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ABSTRACT

Hybrid working has reshaped people’s routines and working habits,
while the workplace needs to evolve with the new working pattern.
Co-working space is seen as an alternative work environment, for
cost-effectiveness, the opportunity for flexible design and multi-
use. This study investigates the occupancy patterns and occupants’
behaviour using multiple occupancy sensor data with a twelve-
months sample. Data-driven AutoRegressive Integrated Moving
Average (ARIMA) time series model is applied to predict office
occupancy in a co-working space in London. The results reveal
some spatial-temporal variations in the number of occupants based
on the detected locations. The spatial distribution of occupants
around different working areas in the co-working space is plotted
to demonstrate the seat preferences and its temporal occupancy
density variation.
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1 INTRODUCTION

The workplace evolves with the change in information and commu-
nication technology, working pattern and human demand. While
the pandemic has significantly influenced people’s daily life and
working routine, the local co-working hub is an alternative solution
to traditional offices after the pandemic. It provides an environment
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for different workers to network and collaborate with various us-
age options [12], while ensuring flexibility, diversity and dynamics
at a lower cost [13, 17, 23]. Meanwhile, the improvement in the
data available on quantifying the qualities and characteristics of
space has enabled the search for generalised patterns in space and
behaviour [14]. Collecting data-driven evidence about spaces, cul-
tures, behaviours and space usage patterns helps form better design
decisions [19]. The concept of data-driven and evidence-based de-
sign has immense potential for application to future office design
to accommodate hybrid working.

There is a need to understand the change in working patterns
and office use in the post-pandemic time. Sensor-tracked occupancy
data could effectively reveal evidence of how people interact and
use the office space. Furthermore, the analysis and prediction of
occupancy level and occupants’ preferences in offices could con-
structively be applied to inform and enhance the future designs
and refurbishments of the offices. Therefore, this study explores the
occupancy pattern in a co-working space in London with year-long
high-resolution sensor-detected data. The sensors tracked occu-
pancy from April 2021 to June 2022. A preliminary analysis of
the occupancy data is presented in this paper. An AutoRegressive
Integrated Moving Average (ARIMA) model is applied to predict
occupancy. In this paper, Section 2 reviews the literature about
office occupancy and the current research gap. Section 3 introduces
the site information and key methods like exploratory analysis and
prediction in time series modelling. Section 4 presents the prelim-
inary results of the analysis and prediction model, and Section 5
includes the summary and future development of this study.

2 LITERATURE REVIEW

2.1 Occupancy analysis in offices

The analysis and prediction of occupancy in offices have long been
a widely discussed topic, while most research focuses on predicting
occupancy patterns for energy use [9, 20, 21]. Accurately determin-
ing occupancy detection contributes significantly to the efficient
control of heating, ventilation and air conditioning. However, occu-
pancy data is difficult to collect due to privacy concerns and the lack
of infrastructure in buildings to sense people accurately [9]. The
challenges are gradually solved by applying smart building and sen-
sor technology. In current studies, the occupancy data are collected
or detected in different methods, such as CO2 sensors [22], envi-
ronmental sensors [5], real-time locating systems [21], surveillance
video [26] and passive infrared motion sensors [9]. Various periods,
approaches and scales are applied for the prediction. For example,
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Ref. [5] applies a classification model to predict occupancy based
on environmental conditions like temperature, humidity, light and
CO2 levels in a small office room. Ref. [25] generates the simulation
of zone-level occupancy and occupants’ location with the Markov
chain method. Ref. [26] purposes a real-time head detection and
occupancy measurement algorithm using the surveillance video in
a university office. In addition to understanding the improvement of
energy efficiency, the prediction of occupancy level in offices could
have a further implication in the post-pandemic time to inform and
utilise office design, which is discussed in the next section.

2.2 Hybrid workplace for future

The rise of hybrid working after the pandemic demands consider-
able freedom of choice in work seat location selection. A balanced
hybrid mode is expected to be the dominant working mode glob-
ally, especially in the finance and technology sectors. In contrast,
occupants are not expected to go into their workspaces five days
a week [6]. Therefore, occupancy level in traditional offices is ex-
pected to decrease [3], while multiple new workplace options, such
as home offices, co-working spaces and remote workspaces, have
become popular alternatives. The role of the office is gradually shift-
ing away from providing spaces for day-to-day work, and a fresh
look at how the office space can be used to enhance collaboration,
productivity, corporate culture, and work experience in the future
is necessary [1, 6]. The design of the office could be more flexible
and resilient by replacing the fixed seats and cubicles with flexible
layouts and desk-sharing with multi-function areas, thus maximis-
ing the space efficiency and saving the rent, maintenance fee and
operation costs [3]. Therefore, the variation of occupancy levels in
offices after the pandemic is an essential topic to be explored. An
accurate prediction of the number of occupants could contribute to
the design decisions decision by answering the questions like how
many employees are expected to come to the office and when they
usually come in a hybrid working mode. Thus, the facilities, seats
and design style can be reconsidered and redesigned accordingly.

Co-working space, with its concepts of flexible, dynamic and
resilient design, is an alternative option to home offices and semi-
public places [4] and an effective model for the future of the work
environment [13]. However, the use, function and design of co-
working spaces remain to be explored in research. Previous studies
identify co-working space as a favourable workplace for start-ups,
freelancers and creative industries [12]. Kwiatkowski and Buczyn-
ski [15] outline five core values for co-working space: collaboration,
openness, community, accessibility and sustainability. The motiva-
tion for using co-working spaces comes from the desire to separate
work and life and achieve a better balance and the willingness to
meet and engage with similar professionals. Users’ satisfaction is
affected by the factors like the convenient location, open space
layout, shared facilities, flexible leases and knowledge sharing [23].
In a questionnaire survey, occupants also indicate a preference for
minimalist and industrial design styles [12]. However, there is a
lack of literature focusing specifically on the design logistics of
the co-working offices. With the aid of sensor-detected occupancy,
the occupancy level and use of the co-working office can be ex-
plored further to inform data-oriented design, which has not been
demonstrated in published research before.
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Ground floor

(a) Site plans.

(b) Site photos.

Figure 1: Site information.

3 METHODS OF STUDY

3.1 Site information and data collection

The case study presented here is a co-working space located near
Old Street in London. It started its operations in early 2020. While
designed with concepts of multi-use, flexibility and creativity, it
also functions as a local café, an event space and an exhibition
space. The maximum occupancy capacity of the space is about 70
people. It runs from 9 am to 6 pm on weekdays. As Figure 1 shows,
the case study site occupies the ground floor (left in Figure 1(a))
and basement (right in Figure 1(a)) of the building. The ground
floor includes a café, a reception and multiple working areas. The
basement is primarily used as the meeting area with two enclosed
meeting rooms and several flexible tables for meeting and working.
Site photos are presented in Figure.1(b).

The data is collected using about 30 PointGrab sensors installed
on ceilings inside the case study space [18]. PointGrab sensors
can be applied with a specific use case of space management and
workplace optimisation in the hybrid working setting. The sensors
detect the timestamped location of each occupant every second
in an x-y coordination system. The data collection period is from
the middle of April 2021 to early June 2022, which is about one
year and a month (302 business days). The original data is stored in
PostgreSQL [24] and analysed in Python 3 [24]. Firstly, the number
of occupants is counted by adding up the number of coordinates
recorded in the dataset. The frequency of this dataset is transformed
from second to hour and business day. The maximum number of
people per day is computed as the daily occupancy level.
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Table 1: Model Information

Description Value
Approach Univariate
Original data shape (302, 1)
Transformed data shape (302, 1)
Transformed train set shape (242, 1)
Transformed test set shape (60, 1)
Rows with missing values 0%

Fold Generator ExpandingWindowSplitter

Fold Number 3
Seasonal period tested 5
Seasonalities detected 5

3.2 Time series analysis of occupancy level

Time series is defined as a list of numbers and the time when those
numbers are recorded [10]. Time series analysis is applied to extract
meaningful statistics and characteristics of a time series dataset. In
this analysis, the Python package PyCaret [2] is applied to perform
most of the time series analysis and prediction. Table 1 shows the
model setup information for exploratory analysis.

3.2.1 Autocorrelation and partial autocorrelation. Autocorrelation
in time series exploration examines the linear relationship between
lagged values of a time series [10]. The autocorrelation coefficients
are plotted to present the autocorrelation function (ACF). Time
series patterns like trend and seasonality can be observed in ACF.
The trend implies the presence of a general trend of decreasing,
increasing or stagnation over a period of time [11]. A seasonal
pattern appears when a time series is influenced by seasonal factors
with fixed and known frequency, such as the time of the year or
the day of the week. Trend of time series is shown by a large and
positive autocorrelation between small lags, while seasonality is
observed from a larger autocorrelation in seasonal lags compared
to other lags [10]. The partial autocorrelation function (PACF) is
a supplement to ACF. It measures the correlation between two
observed data after removing the effect of lags in between.

3.2.2 Stationarity test. The stationarity of time series data indicates
whether the properties of data depend on the time at which the
series is observed or not. A time series with trends or seasonality
is not considered stationary, while a white noise series is a station-
ary series [10]. The stationary tests help determine whether the
differencing is required to process the data for the ARIMA model.
An Augmented Dicky-Fuller (ADF) test examines the presence of
unit roots. The null hypothesis is that there is a unit root, implying
that the data series is not stationary [8]. The primary alternative
hypothesis is that time series is stationary. The more negative test
statistics indicate stronger evidence of rejection; subsequently, dif-
ferencing is not needed. The Kwiatkowski-Phillips—Schmidt-Shin
(KPSS) test is an alternative way to examine the stationarity of
the dataset, with a null hypothesis that data are stationary [16].
In this case, a small p-value (normally less than 0.05) shows that
differencing is required.
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3.2.3 Time series decomposition. Time series decomposition splits
the series into several components, while each component repre-
sents an underlying pattern category. There are three key compo-
nents in the decomposition: a trend-cycle component, a seasonal
component and a remainder component [10]. Both the classical
decomposition and Seasonal and Trend decomposition using Loess
(STL) decomposition are applied. Classical additive decomposition
assumes the seasonal component is constant, while STL is a ro-
bust method that applies Loess smoother and handles any type of
seasonality [7].

3.3 Time series modelling

Time series forecasting is the process of predicting future events
based on past information and historical trends. In this study,
ARIMA (AutoRegressive Integrated Moving Average) model is ap-
plied to predict the occupancy level of each business day. ARIMA is
a classical univariate model for forecasting and describes the auto-
correlations in the data. It refers to the combination of differencing
with autoregressive (AR) model and a moving average (MA) model,
represented in Eq (1).

yr=ct+gry,_+--- +¢>py;_p +016 1+ +0ger g +er, (1)

where y; is the differenced series. The model is typically denoted
as ARIMA (p, d, q), where p is the number of autoregressive lags;
d is the order of differencing applied to make the data stationary;
q is the number of moving average lags [10]. Seasonality can be
added to ARIMA model while a seasonal pattern is detected in the
dataset, to form a seasonal ARIMA (referred as ‘SARIMA’) with a
seasonal order s. The values of p, d, g and s are determined in the
exploratory analysis and by testing the combination to choose an
optimal model. In this prediction, a period of 60 days is set as the
prediction period, while the fold is set as three. The performance
of the prediction model is evaluated by scale-dependent errors like
mean absolute error (MAE) and root mean squared error (RMSE),
percentage errors like mean absolute percentage error (MAPE) and
‘symmetric’ MAPE (sMAPE) and scaled error like mean absolute
scaled error (MASE) [10].

3.4 Seasonal spatial analysis

A preliminary descriptive analysis of the spatial pattern is also
presented. The coordinates of each occupant at every second are
transformed to a grid structure and plotted as heatmaps by four
seasons from June 2021 to May 2022. This part of the analysis aims
to observe the spatial-temporal pattern of the occupancy and seat
preferences around the study area, which could be developed into
a location-based prediction model in the future.

4 PRELIMINARY RESULTS AND DISCUSSION

4.1 Descriptive data and exploratory analysis

The descriptive analysis of the collected sensor data is presented
in Figures 2 to 4. The box plots show the variation of average
occupancy level by hour (Figure 2), by business day (Figure 3) and
by month (Figure 4). On a typical day, the occupancy level shows a
steady increase from the beginning of the day and gradually reaches
the peak at lunch time around 1 pm to 3 pm. Wednesday is the most
popular day, with more people coming to work in a typical week,
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)
o

N
o

n
o
.

o
o

®
o

@
o

Number of occupants

T
L T

Wed Thu
Weekday

20-

Figure 3: Average number of occupants by business day.

while Monday and Friday have a limited number of occupants. The
daily number of occupants varied significantly across the months.
An increase in occupancy level is observed in August, which is in
line with the alleviation of COVID-19 social distancing restrictions
in late July in England. The autumn months, like September, October
and November in 2021, have a higher occupancy compared with
other months. December features a substantial variation with an
extremely high number and some relatively low, probably due to
the Christmas event and the long holiday. The occupancy level
shows a relatively stable trend with a slight increase since the year
of 2022 starts.

Figure 5 is the time plot of the daily maximum occupancy series.
The general trend agrees with the findings from the monthly oc-
cupancy plot, while the day-to-day fluctuating pattern potentially
indicates the seasonal cycle of the data, which requires further
exploration. Table 2 shows the basic statistics of the exploratory
time series model. The mean daily occupancy is around 35 with
a standard deviation of 27.18. The occupancy counts show a non-
stationary trend according to the results of the ADF and KPSS
tests, indicating differencing is required. A first-order differencing
is applied to stabilise the data and make the series stationary. The
differencing series is plotted in Figure 6. The result of stationary
tests is presented in Table 3. Good stationarity is observed in this
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Figure 4: Average number of occupants by month.

Table 2: Model statistics test (occupancy count).

Test Test name  Property Setting Value
Summary Statistics Mean N/A 34.629
Summary Statistics Median N/A 27
Summary Statistics Standard Deviation N/A 27.182
Summary Statistics Variance N/A 738.839
Stationarity ~ ADF p-value {‘alpha’: 0.05} 0.278
Stationarity =~ ADF Test Statistic {alpha’: 0.05}  —2.020
Stationarity =~ ADF Critical Value 1% {alpha’: 0.05}  —3.453
Stationarity ~ ADF Critical Value 5% {alpha’: 0.05}  —2.872
Stationarity ~ ADF Critical Value 10% {alpha’ 0.05}  —2.572
Stationarity ~ KPSS p-value {‘alpha’: 0.05} 0.010
Stationarity ~ KPSS Test Statistic {‘alpha’: 0.05} 0.406
Stationarity =~ KPSS Critical Value 10% {‘alpha’: 0.05} 0.119
Stationarity ~ KPSS Critical Value 5% {‘alpha’: 0.05} 0.146
Stationarity =~ KPSS Critical Value 2.5%  {‘alpha’: 0.05} 0.176
Stationarity ~ KPSS Critical Value 1% {‘alpha’: 0.05} 0.216

Table 3: Model statistics test (first-order differencing series).

Test Test name  Property Setting Value
Summary Statistics Mean N/A 0.149
Summary Statistics Median N/A 0
Summary Statistics Standard Deviation N/A 20.556
Summary Statistics Variance N/A 422.533
Stationarity =~ ADF p-value {‘alpha’: 0.05} 0.000
Stationarity =~ ADF Test Statistic {alpha’: 0.05}  —6.599
Stationarity ~ ADF Critical Value 1% {alpha’ 0.05}  —3.453
Stationarity =~ ADF Critical Value 5% {‘alpha’: 0.05}  —2.872
Stationarity =~ ADF Critical Value 10% {alpha’: 0.05}  —2.572
Stationarity ~ KPSS p-value {‘alpha’: 0.05} 0.100
Stationarity =~ KPSS Test Statistic {‘alpha’: 0.05} 0.066
Stationarity ~ KPSS Critical Value 10% {‘alpha’: 0.05} 0.119
Stationarity ~ KPSS Critical Value 5% {‘alpha’: 0.05} 0.146
Stationarity =~ KPSS Critical Value 2.5%  {‘alpha’: 0.05} 0.176
Stationarity ~ KPSS Critical Value 1% {‘alpha’: 0.05} 0.216

transformed dataset, with a p-value of 0 for the ADF test that fully
rejected the null hypothesis and a p-value of 0.1 for the KPSS test.
The ACF and PACF diagrams for the original data (Figure 7)
and differencing data (Figure 8) validate the stationary tests. In
the original series, the autocorrelation is the highest at the first
and fifth day, and a seasonal lag of five can be identified from the
ACEF chart. The positive autocorrelation implies the presence of a
trend. A similar fluctuation pattern is observed in ACF and PACF
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Figure 6: First-order differencing time plot.

charts. For the series after differencing, the ACF value drops to zero
quickly, which indicates the stationary characteristics.

The time series decomposition is plotted in Figures 9 and 10. The
two decomposition charts generally look similar. STL decomposi-
tion reveals a stronger seasonal component with a larger violation
during the autumn and winter of 2021. The value and variation of
residuals are relatively large, indicating that the uncertain and ran-
dom factors after removing trend-cycle and seasonal components
probably require further exploration and interpretation.

4.2 Time series forecasting

In the PyCaret model comparison function, the SARIMA (0, 1, 0,
5) model shows a better performance compared to other classical
models like the exponential smoothing model, seasonal naive fore-
caster and naive forecaster, thus it is selected for the prediction in
this case. Figure 11 shows the train-test split with a period of 60
days selected as the test set and a three-fold cross-validation.

The performance of the SARIMA (0, 1, 0, 5) model is shown
in Table 4. The performance on cross-validation folds (in-sample
results) is not very satisfying with a relatively large MASE at about
2.79, while the MASE for test set prediction is 0.6155, indicating a
promising performance. Figure 12 visualises the prediction results
of the ‘out of sample’ forecast. It could be observed that there are
some deviations between the predicted value and the actual value
in the zoom-in plot (Figure 12(b)). The largest gaps occur when
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Figure 7: Autocorrelation plots for the occupancy count.
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Figure 11: Train-test split for ARIMA modelling.

occupancy drops to zero on the easter holiday and bank holidays,
which the model fails to consider in the prediction.

4.3 Spatial-temporal analysis by season

Four heatmaps of the cumulative occupancy level by season from
June 2021 to May 2022 around the space are illustrated in Figure
13. The preliminary results indicate that the seasonal variation of
occupants’ seat preferences is relatively limited. In general, the table
close to the window (upper side of the ground floor plan, Figure
14 (a)) and the semi-enclosed spaces (right side of the ground floor
plan, Figure 14 (b) and (c)) are more popular. Occupants tend to use
the small enclosed meeting room in the basement more compared
to the larger one and the open meeting tables. It seems that less
proportion of occupants choose the area close to the window during
the summer, while the seats close to the central staircase with less
direct natural lighting are preferable. In winter, even the sofa seats
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Figure 12: ARIMA model forecasting plots.

facing the entrance street (lower side of the ground floor plan,
Figure 14(d)) are more occupied than normal.

5 CONCLUSION

This study demonstrates the application of time series modelling in
predicting occupancy levels in a co-working space in London. The
sensor-detected occupancy data is transformed into time series to
perform exploratory analysis and forecasting. A SARIMA (0, 1, 0, 5)
model is used for time series forecasting, while the results shown in
the performance of prediction is acceptable with some potential for
improvement. The effective and accurate prediction of occupancy
level help answer the questions like how many people will show
up every day in a hybrid working context and how many fixed and
flexible seats are required, subsequently helping designers figure
out how to alter and utilise the current design according to the
predicted occupancy. The heatmaps reveal the spatial pattern of
the distribution of occupants, while the seats close to windows and
the individual semi-enclosed spaces are more popular compared to
other areas.

There are several limitations in this study. Firstly, the ARIMA
model is a traditional time series forecasting model, while other
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Table 4: Model performance.
Cutoff MASE RMSSE MAE  RMSE MAPE SMAPE R2
2021-07-06 4.6876 4.8485 243425 32.1610 4.0499 X 10  0.6625 —0.2418
2021-09-28 2.6031  2.2780 27.2768 35.5410 1.8898 0.4156  —0.3584
2021-12-21 1.0756  0.8018 17.4522 20.4717 3.0847 x 10'*  1.1557 -1.1151
Mean 2.7887  2.6427 23.0238 29.3913 1.4528 x 101°  0.7446 —0.5718
Standard deviation 1.4804 1.6721 4.1178 6.4562 1.8407 X 10  0.3077 0.3871
Prediction model (period = 60) 0.6155  0.4992 9.0892 11.5501 1.3199 x 101  0.4098 0.2759

(a) Table close to the window.

M|
14

;e

(b) Semi-enclosed seat type 1.

(c) Semi-enclosed seat type 2 (d) Sofa seats near the entrance

Figure 14: Photos of the popular seats.

models which combine the advanced machine learning methods

may have a better performance, which would require further ex-
ploration. The attempts on iteration, multiple train-test split and
time scale alteration may also improve prediction performance. Ad-
ditionally, the standard model fails to consider the holidays, which
are found to have a significant impact on the occupancy level in an
office. Secondly, the dataset is collected from only one case study
site, while different data sources with various office layouts and
capacities are required to reveal the general pattern. The prelimi-
nary analysis and results presented here are limited in providing
insights to inform design decisions. However, they highlight the
importance of understanding the spatial-temporal association of
occupancy patterns in approaching future office design.

While the current time series forecasting is univariate, the fu-
ture prediction could consider and build a multi-variate model to
improve prediction accuracy. This study is being further developed
to combine spatial analysis of the occupants’ activities, seat prefer-
ences and environment preferences by coupling occupancy sensor
data with multi-variate environmental sensors. These data-driven
insights will visualise the changing demand and match the occu-
pants’ needs with the potential office design transformations.
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