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ABSTRACT
As Machine-Learned Collective Variables (MLCVs) are becoming increasingly relevant in the molecular simulation literature, we discuss the
necessary conditions to enable reproducibility in calculating and representing free energy surfaces. We note that the variability of the training
process and the roughness of the hyperparameter space impose inherent limits on the reproducibility of results even when the mathematical
structure of the model defining a collective variable is consistent. To this end, we propose the adoption of a geometric (gauge invariant) free
energy representation to obtain consistent free energy differences across training instances and architectures. Furthermore, we introduce a
normalization factor to model gradients for biased enhanced sampling. This factor effectively unifies free energy definitions and addresses
practical issues preventing the widespread use and deployment of MLCVs.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0287912

Machine learning (ML) techniques have revolutionized the
development of approaches to process, classify, and rational-
ize high-dimensional data.1 This includes the development of
Collective Variables (CVs) for analyzing Molecular Dynamics
(MD) trajectories.2–7 Generally speaking, CVs are low-dimensional
descriptors that capture the slow modes of a high-dimensional atom-
istic system, effectively compressing high-dimensional information
into low-dimensional models. More rigorously, given a set of atomic
coordinates R, a CV s(R) is a mapping s : Rn → Rm, where m≪ n.
In practice, s(R) provides a useful low-dimensional description that
captures all the features of the process of interest. CVs play a key
role in the quantitative analysis of atomistic simulations by pro-
viding a readable and often physically meaningful space to project
configurational Boltzmann distributions, compute free energy dif-
ferences between macrostates, and estimate macrostate-dependent
structural observables.5,6 A multitude of data-driven methods exists
to aid in identifying such dimensionality reductions, be it in a lin-
ear unsupervised manner from the variance in the training data with
methods such as principal component analysis (PCA),8 or unsuper-
vised non-linear mappings such as kernel-PCA, diffusion maps,9–11

sketch-map,2 or autoencoders.12–14 Alternatively, one can formu-
late specific learning objectives in a supervised setting to efficiently
approximate many-body CVs based on physical intuition15 or to,
in a semi-supervised manner, identify the slowest modes of the
system.16–20 More generally, the use of ML in CV development offers
several advantages, including increased efficiency, more robust and
automated data compression compared to traditional methods, and
the potential for transferability of models across different systems.
Furthermore, ML can be leveraged to learn and deploy CVs that
achieve a more “ideal” approximation of rigorously defined reaction
coordinates, using the committor.7,21 Graph-based architectures,
in particular, are easily adaptable to capture the complexities and
inherent invariances of atomistic systems.15,22–25 Unlike traditional
CVs, which are often informed by physical intuition and experi-
ence, the definition of the analytical form of MLCVs—besides the
adopted ML architecture—depends on the choice of hyperparame-
ters and, crucially, on the training process.3 In this Communication,
we reflect on the implications of MLCVs’ inherent variability on the
low-dimensional representation of configurational probability dis-
tributions, the associated calculation of free energy surfaces (FESs),
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and the implications for enhanced sampling simulations based on
introducing a biasing potential along MLCVs.

Within computational physical chemistry, a free energy sur-
face F(s) is typically used to provide a useful low-dimensional
representation of the configurational Boltzmann distribution of a
multi-body, atomistic system. As such, F(s) is defined as propor-
tional to the negative logarithm of the marginal probability density
p(s),26–31

F(s) = −kBT ln p(s),

p(s) = 1
Z∫Rn

e−βU(R)δ(s(R) − s) dR,
(1)

where kB is the Boltzmann constant, T is the absolute tempera-
ture, β = (kBT)−1, U(R) is the potential energy of the system, and
Z = ∫ e−βU(R)dR is its configurational integral. The expression inte-
grates over the entire configuration space Rn and selects configura-
tions for which the value of s is constant in a process akin to project-
ing onto collective variable space Rm. This “projection” can be made
more explicit through application of the coarea formula,32–35

p(s) = 1
Z∫Σs

e−βU(R) vol(Js)−1 dσ, (2)

where we now integrate over the level set∑s,

Σs = {R ∈ Rn : s(R) = s}, (3)

where each level contains all configurations R ∈ Rn that are degen-
erate at a given point in CV space, i.e., that map onto the same value
of s(R). vol(Js) is the volume of the Jacobian of s and accounts for
the geometric distortion of the collective variable mapping.36 The
Jacobian of s is defined as

Js =

⎡⎢⎢⎢⎢⎢⎢⎣

∇Ts1

⋮
∇Tsm

⎤⎥⎥⎥⎥⎥⎥⎦

, (4)

∇Ts = [ ∂s
∂x1
⋅ ⋅ ⋅ ∂s

∂xn
], (5)

where n is the number of coordinates and m is the number of CVs.
By definition, m≪ n, and geometrically, for a rectangular matrix
A, only the determinant of the smaller of the two square matrices
ATA and AAT can be interpreted as a volume.37 This means, in this
context, that the volume is defined as38

vol(Js) =
√

det JsJT
s . (6)

Therefore, the nature of this projection depends on the exact
choice of CV. In practice, this is often not a concern as the effects
of this projection are grounded in physical intuition, e.g., pro-
jecting a volume onto a distance, and are consistently repeatable
with every application of the same set of CVs. As a consequence,
Eq. (1) is widely adopted in the enhanced sampling literature as it
enables one to practically estimate the probability density p(s) from
a straightforward histogramming and reweighting procedure.28–31

This implies that the expression defines F(s) up to an immaterial
constant shift and can be used to estimate free energy differences

between ensembles of microstates that coexist in s. The resulting
FES can be straightforwardly interpreted as a marginal probability
density encoding the statistics of the investigated system at thermal
equilibrium.35 However, Eq. (1) also implies that different CVs yield
free energy surfaces with different shapes and extrema.

While the shape of Js is inherently well-defined for traditional
CVs, the same cannot be said for MLCVs for two main reasons: The
first is that MLCVs are typically defined as model architectures with
problem-specific, tunable hyperparameters.3,15,24 The second is that,
even when hyperparameters are fixed, constraining the functional
form of the MLCV, their parameterization depends on an inher-
ently stochastic training process.39 Consequently, every time one
constructs an FES in the space of MLCVs, one constructs a represen-
tation of the free energy unique to the specific set of model weights
that does not correspond to a shared understanding of the physics of
the investigated problem.

A prominent application of MLCVs is within the context of
biased enhanced sampling methods.3,15,23,25 The inherent stochas-
ticity associated with training here has an effect, too. During such
simulations, a bias potential V(s) is applied to drive the system to
explore the given phase space. Doing so requires applying a force
f⃗ to the particles of the system, which is proportional to the gradient
of V in s,

f⃗ = ∂V
∂s

∂s
∂x

. (7)

In this case, stochastic variations in Js can lead to unexpected
force spikes, vanishing gradients and inconsistent behavior between
models with otherwise identical simulation parameters.

These practical and theoretical concerns can be alleviated by
normalizing the gradients of MLCVs in production. In the following,
we will show that normalized MLCVs sample a valid representation
of the free energy and that this representation of the free energy is
inherently more suitable for the domain of MLCVs.

An alternative definition of the free energy surface can be
obtained by expressing the probability density p(s) directly as the
surface integral over level set Σs. This formulation of the free energy
is referred to as the geometric free energy and is typically denoted
with G32–35 or FG,40

FG(s) = −kBT ln q(s),

q(s) = ∫
Σs

e−βUdσ.
(8)

Since now we integrate directly over the level set, this expression is
invariant to any “degeneracy-preserving” transformation f , with f
being any monotonic function with a non-zero gradient applied to
any s in s.32

The advantage of FG, therefore, is that it is gauge invariant,

FG(s) = FG( f (s)). (9)

In practical terms, gauge invariance implies that features
extracted from FG, i.e., local free energy minima, maxima, and sad-
dle points, are not dependent on, for example, the units or exponent
of the CV. This property makes it a useful representation to compare
features of FESs between different sets of MLCVs.41

It is worth noting that both Eqs. (1) and (8) are valid defini-
tions of the concept of free energy. The former provides a physically
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intuitive way of encoding the relative stability of states, whereas the
latter preserves kinetic information at the cost of a straightforward
interpretation.35

Previous work by Hartmann and Schütte has shown that FG(s)
can be recovered from F(s) by correcting F(s) to account for the
ensemble average ⟨⋅⟩s of the volume of the Jacobian Js,35

FG(s) = F(s) − kBT ln ⟨λmvol(Js)⟩s, (10)

where λ is a characteristic length scale that ensures that the logarithm
is unitless and independent of the chosen unit system.34

Bal et al.40 developed a scheme that allows for a straightforward
construction of FG(s) from sampling. They introduce a correc-
tion that modifies the weight w of a given configuration to yield
a geometric weight wG. For a monodimensional CV space, Bal’s
expression reads

wG = w ⋅ λm∥∇s∥. (11)

As shown in the Appendix, this expression can be derived by
substituting m = 1 in the ensemble average of Eq. (10). Generalizing
wG for an arbitrary m-dimensional CV space s leads to42

wG = w ⋅ λm
√

det JsJT
s . (12)

The weight w depends on the ensemble where sampling is carried
out. For instance, w = 1 when samples are drawn from an unper-
turbed ensemble, while when sampling is performed in a biased
ensemble, w ∝ exp βVB(s), where VB(s) is the bias perturbing the
system’s Hamiltonian.27

This brief introduction of F(s) and FG(s) underscores a key
difference between the two estimators of thermodynamic stability.
While FG(s) explicitly compensates for the volume change associ-
ated with the mapping R :→ s, F(s) is dependent on the exact shape
and magnitude of Js.

34,40

From Eq. (11), it is evident that biasing in the space of nor-
malized MLCVs directly samples the geometric FES in the 1D case
and the geometric FES up to a cross-correction term in the general
case. This lends a theoretical justification to the practically motivated
decision to normalize the gradients, i.e., the vectors∇s1, . . .,∇sm.

As previously stated, while sampling alone affects the accuracy
of free energy surfaces as a function of traditional CVs when MLCVs
are employed, both hyperparameter optimization and training cru-
cially affect the topology of low-dimensional representations and the
accuracy of free energy estimates. Beyond their practical benefits,
geometric free energy surfaces also theoretically solve this issue by
removing the explicit dependence on ds. However, to have the same
FG, two CVs must share the same level sets, i.e., be related via a gauge
transformation.

Any machine-learning application is an inherently stochastic
process, and any supervised machine-learning application assumes
that the true relationship between an input x and a label y can be
“learned” by finding an optimal set of parameters θopt for a function
f(x; θopt) up to a normally distributed irreducible noise term ϵ,43

y = f (x; θopt) + ϵ,with⟨ϵ⟩ = 0. (13)

The error of a non-ideal model can be decomposed into a
contribution from insufficient model flexibility to capture the true
relationship between label and data, a contribution from the training
set composition, and the previously mentioned irreducible error
ϵ. Controlling for the first two components, by fully converging
two models of the same architecture on the same training set, the
difference in the two model outputs on the same input x is 2ϵ.

For two CVs to share the same FG, they have to share the same
level sets, i.e., if a set of configurations maps to a single value in
s1, they have to map to a single value in s2, although the two val-
ues do not have to match. In the case of two machine-learned CVs
sm1 and sm2, trained identically, the surfaces at any given point are
assumed to have a corresponding distance of 2ϵ but an expected
average distance of ⟨2ϵ⟩ = 0 and therefore,

FG,sm1 ≈ FG,sm2. (14)

This approximation weakens when the two model CVs have
different architectures, training parameters, and training sets.

Here, we devise a minimal experiment to motivate the use of
FG for comparing free energy differences between metastable states
and show that this concept, which has thus far been mostly confined
to the study of kinetics, has additional utility in the field of machine-
learned CVs.

We train a simple autoencoder (AE) with a varying number of
parameters on a toy system consisting of a 100-dimensional (100D)
space with four embedded macrostates of equal probability (i.e.,
where ΔFi,j = 0,∀i, j macrostates). Figure 1 shows the training of
three such models with an increasing number of parameters and
their corresponding F(s). All three models successfully separate the
four macrostates in two dimensions, but the relative shape of the
resulting basins is largely randomized. As a consequence, when esti-
mating the relative stability of these basins as ΔFi,j = min Fj −min Fi,
as is often the case in the literature, instead of integrating over the
whole basin, one obtains free energy differences that deviate strongly
from the expected ΔF = 0 until the geometric correction is applied.

To further quantify this effect between different realizations of
the same model architecture, 100 independent models are trained
for 100 epochs for each of the three model sizes to approximately
the same training loss.

Figure 2 reports the distribution of ΔFi,j computed in the space
of the MLCV s with (ΔFG) and without (ΔF) the Gauge-invariance
correction to the configurational weights. We note that, as expected,
the average ⟨ΔFG⟩ is close to zero and less affected by the addi-
tional variance from increasing model complexity. By contrast, ⟨ΔF⟩
(Fig. 2) scales with increasing model complexity, with individual
realizations accounting for deviations from the expected ΔF by up
to ≈ 2kBT. In realistic applications where both the dimensionality of
R and the number of parameters of the MLCVs are higher, we envis-
age these deviations to be larger, less predictable, and more complex
to disentangle from inherent sampling uncertainties.

This behavior is consistent with Eq. (14), underscoring the
fact that introducing a gauge correction and representing distri-
butions in low-dimensional CV spaces using geometric free energy
surfaces should be inherently preferred when dealing with MLCVs,
where stochastic model variations are to be expected. This is partic-
ularly important when evaluating the free energy associated with an
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FIG. 1. Three autoencoders of increasing model complexity are trained to embed a 100-dimensional distribution with four equally probable macrostates into a two-
dimensional space. The pictograms on the left illustrate each model architecture, followed by the respective training curves and learned low-dimensional representations.
This demonstrates that all models converge to a comparable loss under an analogous training schedule. Despite encoding the data into distinct collective variable spaces
s = [s1, s2], the resulting embeddings are of similar quality. The final three columns display the corresponding free energy surfaces F(s), the geometric free energy
surfaces FG(s), and their pointwise difference FG(s) − F(s), illustrating how geometric corrections recover consistency in free energy estimates across model instances.

FIG. 2. Three histograms of the relative stabilities ΔF and ΔFG extracted from the free and geometric free energy surfaces corresponding to 100 independently trained
instances of the indicated model architectures. The (geometric) free energy difference between any two basins i and j is evaluated as ΔF i,j = min F j − min F i . The dashed
lines indicate the averages of the sampled distributions. While free-energy differences between basins are more rigorously defined by integrating over basin ensembles,
here we report point-to-point ΔF values to highlight the maximum variability introduced by retraining MLCVs. This choice reflects that integration is only meaningful for
well-defined (meta)stable basins, whereas point estimates remain a common practice even for traditional CVs.

ensemble of configurations that project on point features of the FES,
such as transition states.

As an example to illustrate how the relative magnitude of
individual gradient components and the gradient norms of machine-
learning-based CVs can vary between model trainings even when
using all the same parameters, we train four graph-neural networks
(GNNs) to mimic the behavior of the analytical collective variable

n(Q6), which counts the number of particles in a simple colloidal
system with a Steinhardt parameter higher than a specific cutoff. For
details on the models, the collective variable, and the system, we refer
to our previous publications.15,44

Figure 3 shows the result of training four such models with
two different architectures (10 latent dimensions + 1 graph convolu-
tional layer and 25 latent dimensions + 1 graph convolutional layer)
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FIG. 3. Spread of gradient norms of four models with two different architectures
(25 latent dimensions + 1 graph convolutional layer, red and blue, and 10 latent
dimensions + 1 graph convolutional layer, gold and green) trained to the same
accuracy over 100 random configurations. The dashed lines indicate the median
norm of a given model.

to approximately the same training loss and plotting their gradient
norms on 100 test configurations. Here, each column of points rep-
resents the different gradient norms on the same test configurations.
It is easy to see that the models all behave differently, even the two
models that exhibit a similar overall distribution of gradient norms
exhibit substantial differences when compared on a per-point basis.

Therefore, when one compares two free energy surfaces con-
structed in the same CV space but from independently trained
models, one implicitly assumes that the change ∂s

∂X is negligible.
However, we showed above how the retraining of an MLCV corre-
sponds to a transformation of the corresponding F(s). In this sense,
biasing along an MLCV results in a low-dimensional representation
of the potential energy surface that is only accessible via the exact
model parameters of s. In practice, these are rarely published, and it
would be more useful to have a representation that corresponds to
a methodology rather than a set of parameter values without phys-
ical meaning. We, therefore, suggest normalizing model gradients
during biasing such that

λm
√

det JsJT
s = 1. (15)

The advantages of this approach are threefold: First, this effectively
means that any sampled F is also an FG, replicable without access
to the exact model weights. Second, this simplifies the deployment
of MLCVs for practitioners since the same simulation parameters
affect the behavior of simulations in the same way across instances
of independently trained equivalent MLCVs. Third, this alleviates
numerical stability issues associated with model gradients nearing
zero in basins. This is an issue common in MLCVs, as pointed out

by Gökdemir and Rydzewski in their recent review on the field as a
whole.3

Recently, methods to construct CVs using machine learning
have become increasingly popular. However, to the authors’ knowl-
edge, it has not yet been addressed that retraining an MLCV consti-
tutes a transformation of the corresponding FES. At least in theory,
this means that any published FES in the space of MLCVs is not
reproducible without access to the exact model parameters, which
are rarely published. In this work, we borrow from the study of kinet-
ics from enhanced sampling simulations to suggest a best practice to
publish geometric free energy surfaces when working with MLCVs.
This practice promotes reproducibility in the field by producing
FESs that do not simply correspond to a set of parameters with lim-
ited physical meaning, but a methodology as a whole, including the
physics imbued into it by its developers.
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APPENDIX: GENERALIZATION OF THE GAUGE
INVARIANT SAMPLE WEIGHTS

As previously mentioned, Bal et al. derived an expression
[Eq. (11)] for modifying the Boltzmann weights w to obtain geo-
metric free energy surfaces from enhanced sampling simulations.
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This expression can be derived by substituting m = 1 in the ensemble
average in Eq. (10),

λvol(Js) = λ
√

det JsJT
s ,

JsJT
s = [

∂s
∂x1
⋅ ⋅ ⋅ ∂s

∂xn
] ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂s
∂x1
⋮
∂s
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
n

∑
i

∂s
∂xi

2
,

λvol(Js) = λ

¿
ÁÁÀ n

∑
i

∂s
∂xi

2
= λ∥∇s∥ = λ1 det d,

(A1)

where d2 is a matrix containing the entries40

d2
ij = ∇si∇sj. (A2)

Bal generalizes this expression for higher-dimensional CV
spaces as λm det d, where m is the dimensionality of the CV space.
However, repeating this derivation with m = 2 yields

JsJT
s =

⎡⎢⎢⎢⎢⎢⎢⎣

∂s1

∂x1
⋅ ⋅ ⋅ ∂s1

∂xn
∂s2

∂x1
⋅ ⋅ ⋅ ∂s2

∂xn

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂s1

∂x1

∂s2

∂x1
⋮

∂s1

∂xn

∂s2

∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∥∇s1∥2
n

∑
i

∂s1

∂x1

∂s2

∂x1
n

∑
i

∂s2

∂x1

∂s1

∂x1
∥∇s2∥2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [∥∇s1∥2(∇s1 ⋅ ∇s2)
(∇s1 ⋅ ∇s2)∥∇s2∥2], (A3)

λvol(Js) = λ2
√

det JsJT
s

= λ2
√
∥∇s1∥2∥∇s2∥2 − (∇s1 ⋅ ∇s2)2 (A4)

≠ λ2∥∇s1∥∥∇s2∥ − (∇s1 ⋅ ∇s2)
= λ2 det d. (A5)

Therefore, the expression for the weights to obtain FG from biased
simulations that generalizes correctly to m-dimensions is Eq. (12).
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