Molecular Psychiatry

ARTICLE

www.nature.com/mp

W) Check for updates

Cognitive arbitration between candidate dimensions of

psychopathology

Celine A. Fox'?, Vanessa Teckentrup'?, Kelly R. Donegan'?, Tricia XF Seow

Brenden Tervo-Clemmens ®° and Claire M. Gillan'?

© The Author(s) 2025

34 Christopher SY Benwell ©°,

As an alternative to the Diagnostic and Statistical Manual of Mental Disorders, transdiagnostic approaches that identify latent
dimensions of psychopathology through factor analysis have gained prominence in recent years. A key critique of these
approaches, however, is that they are performed at the level of symptoms only. This begs the question: are these dimensions truly
more valid predictors of external outcomes than existing alternatives? Are there other ways, that are more data-driven, which can
allow us to refine our definitions of clinical phenotypes? We tested this idea empirically, conducting a large-scale meta-scientific
comparison of thousands of competing factor solutions that allowed us to determine if the latent structure underlying the
covariation of psychiatric symptoms has robust and specific cognitive correlates. In nine independent datasets, comprising

N = 7565 individuals including patients about to start mental health treatment, healthy individuals, paid and unpaid participants, a
broad set of age ranges and cognitive task variants that measured model-based planning and metacognition, we found that factors
with the best fit to cognition were those derived from a first-order factor analysis on the maximal number of theoretically informed
self-report symptoms available. These factors (‘Compulsivity and Intrusive Thought' and ‘Anxious-depression’) performed better
than thousands of engineered alternatives and performed twice as well as traditional questionnaire total scores. Crucially, this
unsupervised approached based on symptom correlation only performed on-par with a partial least squares analysis, a supervised
approach to deriving factors based on cognition. These results provide evidence that unsupervised factor analysis of psychiatric
symptoms is a viable method for rethinking how we define mental health and illness, affording clear opportunities for enhancing
our understanding of specific underlying mechanistic processes.
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INTRODUCTION

Dimensional and transdiagnostic approaches to psychiatric
classification have gained traction over the last decade [1, 2],
positioned as an alternative to the Diagnostic and Statistical
Manual of Mental Disorders (DSM) [3]. The goal of these new
efforts are to resolve long-standing issues including the problem of
symptom heterogeneity within DSM diagnostic categories [4, 5], the
overlap in symptoms across different diagnoses [6], the high rates of
co-morbidity [7, 8] and the reduction of continuous clinical
information into binary categories [9, 10]. These challenges
compromise both the validity and reliability of clinical phenotypes
and this has, in turn, translated into a lack of progress in developing
a mechanistic understanding of mental health [11-13]. As a result,
differences in cognitive functioning associated with clinical diag-
noses are destined to be small and disorder non-specific [14, 15], as
are genetic [16] and brain-behaviour associations [17-19]. To
achieve progress in our mechanistic understanding of psychiatric
conditions, there is a growing need for an empirically derived, valid
and reliable, set of transdiagnostic dimensional clinical phenotypes.
Without this, a low ceiling is placed on the size and specificity of our

scientific observations that cannot be addressed by even the most
exciting advances in neuroimaging techniques [20], computational
modelling [21] or artificial intelligence [22].

Although transdiagnostic, dimensional approaches to psycho-
pathology have many proponents [2, 23] and are central to major
funding initiatives, such as the Research Domain Criteria (RDoC)
[24], there is not yet a consensus around how candidate
dimensions should be identified and validated. One increasingly
popular approach is to derive dimensions by examining the
natural covariation of symptoms between-subjects using factor
analysis, as is the foundation of the Hierarchical Taxonomy of
Psychopathology (HiTOP) [25] and Computational Factor model-
ling approaches [26]. A key conceptual critique of this approach,
however, is that it operates at the symptom level only [27]. This is
a problem because as symptoms that hang together do not
necessarily have a shared aetiology [28, 29]. Rather, a single
dimension of related symptoms across DSM disorders can be
reached via multiple mechanistic pathways [28]. Symptoms can
cause one-another [30], the same symptoms can be arrived at
from different causes and conversely, a single underlying cause
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can produce different symptoms in different individuals for
example depending on early childhood experiences [31]. For
these reasons, it is not certain if a covariation-based framework is
well positioned to advance beyond DSM and deliver clinical
phenotypes that have a firm mechanistic grounding.

Emerging evidence has shown promise, however. Transdiag-
nostic dimensions derived from factor analysis of a large set of
individual symptoms outperform traditional questionnaire scores
in their association with some cognitive-computational processes.
For example, model-based planning, the tendency to use
prospective mental maps to guide behaviour [32], has a stronger
and more specific association to a transdiagnostic dimension
‘Compulsivity and Intrusive Thought' than traditional disorder
categories or self-report questionnaires [33-36]. Metacognitive
bias - the confidence one has in their own performance [37] -
tends to be decreased in a non-specific way across many DSM
disorder categories and questionnaires [38], but has a highly
specific, bi-directional associations with two different transdiag-
nostic dimensions. Individuals high in ‘Anxious-depression’ are
underconfident, whereas those with ‘Compulsivity and Intrusive
Thought' express overconfidence [39-44].

These examples suggest that transdiagnostic clinical phenotypes
derived from factor analysis of symptoms may offer an advance over
traditional diagnoses and related self-report instruments [26].
However, a major outstanding question concerns whether factor
analysis is really optimised for this task, particularly given the
limitations described above. Clinical dimensions that map even
more closely to cognition may exist, but may not correspond to the
most substantial axes of variation in a given questionnaire set and so
would not be selected in factor analysis. Moreover, factor solutions
are fundamentally constrained by the specific dataset at hand; they
change depending on the inclusion or omission of symptoms or
diagnoses [45]. In addition, there are multiple degrees of analytic
freedom [29], for example regarding the number of factors retained
[46], the inclusion of a higher-order general factor [47], and whether
dimensions of psychopathology should be orthogonal or partially
correlated [48]. There is currently no consensus on these issues and
without this, there exists a large, possibly infinite, set of alternative
and well-fitting models [49]. In sum, these models are designed to
find the underlying latent structure of the symptoms provided, and
it is unclear if the best solution to this problem corresponds to the
most mechanistically-valid dimensions of psychopathology.

This paper aimed to answer this question by using data from
over 7000 individuals from nine independent datasets
[33-36, 39, 40, 42, 43, 50], with different versions of cognitive
tasks measuring model-based planning and metacognition, various
age ranges, data-collection methods, and representing a spread of
general, crowd-sourced and clinical populations. To generate an
analytic consensus on the structure of psychopathology, we
generated thousands of competing factor solutions, spanning
variations in the number of factors retained, a multiverse of expanded
and contracted questionnaire sets, and examining bifactor, orthogo-
nal and oblique rotations and tested for the maximal association with
the cognitive-computational capacity of interest. We benchmarked
performance against a baseline of established transdiagnostic
dimensions (i.e., ‘“Anxious-depression’ and ‘Compulsivity and Intrusive
Thought) [34], which were derived from a 3-factor solution, an
oblique rotation, and based on the full set of items. Finally, we
compared the mechanistic validity and identity of factors derived
from the covariance of symptoms alone versus a fully supervised
method (partial least squares ‘PLS’ regression) that uses cognitive
information to inform the derivation of factors.

RESULTS

Generating a transdiagnostic factor multiverse

In a factor discovery dataset of N = 1413 individuals gathered from
Amazon’s Mechanical Turk (AMT) [34], we generated thousands of
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possible factor solutions based on a core dataset of 209
questionnaire items. These measured symptoms of obsessive
compulsive disorder (OCD), eating disorders, impulsivity, schizotypy,
apathy, alcohol addiction, depression, trait anxiety and social
anxiety [34]. Using this set, we examined how variations in the
number of factors retained per model (1- to 10-factor solutions,
n =55 factors; Fig. 1B(i)) affects the association between resulting
dimensions and model-based planning and metacognition. We
then tested the impact of the size and composition of the
questionnaire set selected for analysis on the resulting factor
solutions. To do this, we generated every possible combination of
the nine self-report clinical scales (N =511) and factor-analysed the
item-level responses, specifying an oblique (‘oblimin’) rotation and
considering solutions retaining up to 5 factors (15 possible factors
per model), resulting in 7665 candidate dimensions (Fig. 1B(ii)). We
followed this with a comparison of factors derived from oblique,
orthogonal rotations and a bifactor model (Fig. 1B(iii), n=10
factors). Mechanistic validity was defined as the magnitude of the
effect size of a given dimensions in predicting a given cognitive
capacity (i.e., positive metacognitive bias, negative metacognitive
bias and model-based planning), controlling for age, gender and
education/IQ. This was calculated across several datasets and
summarised in a weighted average.

Comparing transdiagnostic dimensions to questionnaire
total scores

As a benchmarking step, we calculated the weighted average
effect sizes for associations with model-based planning and
metacognitive bias and (i) total scores across the nine clinical
questionnaire vs (ii) the established transdiagnostic dimensions
(Fig. 2). We conducted separate regression analyses per cognitive
task within each dataset, with the questionnaires/dimensions as
an independent variable, along with age, gender and education/
1Q. Regression analyses with clinical questionnaires included each
questionnaire in a separate model (e.g., metacognitive bias ~
depression scale score + age + gender + 1Q), while regression
analyses for dimensions included the three dimensions in the
same model (e.g., metacognitive bias ~ Anxious-depression +
Compulsivity and Intrusive Thought + Social Withdrawal + age +
gender + Q). Examining the weighted average effect sizes
(Cohen’s %) across datasets for each questionnaire and dimension,
transdiagnostic dimensions outperformed clinical questionnaires
across all cognitive facets (Fig. 2). For reductions in model-based
planning, ‘Compulsivity and Intrusive Thought' was the top
performing factor (Cohen’s f> = —0.014), performing better than
all the clinical questionnaires (Fig. 2A). Similar for metacognitive
bias, ‘Compulsivity and Intrusive Thought' had the largest positive
effect size for individual differences in overconfidence (Cohen'’s
f2=10.038), and ‘Anxious-depression’ had the largest negative
effect size for individual differences in underconfidence (Cohen'’s
f2=—0.030) (Fig. 2B). The effect sizes of ‘Compulsivity and
Intrusive Thought’ and ‘Anxious-depression’ for metacognitive
bias were twice as large as the effect sizes of the next best
performing questionnaires (the Obsessive-Compulsive Inventory-
Revised for overconfidence with a Cohen’s f>=0.016, and the
Apathy Evaluation Scale with a Cohen’s f*=—0.015 for under-
confidence) (Fig. 2B). The 3-factor solution had a root mean square
error of approximation (RMSEA) of 0.04 and a Turker-Lewis Index
(TLI) of 0.53 and is taken as the benchmark for subsequent
analyses.

Variation of the number of factors selected for retention

Factors that do not represent a significant axis of variation (based on
our selection criteria, see below) in a questionnaire set may not be
selected for retention; but they may nonetheless constitute an
important and mechanistically homogenous dimension of psycho-
pathology. To test this (Fig. 1B(i)), we dispensed with principled
approaches to determine the ideal number of factors to retain and
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Two-step tasks
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Independent dataset tasks

Metacognitive tasks

Sample Size Reference

AMT 1 1413 Gillan et al. (2016)
Smartphone app 1684 Donegan etal. (2023)
AMT 2 820 Patzelt et al. (2019)
Patient 1 862 Lee at al. (2023)
In-person 192 Seow et al. (2021)

70% common 70% common
30% rare g, 30% rare

Sample Size Reference

AMT 3 496 Rouault et al. (2018)
AMT 4 437 Seow & Gillan (2020)
Prolific 817 Benwell et al. (2022)
Patient 2 825 Fox et al. (2023)
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instead generated all possible factors up to a maximum 10 factor
solution. This gave a total of 55 factors, with the first from a 1-factor
solution, the following 2 from a 2-factor solution, all the way to a 10-
factor model (Fig. 2A). For model-based planning, none of these
factors outperformed the benchmark of ‘Compulsivity and Intrusive
Thought!, which was the 2" factor of a three-factor solution
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(Fig. 3A), as suggested by the Cattell-Nelson-Gorsuch (CNG) indices
[34], a mathematical formalisation of the scree plot method [51]. We
repeated this analysis for metacognitive bias, which has two
opposing clinical associations - ‘Compulsivity and Intrusive
Thought' is associated with higher confidence and ‘Anxious-
depression’ with lower confidence. We found that no factor
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Fig. 1 General Methodology. AMT Amazon’s Mechanical Turk. The four AMT and two patient datasets are numerically labelled to help
distinguish samples (e.g., AMT 1 = Gillan et al. [34] dataset (N = 1413)). A Five datasets included alternative versions of the two-step task to assess
model-based planning abilities. Four datasets included metacognitive tasks: Two included alternative versions of a visuo-perceptual decision-
making task, one used both visuo-perceptual and knowledge decision-making tasks, and one dataset used a predictive inference task. B Factor
weights were extracted from a discovery dataset [34], following separate manipulations of (i) the number of factors retained (ranging from a
single- to 10-factor structure, resulting in 55 total factors), (ii) the combinations of scales (ranging from a single questionnaire to all nine
questionnaires considered, with each combination subsequently analysed as a single- to 5-factor structure, resulting in 7665 total factors), and (iii)
the rotation type (oblique ‘oblimin; orthogonal ‘varimax’ or ‘bifactor’ rotations, each as a three-factor structure (in addition to a hierarchical factor
for the bifactor rotation), resulting in 10 total factor solutions). C (i) The performance of each dimension was assessed by examining how within
dataset factor scores (ii) were associated with model-based E)Iannlng/metacognltlve bias, controlling for age, gender and IQ/education, using
linear regression analyses to extract the effect size (Cohen'’s  value of each factor). (iii) The weighted average Cohen'’s f* values across datasets
was used to determine which factor had the largest ‘winning’ effect size for predicting individual differences in model-based planning (lowest

Cohen’s f2 value), overconfidence (highest Cohen’s f* value), and underconfidence (lowest Cohen'’s f* value) respectively.
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Fig. 2 Weighted average effect sizes of the association between
cognitive test data and total scores on clinical questionnaires vs.
transdiagnostic dimensions. AD Anxious-depression, CIT Compul-
sivity and Intrusive Thought, SW Social Withdrawal, AES Apathy
Evaluation Scale, AUDIT Alcohol Use Disorders Identification Test, BIS
Barratt Impulsiveness Scale, EAT Eating Attitudes Test, LSAS Liebowitz
Social Anxiety Scale, OCI Obsessive-Compulsive Inventory-Revised,
SCZ Short Scales for Measuring Schizotypy, SDS Zung Self-Rating
Depression Scale, STAI State Trait Anxiety Inventory. A Weighted effect
sizes of dimensions and questionnaires from linear regression
analyses predicting model-based planning, averaged across 5
datasets (N=4990). B Weighted effect sizes of dimensions and
questionnaires from linear regression analyses predicting metacog-
nitive bias, averaged across 4 datasets (N = 2575).

outperformed the benchmark of ‘Compulsivity and Intrusive
Thought' in their positive association with metacognitive bias (i.e.
higher confidence) (Fig. 3A). However, one factor, the first factor
from a 2-factor solution, had a nominally stronger negative
association with metacognitive bias than ‘Anxious-depression’
(Fig. 3A). The top factors had statistically significant effects on
model-based planning and metacognitive bias (all p < 0.05) within
each individual dataset (Fig. 3B). Comparing the top performing
factor (the first factor from a 2-factor solution) with ‘Anxious-
depression’, they were effectively identical; scores from participants
in the discovery dataset (N = 1413) were correlated at r(207) = 0.99,
p<0.001 (Fig. 3C). Likewise, the loadings were correlated at
r(207) =0.94, p <0.001 (Fig. 3D). Furthermore, the other factors
that showed a slightly larger negative association with metacog-
nitive bias than ‘Anxious-depression’ (specifically, the first factors
from the 4-, 5-, and 6-factor solutions) were highly correlated with
‘Anxious-depression’ (all figadings > 0.88, all recores > 0.97). Addition-
ally, scores and loadings from the second factor from the 2-factor
solution was highly correlated (rpoi > 0.80) with ‘Compulsivity and
Intrusive Thought' (Figure S2).

SPRINGER NATURE

Variation in the selection of clinical symptoms

We conducted a multiverse analysis that systematically varied
not just the number of factors retained, but the symptom
feature set itself. Specifically, we conducted an independent fac-
tor analysis on all possible combinations of 1-9 question-
naire sets, considering factor solutions 1-5 for each, resulting in
7665 candidate dimensions. For their association with model-
based planning, there was a large positive spike in effect sizes
around 0, but the majority of factors had negative Cohen'’s
effect sizes (81.03%, 6211/7665) (Fig. 4A). ‘Compulsivity and
intrusive thought' was the 9™ best factor for explaining
individual differences in model-based planning reductions
(Cohen’s = —0.011), performing better than 99.88% of all
factors generated (Fig. 4A). The top performing factor (Cohen'’s
2= —0.012) and ‘Compulsivity and intrusive thought' both had
highest loadings for OCD items and the lowest loadings for
apathy items, with the top factor being generated from a set of
questionnaires that omitted the schizotypy and alcohol addic-
tion questionnaires (Figure S3A). Scores across the factors were
highly correlated (r(1411) =0.85, p<0.001) in the discovery
dataset (N = 1413) (Fig. 4B). Examining each dataset separately,
the top performing factor outperformed ‘Compulsivity and
Intrusive Thought' in it's association with model-based planning
in 3/5 datasets (Fig. 4C). The top performing factor (Cohen’s
2= —0.012) and ‘Compulsivity and Intrusive Thought' (Cohen’s
f2=—0.011) both had very small weighted average effect sizes
(Cohen's 2 <0.02) [52] (Fig. 4C). The mean difference between
the weighted average effect size of the top performing factor
and ‘Compulsivity and Intrusive Thought’ was not substantial in
magnitude (difference in Cohen'’s 2=0.001) (Fig. 4QC). A
heatmap of the top 1500 dimensions illustrated the relative
importance of each questionnaire for explaining individual
differences in model-based planning (Figure S4A). Averaging
item-level loadings across the top 100 dimensions (Figure S5A),
items related to OCD (M =0.51, SD =0.01), followed by eating
disorders (M =0.20, SD=0.07), had the highest average
loadings (Figure S5D).

‘Compulsivity and Intrusive Thought' had a stronger association
with overconfidence than 99.70% of factors (Cohen’s f2 = 0.039),
making it the 23" top factor across analyses controlling for age,
gender, 1Q/levels of education and levels of ‘Anxious-depression’
(Fig. 4D). Relative to ‘Compulsivity and Intrusive Thought’, the top
performing factor (Cohen’s f>=0.041) omitted the trait anxiety
and eating disorder questionnaires (Figure S3B), and scores on
both factors were positively correlated in the discovery dataset at
r(1441) =0.62, p<0.001 (Fig. 4E). While the effect size was
nominally greater for the top performing factor across samples,
this difference was miniscule (Cohen’s f* difference = 0.002), and
the top factor did not outperform ‘Compulsivity and Intrusive
Thought’ within half (2/4) of the datasets (Fig. 4F). Items related to
OCD, schizotypy and impulsivity had strong positive loadings
across the top 1500 performing factors (Figure S4B) and
specifically, items from the OCD questionnaire contributed most
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Fig. 3 Variation of the number of factors selected for retention. AMT Amazon’s Mechanical Turk. A-D Anxious-depression, OCD Obsessive
compulsive disorder, Social anx Social anxiety, Trait anx Trait anxiety, r Pearson correlation coefficient, p p-value. A Fifty-five factors were
generated from solutions retaining 1-factor, 2-factors, ..., 10-factors. Heatmap indicates the loading of individual items onto each resulting
factor (top panel). Weighted effect sizes (%) from 10 linear regression analyses predicting model-based planning, averaged across 5 datasets
(N =4990) (middle panel) and metacognition in 4 datasets (N = 2575) (bottom panel). Factor loadings and effect sizes are aligned along the
same x-axis. B Top-performing factors’ effect sizes within each dataset and the weighted averaged effects across datasets. The top-performing
factors had a statistically significant effects on model-based planning overconfidence and underconfidence within each dataset (all p < 0.05).
*p < 0.05, **p < 0.01, ***p < 0.001. The top performing factor for model-based planning and overconfidence was extracted from the 3-factor
model (in purple) and the top performing factor for underconfidence came from the 2-factor model (in grey). C Correlation between scores on
the first factor in a 3-factor solution (model 3.1 i.e.,, ‘Anxious-depression’) and the first factor from a 2-factor solution (model 2.1) in the
discovery dataset. D Correlation between factor loadings of ‘Anxious-depression’ and model 2.1 in the discovery dataset.

predominantly to the top 100 dimensions associated with
overconfidence (Figure S5B), and had the highest questionnaire-
level average loadings (M = 0.36, SD = 0.02) (Figure S5D).

When examining negative associations with confidence bias,
‘Anxious-depression’ was the 731°" best performing factor (better
than 90.46% of factors) in terms of its association with confidence
(Cohen’s f>=—0.036) controlling for age, gender, 1Q/levels of
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education and levels of ‘Compulsivity and Intrusive Thought’
(Fig. 4G). ‘Anxious-depression’ scores were highly correlated at
(r(1411) = 0.95, p < 0.001), with the top performing factor (Cohen's
f2=-0.041) (Fig. 4H), which had high loadings for the trait anxiety
items (Figure S3C). Despite having a larger negative effect size
across samples, the top generated factor did not consistently
outperform ‘Anxious-depression’, which had a larger effect size in
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the Prolific dataset (N=817) (Fig. 4l). Overall, the differences in
effect size between the top performing dimensions versus
‘Anxious-depression’ were negligible, reflecting a weighted effect
size difference of r=0.005 for underconfidence (Fig. 4l). Visualis-
ing the heatmap of item loadings across the top 1500 factors, trait
anxiety contributed highly to explaining individual differences in
underconfidence (Figure S4C), and had the highest average item-
and questionnaire-level loadings across the top 100 dimensions
(M =0.59, SD =0.02) (Figure S5C-D).
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Higher- versus first-order factor rotation

Next we examined how factor rotation relate to the fit of
dimensions to cognition, comparing orthogonal, oblique rotations
and a higher order solution, which includes a general hierarchical
(‘p) factor. The cross-solution correlations (Figure S7A) of scores
were very high across oblique (oblimin) and orthogonal (varimax)
first-order solutions, but the oblique rotation (2nd factor -
‘Compulsivity and Intrusive Thought’) produced the nominally
largest association with reductions in model-based planning
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Fig. 4 Variation in the selection of clinical symptoms. CIT Compulsivity and Intrusive Thought, A-D Anxious-depression, r Pearson
correlation coefficient, p p-value. Model-based planning. A Density plot of effect sizes from 7665 candidate dimensions derived from all
combinations of 9 questionnaires, retaining 1-5 factor solutions, predicting model-based planning. CIT was the 9" best performing of 7665.
B Final scores for the top factor and CIT correlated at r = 0.85, p < 0.001 within the discovery dataset (N = 1413). C Weighted average effect
sizes across datasets (bars) and individual dataset effect sizes (dots) for the top factor and CIT associations with model-based planning. Overall
effect sizes gains for the top factor over CIT were negligible and inconsistent across datasets. Overconfidence. D Density plot of effect sizes
predicting overconfidence. CIT was the 23™ best performing of 7665. E Final scores between the top factor and CIT were correlated at r = .62,
p <0.001 in the discovery dataset. F Weighted average effect sizes across datasets (bars) and individual dataset effect sizes (dots) for the top
factor and CIT associations with overconfidence. Overall effect sizes gains of the top factor over CIT were once again negligible and
inconsistent across datasets. Underconfidence. G Density plot of effect sizes predicting underconfidence. A-D was the 731° best performing
of 7665. H Final scores for the top factor and A-D were correlated at r = 0.95, p < 0.001 in the discovery dataset. | Weighted average effect sizes
(bars) and individual dataset effect size (dots) for the top factor and A-D associations with underconfidence. Overall effect sizes differences

between the factors were negligible, and the top factor did not consistently outperform A-D.

(Cohen's f2 = —0.014) across our 5 datasets (Figure S7B). The same
was true for both under- and over-confidence in metacognitive
biases. ‘Compulsivity and Intrusive Thought’ showed the largest
positive association (Cohen’s f2 = 0.038) and ‘Anxious-depression’
the largest negative association (Cohen’s f2 = —0.030) (Figure S7B).
Notably, the general (‘p’) factor from the bifactor model showed
the relatively smaller associations with all three cognitive domains
(Figure S7B). Zooming in on this, associations with the ‘p’ factor
were not statistically significant within any of the datasets for
model-based planning (all p >0.05). The ‘p’ factor was associated
with metacognitive bias in two datasets, but these were in
opposing directions (negative association in the Prolificc N=2817
and positive association in the AMT 4, N=437 datasets)
(Figure S7C).

Comparison to a supervised method to derive factors

The preceding analyses focused on the extent to which natural
patterns of symptom covariation possess mechanistic validity. In a
final analysis, we compared the resulting factors to those derived
using a fully supervised approach, where cognitive performance
(i.e., model-based planning and metacognitive bias) informs the
selection of the factor itself. Specifically, we used partial least
squares regression with 10-fold cross-validation within 75% of the
discovery dataset [34] to first identify a transdiagnostic compo-
nent linked to individual differences in model-based planning
(Figure S8A and Table S1). Across the test folds of the cross-
validation procedure run on the discovery set (N=1061), higher
component scores were associated with model-based planning
(residualised for age, gender and IQ) with an average r* = 0.05 in
the test folds of the cross-validation. Evaluating the model in the
held out 25% of the data from the discovery sample (N = 352), the
PLS component score was significantly negatively associated with
the residual of model-based planning abilities, r(350)= —0.15,
p =0.006 (Fig. 5A). Testing model performance out-of-sample, the
PLS component performed was higher than ‘Compulsivity and
Intrusive Thought' in 3 of the 4 independent datasets (Fig. 5B).
However, the weighted average effect size for the PLS component
(Cohen’s 2= —0.015) was only slightly larger than the effect size
for ‘Compulsivity and Intrusive Thought' (Cohen’s 2=-0.011),
with an average gain in effect size of f* = 0.004 (Fig. 5B). In the full
discovery dataset (N=1413), scores on the PLS factor were
strongly correlated with ‘Compulsivity and Intrusive Thought’,
r(1411) = 0.92, p < 0.001 (Fig. 5C).

A PLS component was generated to predict individual
differences in overconfidence within the AMT 3 sample
(N=496) [40] (Figure S8B and Table S1). The PLS component
was associated with the residual values of confidence (after
controlling for age, gender, IQ and levels of ‘Anxious-depression’)
at ” = 0.18, averaged across the cross-validation test folds in the
training 75% of the data (N=372). The PLS component was
significant positively associated with mean confidence in the held
out 25% of the data (N=124), r(122) =0.21, p=0.022 (Fig. 5D).
With out-of-sample testing, the weighted average effect size of
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the PLS component (Cohen’s f> = 0.037) was nominally smallerer
than the effect of ‘Compulsivity and Intrusive Thought' (Cohen’s
f2=0.037) when predicting individual differences in overconfi-
dence across all 3 independent datasets (Fig. 5E). Within the full
discovery dataset (N =496), scores on the PLS component were
strongly correlated (r(494) =0.80, p <0.001) with ‘Compulsivity
and Intrusive Thought' scores (Fig. 5F). We repeated this analysis
residualising ‘Compulsivity and Intrusive Thought’, instead of
‘Anxious-depression’, from the confidence measure to identify a
PLS component significantly negatively associated with confi-
dence (Figure S8C and Table S1). This component had an average
=007 in the training set (N=372) and was negatively
associated with the residual of confidence in the held out 25%
of the data (N = 124), r(122) = —0.20, p = 0.030 (Fig. 5G). The PLS
component did not outperform ‘Anxious-depression’ in 2 of the 3
out-of-sample tests, and had a lower weighted average effect size
(Cohen'’s 2 = —0.031) compared to ‘Anxious-depression’ (Cohen’s
f2=0.036) (Fig. 5H). Scores for the PLS component factor were
highly correlated (r(494) =0.93, p <0.001) with ‘Anxious-depres-
sion’ scores (Fig. 5I).

DISCUSSION

There is broad agreement that current diagnostic categories
present challenges for mechanistic research in psychiatry [53, 54].
There is less agreement, however, about how alternative
classification frameworks should be generated. Some have
suggested that correlation at the level of symptoms can reveal
an important latent structure of mental health, which is
statistically robust and reproducible [25, 26, 47]. Others have
argued that this approach may be fraught, because there is no
reason to think that a descriptive construct, albeit one that is
statistically valid, has any specific underlying biological mechanism
[27, 55]. This issue is compounded by the analytic degrees of
freedom inherent in such correlation-based approaches, wherein
researcher choices at the time of data collection and analysis can
produce many alternative factor solutions.

Here we conducted an exhaustive multiverse analysis of
potential factor solutions and tested their mechanistic validity,
operationalised as their association with three aspects of
cognition. In nine datasets, comprising N = 7565 individuals, we
provide evidence that those factors with the greatest mechanistic
validity converge on the factors derived from a first-order factor
analysis with oblique rotation, applied to a transdiagnostic sets of
the maximal number of theoretically informed self-report symp-
toms available to the researcher. These canonical factors
(‘Compulsivity and Intrusive Thought' and ‘Anxious-depression’)
performed better than 99 and 90% (respectively) of alternatives in
their association with cognition. These factors consistently out-
performed total scores on constituent questionnaires and, in some
cases, dimensional effects were twice as large as classic clinical
questionnaire effects. In cases where they performed nominally
worse than the top-performing factor from multiverse analyses,
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Fig. 5 Partial Least Squares Regression Analyses of Model-based Planning and Metacognitive Bias. PLS Partial least squares regression,
CIT Compulsivity and Intrusive Thought, A-D Anxious-depression. Model-based planning. A The correlation between PLS component scores
and the residual of model-based planning (controlling for age, gender and IQ) in the held out 25% of the data (N = 352). B Weighted average
effect sizes across out-of-sample datasets (bars) and individual dataset effect sizes (dots) for the PLS component and CIT associations with
model-based planning. The overall gain in the weighted average effect size for the PLS component was negligible and inconsistent across
datasets. C Correlation between PLS component scores and CIT scores in the full discovery dataset (N=1413). Overconfidence. D The
correlation between PLS component scores and the residual of confidence (controlling for age, gender, IQ and A-D) in the held out 25% of the
data (N=124). E Weighted average effect sizes across out-of-sample datasets (bars) and individual dataset effect sizes (dots) for the PLS
component and CIT associations with confidence. The weighted average effect size of the PLS component was not nominally greater than the
CIT effect, and the PLS component only outperformed CIT (nominally) in 2/3 datasets. F Correlation between PLS component scores and CIT
scores in the full discovery dataset (N=496). Underconfidence. G The correlation between PLS component scores and the residual of
confidence (controlling for age, gender, IQ and CIT) in the held out 25% of the data (N = 124). H Weighted average effect sizes across out-of-
sample datasets (bars) and individual dataset effect sizes (dots) for the PLS component and AD associations with confidence. The weighted
average effect size was higher for A-D compared to the PLS component and A-D performed better in 2/3 datasets. | Correlation between PLS
component scores and AD scores in the full discovery dataset (N = 496).
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the differences in effect size were trivial, inconsistent across
datasets and correlations between competing factors approached
unity. Perhaps most surprisingly, we showed that dimensions
derived from factor analysis at the symptom-level had as strong
an association to cognition as dimensions derived from a
supervised approach that expressly maximised the association
between a factor and cognitive performance. This suggests that
novel dimensions of psychopathology can be identified using
symptoms alone, opening the door to leveraging other large
existing datasets, without cognitive test data, to identify novel
transdiagnostic dimensions. Our results generalised across nine
independent samples with markedly different characteristics,
including patients about to start treatment, the general popula-
tion, paid and unpaid participants, of different ages, collected in-
person, online or in-app, and using several variants of the
cognitive tasks in question. This remarkable stability across
heterogeneous datasets suggests that factor solutions generated
based on the correlation of experienced symptoms are a valid and
powerful approach for defining novel transdiagnostic dimensions
for research in psychiatry.

As part of this multiverse analysis, we showed that a first-order
correlated factors model outperformed a bifactor model. The ‘p’
factor has garnered significant interest in psychiatric research
since its initial identification, and has been suggested by some to
reflect the liability, comorbidity, persistence, and severity of
psychopathology [31]. It features prominently in the HiToP
framework as a ‘superspectrum’, and although it is without doubt
a statistical feature of mental health questionnaire items, concerns
have been raised about the interpretation of the ‘p’ factor [56, 57],
and more broadly the evaluation and interpretation of bifactor
models, including model overfitting [58, 59], and poor replication
across samples [60]. Across the nine datasets and their aggregates,
we found no association between the ‘p’ factor and any of the
three cognitive phenotypes under study. These results suggest
two things. First, it suggests that the ‘p’ factor, if it constitutes an
important level of clinical description, may reflect nonspecific
psychopathology [31]. Second, the ‘p’ factor is near indistinguish-
able from the sum of the feature matrix that generates it [57], and
so the finding that it is unrelated to cognitive test performance
further underscores that the specificity of associations we report
between cognition and ‘Anxious-depression’ and ‘Compulsivity
and Intrusive Thought'.

Computational Factor modelling and the HiTOP approach share
many features, agreeing most notability in the value of a
transdiagnostic dimensional approach and using the covariance
of symptoms to derive it. There are some points of distinction
however. Computational Factor modelling places a premium on
external validation with the goal of explaining mechanisms of
illness (e.g. with cognitive computational tasks), while HiTOP
focuses more simply on the structure of mental health. Based on
the results of the present study, that self-report covariation
provides a similar result to the supervised mechanistic approach, it
appears likely that the two approaches may dovetail in the near
future. One reason that they do not yet align, in terms of the
specific dimensions identified, is that the frameworks have
focused on different aspects of mental health (with Computational
Factor modelling being more narrow). Perhaps more importantly,
HIiTOP factor analyses have been historically based on DSM-
diagnoses, and Computational Factor modelling uses raw self-
report data of individual symptoms [25]. HITOP have begun to
move in this direction, and a recent bottom up and data driven
analysis of self-report versions of DSM symptoms (rather than
disorders) found that repetitive rituals and compulsions loaded
onto a positive psychosis factor, consistent with Computational
Factor modelling but not the original HiITOP formulation [61]. This
provides further evidence that the two systems may converge in
time. Conceptually, Computational Factor modelling also aligns
with the RDoC initiative, which also emphasises biobehavioural
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and neurocognitive processes over traditional diagnostic labels;
however, RDoC is explicitly a research framework and does not
fully describe psychiatric phenotypes [24]. Integrating RDoC
constructs can strengthen Computational Factor modelling by
informing the selection and interpretation of mechanistic dimen-
sions. Together, this combined strategy, starting with symptom
covariance, refining dimensions through cognitive association,
and grounding them in neurocognitive constructs like those in
RDoC, offers a promising path toward a more mechanistically valid
nosology for psychopathology.

Mechanistic validity is just one way in which we might evaluate
a candidate classification system in psychiatry. Alternative
objective functions, for example maximising discriminative treat-
ment-prediction, could produce different dimensions that are of
more immediate clinical value [55], even if they provide little-to-no
insights with respect to aetiology or brain-behaviour correspon-
dence. We do not see these as competing goals, per se, but rather
different levels of analysis. The current focus on improved
mapping of symptom dimensions to neurocomputational
mechanisms is designed to provide a new, theory-based path to
understanding mental health and illness, that could lead to the
development of precision therapeutics that target cognitive
processes or early detection [28]. Future research should test if
treatment-oriented vs. mechanistic approaches to symptom
validation are distinct and complementary or converge on the
same or similar factors. The present study cannot speak directly to
this potential. However, there is some preliminary evidence that
transdiagnostic dimensions derived from Computational Factor
modelling may help us understand how treatments may work. For
example, metacognitive biases diminish following treatment with
cognitive behaviour therapy and those with the largest increases
in metacognitive confidence following treatment had the greatest
reductions in ‘Anxious-depression’ [43]. To further elucidate the
causal mechanism of this effect, more intensive repeated testing
would be a promising approach to account for temporal and
contextual variation [62]. Unlike metacognitive bias, reductions in
model-based planning are more trait-like; they do not improve
following successful treatment and may instead confer vulner-
ability to disorders of compulsion [63, 64].

While the top performing factors had considerably stronger
cognitive correlates than individual questionnaire total scores, the
average effect sizes remained small in magnitude overall. This
underscores how individual cognitive tests can at best provide a
highly simplistic mechanistic account of psychopathology [21]. For
a comprehensive explanatory model, multivariable models are
required, incorporating micro (e.g., neural circuits) and macro (e.g.,
societal factors) levels of information [65]. An additional limitation
of the current study is that we only considered nine specific
clinical questionnaires for practical reasons (i.e. data availability),
limiting coverage of the broader symptom spectrum. Future work
aiming to capture the full spectrum of psychopathology must
consider additional facets of mental health (e.g., symptoms of
autism spectrum disorder or attention deficit hyperactive disorder
[66]) and aspects of cognition specifically relevant to them. An
important consideration when interpreting the results of factor
analytic models applied to multiple questionnaires is that each
questionnaire has often been optimised for internal consistency
and diagnostic specificity. As a result, the latent structures may in
part reflect the design constraints of the questionnaires them-
selves. This was evident in our results, where at a certain point,
factor analysis tended to recover constructs closely aligned with
individual questionnaires. One potential solution to this may be
redesigning questionnaires to remove superficial features that
might be sources of variance not meaningfully related to mental
health. In addition, incorporating independent data modalities
for external validation of phenotypes will be important. This might
include other cognitive measures, but also neuroimaging, life
history and ambulatory assessments. It is possible that different
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levels of a dimensional hierarchy may map onto different sources
of data, e.g., some symptoms that co-occur might do so due to
common environmental factors, but have distinct neural or
behavioural correlates [67, 68]. As cognitive test performance is
but one layer of mechanistic precision - future work aiming to link
brain-based measures to these dimensions may reveal stronger
associations than the existing literature has been able to [36, 69],
providing a more compelling path towards novel pharmacological
or stimulation-based interventions. That said, the strong conver-
gence observed across three aspects of cognition studies in the
present study provides a promising foundation upon which to
further examine the generality of the conclusions drawn.

In conclusion, we used data-driven multiverse analysis of large-
scale datasets to identify dimensions of psychopathology with
optimal mechanistic validity. The natural covariance patterns of
symptoms corresponded to specific aspects of cognition, and
these were largely robust to manipulations of the number of
factors retained, various combinations of questionnaire sets and
rotation type. Specifically, dimensions that maximally corre-
sponded to distinct cognitive capacities were generated through
first-order factor analysis, with oblique rotation, a factor number
indexed by the scree plot and a broad set of theoretically-
informed clinical questionnaires. This demonstrated that Compu-
tational Factor modelling can derive dimensions of psychopathol-
ogy that are clinically sensible and cognitively meaningful.

METHODS

Participants

In total, nine datasets were included in this study (Fig. 1A). Five of these
datasets included measures of model-based planning [33-36, 50], and four
included measures of metacognitive bias [39, 40, 42, 43]. Each study
gathered informed consent from participants, including for data re-use,
and obtained ethical approval from a local institutional review board.
N = 1413 individuals were included in the discovery sample, previously
described in Gillan et al. [34] (labelled AMT 1, to distinguish it from other
AMT samples). We chose this dataset as the discovery sample, as this study
was the first to derive the established transdiagnostic dimensions and is
the sample from which the other studies have applied the factor weights
to generate independent dimension scores, making it a widely accepted
reference point in the literature. Additionally, in early exploratory analyses,
we found that the factor structures obtained from other datasets
(including the largest dataset available and the clinical sample) were
highly similar to those from the Gillan et al. [34] dataset, suggesting that
varying this step would not substantially alter the results (see ‘Extracting
factor weights from discovery dataset’ below). For consistency and ease of
interpretation, and given the strong precedent set by prior work, we used
this dataset to generate the factors. Individuals in this samples were
recruited remotely, online through AMT [34]. The sample had a mean age
of 32.97 (SD = 10.81), was mostly female (n = 823, 58.20%), with a mean 1Q
of 98.00 (SD = 9.55) (Table 1).

The other samples with measures of model-based planning included
three previously published datasets [33, 35, 36] and unpublished data from
the Precision in Psychiatry (PIP) study [50]. Participants in the Patzelt et al.
[35] dataset were recruited online using (N = 820) (labelled AMT 2). We had
a slightly lower sample than the sample published in the Patzelt et al. [35]
paper, as we only included those with full model-based planning,
questionnaire and sociodemographic information. Participants in the
Seow et al. [36] dataset were from the general population and recruited
in-person (N = 192). The Donegan et al. [33] dataset included participants
from the Neureka Project, which enrols members from the general public
who voluntarily download a smartphone application to contribute to
scientific research. We had a slightly larger sample (N=1785) than the
sample published in Donegan et al. [33] paper, as we included additional
Neureka users who have completed the model-based planning task since
the study publication. The PIP study recruited participants from clinical
sites that made referrals for internet-based cognitive behavioural therapy
[50]. Among PIP study completers, N=2862 completed a model-based
planning task [50] (labelled Patient 1), and N =825 completed the
metacognitive task [43] (labelled Patient 2). The sample size in this paper
(N=2825) is larger than Fox, Lee, et al. [50], as we included participants
excluded from that study for not completing a follow-up assessment.
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Sociodemographic Characteristics.

Table 1.

Metacognitive bias

Model-based planning

Prolific
(N

Patient 2

AMT 4
(N

AMT 3

(N

Patient 1
(N

AMT 2 Student

(N

Smartphone App
(N =1684)>

AMT 1

Socio-demographic

characteristic

=817)

(N = 825)

437)

= 496)

= 862)

(N=192)

=820)

(N=1413)

Gender, N (%)

331 (40.51)
486 (59.49)

173 (20.97)
644 (78.06)
8 (0.97)

256 (51.61) 241 (55.15)
196 (44.85)

240 (48.39)

178 (20.65)
676 (78.42)

80 (41.67)
8 (0.93)

421 (51.34)
399 (48.66)

483 (28.68)

590 (41.80)
823 (58.20)

Male

112 (58.33)

1163 (69.06)
36 (2.14)

Female
Other
Age, M (SD)

1Q, M (SD)

25.58 (9.79)

37.54 (10.39) 32.00 (11.02)

—0.27 (0.79)

31.89 (12.10) 32.07 (11.06) 35.59 (10.57)
7.98 (3.47)

7.95 (3.29)

34.89 (10.05)
99.00 (9.74)

46.14 (14.70)

32.97 (10.81)
98.00 (9.55)

Education, N (%)

196 (23.76)
433 (52.48)
196 (23.76)

203 (23.55)

609 (36.16)
678 (40.26)

Below undergraduate

453 (52.55)
206 (23.90)

395 (23.46)

AMT amazon’s mechanical turk, /Q intelligence quotient, M mean, SD standard deviation, N count.

Completed

undergraduate

Above undergraduate
“missing data for 2 participants.
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Three of the other datasets with measures of metacognitive bias were pre-
existing, published datasets, that recruited participants online through
crowdsourcing AMT (Rouault et al., [40], N=496 (labelled AMT 3) and
Seow & Gillan, [42], N =437 (labelled AMT 4)), or Prolific (Benwell et al,,
[39], N=2817). The sociodemographic descriptives for all datasets are
included in Table 1.

Ethics approval and consent to participate. The study included nine
independent samples, each obtained under separate ethical approvals
[33-36, 39, 40, 42, 43, 50]. Approvals were granted by the Research Ethics
Committee of the School of Psychology at Trinity College Dublin
[33, 36, 42, 43, 50] (Project IDs: SPREC072019-01 [33]; SPREC072017-01
[43, 50]), the New York University Committee on Activities Involving
Human Subjects [34], the Harvard Committee on the Use of Human
Subjects [35], the University of Dundee Research Ethics Committee [39],
the University College London Research Ethics Committee (Project ID
1260/003) [40], and the Northwest-Greater Manchester West Research
Ethics Committee of the NHS, Health Research Authority, and Health and
Care Research Wales (REC 20/NW/0020, Project ID 270623) [43, 50]. All
methods were performed in accordance with relevant guidelines and
regulations. Informed consent, including for data re-use, was obtained
from all participants. Full ethical details for each dataset are reported in the
corresponding published papers [33-36, 39, 40, 42, 43, 50].

Procedures

Self-report clinical questionnaires. In each study, participants completed
209 items from nine self-report clinical questionnaires that assess a variety
of psychiatric symptoms, including depression (Zung Self-Rating Depres-
sion Scale) [70], trait anxiety (State Trait Anxiety Inventory) [71], schizotypy
(Short Scales for Measuring Schizotypy) [72], impulsivity (Barratt Impul-
siveness Scale 11) [73], OCD (Obsessive-Compulsive Inventory-Revised,
OCI-R) [74], social anxiety (Liebowitz Social Anxiety Scale) [75], eating
disorders (Eating Attitudes Test) [76], apathy (Apathy Evaluation Scale) [77],
and alcohol misuse (Alcohol Use Disorders Identification Test) [78]. These
questionnaires were chosen based on prior factor analysis in the discovery
sample study [34], which demonstrated that these items could be used to
generate the established ‘Anxious-depression’ and ‘Compulsivity and
Intrusive Thought' dimensions previously associated with model-based
planning and metacognitive bias. The core dataset of 209 items is by no
means exhaustive of mental health; it comes from the original work
developing the method of computational factor analysis [34]. The items
were drawn from well-validated self-report scales covering a broad range
of symptom domains that were predicted to have convergent and
divergent associations with one aspects of cognition - model-based
planning - in the original study. We focused on them here due to the
unique opportunity of there existing several large, diverse and indepen-
dent samples using the same item set and variants of the same tasks which
allow us to perform data-driven modelling and robust out of sample
validation.

Model-based planning tasks. Alternative versions of the reinforcement-
learning ‘two-step’ task [32, 79] were used in the five samples that measured
model-based planning. In the two-step task used to quantify model-based
planning, participants are presented with a series of choices between two
stimuli (often represented as abstract symbols or images). Each choice leads
to another set of options, creating a two-step decision-making process
(Fig. 1A). The key feature of the two-step task is that the outcomes of the
initial choices are probabilistically associated with different outcomes in the
subsequent steps. Participants must learn these associations through trial
and error. Model-based learning refers to the ability to learn and utilize an
explicit model of the task structure to make decisions. In the context of the
two-step task, this involves understanding the probabilistic relationships
between choices and outcomes and using this knowledge to plan and select
actions that are expected to yield favourable outcomes in the long run. More
detailed descriptions of the adapted two-step task versions are included in
the original publications for each study [33-36, 50].

Metacognitive tasks. Metacognitive bias was measured through adapted
versions of a visuo-perceptual decision-making task [39, 40, 43], a
knowledge decision-making task [39], or a predictive inference task [42].
In the visuo-perceptual decision-making tasks, participants make a choice
as to which of two stimuli contains more dots, and then subsequently rate
their confidence in the accuracy of their choice, across multiple trials
(Fig. 1A). The knowledge-based decision-making task requires participants
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to repeatedly judge which of two countries has the larger human
population and then provide a confidence rating for their judgment. In con-
trast, the predictive inference task involves participants aiming a particle
from the centre of a large circle to hit a target. Participants then rate their
confidence that the particle would hit the target. Detailed descriptions of
the tasks can be found in the prior publications from which the datasets
were taken [39, 40, 42, 43].

Data preparation and analysis

Quantifying model-based planning. The ‘two-step’ task can be used to
assess an individual’'s model-based planning by using logistic regression
analyses with mixed-effect models to predict their choice on the
subsequent trial. Specifically, model-based planning was indexed as the
interaction effect of reward and transition on their choice stochasticity
[33, 34, 36, 50]. Alternatively, model-based planning was calculated as the
fit of a computational learning model, in which choices were reflected as
the weighted combination of model-free and model-based planning [35].
For all datasets, reductions in model-based planning were indicated by
lower model-based learning values.

Quantifying metacognitive bias. Explicit post-decisional confidence judge-
ments were used to measure metacognition across the four datasets
[39, 40, 42, 43]. Metacognitive bias was calculated as the mean confidence
reported by participants across experimental trials. Higher mean con-
fidence, relative to within-sample estimates, was used to index ‘over-
confidence’, while ‘underconfidence’ was indicated as relatively lower
mean confidence.

Extracting factor weights from discovery dataset. Using the self-reported
clinical questionnaire data from the Gillan et al. [34] dataset only, we
created a multiverse of candidate factor solutions by iterating over the
number of factors retained, the sets of questionnaire items analysed, and
the rotations implemented (Fig. 1B). We used a single discovery dataset to
derive candidate factor solutions and applied the weights to the other
datasets. This allowed direct comparison of identical factors across
datasets. The factor solutions derived from the other large datasets were
however highly similar. For example, the correlation of weights between
the discovery dataset and an independent factor analysis conducted on
the largest dataset (Neureka) ranged from r=0.94 to r=0.95 for the
3-factor solution and from the patient sample the similarities ranged from
r=0.84 to r=0.96.

Variation of the number of factors selected for retention. First, we
generated a heterogenous correlation matrix of the 209 items from the
nine questionnaires using the hector function in the polycor package in R.
We conducted maximum likelihood estimation (MLE) factor analysis using
the fa function from the psych package in R. We specified that each
iteration would run from a single to 10-factor structure, using regression
with an oblique rotation. The oblique rotational ‘oblimin’ was used,
consistent with prior factor analysis of this questionnaire set [34]. Factor
analysing each factor number from a single to 10-factor structure
generated factor weights and loadings for 55 candidate dimensions in
total (Fig. 1B(i)).

Variation in the selection of clinical symptoms. Candidate dimensions for
multiverse analysis were identified in the Gillan et al. [34] sample by factor
analysing every possible combination of the nine clinical questionnaires.
Combinations ranged from each questionnaire on its own, to all nine
questionnaires considered together, giving a total of 511 possible
combinations (Fig. 1B(ii)). For each of the standalone combinations of
questionnaires, we generated a heterogenous correlation matrix for the
items included in that combination. The correlation matrices were then
factor analysed (MLE in the fa package in R), with the oblique rotational
‘oblimin’. Rather than using the scree plot to determine factor number,
we extracted 1-factor, 2-factor, ... up to 5-factor solutions for each of the
511 sets of items. Factor analysing each combination with up to 5 potential
factors generated factor weights and loadings for 7665 candidate
dimensions in total Fig. 1B(ii).

Higher- versus first-order factor rotation. The heterogenous correlation
matrix of the full 209 item set was factor analysed (MLE in the fa package in
R), specifying a three-factor structure. A three-factor structure was chosen
following its strong performance in the analysis comparing 1-10 factor
solutions (‘variation in the number of factors selected for rotation’).
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We considered 3 commonly employed rotation types: the oblique rotation,
‘oblimin’ (used in the prior sections), and orthogonal rotations, ‘varimax’,
and a ‘bifactor’ solution (Fig. 1B(iii)). While the oblimin and varimax
rotations were generated using the fa package in R, the bifactor solution
was calculated using the ‘omega’ function from the Psych package in R, as
per prior research on bifactor modelling in psychiatry [80]. The within-
solution correlations between factor scores verified the oblique and
orthogonal nature across rotation types (Figure S6). Factor analysing each
rotation type with a three-factor structure (with an additional hierarchical
general ‘p’ factor for the bifactor solution) produced weights and loadings
for 10 candidate dimensions in total (Fig. 1B(iii)).

Testing candidate dimensions across datasets. Considering each manip-
ulation type separately (factor number, combinations of scales and rotation
type), we calculated the factor scores for each participant within each of
the eight datasets separately. Participants’ factor scores were calculated as
the sum of the item weight by participants’ response to that item, for each
factor (i.e., dimension score = sum(item response*weight)) (Fig. 1C(i)). This
only differed slightly for our bifactor model, as the ‘omega’ output does
not provide factor weights. To account for this, factor scores for our
bifactor model were calculated from the factor loadings using the
Anderson-Rubin method, in which a least-squares formula is applied to
maintain the orthogonality of the general and specific factor scores [81].

We then ran linear regression analysis to determine the association
between neurocognitive abilities (model-based planning/metacognitive
bias) and factors scores, controlling for age, gender and 1Q/education. Age,
gender and IQ/education were included as covariates to account for their
potential effects on model-based planning and confidence. For each
regression analysis, we calculated the effect size of each factor as Cohen's
f value [52] (Fig. 1C(ii)). For the factor number and rotation type
manipulations, our regression models included all the dimensions
generated within that factor structure. For example, the regression model
with a three-factor structure would be: model-based planning/metacogni-
tion ~ factor 1 scores + factor 2 scores + factor 3 scores + age + gender +
1Q/education (Fig. 1C(ii)). We included all factors within the structure in the
same model, as the dimensions across the factor structure are obliquely
rotated, meaning that factor scores are related across the structure.
Including all factors means the model accounts for the effects of the
related factors. This is more important for metacognition, as it has
bidirectional clinical associations (positively linked to ‘Compulsivity and
Intrusive Thought' but negatively linked to ‘Anxious-depression’). For the
interested reader, see supplementary Figure S2 for sensitivity analyses
showing individual model results without these controls, where overall
effect sizes are smaller. When we tested the impact of the inclusion/
exclusion of questionnaires (i.e. ‘Variation in the selection of clinical
symptoms’), we only include individual factor scores in each of the 7665
models predicting model-based planning. For metacognitive bias, we
included ‘Anxious-depression’ as an additional covariate to determine
which factors explained the most variance in overconfidence. When we
were interested in factors that predicted underconfidence, conversely, we
reran the models and included ‘Compulsivity and Intrusive Thought'
instead of ‘Anxious-depression’ as a covariate.

Following this, we took each dataset with a measure of model-based
planning and calculated the weighted (by sample size) average Cohen’s f2
for each factor across the samples, consistent with a meta-analytic
approach. We then repeated this separately for each dataset that had a
measure of metacognitive bias to get the weighted average Cohen'’s f>
when mean confidence was the dependent variable. The weighted
average Cohen’s f> were used to determine which factor performed best
when predicting individual differences in model-based planning and
metacognitive bias (i.e., which factors were the winning solutions). For
model-based planning, we were specifically interested in reductions
(lowest Cohen’s f2 values). For metacognitive bias, we were interested in
both directions (highest and lowest Cohen’s 2 values, measuring over- and
under-confidence respectively) (Fig. 1C(iii)).

PLS regression. We used partial least squared regression to identify
transdiagnostic latent dimensions, comprised of the 209 questionnaire
items, which are linked to individual differences in cognitive outcomes.
The AMT 1 sample (N=1413) [34] was used as discovery datasets to
generate the PLS component for model-based planning, as this sample
was also used to discover the factor structures from unsupervised factor
analysis. For metacognitive bias, the AMT 3 sample (N =496) [40] were
used as discovery datasets to generate the PLS component. The Rouault
et al. [40] sample was chosen because it is the largest dataset available
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with a general population sample and data on metacognition and all
covariates (age, gender and Q). To avoid model overfitting, we split each
discovery dataset into training and test sets, comprising of 75 and 25% of
the data, respectively [82]. To identify the optimal number of components
and equivalent item loadings for components within the training set, we
used a 10-fold cross-validation procedure, fitting the model on 90% and
testing performance on the left-out 10% of the data. The mean squared
error of the model’s predictions was then averaged across test folds to
provide an index of the model's predictive accuracy with different
numbers of components. Within the training set, the optimal models for
model-based planning (RMSE = 0.99), overconfidence (RMSE = 0.98) and
underconfidence (RMSE =0.98) all contained a single component. The
item loadings for components were used to generate participants’
dimension scores (dimension score = sum(item response x loading)). We
then evaluated if component scores were significantly associated with
cognitive outcomes within the training and test sets separately, before
testing model performance out of sample.
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