ELSEVIER

Contents lists available at ScienceDirect

Multiple Sclerosis and Related Disorders

journal homepage: www.elsevier.com/locate/msard

Review article

Approach to JCV testing with natalizumab biosimilar: a UK consensus statement

Ruth Dobson ^{a,b,*}, Tarunya Arun ^{c,d}, James Varley ^e, Jeremy Chataway ^{f,g}, Wallace Brownlee ^{f,g}, Paul Gallagher ^h, Gavin Giovannoni ⁱ, Orla Gray ^j, Gillian Ingram ^{k,l}, Niall MacDougall ^{h,m,n}, Paolo A Muraro ^o, Katy Murray ^p, David Paling ^q, Kate Petheram ^r, Waqar Rashid ^s, Emma Tallantyre ^{t,u}, S Anand Trip ^f, Alasdair Coles ^v

- ^a Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University London, UK
- b Department of Neurology, Royal London Hospital, Barts Health NHS Trust, UK
- ^c Department of Neurology, University Hospital Coventry and Warwickshire, UK
- d University of Warwick, UK
- ^e Department of Neurology, Imperial College Healthcare Trust, UK
- f Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- ⁸ National Institute for Health and Care Research, University College London Hospitals, Biomedical Research Centre, London, UK
- ^h Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
- i Blizard Institute, Queen Mary University London, UK
- j South Eastern HSC Trust, Belfast, UK
- ^k Department of Neurology, Swansea University Health Board, Wales, UK
- ¹ Swansea University Medical School, Swansea University, Swansea, UK
- ^m Neurology Department, Hairmyres Hospital, East Kilbride, UK
- ⁿ Anne Rowling Regenerative Neurology Clinic, Edinburgh, UK
- Operatment of Brain Sciences, Faculty of Medicine, Imperial College London, UK
- ^p Department of Neurology, Forth Valley Hospital, UK
- ^q Department of Neurology, Royal Hallamshire Hosptial, Sheffield, UK
- r Department of Neurology, South Tyneside and Sunderland NHS Foundation Trust, UK
- s Department of Neurology, St Georges Hospital NHS Trust, UK
- t Department of Neurology, University Hospital of Wales, Cardiff, UK
- ^u Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
- v Department of Clinical Neurosciences, University of Cambridge, UK

ARTICLE INFO

Keywords:
Multiple sclerosis
Natalizumab
JC virus
Biosimilar
Progressive multifocal leuk

Progressive multifocal leukoencephalopathy

ABSTRACT

Biosimilars have an important role to play in healthcare, with the potential to reduce costs and widen access to treatment. We welcome the use of biosimilars in the treatment of multiple sclerosis. Serological testing for JC virus is mandated as part of safety monitoring in those treated with natalizumab. All PML risk stratification data to date has come from the use of the "Stratify" JC virus (JCV) serostatus test.

The "Immunowell" test used to define JCV serostatus (used with Tyruko) does not always give equivalent results to the Stratify test (used with Tysabri), particularly around thresholds used to define risk of progressive multifocal leukoencephalopathy (PML). In comparison to the Stratify test, Immunowell appears more likely to report a positive JCV index. However, negative results using Immunowell show a high rate of agreement with Stratify, which allows for a rational safety strategy. There remains a real risk that a proportion of patients will be inappropriately classified as being at higher risk of PML, and therefore denied the option of natalizumab, a highly effective therapy, or undergo unnecessarily burdensome monitoring, with resultant cost to the NHS and anxiety.

We provide guidance for patients with discordant results between assays, aiming to balance the need for rigorous safety monitoring with patient access to highly effective therapy and unnecessary monitoring burden on healthcare services.

https://doi.org/10.1016/j.msard.2025.106541

Received 24 March 2025; Received in revised form 13 May 2025; Accepted 21 May 2025 Available online 22 May 2025

^{*} Corresponding author at. Centre for Preventive Neurology, Wolfson Institute of Population Health, Charterhouse Square London EC1M 6BQ, England. E-mail address: Ruth.dobson@gmul.ac.uk (R. Dobson).

1. Background

Natalizumab is a highly effective treatment for multiple sclerosis. It is currently used across the NHS for people with rapidly evolving severe (RES) MS. It has a shorter therapeutic lag than other DMTs, (Roos et al., 2020) and has been shown to have superior efficacy in network meta-analysis. (Gonzalez-Lorenzo et al., 2024) Based on pre-clinical data and a phase III clinical trial demonstrating comparable efficacy to originator natalizumab (Tysabri), biosimilar natalizumab (Tyruko) has been approved for use by the EMA and MHRA, and is subsequently being rolled out across the UK. (Shirley, 2024) This biosimilar switch is driven by the important aim to ensure maximum value and widest possible treatment access across the NHS.

Serological testing for JCV, the virus associated with progressive multifocal leukoencephalopathy (PML), is mandated as part of safety monitoring for patients receiving natalizumab (TYSABRI, n.d.; Tyruko, n.d.). To date, Biogen have provided this, using the StratifyJCV assay. A range of PML risk calculators to aid clinical decision-making and patient communication have been developed to support natalizumab use, based on evidence from large cohorts utilising the Stratify-JCV assay. (Dsilva et al., 2023) In those patients who switch to biosimilar natalizumab, JCV serological testing is provided using the Immunowell assay, supported by Sandoz. An unintended consequence of the biosimilar switch has been apparent discrepancies in the JCV index in individual patients, related to different assays. (Inojosa et al., 2024; Gelissen et al., 2025)

The Immunowell assay has been licensed as a medical device following comparison studies across 328 patients, with subsequent validation in 888 samples. However, early experience in natalizumab treated cohorts who tend to be seronegative, or seropositive at low indices, has demonstrated that results do not always agree with those provided by the Stratify test, particularly across thresholds used to define clinical risk categories. (Inojosa et al., 2024; Gelissen et al., 2025) This poor agreement leads to poor specificity (50 - 52 %) and positive predictive values (PPV) (38 - 67 %) of the Immunowell test compared with Stratify test, with overall 41 % (147/361) patients reclassified from negative to positive across the two assays in population-based studies (Vukusic in press MSJ; Varley in press MSJ). This reclassification exceeds the expected 3-6 % reclassification rate per year previously demonstrated using the Stratify test. (Hegen et al., 2017; Hegen et al., 2018; Gaughan et al., 2022; Dwyer et al., 2021) This discrepancy in serostatus and its impact on risk stratification can potentially reduce clinician and patient confidence in estimating and mitigating PML risk using Tyruko. Unfortunately, the Stratify test is unavailable for patients on, or considering, Tyruko.

In comparison to the Stratify test, Immunowell appears more likely to report a positive JCV index. However, negative results using Immunowell show a high rate of agreement with Stratify, which allows for a rational safety strategy when using Tyruko. A management strategy must be developed until more definite risk stratification related to Immunowell is available. There is a real risk that a proportion of patients will be inappropriately identified as being at high risk of PML and therefore discount the option of a highly effective therapy or undergo unnecessarily burdensome monitoring and anxiety.

Our opinion is that it is reasonable to use Tyruko and associated Immunowell assay, despite concerns regarding risk stratification given the preserved sensitivity and negative predictive value. We recommend that clinicians consider the following principles when starting biosimilar product or switching between originator and biosimilar product.

2. Guidance

In patients with RES-MS who have not previously received Tysabri who are considering treatment with natalizumab

- Patients with negative JCV index measured using the Immunowell test can be reassured and monitored as per standard protocols

- Patients with positive Immunowell tests can be reassured that the risk of PML in JCV positive individuals remains low for the first two years of natalizumab treatment. They should be offered treatment, usually for a time limited period, with a clear plan to switch/derisk, typically after 12–24 months of natalizumab therapy, based on individual risk-benefit discussion with their treating team.
- A switch may consist of moving to another disease modifying therapy with lower PML risk. Risk mitigation may consist of increased MRI monitoring. Consideration may also be given to extending the dosing interval to 6 weekly, however available evidence around the benefits and risks of this approach is limited. (Cutter, 2025)

In patients with negative/very low JCV index (<0.9) established on Tysabri who are switching to biosimilar natalizumab (Tyruko)

- Patients who remain JCV negative or with very low JCV index on Immunowell can be reassured and monitored as per standard local protocols.
- Where patients have a negative JCV index on Stratify but are low positive on Immunowell, the biological factor being measured is likely stable, whilst the assay results differ. This cohort of patients should thus be counselled that their absolute risk of PML has likely not changed significantly in the short term. However, 3-6 % of patients per year move across risk stratification boundaries, (Hegen et al., 2017; Hegen et al., 2018; Gaughan et al., 2022; Dwyer et al., 2021) thus longer-term risk should be considered. Patients should be advised that treatment switching/ derisking should be considered, typically 12-24 months after the first positive test should their JCV index remain positive or increase on repeat testing at 6 months. This should be based on individual risk-benefit discussion with their treating team, considering prior MS disease activity, clinical and radiological response to natalizumab, prior treatment exposure and monitoring burden. Once the overall treatment duration exceeds 24 months, regular MRI monitoring should be performed according to local protocols as part of risk mitigation for patients with positive JCV index and treatment duration >24 months.
- Where patients have negative or very low JCV index (<0.9) results on Stratify but high positive on Immunowell, they should be advised that their absolute risk of PML may have increased. However, given the lack of longitudinal data with Immunowell and PML risk this is currently an area of clinical uncertainty. As a result, treatment switching/derisking should be considered, typically 12–24 months after the first positive test, dependent on the duration of prior natalizumab therapy. Once overall treatment duration exceeds 24 months, they should have regular MRI monitoring according to local protocols for patients with high JCV index and treatment duration >24 months.

In JCV positive patients established on Tysabri who develop high titre index on Immunowell

- Where patients are known to be JCV positive with low-moderate JCV index (0.4–1.5) and subsequently test high positive on Immunowell, they should be counselled that their overall risk may have increased, and they should consider treatment switching/derisking. If and when they exceed 24 months treatment duration, then they should undergo frequent MRI monitoring according to local protocols. This advice is based on reasonable agreement between assays towards the middle and upper ranges of the testable range.

3. Next steps

Our recommendations are a temporary solution to an unfortunate situation where a new tool to inform risk prediction (i.e. new JCV assay) has been introduced without the evidence needed to enable its interpretation. PML risk is a real concern for many receiving natalizumab;

whilst it is thankfully rare, it is associated with significant morbidity and mortality, and risk monitoring is mandated by regulatory authorities.

To maintain trust and confidence in treatment decisions, shared decision making is essential, including openly discussing both the benefits and risks of therapy. Collaboration within the MS community is also critical in this process. Ideally, new risk models need to be developed and validated using Immunowell assay data. However, given the low rates of PML with current clinical approaches, these will take many years to build, even with novel study design and statistical methodology. These challenges around robust data generation affect both risk stratification and risk mitigation strategies such as extended dose intervals. Until such a time as these are available, applying Stratify-based risk tools to data generated via the Immunowell assay may lead to misleading conclusions, potentially overestimating PML risk.

A publicly developed, standardised JCV assay would ensure uniform, reliable results across biosimilar preparations. Current challenges have highlighted the importance of decoupling "wrap around" services from pharmaceutical companies, particularly where these are crucial for safe and effective treatment delivery. Biosimilars offer an opportunity for more cost effective health services, however their rollout has the potential to highlight vulnerabilities in service delivery models. Until a definitive solution is found, it is incumbent on regulators, pharmaceutical companies, clinical teams, and commissioning bodies to work together to understand how best to gather longitudinal data, counsel patients, and ensure ongoing access to a highly effective therapy.

Funding

This work received no specific funding.

CRediT authorship contribution statement

Ruth Dobson: Writing - review & editing, Writing - original draft, Supervision, Project administration, Methodology, Conceptualization. Tarunya Arun: Writing - review & editing, Conceptualization. James Varley: Writing - review & editing, Conceptualization. Jeremy Chataway: Writing - review & editing, Conceptualization. Wallace Brownlee: Writing - review & editing, Conceptualization. Paul Gallagher: Writing - review & editing, Conceptualization. Gavin Giovannoni: Writing - review & editing, Conceptualization. Orla Gray: Writing – review & editing, Conceptualization. Gillian Ingram: Writing - review & editing, Conceptualization. Niall MacDougall: Writing review & editing, Conceptualization, Paolo A Muraro: Writing – review & editing, Conceptualization. Katy Murray: Writing – review & editing, Conceptualization. David Paling: Writing - review & editing, Conceptualization. Kate Petheram: Writing - review & editing, Conceptualization. Waqar Rashid: Writing - review & editing, Conceptualization. Emma Tallantyre: Writing - review & editing, Conceptualization. S Anand Trip: Writing - review & editing, Conceptualization. Alasdair Coles: Writing – review & editing, Conceptualization.

Declaration of competing interest

RD has received honoraria for speaking and/or travelling from Biogen, Esai, Merck, Roche, Teva, Janssen and Sanofi. She served on the advisory boards for Roche, Biogen, Janssen, Sandoz and Merck. All honoraria were paid into an institutional account and used to support research and educational activities. She has received grant support from Biogen, Merck, Celgene.

TA has received honoraria or consulting fees for participating in advisory boards related to trial steering committees and data and safety monitoring committees, speaker fees & research grants from Janssen, Merck, Novartis, Roche and Sanofi-Genzyme

JV has received reimbursement for advisory boards, conference attendance & educational events from Merck, Novartis & Roche.

JC has received support from the Health Technology Assessment

(HTA) Programme (National Institute for Health Research, NIHR), the UK MS Society, the US National MS Society and the Rosetrees Trust. He is supported in part by the National Institute for Health and Care Research, University College London Hospitals (UCLH), Biomedical Research Centre, London, UK. He has been a local principal investigator for a trial in MS funded by MS Canada. A local principal investigator for commercial trials funded by: Ionis and Roche; and has taken part in advisory boards/consultancy for Biogen, Contineum Therapeutics, InnoCare, Lucid, Merck, NervGen, Novartis and Roche.

WB has acted as a consultant and/or accepted speaker honoraria for educational activities from Astra-Zeneda, Biogen, Juvise, Merck, Novartis, Roche, Sandoz and Sanofi

PG has received funding for research, speaking honoraria, travel or educational support from Sanofi Genzyme, Novartis, Biogen, Merck Serono, Bristol Myers Squibb and Roche pharmaceuticals.

GG in the last 2 years, GG has received compensation for serving as a consultant or speaker for, or has received research support from: Abb-Vie, Aslan, Atara Bio, Biogen, BMS-Celgene, GlaxoSmithKline, Janssen/J&J, Japanese Tobacco, Jazz Pharmaceuticals, LifNano, Merck & Co., Merck KGaA/EMD Serono, Moderna, Novartis, Sanofi, and Roche/Genentech

OG has received honoraria as consultant on scientific advisory boards for Genzyme, Biogen, Merck, Roche, and Novartis; has received travel grants from Biogen, Merck, Roche and Novartis; has participated in clinical trials by Biogen and Merck. Her institution has received research grant support from Biogen.

GI has recevied honoraria and travel expenses from Biogen, Merck, Roche, Sanofi and Novartis.

NM has received honoraria and/or educational support from Biogen, Merck, moderna, Novartis, Roche and Sanofi.

PAM has received fees for expert services to Teva and Cellerys, all unrelated to the manuscript.

KM has received honoraria for advisory boards/educational activities from Biogen, Roche, Merck, Teva, Novartis, Sanofi.

DP is a principal investigator for commercial trials funded by Novartis, Merck, Janssen Pharmaceuticals and Roche, and a chief investigator for a commercial trial funded by Novartis. He has received Investigator grant from Sanofi GenzymeAdvisory boards/consultancy and speakers fees from Biogen, Celgene, Janssen, MedDay, Merck, Novartis and Roche.

KP has received honoraria for consultancy work, speaking or support to attend educational events from Roche, Merck, Novartis, Sanofi-Genzyme and Biogen. Investigator on trials funded by Roche & Sanofi-Genzyme.

WR in the last 5 years has received speaking fees and/or served on advisory boards from Biogen, Roche, Novartis, Janssen, Merck Serono, Sandoz, Sanofi and Celgene.

ET honoraria and support to attend educational meetings from Biogen, Merck, Neuraxpharm, Novartis, and Roche, and honorarium for consulting from Merck, Novartis and Roche.

AT reports honoraria for consultancy work or support to attend educational events from Roche, Merck, Novartis, Sanofi-Genzyme and Biogen. Investigator on trials funded by Biogen & Sanofi-Genyme and co-supervised a clinical fellowship supported by Merck.

 AC is supported by the Cambridge NIHR Biomedical Research Centre and the MS Society.

Acknowledgement

The authors would like to acknowledge Dr Niran Nirmalananthan for his review and input into the manuscript.

References

Cutter, G.R., 2025. Critical issues in recommending extended interval dosing. Mult. Scler. Relat. Disord., 106421

- Dsilva, L., et al., 2023. Progressive multifocal leukoencephalopathy with natalizumab extended or standard interval dosing in the United States and the rest of the world. Expert Opin. Drug. Saf. 22.
- Dwyer, C.M., et al., 2021. High rates of JCV seroconversion in a large international cohort of natalizumab-treated patients. Ther. Adv. Neurol. Disord. 14, 1756286421998915.
- Gaughan, M., et al., 2022. Longitudinal stability of JCV antibody index in Natalizumab treated people with multiple sclerosis. Mult. Scler. Relat. Disord. 68, 104251.
- Gelissen, L.M.Y., et al., 2025. Accuracy of new John Cunningham virus antibody assay in natalizumab-treated patients with multiple sclerosis. JAMA Neurol 82, 523–525.
- Gonzalez-Lorenzo, M., et al., 2024. Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis. Cochrane Database. Syst. Rev. 1.
- Hegen, H., et al., 2017. Stability and predictive value of anti-JCV antibody index in multiple sclerosis: a 6-year longitudinal study. PLoS One 12, e0174005

- Hegen, H., et al., 2018. Impact of disease-modifying treatments on the longitudinal evolution of anti-JCV antibody index in multiple sclerosis. Front. Immunol. 9, 2435.
- Inojosa, H., Kather, A., Akgün, K., Ziemssen, T., 2024. Challenges and implications of anti-JCV antibody serology variability among different assays in natalizumab treatment: a call for standardization and transparency in clinical practice. Mult. Scler., 13524585241300972
- Roos, I., et al., 2020. Delay from treatment start to full effect of immunotherapies for multiple sclerosis. Brain 143, 2742–2756.
- Shirley, M., 2024. PB006: a Natalizumab Biosimilar. Clin. Drug Investig 44, 367-370.
- Tyruko 300 mg concentrate for solution for infusion Summary of Product Characteristics (SmPC) (emc). https://www.medicines.org.uk/emc/product/15571/smpc#gref. Accessed May 2025.
- TYSABRI 300 mg concentrate for solution for infusion Summary of Product Characteristics (SmPC) (emc). https://www.medicines.org.uk/emc/product/222/smpc#gref. Accessed May 2025.