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Introduction

* The building sector accounts for 37% of global CO, emissions.

Bio-Materials
Problem Current materials have high environmental costs and are difficult Limitations
to recycle.
» Bio-based options have limitations ( High Energy )
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Design process - Principles

 Abundant & Underutilized Resources

» Eco-Friendly Processing

Principles

* Flame Resistant

« Scalable & Low-Energy

» Develop sustainable, high-performance insulation
Process « Optimize thermal, mechanical & fire resistance properties

» Compare environmental impact with traditional materials



Intent of Study m

Intent Research objectives
« Develop a simple and scalable « Assess performance of designed foams in
manufacturing process for lightweight areas of:

fibrous networks form lignocellulosic

henequen fibre o Density & Porosity

o Thermal Conductivity
o Flame Resistance

Why henequen? o Recyclability & Biodegradability

« Natural long fibre which is underutilised o Life-Cycle Impact
and in abundance

* Sustainability benefits during growth and » Assess viability in comparison to current
harvesting solutions



Market Gap & Innovation

Gap in the market Investigation

Mechanical Fibrillation

Ease of
Manufacturing

Easy Fibrillation

Flame Retardant

Sustainable

100% non-toxic
foam

via blending

Chemical cross-linking

Flame Retardant using
Borax

Xanthan Gum

Use of abundant raw
material
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Henequen Fibre Structure

Cell wall

Cuticle

Ribbon Fibres

Mechanical Fibres
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Fibrillation

 Breaks fibre bundles into smaller ‘fibrils’ that
branch out

» Allows for greater physical fibre-fibre
interaction — fibres mechanically ‘lock
together’

« Effective strategy to deliver stability of fibre
network -> Interlocking prevents relative
displacement of fibres




Simple Fibrillation Strategy using Blender m

FTIR shows:
(I p— C-H . .
Sl (900cm!) » Reduction (loss) of lignin
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Foam 1 — Xanthan Gum Stabilised m

Xanthan gum (a common food additive) used as binder This foam is:
for cellulose fibre foam) * Non-Toxic
» Easily Accessible
— — « Has not been explored for such
o uses
o — 4 [xﬂ - Effective afc very low
@ @ % s concentrations of xanthan gum
w\__" | | —— 0
Fill blender with Blend for 6 minutes Drain excess water Separate fibres to Add water, xanthan (0 - 5Wt /0)
water and sisal, 1:100 at 35,000 rpm until fibres are dry increase surface area gum and SDS to fibres
ratio by weight for better mixing
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Use pillar stirrer at 1,000 rpm until achieved

volume reaches steady state




Foam 2 — Borate Stabilised Foam m

Addition of borate can help to stabilise cellulose fibre This foam is:

network (chemical interaction and cross-linking). _
« Relatively safe/cheap

* Provides benefit at very low

borax concentrations (1.5 -2
Wto/o)
> == —_— Em——
i) - Added to fibre solution prior to
Soak fibres for 24 hours ~— E— T foaming process with minimal

Umog LI D0 b Blend for 6 minutes until fibres are dry water and borax to it

water ratio by weight at 35,000 rpm h eatl n g (~5 OOC)
v
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S x - g —
[ 7 ) ‘0 > g ) Final wet foam Pour in bottomless
) ] B - mixture mould and air dry
Stir for 15 minutes at 1,000 Add SDS and continue stirring for until constant mass is
achieved

rpm on hot plate at 50°C further 15 minutes at 1,400 rpm




Borate Cross-Linking & Chemical Validation IR 11+ W

Chemical Cross-Linking in
Borate Foam: New B—-O-C peak

(1355-1430 cm™) indicates
Formation of borate linkage

Residual borate (820 cm™) &
tetraborate (580-500
cm™) observed

Synergistic with delivery of flame
resistant properties from borate.
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Optimising Thermal Resistance |

o

=S

(@) ]
|

/\ 200 B

Density (kg/m?’)
=
{ams )

o

o

(&)
!

Thermal conductivity (W/mK)
(@)

Fibre/Xanthan Ratio Fibre/Total Ratio (Wt%) Fibre/Xanthan Ratio Fibre/Total Ratio (wt%)



Optimising Thermal Resistance I
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Structure — Density & Porosity

Foam Morphology & Porosity:

* CT scans confirm a randomly oriented fibrous
network

* 94 .4% porosity * 94.3% porosity

* Fibres are coated and
physically adhered by a
gum layer

 Fibres physically linked
forming branched
junctions

* No binding agent

* Thin film at intersections required

stabilizes the structure

(c)

(d)

Microfibre
Surface
9N [Interconnection
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Thermal Imaging m

Infra-Red Heat Bulb

Q.

All foams demonstrate an improvement over
control / insulating performance.
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Mechanical Performance

* Two Distinct Deformation Phases:

* Elastic Regime: Initial fibre rearrangement and bending. 140
e Strain Stiffening: Increased resistance due to fibre 120 | /
buckling. f
100 1
* Densification Effect: New fibre-fibre contacts form = /
under large strains, increasing resistance. o e /
7 === Borate Foam
* Key Observations: & 60F /
.,»ﬁf'
e Xanthan Foam: Higher stiffness (56.4 kPa) due to 4 MM,,M
mechanical bonding. - _
* Borate Foam: Lower stiffness (19.4 kPa) with chemical 0 ez e | |
0 0.2 0.4 0.6 0.8

cross-linking.

Strain

* Both foams exceed BS ISO 21844 (7 kPa at 10% strain).



Flame Resistance - Borates

Borate:

Addition serves dual purpose -
can be used to deliver both

* flame resistance
* stabilisation for foam design
Natural sodium salt

Effective at small concentrations
(1.5-2 wt%)

Homogenizes well




Flame Resistance - LOI

Results:

* Limiting Oxygen Index (LOI) Test (ASTM
D2863)

* LOI Value: 29.5% — Classified as "Self-
Extinguishing" (LOI >28%).
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Comparison with Other Porous Materials

Density

Lower than fossil-fuel
and lignocellulosic
insulation

— Resource-efficient

Thermal performance

Slightly poorer
than mineral wool &
EPS

Comparable to bio-
based insulation
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Recyclability

Density (kg/m?3)

Round 0 Round1 Round2 Round3

BN Density (kg/m3) [ Thermal Conductivity (W/mK)

Initial
Density (kg/m3) 21.1

1 0.05

10.048

1 0.046

10.044

10.042

0.04

Thermal Conductivity (W/mK)

Xanthan foam can be recycled
successfully: density and thermal
conductivity were retained in 3 cycles.

Recycling achieves

* Minimising waste and energy

consumption

* Minimising carbon footprint

* Maintaining similar results to the

original foam

Round 1 Round 2

20.4

19.9

Round 3
19.7

Thermal Conductivity (W/mK) 0.0421

0.0432

0.0453

0.0475




Biodegradability

Biodegradability shows promising results:

Xanthan Foam loses 26.5% of its mass

% Mass Loss
— N N
(@)} o o (@)

o

Borate Foam loses 23.7% of its mass

—
(&)

26.5%

Xanthan Borax
Type of Foam



Life Cycle Assessment m

* Borate Foam: 3.81 kg CO, / functional unit * PUR Foam Comparison
e Xanthan Foam: 7.62 kg CO, / functional unit * Lower toxicity (HTP, ETP) (up to 90%)
* Main contributors: g8 Diesel (30-55%) * Lower global warming potential (80% Borate)
4> Electricity (30-50%)

* Lower fossil fuel depletion (90% Borate, 80%
* Glass Wool Comparison: lower impact overall but Xanthan)

higher freshwater eutrophication & water use * Lower water use (90% Borate, 40% Xanthan)
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Key Takeaways

Combination of materials and methods as potential building blocks of high-performing

Interlocking fibres

Reduced Density

Borax

Increased Porosity

Safe

Stabilised foam

Cheap

Crosslinking-stable

foam structure

Flame Retardancy

foams for thermal insulation applications

Xanthan Gum

Easily Accessible

" Effective binder — low |

concentration

Non-toxic

Previously not used in

construction
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