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Problem

• The building sector accounts for 37% of global CO₂ emissions.

• Current materials have high environmental costs and are difficult 

to recycle.

• Bio-based options have limitations

Introduction

Bio-Materials 
Limitations

High Energy 
Intensity

Toxic Materials

Mass 
Manufacturing

Cost



Design process - Principles

Process

• Develop sustainable, high-performance insulation

• Optimize thermal, mechanical & fire resistance properties

• Compare environmental impact with traditional materials

Principles

• Abundant & Underutilized Resources

• Eco-Friendly Processing

• Flame Resistant

• Scalable & Low-Energy



Intent 

• Develop a simple and scalable 

manufacturing process for lightweight 

fibrous networks form lignocellulosic 

henequen fibre.

Why henequen? 

• Natural long fibre which is underutilised 

and in abundance

• Sustainability benefits during growth and 

harvesting

Research objectives

• Assess performance of designed foams in 

areas of:

o Density & Porosity

o Thermal Conductivity

o Flame Resistance 

o Recyclability & Biodegradability

o Life-Cycle Impact

• Assess viability in comparison to current 

solutions

Intent of Study



Gap in the market

Ease of 
Manufacturing

Easy Fibrillation

Flame Retardant 

Sustainable

100% non-toxic 
foam

Investigation

Mechanical Fibrillation 
via blending

Chemical cross-linking

Flame Retardant using 
Borax

Xanthan Gum

Use of abundant raw 
material

Market Gap & Innovation
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Henequen Fibre Structure

Bisanda E, Ansell MP. Properties of sisal-CNSL composites. Journal of Materials Science. 1992;27:1690-700.



• Breaks fibre bundles into smaller ‘fibrils’ that 

branch out

• Allows for greater physical fibre-fibre 

interaction – fibres mechanically ‘lock 

together’

• Effective strategy to deliver stability of fibre 

network -> Interlocking prevents relative 

displacement of fibres

Fibrillation



FTIR shows:

• Reduction (loss) of lignin

• Preservation of Hemicellulose

Blender observed to repeatably 

alter fibre geometry:

• Diameter Reduction: 381 μm 

→ 21 μm (94.5%)

• Length Reduction: 5.1 cm 

→ 2.9 cm (45%)

• Aspect Ratio Increase: 130 → 

1400 (1076%)

Simple Fibrillation Strategy using Blender



Xanthan gum (a common food additive) used as binder 

for cellulose fibre foam)
This foam is:

• Non-Toxic

• Easily Accessible

• Has not been explored for such 

uses

• Effective at very low 

concentrations of xanthan gum 

(0.5wt%)

Foam 1 – Xanthan Gum Stabilised



Addition of borate can help to stabilise cellulose fibre 
network (chemical interaction and cross-linking).

This foam is:

• Relatively safe/cheap 

• Provides benefit at very low 

borax concentrations (1.5 – 2 

wt%)

• Added to fibre solution prior to 

foaming process with minimal 

heating (~50oC)

Foam 2 – Borate Stabilised Foam



• Chemical Cross-Linking in 
Borate Foam: New B–O–C peak 
(1355-1430 cm⁻¹) indicates 
Formation of borate linkage

• Residual borate (820 cm⁻¹) & 
tetraborate (580-500 
cm⁻¹) observed

• Synergistic with delivery of flame 
resistant properties from borate.

Borate Cross-Linking & Chemical Validation



Optimising Thermal Resistance I



Optimising Thermal Resistance II



Foam Morphology & Porosity:

• CT scans confirm a randomly oriented fibrous 

network

Structure – Density & Porosity

  

Xanthan Foam
• 94.4% porosity

• Fibres are coated and 
physically adhered by a 
gum layer

• Thin film at intersections 
stabilizes the structure

Borate Foam
• 94.3% porosity

• Fibres physically linked 
forming branched 
junctions

• No binding agent 
required
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All foams demonstrate an improvement over 
control / insulating performance.

New design foams are comparable in performance 
to current PU solutions

Material Outer Temperature 
(°C)

Temperature in box 
(°C)

Xanthan 83.5 27.3

Borate 52.5 27.0

PU Foam 54.1 24.9

Control - 61.2

Thermal Imaging



• Two Distinct Deformation Phases:​

• Elastic Regime: Initial fibre rearrangement and bending.​

• Strain Stiffening: Increased resistance due to fibre 

buckling.​

• Densification Effect:​ New fibre-fibre contacts form 

under large strains, increasing resistance.​

• Key Observations:​

• Xanthan Foam: Higher stiffness (56.4 kPa) due to 

mechanical bonding.​

• Borate Foam: Lower stiffness (19.4 kPa) with chemical 

cross-linking.​

• Both foams exceed BS ISO 21844 (7 kPa at 10% strain).​

Mechanical Performance



Borate:

• Addition serves dual purpose - 

can be used to deliver both 

• flame resistance 

• stabilisation for foam design

• Natural sodium salt

• Effective at small concentrations 

(1.5-2 wt%)

• Homogenizes well

Flame Resistance - Borates



Results:

• Limiting Oxygen Index (LOI) Test (ASTM 

D2863) 

• LOI Value: 29.5% → Classified as "Self-

Extinguishing" (LOI >28%).

Flame Resistance - LOI



Comparison with Other Porous Materials

Density

Lower than fossil-fuel 

and lignocellulosic 

insulation

→ Resource-efficient 

Thermal performance

Slightly poorer 

than mineral wool & 

EPS

Comparable to bio-

based insulation



Initial Round 1 Round 2 Round 3

Density (kg/m3) 21.1 20.4 19.9 19.7

Thermal Conductivity (W/mK) 0.0421 0.0432 0.0453 0.0475

Recyclability

Xanthan foam can be recycled 

successfully: density and thermal 

conductivity were retained in 3 cycles.

Recycling achieves

• Minimising waste and energy 

consumption

• Minimising carbon footprint

• Maintaining similar results to the 

original foam



Biodegradability shows promising results:

• Xanthan Foam loses 26.5% of its mass • Borate Foam loses 23.7% of its mass

Biodegradability



• Borate Foam: 3.81 kg CO₂ / functional unit

• Xanthan Foam: 7.62 kg CO₂ / functional unit

• Main contributors:  Diesel (30-55%) 

Electricity (30-50%)

• Glass Wool Comparison: lower impact overall but 

higher freshwater eutrophication & water use

• PUR Foam Comparison 

• Lower toxicity (HTP, ETP) (up to 90%)

• Lower global warming potential (80% Borate)

• Lower fossil fuel depletion (90% Borate, 80% 

Xanthan) 

• Lower water use (90% Borate, 40% Xanthan)

Life Cycle Assessment



Interlocking fibres

Reduced Density

Increased Porosity

Stabilised foam

Borax

Safe

Cheap

Crosslinking-stable 
foam structure

Flame Retardancy

Xanthan Gum

Easily Accessible

Effective binder – low 
concentration

Non-toxic

Previously not used in 
construction

Key Takeaways

Combination of materials and methods as potential building blocks of high-performing 

foams for thermal insulation applications
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