of the two main experiment shapes (shape A and D, Fig. 1D) for the benefit 131 

of the shape discrimination task. This warp to define the shape was achieved by modulating 132 

a different RFC’s amplitude (3.18Hz) than the two used (1.11Hz and 1.54Hz) to define the 133 

shape space. This modulation could be either positive or negative (counterbalanced over 134 

conditions) and was orthogonal to the shape space used for the two main experiment shapes, 135 

and therefore to the cue predictions as well. The visual stimuli were displayed on a rear-136 

projection screen using a projector (1024 x 768 resolution, 60 Hz refresh rate) against a 137 

uniform grey background.  138 
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Behavioural experiment 139 

The study had two parts, a behavioural training and screening experiment, and an MEG 140 

experiment for those who passed the behavioural screening. In both parts, participants were 141 

engaged in a shape discrimination task. Each trial started with a fixation bullseye (diameter, 142 

0.7°) for 100ms, followed by the presentation of two consecutive shape stimuli each for 250ms, 143 

and separated by a 500ms blank screen containing only a fixation bullseye (Fig. 1A). On each 144 

trial, the second shape was the same as the first or slightly warped. The modulation was either 145 

positive or negative, and the size of the modulation was determined by an adaptive staircasing 146 

procedure (Watson and Pelli, 1983), updated after each trial, in order to make the task 147 

challenging. Participants were instructed to report whether the two presented shapes were 148 

identical or different. After the response interval ended (750ms after disappearance of the 149 

second shape), the fixation bullseye was replaced by a single dot, signalling the end of the 150 

trial while still prompting participants to fixate. On each trial, one of the four shapes (A, B, C 151 

or D; Fig. 1D) was presented, in a counterbalanced (i.e., non-predictable) manner. Participants 152 

performed four runs (360 trials in total) of the shape discrimination task, maximum one week 153 

prior to the MEG session. 154 

MEG experiment  155 

The MEG experiment started with two localiser runs, containing the same four abstract shapes 156 

as in the behavioural task. To ensure participants were engaged, they performed a fixation 157 

dimming task (10% of total trials, ~24 of 248 trials per run). Each trial began with a fixation 158 

bullseye (visual angle: 0.7°) displayed for 100ms, followed by one of the four shapes 159 

presentation for 250ms. Following the stimulus presentation, the fixation bullseye reappeared 160 

and remained on the screen for a period between 1000 and 1200ms. In 10% of the trials, 161 

fixation bullseye dimmed for 150ms and participants had been instructed to press a button 162 

when this occurred. By using identical stimulus durations, these runs were designed to be as 163 

similar as possible in terms of stimulus presentation to the main experiment. During the 164 

localisers, participants correctly detected 95.3 ± 0.7% (mean ± SEM) of fixation dimming 165 
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events and incorrectly pressed the button on 4.9 ± 2.2% of trials, suggesting that participants 166 

were successfully engaged by the fixation task. 167 

Following the localiser runs, participants performed 8 main task runs (2x training runs, 6x 168 

prediction runs), 64 trials per run, in total 512 trials. During the prediction runs, an auditory cue 169 

(falling vs. rising tones, 250ms) was presented 100ms after trial onset. Following a 1500ms 170 

interval, two consecutive shape stimuli were displayed (each for 250ms) and, separated by a 171 

500ms blank screen (Fig. 1A). As in the behavioural session, participants’ task was to indicate 172 

whether the two shapes were the same or different. The auditory cue predicted whether the 173 

first shape presented on that trial would be shape A or D. The cue was valid on 75% of trials, 174 

whereas on the other 25% of trials the unpredicted shape would be presented (Fig. 1B). For 175 

instance, if the cue was a falling auditory tone, it might lead to shape A in 75% of cases and 176 

shape D in the other 25% of cases. The prediction induced by the auditory cue (predicting the 177 

identity of the first shape) was thus orthogonal to participants’ task (whether the two shapes 178 

were the same or different). This experimental design choice was made to prevent the cues 179 

from inducing responses biases in the task (c.f. (Kok et al., 2012a, 2017; Kok and Turk-180 

Browne, 2018). Despite this orthogonality, previous work using a similar design has revealed 181 

a significant benefit in behavioural performance of valid prediction cues, which was correlated 182 

with neural effects of the predictive cues (e.g., (Kok et al., 2012a, 2017; Kok and Turk-Browne, 183 

2018). Additionally, ensuring the predictive cues were orthogonal to the task allowed us to 184 

manipulate expectation while keeping attention constant, since both validly and invalidly cues 185 

shapes were equally task-relevant. 186 

Note that shapes B and C were never presented in the prediction runs. The contingencies 187 

between cues and shapes were flipped halfway through the experiment, and the order was 188 

counterbalanced over subjects. Prior to the first prediction run, and after the cue reversal 189 

halfway through, participants were trained on the cue–shape associations during training runs 190 

in the MEG and explicitly informed about the cue contingencies. In the training runs, the 191 

auditory cue was 100% predictive of the identity of the first shape. 192 
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Pre-processing 193 

Whole-head neural recordings were obtained using a 273-channel MEG system with axial 194 

gradiometers (CTF Systems) at a rate of 600Hz located in a magnetically shielded room. 195 

Throughout the experiment, head position was monitored online and corrected if necessary 196 

using three fiducial coils that were placed on the nasion, right and left preauricular. If 197 

participants moved their head more than 5mm from the starting position, they were 198 

repositioned after each run. Eye movements were recorded using an EyeLink 1000 infrared 199 

tracker (SR Research Ltd.). The recorded eye-tracker data were used to identify eye-blink 200 

related artefacts in the MEG signal. Auditory tones were delivered using earplugs (Etymotic 201 

Research Inc.). A photodiode was placed at the bottom left corner of the screen to measure 202 

visual stimulus presentation latencies. The photodiode signal was used to realign the MEG 203 

signal with stimulus onset. 204 

The data were pre-processed offline using FieldTrip (Oostenveld et al., 2011). The variance 205 

(collapsed over channels and time) was calculated for each trial in order to identify artefacts. 206 

Trials with large variances were subsequently selected for manual inspection and removed if 207 

they contained excessive and irregular artefacts. Number of trials removed per participants: 208 

valid condition 5.740 ± 4.495; invalid 5.761 ± 5.473; presented shape A 5.664 ± 4.4288 and 209 

presented shape D 5.826 ± 5.015 (mean ± SD). Next, independent component analysis was 210 

used to further remove cardiac and eye movements related artefacts. The independent 211 

components were correlated to the eye tracking signal to identify potentially contaminating 212 

components for each participant, and inspected manually before removal. Notch filters were 213 

also applied at 50, 100, and 150Hz to remove line noise and its harmonics. No detrending was 214 

applied for any analysis. Finally, main task data were baseline corrected on the interval of 215 

−200 to 0ms relative to auditory cue onset, and localiser data were baseline corrected on the 216 

interval of −200 to 0ms relative to shape onset.  217 
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Decoding analysis 218 

To uncover the representational content of neural activity, we performed a decoding analysis 219 

using a customised linear discriminant analysis (LDA) decoder. LDA aims to find a linear 220 

transformation of the data, where the resulting signal is optimally discriminative between two 221 

labels. The data fed into the decoder was separated based on the number of MEG channels 222 

(F) at each time point, therefore 𝛍𝟏̂ and 𝛍𝟐̂ were column vectors of length F that contain the 223 

neural responses in the training set for label 1 and 2. The weights vector (w) that optimally 224 

discriminates between labels on the basis of the channels was calculated as: 225 

𝐰 =  𝚺̃𝐂
−𝟏(𝛍𝟐̂ − 𝛍𝟏̂). 𝚺̃𝑪 is the common regularised covariance matrix. The data to be 226 

decoded (X) was set as a matrix of size channels X trials (N), and the decoded data (y) was 227 

then obtained, were T denotes the matrix transpose as: 𝐲 =  𝐰𝐓𝐗. Rather than assigning 228 

discrete labels, the decoder outputs a continuous measure of label encoding strength in the 229 

signal for each single trial. Therefore, no binary cut-off was applied to the decoded data. 230 

Retaining single trial data allowed us to perform across-trial analysis (such as coherence and 231 

logistic regression against behavioural reports, see below). A normalisation factor was applied 232 

to allow comparing the data across time points (i.e., the mean difference in the decoded data 233 

between labels was equal to a value of one). The equation describing the decoder, including 234 

the normalisation factor, as described in (Mostert et al., 2015), was as follows: 235 

𝐰 =  
𝚺̂𝐂

−𝟏 (𝛍𝟐̂ −  𝛍𝟏̂)

(𝛍𝟐̂ −  𝛍𝟏̂)𝐓  𝚺̂𝐂
−𝟏(𝛍𝟐̂ −  𝛍𝟏̂)

 236 

This decoder assessed how sensor-level activity varied based on a discriminability index, 237 

providing a continuous measure of shape decoding on a trial by trial basis. The decoding 238 

analysis was time-resolved. First, the data were down-sampled (from the original sampling 239 

rate of 600Hz to 200Hz) using a 28ms sliding time window centred on each time point, with 240 

the window advancing in 5ms steps. Then, the decoder was applied to the down-sampled 241 

data, resulting in a decoder output matrix of trials X training time X testing time.  242 
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To test how effective the decoder was at revealing neural patterns, it was first trained and 243 

tested on shape A and D trials (between -100 and 600ms relative to stimulus onset) from the 244 

localiser runs, using a leave-one-block-out approach. Analogously, a shape B vs. C decoder 245 

was tested on shape B and C trials (Fig. S1D). To further validate the analysis, we tested the 246 

shape A vs. D decoder on the shape B and C trials, and the shape B vs. C decoder on shape 247 

A and D trials (Fig. S1BC). We expected significant decoding within shape categories (e.g. 248 

training and testing on shape A vs. D), but not across shape categories (i.e., training on shape 249 

A and D and testing on shape B and C, and vice versa). 250 

Localiser decoding results were analysed using non-parametric cluster-based permutation 251 

tests. The data were represented as 2D matrices of decoding performance, with training time 252 

on one axis and testing time on the other. The statistical analysis focused on identifying 253 

significant 2D clusters in these matrices. To do so, univariate t-statistics were calculated for 254 

the entire matrix. Elements that were considered neighbours, i.e., directly adjacent in cardinal 255 

or diagonal directions, were collected into separate positive and negative clusters if they 256 

passed a threshold corresponding to a p-value of 0.001 (two-tailed). The significance of the 257 

clusters was assessed by summing the t-values within each cluster to obtain cluster-level test 258 

statistics. These test statistics were then compared to a null distribution, which was created 259 

by randomly shuffling the observed data 10,000 times. A cluster was considered significant if 260 

its resulting p-value was less than 0.05 (two-tailed). 261 

In order to reveal predicted shape representations, the decoder was trained on shape A vs. D 262 

localiser trials (70 – 200ms) again in a time-resolved manner with the identical parameters as 263 

above, and subsequently tested on the pre-stimulus window (-1750 to 0ms relative to shape 264 

onset) during the prediction runs (Fig. S2). To address label imbalances resulting from trial 265 

rejections during pre-processing, random resampling was applied to the training sets, ensuring 266 

an equal number of each decoded classes (shapes) for every participant. Furthermore, we 267 

repeated the same procedure for each participant using a control decoder trained on shapes 268 

B vs. C localiser trials, i.e. shapes which were not presented during the prediction runs. This 269 
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results of applying this control decoder to the pre-stimulus prediction window served as a 270 

baseline (Baseline 2, Fig. 2C right) in further analyses. It is important to highlight that the 271 

shape B vs. C discrimination was orthogonal to shape A vs. D discrimination. 272 

Frequency analysis of pre-stimulus decoding time series 273 

Our primary aim was to test whether the decoded neural representations of predicted shapes 274 

had oscillatory dynamics. Therefore, we adapted the analysis approach of (Kerrén et al., 275 

2018), investigating the frequency characteristics of decoder time series using FFT. This 276 

analysis examined whether the spatial shape-specific pattern identified by training an LDA 277 

decoder on shape-specific evoked signals (in the localiser runs) showed evidence of rhythmic 278 

fluctuations during the cue-stimulus prediction interval. The LDA shape decoders were trained 279 

on the trial-by-trial evoked responses during the shape localiser in a time-resolved manner 280 

(sliding window of 28ms, steps of 5ms). These decoders were applied to the cue-stimulus 281 

prediction intervals (-1250ms to 0ms relative to the onset of the first shape) in order to reveal 282 

shape-specific sensory prediction signals. Based on the results of cross-validated within 283 

localiser shape decoding (Fig. S1A), we averaged over decoding training timepoints in the 70-284 

200ms post-stimulus window for subsequent analyses. The decoder output (as mentioned 285 

above) contained a continuous measure of shape discrimination, rather than binarized class 286 

information. Using decoding accuracy alone would not allow us to explore the oscillatory 287 

nature of the neural signal, as continuous decoder output reflects a non-graded shape 288 

information. Additionally, trial-by-trial phase misalignment may impose a challenge, as we did 289 

not expect the predictive signal to occur at the exact same latency across participants, 290 

averaging across trials to compute accuracy could harm meaningful temporal dynamics. 291 

Keeping the continuous output better preserves this information for subsequent frequency 292 

analysis. 293 

For each participant, each trial of the pre-stimulus decoded time series was tapered with a 294 

Hann window covering the whole time period (-1250 to 0ms), and then subjected to an FFT. 295 
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In a control analysis, we used Fitting Oscillations and One-Over-F (FOOOF, as implemented 296 

in the Fieldtrip toolbox (Donoghue et al., 2020), which separates rhythmic activity from 297 

concurrent power-spectral 1/f modulations in electrophysiological data, to validate the 298 

oscillatory nature of the predictive representations (Fig. S3A). We also repeated the frequency 299 

analysis in a time-resolved manner (between -2000ms and 500ms, with a fixed-length 500ms 300 

Hann window running at every 50ms) to be able to visualise the extent of the alpha oscillations 301 

(Fig. S3C).  302 

To assess the reliability of our results, we created an empirical baseline using decoders with 303 

randomly shuffled shape labels (Baseline 1, Fig. 2C left). The labels of the two shapes (shape 304 

A and D) were shuffled pseudo-randomly before training the decoder, 25 times per participant. 305 

Therefore, each participant yielded 25 permuted datasets. The analysis parameters for the 306 

baseline decoding were identical to the non-shuffled decoder, i.e. identical spectral analysis 307 

was performed for each of the 25 datasets per participant. We generated an empirical null 308 

distribution by bootstrapping the permuted datasets (n = 10,000) (Stelzer et al., 2013), and 309 

compared this to the frequency analysis results of the non-shuffled shape A vs. D decoder 310 

data (Kerrén et al., 2018). Frequency bins with higher power than the empirical null distribution 311 

(exceeding the 95th percentile) were considered significant. To further validate the findings, 312 

we also conducted the identical frequency analysis (same analytical parameters) using 313 

decoders trained to distinguish shape B vs. C rather than A vs. D as an additional baseline 314 

(Baseline 2, Fig. 2C right). Importantly, shapes B and C were highly similar to shapes A and 315 

D but lay on an orthogonal discrimination axis (Fig. 1D), yielding a very precise and stringent 316 

control analysis. To correct for multiple comparisons, we extracted the p-values for each 317 

frequency bin (1–99 Hz) relative to the Baseline 1 data and applied the False Discovery Rate 318 

(FDR) correction. The p-values were derived using a one-sided test vs. Baseline 1, to test 319 

specifically whether the power in the shape A vs. D decoder was higher than in the baseline. 320 

To test whether the alpha fluctuations observed in the decoder traces were indeed driven by 321 

alpha band specific MEG signals, we applied band-pass filtering using a one-pass Butterworth 322 
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filter with a filter order of four between 8 and 12Hz on the main task (prediction runs) sensor-323 

level MEG data for all MEG channels. Then, the bandpass-filtered MEG time courses were 324 

subjected to the identical decoding and frequency analysis as described above (Fig. S3B). 325 

In an exploratory analysis, we repeated the analysis for two shorter training time windows (90 326 

– 120ms and 160 – 190ms), centred around the first (105ms) and second peak (175ms) of 327 

localiser shape decoding (Fig. 2A) to distinguish effects of earlier and later visual 328 

representations. These time windows were chosen since they appeared to form distinct 329 

clusters in the localiser decoding temporal generalisation matrix, with reduced cross-decoding 330 

between the two clusters suggesting qualitatively different representations (Fig. S1A). 331 

Relating behavioural and neural effects of predictions 332 

To investigate whether there was a relationship between shape-specific pre-stimulus alpha 333 

power and shape discrimination performance, we performed a logistic regression analysis 334 

separately for valid and invalid prediction trials. Based on the existing literature relating pre-335 

stimulus oscillatory power and phase to behavioural performance (Hanslmayr et al., 2007; 336 

Mayer et al., 2016; Samaha et al., 2018), we limited the pre-stimulus decoding time series to 337 

-500ms to 0ms relative to stimulus onset. To be able to accurately estimate pre-stimulus alpha 338 

power, yet be as close as possible to stimulus onset, we used a fixed-length 500ms Hann 339 

window over the -500ms to 0ms time window, resulting in ~2Hz frequency resolution (alpha 340 

frequency bins: 7.812Hz, 9.375Hz, 12.500Hz). Separately for valid and invalid prediction trials, 341 

trial-based power estimates of the pre-stimulus (-500ms to 0ms) alpha activity were z-scored 342 

and averaged over for the three alpha frequency bins. Identical frequency analyses were 343 

applied to the raw MEG signal (-500ms to 0ms, averaged over occipital channels) to quantify 344 

trial-based raw alpha power. We balanced the trial numbers by randomly choosing (n = 1000 345 

times) a subset of trials from the conditions with higher trial counts (i.e., valid). The dependent 346 

variable of the model was the behavioural outcome (correct or incorrect response), sorted 347 

separately again for valid and invalid predictions. Independent variables were shape-specific 348 

alpha power and raw alpha power. Raw alpha power was added to the model to control for 349 
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non-shape specific alpha effects on behaviour. The model parameter estimates (i.e., beta 350 

values) served as an indication of an underlying link between alpha power and behavioural 351 

performance. The valid and invalid condition beta values were statistically compared using a 352 

paired t-test.  353 

Coherence between shape-specific pre-stimulus fluctuations and raw alpha 354 

oscillations 355 

To further assess the relationship between shape-specific alpha fluctuations (i.e., fluctuations 356 

in the decoder time courses) and neural alpha oscillations, we estimated the coherence 357 

between the two signals on a trial-by-trial basis at the sensor-level and in source-space. The 358 

coherence value is a number between 0 and 1, which reflect the consistency of the phase 359 

difference between the two signals at a given frequency. Cross-spectral density between z-360 

scored MEG signals of all MEG-channel combinations, and between the MEG-channels and 361 

the z-scored decoder traces were calculated across trials at our frequency of interest (10Hz 362 

with 2Hz smoothing) between -1250 to 0ms. In order to localise the neuronal sources which 363 

were coherent with the decoder traces, we applied the DICS (Dynamic Imaging of Coherent 364 

Sources (Gross et al., 2001) beamformer, which is specifically designed to localise sources 365 

coherent with another time-series signal. We applied a regularisation parameter of lambda = 366 

5% to decrease the effect of noise on the source estimates. To additionally visualise the 367 

source of raw alpha oscillations, we repeated the beamformer analysis on the frequency 368 

decomposed MEG data at 10Hz with 2Hz smoothing including all MEG channels. The spatial 369 

filter was calculated (i.e., ‘common filter’) on the MEG data containing both pre (-1250 to 0ms) 370 

and post-stimulus (0 to 1250ms), then applied separately both time periods. The main 371 

advantage of using a common filter is that more data is used to construct the spatial filters 372 

(resulting in more reliable filters), and any difference in source activity can be attributed to 373 

power differences between the conditions, rather than to discrepancies between the filters. 374 

Based on previous studies demonstrating that the anatomical specificity gain of using subject-375 

specific anatomical images is negligible (Holliday et al., 2003), we did not collect individual 376 
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anatomical MRI scans for our subjects. We followed a group-based template approach using 377 

a template MRI (in MNI space) in combination with a single shell head model and a standard 378 

volumetric grid (8mm resolution), as present in the Fieldtrip toolbox. Participants’ individual 379 

fiducials were used to generate a participant-specific forward model in MNI space by wrapping 380 

the template head and source model to the participants’ fiducials. Then, these participant-381 

specific head- and source-models were included in the beamforming analysis. 382 

Source localisation of shape decoding 383 

To visualise the underlying neural sources during decoding, we applied source localisation 384 

analyses using an LCMV beamformer (Van Veen et al., 1997). The spatial distribution of the 385 

underlying signal during classification in LDA is primarily influenced by the magnetic field 386 

difference between the two experimental conditions. Therefore, one can visualise the source 387 

of a decoder by estimating the sources of the two different conditions, and compute the 388 

difference (Haufe et al., 2014). The spatial filter was computed for the time window of interest 389 

(70 – 200ms, i.e. decoder training window) in the averaged data, which was subsequently 390 

applied separately to the two conditions of interest (shape A and D trials). For shape A vs. D 391 

decoding, a percentage absolute signal change was computed in source space, to determine 392 

which source signals were involved in discriminating between shape A and D without making 393 

assumptions about the sign of the dipole (Fig. S1E).  394 
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Results 395 

Predictive cues lead to improved shape discrimination accuracy 396 

We tested whether the predictive cues affected behavioural performance. As a reminder, 397 

participants were required to indicate whether two shapes presented in succession were the 398 

same or different. It should be noted that any effects of the predictive cues on performance 399 

are not trivial, given that the shape discrimination task was orthogonal to the prediction 400 

manipulation (i.e., the cues predicted the identity of the first shape, but did not inform 401 

participants whether the two shapes would be identical or different). Still, valid predictive cues 402 

might improve performance indirectly by enhancing processing of the initial shape, facilitating 403 

discrimination of the subsequent shape (Kok et al., 2012a, 2017). Vice versa, invalid cues 404 

might perturb performance by impeding the processing of the initial shape. In line with this, 405 

shape discrimination accuracy was significantly influenced by whether the auditory cue 406 

correctly predicted the identity of the first shape (accuracy valid = 70% ± 1.2% and accuracy 407 

invalid = 67% ± 1.3%, mean ± SEM; t(31) = 3.215, p = 0.003; Fig. 4A). There was no difference 408 

in reaction times (valid = 614ms ± 1.3% and invalid = 615ms ± 1.3%, mean ± SEM; p = 0.626, 409 

t(31) = -0.492). Together, this suggests that valid predictions facilitated shape processing, 410 

leading to improved discrimination performance.  411 

Predictions oscillate at alpha frequencies 412 

To test whether perceptual predictions are conveyed by oscillations, thirty-two participants 413 

performed a challenging visual shape discrimination task, reporting whether two consecutive 414 

shapes were the same or different (Fig. 1A). On each trial, an auditory cue predicted the 415 

identity of the first shape (shape A or D, 75% valid; Fig. 1B). The shape discrimination task 416 

was orthogonal to the prediction manipulation, i.e., the auditory cue did not convey any 417 

information about whether the two shapes would be identical or different.  418 

To reveal the representational content of neural activity, a decoding analysis was applied. We 419 

used an LDA decoder, which described how activity at the sensor-level varied as a function of 420 
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a discriminability index. Unlike conventional LDA which separates data into discrete 421 

categories, our customised decoder calculated the distances of each test sample to the 422 

hyperplane, treating these distances as discriminant evidence(Mostert et al., 2015; Kok et al., 423 

2017). Thereby, we obtained a continuous measure of which shape was encoded in the neural 424 

signals, providing finer resolution in analysing the neural representations. For details on the 425 

implementation of the LDA, see methods (Mostert et al., 2015). The decoding analysis was 426 

performed in a time-resolved manner by applying it sequentially at every single time point on 427 

data prior down-sampled (with a sliding time window of 28ms in steps of 5ms). First, we 428 

identified shape-specific neural signals by applying the LDA to MEG responses evoked by 429 

task-irrelevant shapes (70 to 200ms post-stimulus) during separate shape localiser runs (Fig. 430 

1C; Fig. S1A). Localiser runs consisted of the presentation of four abstract shapes (Fig. 1D), 431 

which were designed to lie on two orthogonal axes of perceptual and neural discriminability, 432 

allowing us to train a decoder that was sensitive to predicted shape information (shape A vs. 433 

D) as well as a baseline decoder that was sensitive to highly similar but unpredicted shapes 434 

(shape B vs. C; see Methods for further details). First, we tested whether the LDA was able to 435 

uncover neural representations of the presented shapes, we trained and tested a shape A vs. 436 

D decoder within the localiser runs in a cross-validated manner (-100 to 600ms, relative to 437 

stimulus onset, Fig. 2A). These decoders were then used to test whether the predictive 438 

auditory cues induced oscillatory representations of the predicted shapes (Fig. 1E). 439 

Specifically, we applied the shape decoders (i.e., spatial filters) to the MEG data recorded in 440 

the interval between the predictive cues and stimulus onset (-1250 to 0ms relative to the onset 441 

of the first shape) in a time-resolved manner.  442 

{Figure 1} 443 

That is, the time-resolved data (sliding window of 28ms, steps of 5ms, Fig. 2B, Fig. S2) from 444 

the prediction interval were put through a static shape-specific spatial filter obtained on the 445 

basis of the shape localiser data, yielding a shape-specific signal for each trial every 5ms (Fig. 446 

2B). Averaging these shape-specific MEG signals over trials revealed prediction–like 447 
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representations around the auditory cue offset (at ~200ms training and ~- 1550ms testing 448 

time) and closer to the onset of visual stimuli (at ~-500ms testing time) (Fig. S2). However, 449 

these clusters did not survive correction for multiple comparisons, unlike in a previous study 450 

from our lab (Kok et al., 2017). There are several possible explanations for this discrepancy. 451 

First, in the current study, the auditory cues predicted complex shapes rather than low-level 452 

features (grating orientation), and fMRI work has shown that predicted-but-omitted gratings 453 

can be decoded from the early visual cortex, whereas prediction-but-omitted shapes cannot 454 

(Aitken et al., 2020). Second, here we used a longer cue-stimulus onset asynchrony (1750ms 455 

here, 750ms in Kok et al., 2017). A longer prediction interval can 1) lead to more jitter in the 456 

onset of pre-stimulus prediction signal due to increased temporal uncertainty or 2) incentivise 457 

the brain to uses oscillations rather than sustained above baseline activity to keep predictions 458 

online, for metabolic efficiency. 459 

To test this, the shape-specific time courses were subjected to a Fast Fourier Transform (FFT) 460 

in order to reveal their frequency spectra (Fig. 2B). To establish the specificity of the neural 461 

signals induced by predictions, we created two separate baseline measurements. First, we 462 

shuffled the shape labels before training the decoder (N=25 permutations per participant) to 463 

create a bootstrapped baseline (Baseline 1, Fig. 2C left). Second, we trained a decoder to 464 

distinguish two shapes which were only presented in the localiser runs, but not in the prediction 465 

runs (shapes B and C). This discrimination was designed to be orthogonal to shape A vs. D 466 

discrimination, which was confirmed by an absence of cross-decoding between the two 467 

decoders (Fig. S1BC). The shape B vs. C decoder thus provides a highly stringent baseline 468 

(Baseline 2, Fig. 2C right), since it was trained to pick up neural representations of highly 469 

similar but orthogonal shapes to those that were predicted by the auditory cues. This analysis 470 

revealed that the decoded predictions oscillated at low frequencies, predominantly in the alpha 471 

frequency band (9 – 11Hz) (Fig. 3A top). We identified significant power differences between 472 

the shape A vs. D decoding data and Baseline 1, specifically at 10Hz and 11Hz, exceeding 473 

the 95th percentile of the empirical null distribution (both p = 0.003, corrected for multiple 474 
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comparisons with a False Discovery Rate of 0.01). It is important to note that Baseline 1 was 475 

based on the exact same pre-stimulus data; the only difference lies in the shuffling of the 476 

shape labels for the training of the decoder. We observed increased alpha power in Baseline 477 

1 at 10 and 11 Hz, which aligns with the generally high alpha power observed in the pre-478 

stimulus raw MEG signal (Fig. 3B bottom, 3C bottom). The decoder used in this analysis 479 

functions as a spatial filter, applying a linear combination of weights to all MEG sensors. 480 

{Figure 2} 481 

As a result, it is understandable that increased alpha power also appears in the Baseline 1 482 

measurement. Importantly, alpha power was higher for the true shape-specific signal than for 483 

Baseline 1. This suggests that the topography of pre-stimulus alpha oscillations was more 484 

similar to the topography of the predicted shape-specific signal than expected by chance. 485 

There was also a negative difference in the power of very low frequencies (2 – 7Hz) when 486 

comparing the shape A vs. D decoder data to Baseline 1 data. The nature of this power 487 

difference currently is not fully understood and requires further investigation. However, these  488 

patterns have been observed in previous research using this methodology (Kerrén et al., 2018, 489 

2022). 490 

For further validation, we also compared the shape A vs. D decoding power spectrum to the 491 

spectrum of shape B vs. C decoding (Baseline 2). Based on our initial findings of significant 492 

differences in the 10Hz and 11Hz frequency bins between Shape A vs. D decoder and 493 

Baseline 1, here we averaged over these two frequency bins (10 and 11Hz) of the two spectra. 494 

This analysis revealed significantly higher alpha power for shape A vs. D decoding than for 495 

shape B vs. C decoding in the pre-stimulus window (paired one-sided t-test, p = 0.0304, t(31) 496 

= 1.9452) (Fig. 3A bottom). As before, it is important to note that the two spectra were based 497 

on the exact same pre-stimulus MEG data, the only difference lies in which shapes the 498 

decoders were trained to discriminate. If the pre-stimulus alpha fluctuations reflected more 499 

generic shape representations, this comparison would yield no significant differences. 500 

Therefore, the difference between these two decoding spectra demonstrates that these 501 
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signals were highly specific to the shapes predicted by the auditory cues. It is important to 502 

note that the shape decoders were trained on sensory signals evoked by task-irrelevant 503 

shapes during the localiser (i.e., participants performed a fixation dimming task), ruling out 504 

contributions of explicit decision-making signals. These alpha power effects were also present 505 

in a control analysis designed to remove non-rhythmic signals, confirming the oscillatory 506 

nature of the decoded predictions (Fig. S3A). In sum, both analyses revealed that visual 507 

predictions induced by auditory cues led to neural representations of the predicted shapes 508 

fluctuating at an alpha rhythm prior to stimulus onset.  509 

In order to establish a link between these shape-specific prediction signals and neural alpha 510 

oscillations, we estimated the coherence (cross-spectral density) between the two signals at 511 

the sensor level and in source space at 10Hz (with 2Hz spectral smoothing) between -1250 to 512 

0ms. 513 

{Figure 3} 514 

Coherence values indicate how consistent the phase synchrony is between two time-series 515 

signals. Sensor-level coherence analysis revealed high oscillatory synchrony between the 516 

shape-specific prediction signals and raw alpha oscillations, mainly over the occipital lobe (Fig. 517 

3B top), where alpha power was also the highest (Fig. 3B bottom). Coherence analysis in 518 

source space using Dynamic Imaging of Coherent Sources (DICS) (Gross et al., 2001) 519 

confirmed that the coherence between the two signals was strongest in the occipital lobe (Fig. 520 

3C top), as was raw for alpha power (Fig. 3C bottom). No such coherence was present 521 

between raw alpha signals and signals obtained by training decoders using shuffled labels 522 

(i.e., Baseline 1, Fig. S4). Taken together, these results suggest that the shape-specific 523 

prediction signals revealed in the current study originate from alpha oscillations in the occipital 524 

lobe. 525 

Note that this demonstration of predictions fluctuating with alpha oscillations crucially relied 526 

on training a decoder on a static, phase-aligned signal (obtained from the localiser). In a 527 

situation such as the current one where signals are not phase-aligned between trials (because 528 
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they are modulated by endogenous oscillations), a more typical cross-validated within-529 

experiment decoding analysis would not have succeed, since there would not have been a 530 

consistent signal to train and test the decoder on. 531 

Oscillatory power of predicted shape representations modulates behavioural 532 

expectation effects 533 

If the strength of sensory predictions indeed modulates perceptual discrimination, there should 534 

be an opposite relationship between shape-specific pre-stimulus oscillations and behavioural 535 

performance on valid and invalid trials. To test this hypothesis, we performed a logistic 536 

regression analysis predicting behavioural accuracy from shape-specific oscillatory power in 537 

the alpha frequency range (8 – 12Hz), separately on valid and invalid trials. In line with 538 

previous literature relating oscillatory power to behavioural outcome (Hanslmayr et al., 2007; 539 

Mayer et al., 2016; Samaha et al., 2018), we limited the time window of interest to -500ms to 540 

0 pre-stimulus, since prediction signals immediately preceding stimulus onset are most likely 541 

to impact perceptual performance (Kok et al., 2017). To assess the relationship between 542 

shape – specific decoder and raw occipital alpha, also control for non-specific alpha effects, 543 

raw alpha power (i.e., sensor-level alpha (8 – 12Hz) averaged over occipital MEG channels, 544 

for the identical time window of -500 to 0ms) was included in the model as an additional 545 

predictor. Calculating the across-trial correlation between shape-specific alpha and raw alpha 546 

power revealed that while the two signals were correlated (mean r = 0.2725, p = 2.640 * 10-14, 547 

t(31) = 12.90), they were not collinear (mean r2 < 0.1), allowing both to be included as 548 

predictors in the same regression model. This indicates a weak but consistent positive 549 

relationship between the magnitude of shape-specific and raw occipital alpha activity. The 550 

analysis revealed a significant difference between valid and invalid prediction trials, with a 551 

numerically positive relationship between pre-stimulus shape-specific alpha power and 552 

performance on valid trials, and a numerically negative relationship on invalid trials (p = 0.014, 553 

t(31)= 2.593, Fig. 4B, left). On the other hand, raw occipital alpha power did not predict 554 

behavioural outcome (Fig. 4B, right), reflected in a non-significant difference between betas 555 
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of valid and invalid prediction trials (p = 0.934, t(31)= 0.083). To rule out spurious effects 556 

caused by correlated regressors, we also ran the logistic regression with shape-specific alpha 557 

power as the only predictor. This control analysis reproduced the significant difference 558 

between valid and invalid trials (p = 0.021, t(31) = 2.4364).  559 

{Figure 4} 560 

Note that the individual parameter estimates for valid and invalid trials were not significantly 561 

different from zero, while the difference between the two was. This likely reflects the fact that 562 

the individual conditions also contain unexplained, non-specific trial-by-trial variance in 563 

behavioural performance (e.g. due to slow fluctuations in alertness) that are subtracted out in 564 

the valid vs. invalid comparison. Importantly, the differential relationship between alpha power 565 

and behaviour dependent on prediction validity rules out any non-specific explanations of our 566 

results, and demonstrates a strong link between neural and behavioural effects of prediction. 567 

In short, pre-stimulus content-specific alpha oscillations modulated subsequent shape 568 

discrimination accuracy, such that the difference in accuracy between validly and invalidly 569 

predicted shapes was greater when shape-specific pre-stimulus alpha power was higher. 570 

Stimulus predictions are driven by relatively late sensory representations 571 

In an exploratory analysis, we investigated whether perceptual predictions reflected early or 572 

late visual representations, by dividing the training time period (70 – 200ms) into two separate 573 

windows, centred around the first (105ms) and second (175ms) peaks of the localiser 574 

decoding results, respectively (Fig. S1A). We then repeated the same frequency analysis 575 

performed on the original 70–200ms time window for each of these separate windows. 576 

Additionally, we created distinct baseline measurements for the early and late time windows. 577 

Note that these two distinct time windows appeared to form two distinct clusters (90 – 120ms 578 

and 160 – 190ms) in the temporal generalisation matrix of within-localiser decoding, with 579 

reduced cross-decoding between the two clusters suggesting qualitatively different 580 

representations (Fig. S1A). For the early training window (90 – 120ms), frequency analysis of 581 
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the pre-stimulus decoder time series revealed no power differences in the alpha band (10Hz: 582 

p = 0.223; 11Hz: p = 0.090) between the shape A vs. D decoding data and an empirical null 583 

distribution (Fig. 5A). Furthermore, training the decoder on the later time window (160 – 584 

190ms) revealed significantly higher pre-stimulus alpha power (10Hz: p = 0.016; 11Hz: p = 585 

0.002) in the shape A vs. D decoding data compared to a null distribution (Baseline 1, Fig. 586 

5B).  587 

{Figure 5} 588 

Lastly, there was a significant difference in the average power in the 10 and 11Hz frequency 589 

bins of pre-stimulus shape A vs. D decoding between the early and late training time windows 590 

(p = 0.005, t(31) = -3.022). This is striking since these power spectra were calculated on the 591 

exact same MEG pre-stimulus data, the only difference was the localiser time window (90 – 592 

120ms vs. 160 – 190ms) on which the decoder was trained. In sum, oscillating predictions 593 

seem to reflect relatively late sensory representations (160 – 190ms), rather than early 594 

feedforward-sweep-like signals.   595 
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Discussion 596 

The present study examined the mechanisms through which predictions exert their influence 597 

on perception. Specifically, we tested whether content of perceptual predictions was 598 

represented in oscillations, and whether the power of this representation modulated 599 

performance on a visual discrimination task. To this end, we used multivariate decoding of 600 

MEG data to obtain the frequency spectrum of predicted shape representations. We revealed 601 

that predicted shape representations were strongest in the alpha frequency band (10 – 11Hz) 602 

(Fig. 3A). Source localisation analyses suggest that these signals originated from the occipital 603 

lobe (Fig. 3CD). Furthermore, we found that this stimulus-specific alpha power modulated task 604 

performance, such that higher alpha power resulted in stronger expectation effects on shape 605 

discrimination (Fig. 4B left). Together, these findings suggest that sensory templates of 606 

predicted visual stimuli are represented in pre-stimulus alpha oscillations, which subsequently 607 

modulate performance on a perceptual discrimination task. 608 

Previous studies have hypothesised that oscillations play a critical role in conveying perceptual 609 

predictions (Ergenoglu et al., 2004; VanRullen et al., 2011; Mayer et al., 2016; Auksztulewicz 610 

et al., 2017; Samaha et al., 2018). This is largely based on indirect evidence, consisting of a 611 

range of studies finding that pre-stimulus alpha oscillations modulate performance on 612 

perceptual discrimination tasks (Ergenoglu et al., 2004; Hanslmayr et al., 2007; van Dijk et al., 613 

2008; Mathewson et al., 2009; Sherman et al., 2016). Further, there is a second body of 614 

evidence that links experimental manipulations regarding stimulus predictability to the power 615 

and phase of low frequency oscillatory activities (Mayer et al., 2016; Sherman et al., 2016; 616 

Shen et al., 2023; Turner et al., 2023). For instance, expectations were found to rhythmically 617 

influence perceptual decision-making, where pre-stimulus occipital alpha phase modulated 618 

the strength of expectation effects on behaviour (Sherman et al., 2016). Furthermore, greater 619 

representational strength was observed in alpha-band activity in cue-induced imagery (relative 620 

to self-generated). This may reflect a more precise and temporally structured encoding of 621 

predicted features, consistent with the idea that prediction signals fluctuate in the alpha 622 
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rhythm, especially when externally cued and aligned to task-relevant content (Hu and Yu, 623 

2023). Studies of selective attention have also shown that pre-stimulus alpha-band 624 

topographies contain category-specific information of to-be-attended objects, indicating that 625 

alpha activity not only reflects attentional engagement but also carries content-specific signals 626 

(Noah et al., 2020; Meyyappan et al., 2024). This also raises the important question whether 627 

expectation and attention act through the same or different neural mechanisms. Conceptually, 628 

expectation may be defined as the anticipation of likely future sensory events based on prior 629 

probabilities, and attention as the selective prioritisation of task-relevant stimuli or features. 630 

While some previous work suggests that they may operate independently (Kok et al., 2012a, 631 

2016), many studies have revealed complex interactions between the two (e.g. (Kok et al., 632 

2012b; Richter and de Lange, 2019); and for a review, see (Schröger et al., 2015), and 633 

disentangling the two is beyond the scope of the current study. 634 

Lastly, a recent study has demonstrated a link between pre-stimulus high alpha/low beta 635 

power and the occurrence of high confidence false percepts (Haarsma et al., 2025). However, 636 

the key hypothesis that content of perceptual predictions is embedded in pre-stimulus alpha 637 

oscillations has remained untested. In the current study, we present evidence that the 638 

representation of predicted shapes fluctuated with pre-stimulus alpha oscillations. Therefore, 639 

we speculate that pre-stimulus alpha oscillations mediate content-specific feedback signalling, 640 

meaning that stimulus content oscillates with an alpha rhythm. Our findings align with a recent 641 

study on scene imagery, which successfully decoded individual imagined scenes from alpha 642 

band activity, demonstrating that complex visual image content can be encoded in alpha 643 

rhythms (Stecher and Kaiser, 2024). Furthermore, our findings are also in line with recent 644 

simultaneous EEG-fMRI recordings demonstrating alpha oscillations relating to feature-645 

specific BOLD in superficial and deep layers (Clausner et al., 2024), suggesting an active 646 

involvement of alpha oscillations in stimulus processing. Together, this supports the more 647 

general proposal that oscillations can represent visual contents (Stecher et al., 2025). 648 
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While the role of pre-stimulus alpha oscillations has been extensively studied, it remains 649 

controversial. Several studies have reported that alpha-band activity is typically stronger in the 650 

absence of visual stimuli or when stimuli are unattended (Jensen and Mazaheri, 2010; 651 

Mathewson et al., 2011; Bonnefond and Jensen, 2012), leading to the influential hypothesis 652 

that alpha is predominantly an inhibitory rhythm. For example, during spatial attention tasks, 653 

alpha power shows hemispheric lateralisation, with decreased alpha power contralateral to 654 

the attended location and increased power ipsilaterally (Worden et al., 2000). This pattern has 655 

been interpreted as a mechanism of top-down distractor suppression (Ferrante et al., 2023). 656 

Together, these findings have shaped the dominant view of alpha as a rhythm that plays a key 657 

role in gating information flow via inhibition. 658 

However, our results suggest that alpha oscillations are not solely inhibitory, but have an active 659 

role in cortical communication by representing the contents of feedback signals, and shaping 660 

perceptual priors and stimulus templates under conditions of expectation (Bonnefond and 661 

Jensen, 2012; Samaha et al., 2018). The link between stimulus-specific pre-stimulus alpha 662 

power and expectation effects on perception revealed in the current study suggests that 663 

whether alpha facilitates or inhibits sensory processing may depend on whether inputs match 664 

or mismatch current predictions. These findings do not necessarily challenge the prevailing 665 

view of alpha as an inhibitory rhythm. Rather, they suggest that fluctuations in the predicted-666 

shape decoding time courses may reflect a distinct functional role of alpha in this context. 667 

Specifically, the magnitude of stimulus-specific alpha-band activity may represent the strength 668 

of predictive signals, with its amplitude modulating how effectively incoming sensory 669 

information is processed in the visual cortex. We believe that the prediction signals embedded 670 

in alpha oscillations in the current study reflect such stimulus-specific predictions. It is striking 671 

that these predictions modulated behavioural performance, despite the fact that the 672 

predictions were orthogonal to the task; there was a behavioural accuracy benefit when the 673 

first shape matched the prediction, and this benefit was stronger when shape-specific alpha 674 

power was higher. 675 

JN
eurosci

 Acce
pted M

an
uscr

ipt



27 
 

While there is convergent evidence that the brain contains predictive signals (Kok et al., 676 

2012a; Mayer et al., 2016; Aitken et al., 2020; Haarsma et al., 2023), the mechanisms through 677 

which the brain deploys these predictions remain largely unknown. Predictive coding has been 678 

suggested to involve rhythmic interactions between different frequency band activities (Arnal 679 

and Giraud, 2012; Bastos et al., 2012), where high frequency gamma is responsible for 680 

feedforward signalling (originating predominantly from superficial layers) and alpha/beta 681 

oscillations exert top-down control (feedback predictions), emerging from deep cortical layers. 682 

Indeed, animal work investigating the frequency characteristics and cortical layer specificity of 683 

predictable information processing (Bastos et al., 2015, 2020; Chen et al., 2023) revealed that 684 

pre-stimulus alpha power is an indicator of stimulus predictability, originating from cortical 685 

layers involved in feedback signalling (Bastos et al., 2020). Our results extend these 686 

intracranial electrophysiological observations by relating pre-stimulus alpha oscillations to the 687 

contents of feedback signalling. 688 

Our findings reveal that prediction signals manifest in a spatially specific activity pattern that 689 

fluctuates in an alpha rhythm, predominantly originating from the occipital lobe (Fig.3BC, 690 

Fig.S7). This may be explained by neurons in the visual cortex tuned to different shapes 691 

receiving increased feedback modulation in the alpha band when their preferred shape is 692 

predicted. Alternatively, neurons tuned to the unpredicted shape may be suppressed in a 693 

rhythmic pattern, aligning with the pulse inhibition alpha theory (Klimesch et al., 2007; 694 

Mathewson et al., 2011). Future work using single cell recordings is required to distinguish 695 

between these alternatives. 696 

Rather than predictions being actively conveyed in an alpha rhythm, an alternative explanation 697 

of our results may be that prediction signals passively ride on ongoing alpha oscillations. Alpha 698 

oscillations are the most prominent frequency band in the awake human brain, especially in 699 

the visual cortex, and even a non-oscillatory top-down signal arriving in visual cortex may 700 

inherit these alpha rhythms. Given our finding that shape-specific alpha power has opposite 701 

effects on behaviour dependent on the validity of the predictions, such a more passive 702 
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explanation seems less likely. However, future research is indeed needed to properly 703 

distinguish between these hypotheses.  704 

Exploratory analyses revealed that the oscillating prediction signals reflected relatively late 705 

sensory representations (160 – 190ms localiser training window, Fig. 5B). We speculate that 706 

during this time period, the sensory representations captured by the decoder reflected an 707 

integration of bottom-up inputs and top-down recurrence, rather than solely the first 708 

feedforward sweep. Like the current study, previous studies have also revealed top-down 709 

modulations that reflected relatively late post-stimulus representations (i.e., 120 – 200ms) 710 

(Kok et al., 2017; Dijkstra et al., 2018). This may explain why predictions have been shown to 711 

modulate later sensory processing, while leaving the early feedforward sweep (< 80ms post-712 

stimulus) mostly untouched (Alilović et al., 2019; Aitken et al., 2020). 713 

Many prominent and influential theoretical frameworks have long speculated on the role of 714 

neural oscillations in perception (Klimesch et al., 2007; Jensen and Mazaheri, 2010; 715 

VanRullen et al., 2011). Here, we shed light on this by showing that the content of visual 716 

predictions fluctuated at alpha rhythms, and these rhythmic predictions modulate subsequent 717 

perceptual performance. These findings enrich current models of perceptual inference in the 718 

human brain by revealing a possible neural mechanism through which predictions are kept 719 

online in order to guide perception.  720 
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Figure 1: Experimental paradigm. A: During prediction runs, an auditory cue preceded the 885 

presentation of two consecutive shape stimuli. On each trial, the second shape was either 886 

identical to the first or slightly warped with respect to the first, and participants’ task was to 887 

report whether the two shapes were the same or different. B: The auditory cue (rising vs. 888 

falling tones) predicted whether the first shape on that trial would be shape A or shape D. The 889 

cue was valid on 75% of trials, whereas in the other 25% of (invalid) trials the unpredicted 890 

shape was presented. C: During shape localiser runs no predictive auditory cues were 891 

presented and participants performed a fixation diming task. D: Four different shapes were 892 

presented in the localiser runs, appearing with equal (25%) likelihood. Only shape A and D 893 

were presented in the prediction runs. The amplitudes of two RFCs (1.11, and 1.54Hz 894 

components) were varied in order to create a two-dimensional shape space (multiplication 895 

indicated shape A (1:1); shape B (4:1); shape C (1:4); shape D (4:4), such that shape A vs. D 896 

discrimination was orthogonal to shape B vs. C discrimination. E: Schematic of the hypothesis: 897 

cue-induced predictions oscillate in the alpha frequency band (~10Hz) in the interval between 898 

predictive cue and stimulus onset. F: Participants were able to discriminate the two presented 899 

shapes more accurately when the auditory cue validly predicted the identity of the first shape 900 

(*p < 0.05). Dots represent individual participants, error bars indicate within-participant SEM 901 

(Cousineau, 2005; Morey, 2008). 902 

Figure 2: Shape prediction frequency analysis pipeline. A: Neural representations of the 903 

presented shapes within the localiser runs in a cross-validated manner (-100 to 600ms, 904 

relative to stimulus onset). The decoder was highly accurate at discriminating the shapes 905 

based on the MEG signal. The presented shapes were successfully decoded from 65ms to 906 

450ms (p < 0.001). For all subsequent analyses, decoding traces were averaged over a 907 

training window of 70 to 200ms, during which shape decoding peaked. B: A decoder was 908 

trained to discriminate between shapes A and D in the localiser runs. This decoder was applied 909 

to the pre-stimulus time window in prediction runs (-1250 to 0ms). Trial-based pre-stimulus 910 

decoding time series were subjected to FFT. C: The resulting power spectrum was compared 911 

to the 95th percentile of an empirical null distribution generated by bootstrapping decoders 912 

trained with pseudo-randomised labels (Baseline 1, left), as well as to a decoder trained on 913 

shapes only presented in the localiser (shapes B and C) (Baseline 2, right).  914 

Figure 3: Auditory cue-induced prediction templates fluctuate at alpha frequencies. A - 915 

top: The power spectrum of pre-stimulus (-1250 to 0ms) shape decoding shows significant 916 

deviations from an empirical null distribution at 10Hz and 11Hz (***p = 0.003). The baseline 917 

power spectrum (dark blue line) was obtained by bootstrapping (n = 10,000) shuffled label 918 

decoding data (n = 25 per participant). Mean and shaded regions indicate SD. Solid orange 919 

line indicates the 95th percentile of the null distribution. Error bars indicate SEM. A - bottom: 920 

Pre-stimulus (-1250 to 0ms) MEG data revealed significantly higher 10 – 11Hz power for 921 

shape A vs. D decoding than for shape B vs. C decoding (*p < 0.05). Bars indicate power of 922 

shape A vs. D decoding; dark purple line indicates power of B vs. C decoding (applied to 923 

identical pre-stimulus prediction data). Shaded regions and error bars indicate SEM. B - top: 924 

Topography of sensor-level alpha (10Hz) coherence between shape-specific signals (i.e., 925 

decoder output) and pre-stimulus sensor-level raw MEG signals (-1250 to 0ms). B – bottom: 926 

Topography of raw pre-stimulus sensor-level alpha power (10Hz, -1250 to 0ms). C - top: 927 

Source-localised alpha coherence between shape-specific and pre-stimulus raw MEG signals 928 

(-1250 to 0ms). C – bottom: Source-localised raw alpha power (10Hz with 2Hz spectral 929 

smoothing, -1250 to 0ms). 930 
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Figure 4: Oscillatory power of predicted shape representations modulates behavioural 931 

accuracy. A: A representative participant’s scatter plot of shape-specific alpha power as a 932 

function of valid vs incorrect prediction trials. We expected to observe an opposite trend 933 

between valid and invalid prediction trials, meaning for correct responses higher overall shape-934 

specific alpha power for valid trials vs. incorrect valid trials, whereas higher power was 935 

expected for incorrect invalid trials vs. correct invalid trials. For all participants’ scatter plots, 936 

see Fig. S5. B (left): Parameter estimates (i.e., betas) of the logistic regression between the 937 

power of pre-stimulus decoding alpha (-500 to 0ms), averaged over 8 – 12Hz frequency bins, 938 

and discrimination performance, separately for valid and invalid prediction trials (*p < 0.05). B 939 

(right): Parameter estimates (i.e., betas) of the logistic regression between the power of pre-940 

stimulus raw alpha (-500 to 0ms), averaged over 8 – 12Hz frequency bins, and discrimination 941 

performance, separately for valid and invalid prediction. No significant difference between. 942 

Dots represent individual participants, error bars indicate within-participant SEM (Cousineau, 943 

2005; Morey, 2008). 944 

Figure 5: Late sensory representations drive stimulus predictions. A: Power spectrum of 945 
the -1250 to 0ms prediction time window shape A vs. D decoding, trained on the 90 to 120ms 946 
post-stimulus localiser window. No significant distinctions between the shape A vs. D decoder 947 
data and an empirical null distribution at 10Hz and 11Hz. Mean and shaded regions indicate 948 
SD. Dark solid orange line indicates the 97.5th percentile of the null distribution, implementing 949 
a one-sided test at p < 0.05 while correcting for the two time windows tested here. B: Power 950 
spectrum of the -1250 to 0ms prediction time window shape A vs. D decoding, trained on the 951 
160 to 190ms post-stimulus localiser window. Statistically significant difference from an 952 
empirical null distribution at 10Hz and 11 Hz (*p< 0.002). The baseline power spectrum (dark 953 
blue line) was calculated as before. Mean and shaded regions indicate SD. Solid orange line 954 
indicates the 97.5th percentile of the baseline distribution. 955 
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