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Abstract

The rank of an abelian variety is its most important invariant, determining the

structure of its rational points, however there is no known algorithm to compute

it. A procedure to find it, which works for some abelian varieties, is by descent,

which involves computing a Selmer group. The Selmer groups of the variety give

an upper bound, and the difference from the correct rank can be explained by the

Tate–Shafarevich group, which measures the failure of a local-to-global principle.

This thesis deduces results about Selmer and Tate–Shafarevich groups from the

existence of certain isogenies. We give results about the size of the Tate–Shafarevich

group in the cases of abelian varieties with complex multiplication, and elliptic

curves over dihedral extensions. We also show that the Selmer groups and certain

other invariants do not determine the isomorphism class of an abelian variety.



Impact Statement

Understanding the rational points on curves is a key question in number theory. Apart

from conic sections, which are well-understood, the simplest case is elliptic curves,

which are a type of cubic equation. The points on an elliptic curve have a structure,

and there is a finite set of points which can be used to generate all of them. Finding

the structure of these points is a remarkably difficult question, and the subject of the

Birch–Swinnerton-Dyer conjecture, which is one of the Millenium Prize problems.

A consequence of this conjecture is the p-parity conjecture. This gives a

prediction for the size of Selmer groups, which are a tool to give an upper bound

on the number of generators necessary to give all of the points on an elliptic curve.

Some cases of p-parity are known, and have been used by Bhargava and Shankar

to show that a positive proportion of elliptic curves over the rationals satisfy the

Birch–Swinnerton-Dyer conjecture. This work on Selmer groups earned Bhargava a

Fields Medal in 2014. One result of this thesis is a proof of the p-parity conjecture

for a class of abelian varieties, which are a generalisation of elliptic curves.

The Selmer groups give an upper bound for the number of generators needed,

but sometimes this is more than the true number. Another result of this thesis controls

the difference between these in certain settings, and in some cases this allows us to

compute the structure of the points faster than standard algorithms.

Outside of mathematics, number theory has had many applications in cryp-

tography. In particular, elliptic curves, abelian varieties and isogenies are used in

some of the most modern encryption methods. These applications are not the main

motivation for this thesis, and we do not discuss any consequences of the results, but

they may be of interest to researchers in cryptography.
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Chapter 1

Introduction

The study of Diophantine equations, or equations to be solved in rational numbers,

goes back to the Ancient Greeks. In modern terms, number theorists study the points

on an algebraic variety. Quadratic equations in two variables give rise to conic

sections, and their points have long been well-understood. The next step is elliptic

curves. The idea of adding two points on a cubic curve by the chord and tangent

process had been known since the seventeenth century, and turns the rational points

on the curve into a group. Answering a question of Poincaré, in the 1920s Mordell

and Weil proved the following:

Theorem 1.0.1 (Mordell–Weil). The group of points of an elliptic curve E over a

number field K form a finitely-generated abelian group. In particular,

E(K)∼= Zrk(E/K)×E(K)tors,

where rk(E/K) ∈ Z≥0 is the rank of the curve, and E(K)tors is a finite group.

The rank of the elliptic curve is a crucial property, telling us whether or not

the curve has infinitely many points, and if so what their structure is. Computing

ranks is one of the biggest open problems in number theory. While the torsion can

be computed practically, the rank is less well-understood, and there is no known

algorithm to find ranks which is guaranteed to terminate, or even to tell us whether

or not the rank is 0 and hence E(K) is finite. Whether the rank of curves over Q is

bounded or can be arbitrarily large is also an open problem. The aim of this thesis is
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to better understand ranks and related invariants.

Example 1.0.2 (The congruent number problem). As an example, consider the

following problem, which was first considered over a thousand years ago and remains

open.

Given an integer n, is there a right-angled triangle with rational side lengths

and area n?

Equivalently, can we solve a2 +b2 = c2 and ab = 2n in rational numbers? If so,

we call n congruent. It turns out that this can be transformed into a question about

elliptic curves, and n is congruent if and only if the elliptic curve y2 = x3−n2x has

positive rank.

Elliptic curves are the simplest case of abelian varieties, which are a type of

higher-dimensional varieties with an abelian group structure. Much of the theory

of elliptic curves carries across to abelian varieties, principally the fact that they

also satisfy the Mordell–Weil theorem. Therefore understanding their ranks is also

an important problem in number theory, and the ultimate motivation for the work

presented in this thesis.

The next part of this chapter deals with classical material about abelian varieties,

and the current state of our knowledge. Specifically, Section 1.1 deals with the Birch–

Swinnerton-Dyer conjecture, and Section 1.2 with the Selmer and Tate–Shafarevich

groups and the parity conjecture. Section 1.3 gives the statements of our main results.

These are divided in to three areas: Selmer groups of abelian varieties with complex

multiplication; the growth of the Tate–Shafarevich group under dihedral field ex-

tensions; and the extent to which arithmetic properties determine the isomorphism

class of an abelian variety. These correspond to Chapters 3, 4 and 5 of the thesis

respectively. Section 1.4 details the structure of the remainder of the thesis, and

finally Section 1.5 lists the notation used.

1.1 The Birch–Swinnerton-Dyer Conjecture
Based on computational evidence, in the 1960s Birch and Swinnerton-Dyer devel-

oped a conjecture which linked the rank of an elliptic curve E to the number of



1.1. The Birch–Swinnerton-Dyer Conjecture 16

points on the reduction of E modulo primes. This was refined by Tate, and extended

to abelian varieties. Proving this just for elliptic curves over Q is now a Millennium

Prize problem, one of the most significant open problems in all of mathematics, and

it has been a key part of research on elliptic curves ever since it was conjectured. It

tells us that an analytic object, the L-function, encodes the rank of the abelian variety

as well as other important properties.

Conjecture 1.1.1 (Birch–Swinnerton-Dyer [10], Tate [94]). Let A be an abelian

variety over a number field K. Then

(i) The L-function L(A,s) has a meromorphic continuation to C, and has a zero

of order rk(A/K) at s = 1.

(ii) The Tate–Shafarevich group of A/K is finite.

(iii) The residue is given by a formula

lim
s→1

L(A,s)
(s−1)rk(A/K)

= BSD(A/K),

where BSD(A/K) is defined in terms of arithmetic invariants of A including

|X(A/K)|.

Here the L-function of an abelian variety is a meromorphic function, which is

defined as an infinite product of terms at primes and converges on a right half-plane.

The analytic continuation of L was shown by Deuring [37] to hold for elliptic curves

with complex multiplication, and is also known for abelian varieties with complex

multiplication. It took until 2001 for analytic continuation to be proven for all elliptic

curves over Q, as a result of the modularity theorem of Breuil, Conrad, Diamond,

Taylor and Wiles [16].

Progress has been made on some cases of the conjecture. For instance, Koly-

vagin, Gross–Zagier and others proved, assuming modularity, that when A is an

elliptic curve over Q and the L-function is non-zero or has a trivial zero at 1, parts

(i) and (ii) hold ([51, 56] – see [34] for a complete proof). Bhargava and Shankar

have shown that a positive proportion of curves over Q have rank 0, for which
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Bhargava won a Fields Medal. Combining their work with that of Skinner and Urban

relating to L-functions [90], they showed that a positive proportion of elliptic curves

over Q have analytic rank 0, and so by Kolyvagin’s result satisfy part (i) of the

Birch–Swinnerton-Dyer conjecture. Evidence for part (i) modulo 2 also exists in the

form of parity results, which will be discussed in Section 1.2. Further evidence for

this conjecture is the analogous conjecture for abelian varieties over function fields.

In this setting the full conjecture follows from finiteness of the `-primary part of X,

for any prime `. This is known for both elliptic curves [70, 94], and abelian varieties

[53].

There is extensive numerical evidence for this conjecture, at least in the case of

elliptic curves over Q with low rank. Part (i) has been verified for all elliptic curves

over Q with conductor less than 140000 (this is 614308 isogeny classes, all with rank

at most 3) [29], and the full theorem has been verified for all curves with conductor

at most 5000 and analytic rank at most 1 [30, 67]. Keller and Stoll have also been

able to verify this for some modular abelian surfaces [54].

Beyond these known cases and the numerical evidence, a key reason to believe

the conjecture is a theorem of Cassels [20]. He observed that if A and B are isogenous

elliptic curves, then they must have the same rank and the same L-function. He

then proved that, while the individual invariants are not preserved by isogenies, the

conjectured formula for lims→1 L(A,s)/(s−1)rk(A/K) will give the same result, i.e.

if the conjecture holds for A, it must hold for B. Tate generalised this to abelian

varieties [94]. This relationship between the invariants of isogenous varieties has

had further applications, as it combines information about the rank with local data,

which is easier to compute. One of its most significant applications is towards the

proof of the parity conjectures described below. This relation between invariants is

one of the main tools we use in Chapter 3 of this thesis.

1.2 Finding the Rank

To find the rank of an abelian variety, one often computes a Selmer group, which

gives an upper bound. This upper bound may not be tight, and the difference is
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explained by the mysterious Tate–Shafarevich group. Alternatively, we may ask for

the parity of the rank (whether it is odd or even), and there is a conjectural result

which makes this much easier to compute. These three related objects are the main

focus of this thesis.

Selmer Groups

Given an isogeny f : A→ B of abelian varieties, we can define the f -Selmer group

of A, Sel f (A/K). Formally, this is defined as the kernel of a map

H1(GK,A[φ ])→ ∏
places v

H1(GKv,A)[φ ]

(see Section 2.3). It also has an interpretation in terms of coverings of A which are

everywhere locally soluble. This was introduced by Cassels in 1962 [17], and named

in honour of earlier work by Selmer on the problem of finding the rank of an elliptic

curve. Knowing the size of a Selmer group allows us to give an upper bound on the

rank. Fortunately, the Selmer group is finite and can be computed, at least in theory

and often in practice.

Remark 1.2.1. This finiteness result is part of one proof of the Mordell–Weil

theorem. Indeed if we let A = B and f be the multiplication by n isogeny, it shows

that A(K)
nA(K) is finite.

Computing the rank of an elliptic curve is usually done by a descent method.

This uses Selmer groups to give an upper bound, and a search for points to find a

lower bound. The difficulty comes from the fact that the upper bound will not always

equal the rank; the difference between them is explained by the Tate–Shafarevich

group of A. More precisely, for the isogeny [n], the Selmer group of A has a

subgroup isomorphic to A(K)
nA(K) , with a quotient isomorphic to the n-torsion in the

Tate–Shafarevich group. Working out which part of a Selmer group represents

points on the curve, and which part tells us about the Tate–Shafarevich group, is

a key problem which would quantify the disparity between this upper bound and

the rank. No algorithm to do this in general is known. Computing multiple Selmer

groups for different isogenies can give us some more information, but this is still not
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guaranteed to give the correct bound, and becomes difficult in practice, especially

for higher-dimensional abelian varieties.

In this thesis we will focus on the n-Selmer group of an abelian variety, i.e. the

Selmer group corresponding to the multiplication by n isogeny.

Tate–Shafarevich Groups

The Tate–Shafarevich group of an abelian variety A/K is a difficult object to study. It

represents a ‘gap’ in the arithmetic of an abelian variety over a number field compared

to the arithmetic of the variety over all the completions of that field. The non-trivial

elements can be viewed as homogeneous spaces for the variety, up to isomorphism

over K, which have no points over K but have points over the completion Kv at all

places v. It therefore measures the failure of a local-to-global principle, since it is

trivial when this principle holds for all homogeneous spaces for A. It can also be

defined as the kernel of the map

H1(GK,A)→ ∏
places v

H1(GKv,A)

(see Section 2.2). If we knew the size of the p-part of X, then computing the

p-Selmer group would tell us the rank. If at least the p-primary part is finite, then by

finding the pn-Selmer groups for large n, we could eventually get the correct bound.

In 1940, Lind [62] was the first to give an example of a homogeneous space

representing a non-trivial element of this group, and Selmer [83] gave several more

in the 1950s. The group was introduced in its modern sense by Lang–Tate [60]

and Shafarevich [82] in the late 1950s. Since at least the 1960s it has been widely

believed to be finite (though it is unclear who first conjectured this), and a number

of results have been proven conditional on this, including the parity conjecture for

elliptic curves [42].

Parity Conjectures

Rather than compute the rank exactly, we can instead look at its parity. There is

a conjectural expression for this, which can be seen as the rank part of the Birch–

Swinnerton-Dyer conjecture modulo 2. While the Birch–Swinnerton-Dyer conjecture
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gives a formula for the rank, it still requires us to understand the L-function, a difficult

analytic object which may not even be defined at s = 1. One way mathematicians

have tried to avoid the L-function issue is to combine it with another conjecture,

which predicts that the L-function satsifies a functional equation.

Conjecture 1.2.2 (Hasse–Weil (see [85])). Let A/K be an abelian variety of dimen-

sion n, and let d = [K : Q]. The L-function of A has a meromorphic continuation to

C, and satisfies

L∗(A,s) = w(A/K)L∗(A,2− s).

Here w(A/K) ∈ {±1} is called the global root number and

L∗(A,s) = Ns/2
A |∆K|ns(2π)−nds

Γ(s)ndL(A,s),

where NA is the conductor of A and ∆K the discriminant of K.

As the extra terms linking L and L∗ are easily controlled around s = 1, we can

combine this with the first part of the Birch–Swinnerton-Dyer conjecture to give

a result which does not include L-functions. This is a conjecture involving purely

arithmetic data, so it may be more approachable both in terms of attempting to prove

it, and in terms of using it to predict the parity of the rank.

Conjecture 1.2.3 (Parity). Let A/K be an abelian variety. Then

(−1)rk(A/K) = w(A/K).

The advantage of this conjecture is that w(A/K) can be calculated in terms of

local data, which is often much simpler to understand and calculate than global data.

The global root number is a product of local root numbers, which are defined in

a non-constructive way in terms of a certain Weil representation. Details can be

found in Section 2 of [11]. We will not need the full definition as they have been

classified for elliptic curves and most abelian varieties [11, 80], and so can be easily

computed from a Weierstrass model of an elliptic curve. This conjecture has many

applications, which often come from the fact that when the root number is −1, the
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parity conjecture implies that the rank is positive. One such example is a partial

solution to the congruent number problem mentioned in Example 1.0.2. Assuming

the parity conjecture, one can show that n is a congruent number whenever n≡ 5,

6 or 7 (mod 8). Cowland Kellock and Dokchitser [28] detail this and many more

applications.

While there is much numerical evidence for the parity conjecture in the case

of elliptic curves, and it is known for the complex multiplication case as both sides

have been shown to equal 1, not many general results are known unconditionally. A

more approachable equivalent, which is known in a number of cases, is the p-parity

conjecture, which replaces the rank of an elliptic curve with information about its

pn-Selmer groups. Given a prime p, we will define a new invariant rkp(A/K), the p∞-

Selmer rank, which is equal to rk(A/K) if X(A/K) is finite (more precisiely, they

are equal exactly when X(A/K)[p∞] is finite). For a full definition, see Definition

2.3.3.

Conjecture 1.2.4 (p-Parity). Let A/K be an abelian variety. Then

(−1)rkp(A/K) = w(A/K).

It appears that Selmer [84] was the first to consider parities of ranks. He studied

2-descent on certain families of elliptic curves, and conjectured that "The number of

generators indicated by a first descent differs from the true number of generators by

an even number." This is equivalent to saying that rk2(E/K)≡ rk(E/K) (mod 2).

Birch and Stephens considered p-parity, and proved 2-parity for elliptic curves of

the form y2 = x3−Dx in 1966 [9].

In summary, to compute ranks by descent we must compute a Selmer group.

This gives an upper bound, which exceeds the rank by an amount determined by

X(A/K). X(A/K) is widely believed to be finite, and if it is then the parity

conjecture is true for elliptic curves. In general, all we can prove unconditionally

are cases of p-parity, which tell us about the pn-Selmer groups of abelian varieties

instead of their ranks.
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Known results

A number of cases of the p-parity conjecture are now known. For elliptic curves,

it has been proven in the cases of curves over Q [41] and other totally real fields

[42, 50, 75], and curves over number fields which admit a p-isogeny [22]. For an

elliptic curve over a number field K, 2-parity is known over quadratic extensions

of K [42, 58, 59], and a similar result is now known for Jacobians of hyperelliptic

curves satisfying some local conditions [73].

In the case of elliptic curves E with complex multiplication, we have

EndK(E)⊗ZQ equal to an imaginary quadratic field. It follows that the rank is

even (see Proposition 3.0.2). In this case, one can also show that the root number

w(E/K) is always 1, so the parity conjecture holds. To prove p-parity, we must show

that the p∞-Selmer rank is even. For primes which are inert or ramified in this field,

we can view the Selmer groups as modules over the endomorphism ring, and deduce

p-parity. The split case is harder; Česnavičius proved it by reducing the problem to a

case where he could show that the elliptic curve must admit a p-isogeny, and used

his p-parity result for this situation [22].

Less is known for general abelian varieties. For odd primes p, the p-parity

conjecture is known for abelian varieties A admitting an isogeny of degree pdim(A),

with some restrictions [27]. For p = 2, it is known for principally polarised abelian

surfaces with some conditions on the 2-torsion and reduction at 2 [45].

The weaker result that finiteness of X implies the parity conjecture is known

more generally, including for elliptic curves over all number fields [42], and

semistable principally polarised abelian surfaces satisfying local conditions [45].

The known cases of p-parity have had important applications. For instance,

Bhargava and Shankar used the case of elliptic curves over Q (in an alternative

form, which states that dimFpSelp(E/Q)− dimFpE(Q)[p] is even if and only if

w(E/Q) = 1) to show that a positive proportion of elliptic curves satisfy the Birch–

Swinnerton-Dyer conjecture [8].

While we still know little about the Tate–Shafarevich group, there has been

some progress. At the time Birch and Swinnerton-Dyer made their conjecture, there
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was no known example where X was provably finite. The first examples where this

could be proven were given by Rubin [81] in 1987, and more are now known due to

Kolyvagin. It is however simpler to show that X[p∞] is finite using descent methods,

and this has been done for many elliptic curves ([88] X.5).

In 1962, Cassels discovered a bilinear pairing on X for elliptic curves, and

proved that it was alternating [18]. From this he could deduce that if X is finite,

it must have square order, and the same is true of X[p∞]. This has applications,

including towards parity results, and will be used in the results of Chapter 4. Tate

generalised the pairing to abelian varieties [93]. While it was widely believed that

X would also have square order in this case, this need not be true, as the pairing

may not be alternating. For principally polarised abelian varieties, Flach showed in

1990 that it is skew-symmetric [48]. In 1999, Poonen and Stoll showed that for a

principally polarised abelian variety A/K, X(A/K) is a square or twice a square

(and explained when each occurs) [79]. In 2024 Konstantinou proved that, in general,

the order could be n times a square for any square-free n [57].

While the exact size of X is hard to determine, a number of results showing

that X can become arbitrarily large are also known. Cassels showed that there are

elliptic curves E over Q with X(E/Q)[3] arbitrarily large [19]. It is conjectured

that for all primes p, there is an elliptic curve over Q such that X has an element of

order p. It is known that there is such an abelian variety, as a consequence of a result

of Kloosterman that for any prime there is an elliptic curve over some number field

with X having an element of order p [55].

Much research has been done on the behaviour of the Selmer and Tate–

Shafarevich groups under field extensions, especially those with dihedral Galois

groups. For example, Bartel considered dihedral extensions of Q, and showed that

if we fix a prime p and a quadratic number field M 6= Q(
√

p), there is a dihedral

extension F/Q of order 2p containing M, and an elliptic curve E/Q, with Selp(E/F)

arbitrarily large [2]. Mazur and Rubin have proven a local formula which tells us

about parity in the Selmer groups in D2pn-extensions F/k, for elliptic curves E/k,

and applied this to give a lower bound (under mild local conditions) on rkp(E/F)
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when rkp(E/FCpn ) is odd [65]. Chetty has proven this local formula is equivalent to

the parity conjecture in a number of cases [25]. Vavasour and Wuthrich have shown

that in some cases of D2p-extensions F/k, with intermediate quadratic extension K,

and elliptic curves E/k, the Galois module structure of Zp⊗Z E(F) is determined

by rk(E/k), rk(E/K) and local data [95]. They also give a lower bound in some

cases for X[p] over Cp-extensions of Q. The behaviour of elliptic curves in dihedral

extensions has also had applications towards proving parity results [41, 44].

Mazur and Rubin have considered the question of to what extent the Selmer

groups determine an elliptic curve. They looked at the family of Selmer groups

Seln(Ed/K) for a fixed integer n, where Ed is the quadratic twist of a curve E/K by

d. They showed that it is possible for two elliptic curves over K to have the same

Selmer groups in this family and not be isogenous [66]. Chiu has shown that if two

elliptic curves have the same size Selmer groups Selp(E/F), where F ranges over

all finite extensions of K and p over all but finitely many primes, then they must be

isogenous [26]. This relies on a result of Faltings, which says that for any prime `,

the rational `-adic Tate module determines the isogeny class of an abelian variety.

1.3 Results of the Thesis
In this thesis we will consider isogenies between abelian varieties, and what infor-

mation we can obtain about Selmer groups from them. We will prove three main

results.

The first theorem will be about abelian varieties with complex multiplication.

These are abelian varieties which have a large number of self-isogenies. It is known

that they have even rank and root number 1. We will use these isogenies to give

some information about X in this case.

Theorem 1.3.1 (= Theorem 3.0.5). Let A/K be an abelian variety with complex

multiplication, and p a prime. Then there is an even integer δp such that

X(A/K)[p∞]∼= G× (Qp/Zp)
δp,

where G is a finite group.
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Once we have defined rkp(A/K), it will be clear that this is equivalent to

showing that rkp(A/K) is even, and hence to the p-parity conjecture.

As mentioned in Section 1.2, Česnavičius has proved this result for elliptic

curves. His method does not generalise to abelian varieties as we do not have a

corresponding p-parity result for abelian varieties admitting a p-isogeny. We give

an alternative proof of this, considering the action of an isogeny and its dual on X,

which works for all abelian varieties with complex multiplication.

The second main result tells us about the size of X assuming its finiteness.

It is still hard to give information about the size of X for elliptic curves, beyond

it being a square. We will consider how the size of X behaves under dihedral

extensions, which is a setting of interest, as discussed in Section 1.2. We will do

this by constucting isogenies between two abelian varieties whose Tate–Shafarevich

groups are linked to that of an elliptic curve E over different fields.

Theorem 1.3.2 (= Theorem 4.0.1). Suppose E/k is an elliptic curve, F/k an exten-

sion with Galois group D2n with n odd, and K the quadratic subfield of F. Assume

X(E/F)[p∞] is finite. Then if p - n is prime,

|X(E/F)[p∞]| ≡ |X(E/K)[p∞]| (mod Q∗4).

We also show similar results for even n, and for the p-part of X (Proposition

4.1.4). As Cassels showed that |X(E/F)[p∞]| is a square, this tells us which of the

two cases we are in. When using a p-Selmer group to find the rank of elliptic curves,

the method involves determining the p-part of X, so we can use this theorem and

(assuming finiteness) produce a formula for the rank modulo 4, assuming we know

the size of a Selmer group. This sometimes allows us to find the rank of E/F with

less calculation done over F (either finding points or proving none exist). Example

4.1.6 shows how this can have an application.

In the same setting we also consider the Gal(F/K)-module structure of

X(E/F), and prove that, for p 6= 2, X(E/F)[p∞] is isomorphic to X ⊕ X for

some module X (Theorem 4.2.3). This is analogous to the argument that properties
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of the Cassels–Tate pairing imply that X has square order. We will show that for

certain p and n this gives an alternative proof for Theorem 1.3.2. We then explain

why we might expect this to have an application to a parity result for 〈ρ,E(F)⊗ZC〉,

where F is a D2pq-extension, ρ is a representation of D2pq, and 〈_,_〉 is the usual

inner product on representations of D2pq, but show that this method cannot give the

desired result.

The final main result of this thesis considers how much Selmer groups and

other invariants tell us about the isomorphism class of the abelian variety. Again,

we consider dihedral extensions. We use Weil restrictions of curves over these

extensions to define two abelian varieties with the same Mordell–Weil and Selmer

groups, but unfortunately these examples turn out to be isomorphic, at least for

low-degree extensions. However, a related construction gives examples which are

not isomorphic.

More precisely, the main result is:

Theorem 1.3.3 (= Theorem 5.0.2). There exist abelian varieties A and B defined

over Q, which are not isomorphic, but over every number field F satisfy

• A(F) and B(F) are isomorphic groups

• Seln(A/F) and Seln(B/F) are isomorphic groups for every n

• X(A/F) and X(B/F) are isomorphic groups

• Reg(A/F) = Reg(B/F)

• T`A∼= T`B as GF -modules, where ` is any prime and T`A is the Tate module of

A.

This is different to the situation for elliptic curves, where the same list of

invariants do determine the isogeny class of elliptic curves over Q (Corollary 5.3.3),

but not over number fields (Theorem 5.3.6). This result is analogous to the work

of Mazur, Rubin and Chiu discussed in Section 1.2, which used Selmer groups to

determine the isogeny class of an elliptic curve.
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1.4 Structure of the Thesis

In Chapter 2 of this thesis, we discuss the background material that will be assumed

in later chapters. We will discuss abelian varieties, and their duals and polarisations.

Then we give the main results and definitions about the Tate–Shafarevich and Selmer

groups of an abelian variety. We give the statement of the Birch–Swinnerton-Dyer

conjecture, including the prediction for the residue of the L-function, and explain

Cassels’ Theorem. Then we discuss twists of abelian varieties, and how we can

generate isogenies between them, and finally state some algebraic lemmas which

will be useful.

The rest of the thesis is divided into three chapters, one for each of the main

theorems discussed in Section 1.3. In Chapter 3 we discuss abelian varieties with

complex multiplication. The main result of this chapter is Theorem 1.3.1, p-parity

for abelian varieties with complex multiplication. Česnavičius’ proof for the elliptic

curve case required an application of p-parity, in the case of elliptic curves admitting a

p-isogeny; we present a new, simpler proof of p-parity in the complex multiplication

case, and generalise it to abelian varieties.

To pass from a Selmer group to information about the Mordell–Weil group, we

must attempt to understand the Tate–Shafarevich group. Chapter 4 looks specifically

at the Tate–Shafarevich group of elliptic curves over number fields, and how it grows

in dihedral extensions. Specifically, we prove Theorem 1.3.2, and a similar result

for even n. We show how this can help compute ranks over dihedral extensions of

Q. We also discuss the Galois module structure of the Tate–Shafarevich group, and

show that the theory of modules allows us to deduce the main result in some cases.

In the other cases, the main theorem gives us some information about the module

structure. In Section 4.3 we discuss the potential to apply this to a generalisation of

the parity conjecture, but show that Brauer relations in D2pq cannot give us the result

we hope for.

In Chapter 5 we explore how much Selmer groups and other invariants can tell

us about isomorphism classes of abelian varieties. The main result is Theorem 1.3.3.

This gives a long list of invariants which does not determine the abelian variety up to



1.5. Notation 28

isomorphism. We show this by giving examples, and also give examples showing

an equivalent result for elliptic curves over number fields. We prove that, in the

setting of elliptic curves over Q, this list of invariants does in fact determine the

isomorphism class. We also attempt to construct an example of two non-isomorphic

abelian varieties with the same invariants using a Brauer relation in D2pq, but we

find instead that the products of Weil restrictions must be isomorphic, at least for

small pq.

1.5 Notation
Let K be a number field, L an extension of K and k a subfield of K. Suppose A and B

are abelian varieties over K, and f : A→ B an isogeny defined over K. The following

table sets out some notation we will use relating to these. Definitions for some terms

can be found in Chapter 2 as linked.

K̄ The algebraic closure of K

GK The Galois group of K̄/K

A(K) The points of A defined over K

A(K)tors The torsion subgroup of A over K

A[ f ] The kernel of f on A

A(K)[ f ] The kernel of f on A(K), and similarly for other groups on

which f induces a homomorphism

Â The dual abelian variety of A

f̂ The dual isogeny of f

f̃ The conjugate isogeny of f - see Section 2.1.2

Seln(A/K) The n-Selmer group of A/K - see Definition 2.3.1

X(A/K) The Tate–Shafarevich group of A/K - see Definition 2.2.1

Xd(A/K) The set of divisible elements of X(A/K) - see Definition

2.2.2

Xnd(A/K) The quotient X(A/K)/Xd(A/K)

δp The multiplicity of Qp/Zp in Xd(A/K)[p∞] for a prime p

fA(L) The map induced by f on points of A(L)
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fX The map induced by f on X(A/K), and similarly for sub-

groups and quotients of X

[n] The multiplication by n map on an abelian variety or group

G[n] The kernel of [n] on G

G[n∞] The union of G[nk] over positive integers k

Cn The cyclic group of order n

D2n The dihedral group of order 2n

Z(p) The localisation of Z at p

ResK/k(A) The Weil restriction of A from K to k - see Section 2.5

AL The base change of A to L

Mn(Z) The set of n×n matrices over Z

GLn(Z) The subset of Mn(Z) consisting of matrices with determi-

nant ±1

If L/K is Galois with Galois group G, and H ≤G, let LH be the fixed field of L under

the automorphisms in H. Similarly if ρ is a representation of G, let ρH be the fixed

part of ρ under the action of H.



Chapter 2

Background Material

This chapter covers the necessary background material to the thesis, and does not

contain any new results. We cover the key properties of abelian varieties, their

Selmer and Tate–Shafarevich groups, the full form of the Birch–Swinnerton-Dyer

conjecture, and the construction of some abelian varieties and isogenies which we

will need later.

2.1 Abelian Varieties
Abelian varieties are a generalisation of elliptic curves to higher dimensions. Specifi-

cally, an abelian variety is a smooth projective algebraic variety, with a group law

where addition and the inverse map are given by morphisms. The Mordell–Weil

theorem also holds for abelian varieties.

Theorem 2.1.1. Let A/K be an abelian variety over a number field. Then

A(K)∼= Zrk(A/K)×A(K)tors,

where rk(A/K) is a non-negative integer and A(K)tors is finite.

Many more of the definitions and theorems about elliptic curves have analogues

for abelian varieties.

Most of the results in this section can be found in any set of notes on abelian

varieties over number fields, for example [71].
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2.1.1 The Dual Variety

Given an abelian variety A/K, there is a dual variety of the same dimension, Â/K.

This satisfies double duality: ˆ̂A∼= A. It is functorial, that is, if we have an isogeny

f : A→ B, then there is also an isogeny f̂ : B̂→ Â, which is defined over K, and if

we have another isogeny g : B→C, then ĝ◦ f = f̂ ◦ ĝ. Note that deg( f̂ ) = deg( f )

([38] Section 9).

In the case of elliptic curves, we have Ê ∼= E, but this is not true in general.

This means that some results about elliptic curves do not directly transfer to abelian

varieties, and we must replace some copies of a variety with its dual. For example,

the Weil pairing on elliptic curves is a map E[m]×E[m]→ µm, where µm is the

group of mth roots of unity. The analogous pairing for abelian varieties is a map

A[m]× Â[m]→ µm ([71] Chapter 1 Section 13).

A polarisation of A is an isogeny λ : A→ Â, satsifying some additional condi-

tions. The only one of these conditions which will be relevant to this thesis is that λ̂

(which by the above is also an isogeny A→ Â) is equal to λ ([38] Section 9). All

abelian varieties admit a polarisation. Those which admit a polarisation which is an

isomorphism are called principally polarisable; this includes elliptic curves.

2.1.2 The Conjugate Isogeny

In the elliptic curve case, dual isogenies have the additional property that, given

an isogeny f : E → E ′, f̂ ◦ f = [deg( f )] (where we implicitly use the principal

polarisations to view f̂ as an isogeny E ′ → E rather than Ê ′ → Ê). This is not

true in general, even when we have a principal polarisation. This is because the

degree of f̂ ◦ f is deg( f )2, whereas the degree of [deg( f )] is deg( f )2dim(A). The

analogous concept is the conjugate isogeny. This is an isogeny f̃ with the property

that f̃ ◦ f = [deg( f )] ([38] Section 8).

Because of the existence of the conjugate isogeny, we can invert isogenies in

HomK(A,B)⊗ZQ. This allows us to show that f ◦ f̃ ◦ f = f ◦ [deg( f )] = [deg( f )]◦ f ,

and by cancelling f we get f ◦ f̃ = [deg( f )] also. Given a polarisation λ , inverting

isogenies also allows us to define the Rosati involution on EndK(A)⊗ZQ as the map

f 7→ f † = λ−1 ◦ f̂ ◦λ . The property that λ̂ = λ implies that this is an involution.
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2.2 The Tate–Shafarevich Group
The constructions for the Tate–Shafarevich and Selmer groups, and many of their

properties, are exactly the same as for elliptic curves, which can be found in [88]

Section X.4.

Definition 2.2.1. The Tate–Shafarevich group of an abelian variety A/K is the

kernel of the map H1(GK,A)→ ∏v H1(GKv ,A). Equivalently, it is the group of

homogeneous spaces (up to K-isomorphism) for A/K that possess a Kv-rational point

for every place v of K ([93] Section 3).

The Tate–Shafarevich group is abelian and a torsion group, so can be expressed

as a product of its p-primary parts X(A/K)[p∞]. Each of these is of the form

G× (Qp/Zp)
δp , where G is a finite group and δp is an integer (this follows from the

fact that X(A/K)[pn] is a finite group for every integer n). It is conjectured that X

is finite, which would imply that δp is always 0. While computing X(A/K)[p∞]

can often be done in practice by descent methods, showing that X is finite is much

harder.

Definition 2.2.2. The subgroup of divisible elements of X(A/K) is the set of

elements α for which, given any positive integer N, we can find a β ∈X(A/K)

satisfying Nβ = α . Denote this set by Xd(A/K), and denote X(A/K)/Xd(A/K)

by Xnd(A/K).

Remark 2.2.3. We can see that Xd(A/K) ∼=
⊕

p prime(Qp/Zp)
δp . If X is finite,

this is trivial. Note also that X(A/K)∼=Xd(A/K)⊕Xnd(A/K).

Cassels introduced a pairing on X(E/K) for elliptic curves E, now called the

Cassels–Tate pairing [18]. This is a map X(E/K)×X(E/K)→ Q/Z which is

bilinear, alternating and Galois-equivariant. We will denote it by (_,_). The kernel

on either side is the set of divisible elements of X, i.e. if (α,β ) = 0 for all β , then

α ∈Xd(A/K). The following is a consequence of this.

Theorem 2.2.4. If X(E/K)[p∞] is finite, then it is isomorphic to G⊕G for some

group G (see [78] Lemma 4). Therefore if X(E/K) is finite, it has square order.
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This conclusion comes from the fact that any finite abelian group with a non-

degenerate alternating pairing is of this form, shown in [78] Lemma 4 or [35] Lemma

5.2. This is analogous to the fact that a finite-dimensional vector space with a

non-degenerate alternating pairing has even dimension.

Corollary 2.2.5. If X(E/K)[p∞] is finite, then |X(E/K)[p]| and |X(E/K)[p∞]|

are square.

For more general abelian varieties a similar pairing exists, though it now takes

pairs in X(A/K)×X(Â/K) ([93] Section 3). A choice of polarisation gives

a pairing on X(A/K), though this is no longer alternating. If it is a principal

polarisation then the pairing will at least be skew-symmetric, which implies that

the order of X(A/K), if finite, is a square or twice a square ([48] Corollary after

Theorem 2).

2.3 Selmer Groups
Selmer groups of elliptic curves are discussed in [88] Section X.4. The definitions

and exact sequences work in the same way for abelian varieties.

Suppose we have an isogeny φ : A→ A′, defined over K. We have a short exact

sequence of GK-modules

0→ A[φ ]→ A
φ−→ A′→ 0.

Taking Galois cohomology, we get the exact sequence

0→ A(K)[φ ]→ A(K)
φ−→ A′(K)→ H1(GK,A[φ ])→ H1(GK,A)

φ−→ H1(GK,A′).

From this we get

0→ A′(K)/φ(A(K))→ H1(GK,A[φ ])→ H1(GK,A)[φ ]→ 0.

We can do the same thing for each completion Kv of K. Note that as there is a map
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H1(GK,A)→ H1(GKv ,A), for each place v we have a map

H1(GK,A[φ ])→ H1(GK,A)[φ ]→ H1(GKv ,A)[φ ].

Definition 2.3.1. The φ -Selmer group of A, Selφ (A) is the kernel of the map

H1(GK,A[φ ])→ ∏
places v

H1(GKv ,A)[φ ].

Theorem 2.3.2. There is an exact sequence

0→ A′(K)/φ(A(K))→ Selφ (A)→X(A/K)[φ ]→ 0.

If we apply this to the isogeny [n] for some integer n, the left hand term becomes

A(K)/nA(K). Computing this allows us to find the rank of A(K), as long as we

can find its n-torsion. So computing the Selmer group is of interest. Fortunately,

it is finite ([68] Proof of Lemma 2), and effectively computable. It is often also

computable in practice, at least in the case of elliptic curves and isogenies of low

degree. The difficulty in finding the rank, therefore, is in understanding which

subgroup tells us about the points of A, and which quotient is the Tate–Shafarevich

group. Without this, what we get is instead an upper bound on the rank of A(K).

It is also useful to consider a family of Selmer groups at once. If X(A/K)[p∞]

is finite, then if we consider Selpn(A/K) as n increases, the exact sequence shows

that once n is sufficiently large, it will always increase in size by a factor of prk(A)

when n increases by 1. In general, it will grow by a factor of prk(A/K)+δp , which will

motivate our definition of the p∞-Selmer rank rkp(A/K).

We can consider this family of Selmer groups by taking direct limits in the exact

sequence of Theorem 2.3.2. This gives

0→ A(K)⊗Z (Qp/Zp)→ lim−→
n

Selpn(A)→X(A/K)[p∞]→ 0.

We can then give a definition of rkp(A/K).
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Definition 2.3.3 (p∞-Selmer rank). Let A be an abelian variety over a number field

K, and let p be a prime. Then

rkp(A/K) := dimQp(HomZp(lim−→
n

Selpn(A),Qp/Zp)⊗Zp Qp).

This construction (a form of Pontryagin duality) is used to give a vector space

whose dimension is unaffected by the torsion points or the non-divisible part of X.

We will show in Section 2.7.2 that this is equal to rk(A/K)+δp, which we can treat

as an alternative definition. Throughout we will use the notation

Xp(A/K) := HomZp(lim−→
n

Selpn(A),Qp/Zp),

and Xp(A/K) := Xp(A/K)⊗Zp Qp. We will also use an equivalent for Xd, and

define

Yp(A/K) := HomZp(Xd(A/K)[p∞],Qp/Zp)

andYp(A/K) :=Yp(A/K)⊗Zp Qp. We will show in Section 2.7.2 that, as a Qp-vector

space, this has dimension δp.

2.4 The Birch–Swinnerton-Dyer Conjecture
Attached to an abelian variety, there is an analytic object called the L-function. This

can be defined as a product of local factors at the primes of K, and converges on a

right half-plane. It is believed to encode a number of properties of the abelian variety,

as conjectured by Birch and Swinnerton-Dyer.

Recall the following definition.

Definition 2.4.1. Given a prime p, the Tate module of an abelian variety A/K is

the module T`A := lim←−n
A[`n]. It is a Z`[GK]-module. We will also define the vector

space V`A := T`A⊗Z`
Q`.

The local L-factor is defined in terms of the characteristic polynomial of a

Frobenius element on the dual of V`A. Its definition is not required for the work

presented in this thesis, but is given below for completeness.
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Definition 2.4.2. Let A/K be an abelian variety and v a non-archimedean place of K.

Then the local L-factor of A at v is Lv(A,s) := χv(q−s
v )−1, where

χv(X) := det(1−σvX |((V`A)∗)Iv).

Here Iv is the inertia group at v, qv is the size of the residue field of Kv, ` is a rational

prime not dividing qv or the Tamagawa number 1 of A at v and (V`A)∗ denotes the

dual vector space to V`A. The element σv ∈ GKv is any choice of Frobenius element.

Definition 2.4.3. The L-function of an abelian variety A/K is

L(A,s) := ∏
v

Lv(A,s).

We now state Conjecture 1.1.1 more precisely:

Conjecture 2.4.4 (Birch–Swinnerton-Dyer [10], Tate [94]). For any abelian variety

A over a number field K,

(i) L(A,s) has meromorphic continuation to C, and has a zero of order rk(A/K)

at s = 1.

(ii) X(A/K) is finite.

(iii) lims→1
L(A,s)

(s−1)rk(A/K) =
Reg(A/K)|X(A/K)|Ω(A/K)

|A(K)tors||Â(K)tors|
=: BSD(A/K).

Here the regulator is defined in terms of the canonical height pairing 〈_,_〉 :

A(K)× Â(K)→ R. This is a height function on A, analogous to the canonical height

on an elliptic curve, which depends on an element of Â and is bilinear. The regulator

is the determinant of the matrix (〈ai,b j〉)i, j, where {ai} is a set of generators for

A(K)/A(K)tors, and {b j} is a set of generators for Â(K)/Â(K)tors. Ω(A/K) is a

volume term, and incorporates data about the abelian variety over local fields. For

example, when A is an elliptic curve over Q, it is the product of the Tamagawa

numbers at all primes, as well as the real period. In general, it is a product including

1The Tamagawa number of A at v is |A(Kv)/A0(Kv)|, where A0(Kv) is the set of points mapped to
the identity component of the special fibre of the Neron model of A.
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Tamagawa numbers, a period term at the infinite places, the discriminant of K/Q

and an adjustment for the fact that we do not have a global minimal differential. For

full definitions of both of these terms, see [72] Section I.7; in the notation of that

chapter the volume term is ∏ν∈S µν (A,ω)
|µ|d .

As evidence for this conjecture, Cassels showed that if elliptic curves A and B

are isogenous over K, then BSD(A/K) = BSD(B/K) ([20] Theorem 1.3). This is

consistent with the fact that L(A,s) = L(B,s), and shows that if the conjecture holds

for A then it also holds for B. Tate generalised this result to abelian varieties ([94]

Theorem 2.1). It is not true that the individual terms in the definition of BSD(A/K)

are invariant under isogeny, but their ratios are linked by the kernels and cokernels of

the isogeny and its dual on K, on the completions of K and on X. More precisely,

Proposition 2.4.5. Let f : A→ B be an isogeny of abelian varieties over K, and

assume X(A/K) is finite. Then the following hold:

(i) Reg(A/K)

|A(K)tors||Â(K)tors|
· |B(K)tors||B̂(K)tors|

Reg(B/K) =
|ker( f̂B̂(K))|
|coker( f̂B̂(K))|

· |coker( fA(K))|
|ker( fA(K))|

.

(ii) X(B/K) is also finite, and |X(A/K)|
|X(B/K)| =

|ker( fX)|
|ker( f̂X)| .

(iii) Ω(A/K)
Ω(B/K) = ∏v

|ker( fA(Kv))|
|coker( fA(Kv))|

, where the product is taken over all places v of K

(note that all but finitely many of the terms are 1).

Theorem 2.4.6. Let f : A→ B be an isogeny of abelian varieties over K. Then,

independent of finiteness of X,

|ker( f̂B̂(K))|
|coker( f̂B̂(K))|

·
|coker( fA(K))|
|ker( fA(K))|

· |ker( fX)|
|ker( f̂X)|

·∏
v

|ker( fA(Kv))|
|coker( fA(Kv))|

= 1.

Therefore if X(A/K) is finite, BSD(A/K) = BSD(B/K).

This form of the result is due to Tate, though not stated explicitly ([94] Theorem

2.1 and discussion). For a more explicit statement see Milne ([72] Proof of Theorem

I.7.3).
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2.5 Weil Restrictions and Twists of Abelian Varieties
Given an abelian variety A over a number field L, with a subfield K, we can define the

Weil Restriction ResL/K(A). This is an abelian variety defined over K, which satisfies

the property that ResL/K(A)(S) = A(S⊗K L) for any K-algebra S; in particular,

ResL/K(A)(K) = A(L). This property uniquely determines ResL/K(A). It is an

abelian variety of dimension [L : K]dim(A).

Example 2.5.1. It is perhaps easier to understand this concept by way of an example.

Suppose E is the elliptic curve over Q(i) given by y2 = x3− x, and we want to find

its Weil restriction to Q. We can do this by writing x = a+ bi, y = c+ di, where

a,b,c,d ∈ Q. Then the solutions to E over Q(i) are the solutions to the equation

(c+di)2 = (a+bi)3− (a+bi) for rational a,b,c and d. By expanding, we see that

the solutions to this are precisely the solutions to

c2−d2 = a3−3ab2−a

2cd = 3a2b−3b3−b

over the rationals. As we have two equations in four variables, we can see that this is

a surface over Q, and we can define the group law by substituting into the equations

for the group law on E.

In this example E has coefficients in Q, which is the field we are restricting to.

This is the context in which we will use Weil restriction, though the same method

works in general.

Remark 2.5.2. For our purposes the construction and uniqueness of the Weil restric-

tion will not be very important. We can think of it as an abelian variety over K of

dimension [L : K]dim(A), which satisfies Theorem 2.5.3 and ResL/K(A)(K)∼= A(L).

Theorem 2.5.3 ([69] Section 1). Fix a finite extension of number fields L/K, and

let A/L be an abelian variety. Let B = ResL/K(A). Then we have equalities

Ω(A/L) = Ω(B/K), Reg(A/L) = Reg(B/K), X(A/L) ∼=X(B/K), and similarly

for the torsion subgroups. It follows that the Birch–Swinnerton-Dyer conjecture

holds for A/L if and only if it holds for B/K.
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In the cases we will need, we can also construct these Weil restrictions more

explicitly, as a special case of a construction of Milne ([69] Section 2).

Definition 2.5.4. A K̄/K form of an abelian variety A defined over a number field K

is an abelian variety A′/K, together with an isomorphism ψ : AK̄ → A′K̄ , where AK̄ is

the base change of A to K̄.

These forms are in bijection with the group H1(GK,AutK̄(A)), where GK acts

on AutK̄(A) by φ 7→ σφσ−1. In the case where all the automorphisms of A are

defined over K, this becomes the trivial action. The map from forms to cohomology

is as follows: given ψ as above and σ ∈ GK , we set s(σ) = ψ−1σψσ−1. The map

s : GK → AutK̄(A) is a cocycle.

Suppose we have a Z[GK]-module M with GK acting through a finite quotient,

with an isomorphism of groups ψM : Zn→M. Now define sM : GK → GLn(Z) by

sM(σ) = ψ
−1
M ψσ

M. Here ψσ
M is the map given by applying σ to the image of ψM; if

we view Zn as a trivial Galois module this is analogous to the construction of s(σ)

above. In general, GLn(Z) is naturally viewed as a subgroup of AutK̄(A
n) for an

abelian variety A/K, but note that they are isomorphic when EndK̄(A)∼= Z, as in the

case of an elliptic curve without complex multiplication over any number field. Thus

sM can be viewed as a cocycle in H1(GK,AutK̄(A
n)), and so (M,ψM) determines a

form of An, which we will denote (M⊗A,ψM⊗A).

The map (M,ψM) 7→ (M⊗A,ψM⊗A) extends to a functor. That is, if N is also

an n-dimensional Z[GK]-module with GK acting through a finite quotient, then a

GK-module homomorphism φ : M→N induces a morphism φA from M⊗A to N⊗A,

which is defined over K. The map is such that ψ
−1
N φψM ∈ EndZ(Zn) corresponds to

ψ
−1
N⊗AφAψM⊗A ∈ EndK̄(A

n). Where φ has finite cokernel, φA is an isogeny.

Lemma 2.5.5 (= [69] Prop. 6(a)). Suppose M and N are Z[GK]-modules, isomorphic

as groups to Zn, and on which GK acts via a finite quotient. Suppose φ : M→ N is a

homomorphism of Z[GK]-modules with finite cokernel. Then φA : M⊗A→ N⊗A is

an isogeny defined over K, and its degree is |coker(φ)|2dim(A).

Remark 2.5.6. The Weil restriction is a special case of this construction. If A is

defined over K, and L/K is Galois with Galois group G, then GK can act via its
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quotient GK/GL ∼= G, so any Z[G]-module is also a Z[GK]-module. Viewing Z[G]

in this way, ResL/K(A) = Z[G]⊗A ([69] Section 2). For a subfield of L given by LH ,

where H is a subgroup of G, ResLH/K(A) = Z[G/H]⊗A.

Proposition 2.5.7. Let L/K be a quadratic extension, with L = K(
√

d). Let E/K

be an elliptic curve and Ed its quadratic twist by d (i.e. if E : y2 = f (x), then

Ed : dy2 = f (x)). Then E×Ed is isogenous to ResL/K(E) by an isogeny of degree 4.

Proof. We will construct two Z[GK]-modules which are related by a map with

cokernel size 2, and then use Lemma 2.5.5. Throughout, GK will act via its quotient

G = Gal(L/K); call the non-trivial element of this group σ .

As above, ResL/K(E) = Z[G]⊗E. The module Z[G] is a rank two Z-module,

with σ acting as M1 =
(

0 1
1 0

)
(in the basis 〈1,σ〉). As in the example in [69] Section

2, we can show that Ed = Zd⊗E, where Zd is the set Z viewed as a Z[G]-module

with σ acting as multiplication by −1. To do this, use the map ψ : E→ Ed defined

over K̄ by (x,y) 7→ (x,
√

dy). Then the cocycle s (in the notation above) maps σ to

the automorphism [−1] on E. Similarly using the natural map ψM : Z→ Zd , we get

the cocycle sM mapping σ to the multiplication by −1 map on Z. So these maps

correspond under the inclusion of Aut(Z) in AutK̄(E), and Ed = Zd⊗E.

Therefore E×Ed = (Z⊕Zd)⊗E. The module Z⊕Zd is a rank two Z-module

with σ acting as M2 =
(

1 0
0 −1

)
. Take the map from Z[G] to this module given by the

matrix P =
(

1 1
1 −1

)
. This satisfies PM1 = M2P so it is a homomorphism of Z[GK]-

modules with cokernel of size |det(P)|= 2. Therefore, by Lemma 2.5.5, we have

the required isogeny.

2.6 Brauer Relations
One key example of the twisting construction in Section 2.5 is the case of Brauer

relations. These will allow us to construct isogenies which give us information about

Selmer groups and other properties of abelian varieties.

Definition 2.6.1. Given a group G, let S denote the set of formal sums of sub-

groups of G up to conjugacy. An element ∑i Hi−∑ j H ′j ∈ S is a Brauer relation if⊕
iQ[G/Hi]∼=

⊕
jQ[G/H ′j] as Q[G]-modules.
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This is equivalent to the condition that
⊕

i IndG
Hi

1 ∼=
⊕

j IndG
H ′j

1. If we can

replace Q by Z(`) in this definition, call it a Z(`)-relation.

Example 2.6.2. Let G∼= D6. This has a subroup C3 of order 3, and three conjugate

subgroups of order two; denote any one of them by C2. Then G has three irreducible

rational representations, the trivial representation 1, the sign representation ε , and a

two-dimensional representation ρ . We find the decompositions

H Q[G/H]

1 1⊕ ε⊕ρ⊕2

C2 1⊕ρ

C3 1⊕ ε

G 1

and deduce that Q[G/1]⊕Q[G/G]⊕2 and Q[G/C2]
⊕2⊕Q[G/C3] are isomorphic

representations. We can see that

1+2G−2C2−C3,

and its integer multiples, are the only Brauer relations in G. We will see that this is

also a Z(`)-relation for any ` 6= 3.

Lemma 2.6.3 ([3] Section 2.1). Brauer relations occur in all non-cyclic groups.

Specifically, they form a lattice with rank equal to the number of conjugacy classes

of non-cyclic subgroups.

This matches what we have observed for D6, as D6 has no non-cyclic subgroups

other than itself.

We will also want some results on Z(`)-relations. These will help us control the

degree of isogenies constructed.

Lemma 2.6.4 ([3] Proof of Proposition 3.9). The lattice of Z(`)-relations is saturated

in the lattice of Brauer relations. That is, if Θ is a Brauer relation and nΘ is a

Z(`)-relation for some non-zero integer n, then Θ is a Brauer relation.
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Definition 2.6.5. Given a prime `, a finite group is `-hypo-elementary if it has a

normal Sylow `-subgroup with a cyclic quotient.

Theorem 2.6.6 (Conlon’s Induction Theorem ([3] Theorem 3.8)). If H is a non-

`-hypo-elementary group, then there is a Z(`)-relation in H given by nH−∑niHi,

where the Hi are proper subgroups of H and n 6= 0.

Lemma 2.6.7. Suppose Θ is a Brauer relation in the group D2n, and ` a prime which

does not divide n. Then Θ is a Z(`)-relation.

Proof. This is shown in the proof of ([3] Proposition 3.9). We reproduce this proof,

specialised for the case of D2n, here.

By Lemma 2.6.4, it suffices to show that the rank of the lattice of Z(`)-relations

is equal to the rank of the lattice of Brauer relations. Each conjugacy class of non-

`-hypo-elementary subgroup contains a Brauer relation by Theorem 2.6.6. These

are also Brauer relations for D2n by transitivity of induction, and they are linearly

independent as each has a unique maximal subgroup which contains all the others.

Therefore by Lemma 2.6.3 it suffices to show that the number of conjugacy classes

of non-`-hypo-elementary subgroups is equal to the number of conjugacy classes of

non-cyclic subgroups of D2n, or that every `-hypo-elementary subgroup is cyclic.

Suppose H is an `-hypo-elementary subgroup of D2n with ` - n. If ` 6= 2, then

` - n implies that ` - |H|, so the `-Sylow subgroup of H must be trivial and H is

cyclic. If ` = 2, then n is odd. Therefore 4 - |H| and so H must have a normal

subgroup of order 1 or 2. If it is trivial we are done, so assume it has order 2. Let the

non-trivial element of this be s, and let r be an element of D2n of order n. If rk ∈ H,

then normality implies rksr−k = s, but this implies r2k = 1, so as n is odd rk = 1.

Similarly no element of the form rks can be in H except s itself, so H ∼=C2.

Suppose L/K is a Galois extension of fields with Galois group G. Given a

Brauer relation in G,
⊕

iZ[G/Hi] is a Z[G]-module, and there is a map of Z[G]-

modules to
⊕

jZ[G/H ′j] which is injective so has finite cokernel. Therefore applying

Lemma 2.5.5 proves the following:



2.6. Brauer Relations 43

Lemma 2.6.8. Suppose L/K is a Galois extension with Galois group G. Consider a

Brauer relation ∑i Hi−∑ j H ′j in G. Then, given an abelian variety A/K, there exists

an isogeny

∏
i

ResLHi/K(A)→∏
j

Res
L

H′j/K
(A)

defined over K.

If the relation in Lemma 2.6.8 is a Z(`)-relation, we have a map of Z[G]-modules

with cokernel of order coprime to `. In this case Lemma 2.5.5 tells us that the isogeny

produced is of degree coprime to ` ([2] Section 4).

2.6.1 Regulator Constants

Given a Brauer relation Θ in a group G, and a self-dual rational representation ρ

of G, there is an invariant CΘ(ρ) called the regulator constant. This takes values in

Q∗/Q∗2.

Definition 2.6.9. Let ρ be a self-dual rational representation of a finite group G and

Θ = ∑i Hi−∑ j H ′j a Brauer relation in G. Pick a non-degenerate G-invariant bilinear

pairing 〈_,_〉 on ρ taking values in Q. We then define

CΘ(ρ) =
∏i det( 1

|Hi|〈_,_〉|ρ
Hi)

∏ j det( 1
|H ′j|
〈_,_〉|ρH ′j)

∈Q∗/Q∗2.

Here the determinants are taken on some rational basis of the submodule ρHi .

If we do the same thing for a Z(`)-representation ρ of G such that ρ⊗Z`
Q is

self-dual, and Θ a Z(`)-relation in G, we get a constant defined in Q∗/Z∗2(`), i.e. its

`-adic valuation is well-defined. We will also refer to this as a regulator constant.

Lemma 2.6.10 ([39] Corollary 2.18). Regulator constants are multiplicative in Θ

and ρ , i.e. CΘ1+Θ2(ρ) = CΘ1(ρ)CΘ2(ρ) and CΘ(ρ1⊕ρ2) = CΘ(ρ1)CΘ(ρ2).

Example 2.6.11. Take the Brauer relation 1+2G−2C2−C3 in G=D6, as discussed

in Example 2.6.2, and the sign representation (i.e. Q, with elements of order 2 acting

as multiplication by −1 and the others acting trivially). Use the pairing 〈x,y〉= xy.
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The fixed part under the action of G or C2 is trivial, so these give determinant

1. For the trivial subgroup, we need the determinant of the pairing on a basis of Q,

for example {1}. This is clearly 1. For the group C3, we take the determinant of the

same basis but the values of the pairing are divided by 3 so we get 1/3. Therefore

the regulator constant is 3 (mod Q∗2).

Lemma 2.6.12 ([3] Lemma 3.6). Let G be a finite group, Θ a Z(`)-relation in G and

ρ a representation of G. Then ord`(CΘ(ρ)) = 0.

This will be useful when showing that a Brauer relation is not a Z(`)-relation.

2.7 Algebra
This section introduces some miscellaneous algebraic results which will be used.

2.7.1 Products of rings

Lemma 2.7.1 ([87], Chapter II, Section 3, Theorem 1(iii)). Suppose p is a prime,

and M a number field. Then we have an isomorphism of rings M⊗QQp ∼= ∏i Mpi ,

where the pi are the primes lying above p in M.

We will use this decomposition to study modules over M⊗Qp. To do this, we

will also need the following results, which we will state in terms of more general

rings. All rings are assumed to be commutative rings with unity.

Lemma 2.7.2. Suppose R and S are rings, and A is a module over R× S. Then

A∼= A1×A2 as R×S modules, where A1 can be viewed as an R-module and A2 as

an S-module.

It is simple to check that A1 = (1,0)A and A2 = (0,1)A allows us to express A

in this way. We view A1 as an R-module by ra = (r,0)a for all a ∈ A1 ⊂ A and r ∈ R,

and similarly for A2.

Applying this to the case where A is an ideal in R×S gives another useful result.

Lemma 2.7.3. Suppose R and S are rings, and I is an ideal in R×S. Then I = I1× I2,

where I1 is an ideal in R and I2 an ideal in S.
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2.7.2 Pontryagin duality

Pontryagin duality is a type of duality defined on locally compact abelian groups, i.e.

abelian topological groups where the topology is Hausdorff and every element has a

compact neighbourhood. This includes finite groups (with the discrete topology), as

well as Qp and Qp/Zp.

Definition 2.7.4. The Pontryagin dual of a group G is the group Homcts(G,R/Z).

We will only use this in the case of p-groups, so we can replace R/Z by Qp/Zp.

Proposition 2.7.5 ([1] Introduction). The Pontryagin dual of Qp/Zp is Zp.

This duality is an exact contravariant functor. Denote the dual of a group A

by A∗, and the dual of a continuous homomorphism f by f ∗. Given a continuous

homomorphism f : A→ B, we can apply exactness to the tautological exact sequence

0→ ker( f )→ A→ B→ coker( f )→ 0

to show the following:

Lemma 2.7.6. Suppose f : A→B is a continuous homomorphism. Then coker( f ∗)∼=

(ker( f ))∗.

Proposition 2.7.7. Given an abelian variety A/K and a prime p, we have

rkp(A/K) = rk(A/K)+δp.

Proof. We begin with the exact sequence

0→ A(K)⊗Z (Qp/Zp)→ lim−→
n

Selpn(A)→X(A/K)[p∞]→ 0

from Section 2.3, and take Pontryagin duals. This gives an exact sequence

0→ (X(A/K)[p∞])∗→ Xp(A/K)→ (A(K)⊗Z (Qp/Zp))
∗→ 0,

as in this case the continuous homomorphisms are the Zp-linear ones.
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The group A(K)⊗Z (Qp/Zp) is a product of a finite group and (Qp/Zp)
rk(A/K).

Its Pontryagin dual is therefore a product of a finite group and Zrk(A/K)
p by Proposition

2.7.5. Similarly X(A/K)[p∞] is a product of a finite group and (Qp/Zp)
δp , so its

dual is a product of a finite group and Zδp
p . Continuity of the maps implies that this

is an exact sequence of Zp-modules. We now take a tensor product with Qp, which

preserves exactness. This gives

0→Qδp
p →Xp(A/K)→Qrk(A/K)

p → 0

and the result follows.

Note also that this argument shows that dimQp(Yp(A/K)) = δp, as the result

depends only on the divisible part of X.



Chapter 3

Abelian Varieties with Complex

Multiplication

In this chapter, we prove that the p-parity conjecture holds for abelian varieties with

complex multiplication. The content of this chapter is based on my paper p∞-Selmer

ranks of CM Abelian Varieties, published at [4].

Introduction
The endomorphism ring of an elliptic curve E always contains a copy of Z, as

multiplication by a non-zero integer n is always an isogeny. If there are more

endomorphisms, we say E has complex multiplication. In some ways these curves

are easier to work with. Results such as modularity have been proven much sooner

for these curves. They also have applications, for example in constructing ray class

fields of imaginary quadratic fields.

Throughout this chapter we use ‘complex multiplication’ or ‘CM’ to mean

complex multiplication defined over K, rather than over K̄.

Example 3.0.1. Let K =Q(i) and E/K be given by y2 = x3− x. Then there is an

endomorphism [i] : (x,y) 7→ (−x, iy). We call this map [i] because [i]2 = [−1]. In

fact, EndK(E)∼= Z[i].

For an elliptic curve with complex multiplication, the endomorphism algebra

will always be isomorphic to an order in the ring of integers of an imaginary quadratic
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field L, that is, a subring O which is a lattice and spans L over Q. We say the elliptic

curve has complex multiplication by L or, more specifically, by O.

A useful example of elliptic curves with complex multiplication being easier to

control is the following well-known result.

Proposition 3.0.2. Elliptic curves with complex multiplication always have even

rank.

Proof. Suppose E/K has complex multiplication by an order O in an imaginary

quadratic field L. Consider the Q-vector space E(K)⊗ZQ. Its dimension is rk(E/K).

Now E(K)⊗ZQ is also a vector space over O⊗ZQ = L, and as [L : Q] = 2, its

dimension over Q will be twice its dimension over L. Hence rk(E/K) is even.

We can check on LMFDB [63] that the curve in Example 3.0.1 has rank 0.

It is not hard to prove that these curves also have root number 1 ([22], Prop.

6.3), so they satisfy the parity conjecture. We might hope that there is an analogous

result for Selmer groups, i.e. that the p∞-Selmer ranks are even, and hence the curves

satisfy the p-parity conjecture. This is in fact true ([22] Theorem 1.6), however it

is not so easy to prove. In this paper we will present a new proof of this result, and

generalise it to abelian varieties (Theorem 3.0.5).

Remark 3.0.3. One might hope to find a simple proof of this, similar to the proof

that their ranks are even. After all, we again need to find the rank of a vector space

on which EndK(E) acts. However this does not work. To see why, note that the

p∞-Selmer rank can be defined as the rank of a Qp-vector space X . Suppose as

before that EndK(E) = O, an order in an imaginary quadratic field L. Previously,

we used the fact that a Q-vector space on which O acts must have even dimension,

but this fails when we replace Q by Qp. For example, suppose p = 5 and L =Q(i).

Then L can act on a 1-dimensional Qp-vector space, as i can act as a square root of

−1 in Q5. This proof does work when p is inert or ramified in L, as we do then find

that O⊗ZQp is a quadratic extension of Qp, but for the case when p splits in L, we

will need another proof.
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Recall the following alternative definition from Section 2.3. This is the definition

we will work with in this chapter.

Definition 3.0.4 (p∞-Selmer rank). Suppose we have an abelian variety A over a

number field K. Looking at its Tate–Shafarevich group X(A/K), we find its p-

primary part is isomorphic to (finite group)× (Qp/Zp)
δp for some integer δp. We

will define the p∞-Selmer rank to be rkp(A/K) = rk(A/K)+δp.

The aim of this chapter is to prove the following:

Theorem 3.0.5. Suppose A/K is an abelian variety with complex multiplication (see

Definition 3.0.9), and p a prime. Then rkp(A/K) is even.

The proof of Proposition 3.0.2 generalises to abelian varieties, so rk(A/K) is

even. Therefore Theorem 3.0.5 is equivalent to the statement that the divisible part

of X(A/K) has even Zp-corank, i.e. δp is even. This is in fact expected to be 0, as

X(A/K) is conjectured to be finite.

Another reason to expect Theorem 3.0.5 to hold is the p-parity conjecture,

which states that for an abelian variety A over a number field K, with root number

w(A/K),

(−1)rkp(A/K) = w(A/K).

In the complex multiplication case, the root number is 1 ([69], Remark 2

after Theorem 4), so Theorem 3.0.5 is equivalent to the p-parity conjecture for

abelian varieties with complex multiplication. The conjecture is known in the case

where A is an elliptic curve over a number field admitting a p-isogeny thanks to

T. and V. Dokchitser ([42] Corollary 5.8) and Česnavičius ([22] Theorem 1.4).

Česnavičius then observed that, if A has complex multiplication, we can assume

A has complex multiplication by a ring of integers OL, as any elliptic curve with

complex multiplication by L is isogenous to one with complex multiplication by OL,

and this preserves root numbers and rkp. He showed that in the case where p splits,

this curve admits a p-isogeny, and so it follows that for elliptic curves with complex

multiplication, rkp(A/K) is even. However there is no equivalent p-parity result to

use for abelian varieties, so we must use a different method.
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While we consider CM defined over K, one can also consider abelian varieties

with CM defined over Q̄. In this setting, the p-parity conjecture has been proven

for elliptic curves over totally real K, but is open in general. For p 6= 2 this is due

to Nekovář ([74], Theorem 5.10) and for p = 2 Green and Maistret ([50], Theorem

6.5).

From Theorem 3.0.5 we can deduce the following:

Corollary 3.0.6. Suppose A and p are as in Theorem 3.0.5. If X(A/K)[p∞] is

infinite, then it contains (Qp/Zp)
2.

Corollary 3.0.7. Suppose A/K is a principally polarised abelian variety and p 6= 2

is a prime. Then dimFpX(A/K)[p] is even.

This follows from the fact that the Cassels–Tate pairing on Xnd(A/K)[p∞] is

alternating, so Xnd(A/K)[p] has even dimension. Xd(A/K)[p] has dimension δp

which is even by Theorem 3.0.5.

Notation

Throughout this chapter, let A and B be abelian varieties over a number field K and

let λ : A→ Â be some polarisation of A defined over K.

Recall from Section 2.3 the notation Yp(A/K) for Hom(Xd[p∞],Qp/Zp), the

Pontryagin dual of Xd[p∞]. Let Yp(A/K) = Yp(A/K)⊗Zp Qp. Note that this is a

Qp-vector space of dimension δp, and an EndK(A)⊗ZQp-module.

Definition 3.0.8 (CM field). A CM field is a totally complex field with an index two

totally real subfield.

Definition 3.0.9 (CM abelian variety ([23] Definition 1.3.8.1)). A CM abelian

variety over a number field K is an abelian variety A/K where EndK(A)⊗ZQ has

a subalgebra P which is a product of CM fields and satisfies [P : Q] = 2dim(A),

together with a fixed embedding P ↪−→ EndK(A)⊗ZQ.

For an element α of a CM field M, denote its complex conjugate by ᾱ . This is

well-defined by the properties of M.

Note that we only consider complex multiplication defined over K, not over K̄

(which is sometimes called potential complex multiplication).
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3.1 Self-isogenies
Suppose A and B are abelian varieties over a number field K, and f : A→ B an

isogeny between them which is defined over K.

Recall the following theorem discussed in Section 2.4, which implies Cassels’

Theorem.

Theorem 3.1.1 ([72], Proof of I.7.3, I.7.3.1). There is some finite set S of places of

K such that

∏
v∈S

|ker( fA(Kv))|
|coker( fA(Kv))|

=
|ker( fA(K))|
|coker( fA(K))|

·
|coker( f̂B̂(K))|
|ker( f̂B̂(K))|

· |ker( f̂X)|
|ker( fX)|

.

Corollary 3.1.2. Suppose that A = B, i.e. f is a self-isogeny. Then

|ker( f̂X)|= |ker( fX)|.

Proof. In the formula in theorem 3.1.1, the left hand side is equal to the ratio of

the volume terms Ω(A/K) and Ω(B/K) which appear in the formula for L(r)(A,1)
r!

predicted by the Birch–Swinnerton-Dyer conjecture (see [72] Section I.7 for a full

definition; in the notation of that chapter the volume term is ∏ν∈S µν (A,ω)
|µ|d ). These

depend only on A and not f so when A = B, this is 1.

Similarly, the next two terms equal the ratio of the regulators of A and B and

the orders of their torsion subgroups. Specifically,

|ker( fA(K))|
|coker( fA(K))|

·
|coker( f̂B̂(K))|
|ker( f̂B̂(K))|

=
Reg(B/K)|A(K)tors||Â(K)tors|
Reg(A/K)|B(K)tors||B̂(K)tors|

,

therefore when A = B this is also 1.

The following variant of this result will be useful.

Lemma 3.1.3. Suppose f is a self-isogeny, and p any prime. Then

|ker( f̂X[p∞])|= |ker( fX[p∞])|.
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Proof. For any prime p, the p-adic valuations of the kernels in Corollary 3.1.2 must

be equal. As both kernels decompose as a product over primes l of their l-primary

subgroups, the p-part of each side comes from X[p∞], so we can replace X by

X[p∞] and still have equality.

Lemma 3.1.4. Suppose f is a self-isogeny. Then we can split the kernels into

divisible and non-divisible parts. Specifically,

|ker( f̂Xd[p∞])||ker( f̂Xnd[p∞])|= |ker( fXd[p∞])||ker( fXnd[p∞])|.

Proof. We will show |ker( fX[p∞])|= |ker( fXd[p∞])||ker( fXnd[p∞])| and similarly for

f̂ . This holds by an application of the snake lemma to the exact sequence

0→Xd[p∞]→X[p∞]→Xnd[p∞]→ 0

with the isogeny f , which is valid because f maps Xd[p∞] to Xd[p∞]. We can also

see that |coker( fXd[p∞])| = 1, because f has a conjugate isogeny f̃ : A→ A. This

has the property that f ◦ f̃ = [deg( f )], and multiplication by an integer is surjective

on Xd[p∞]. Therefore f is surjective on Xd[p∞], and the same is true for f̂ , so the

result follows.

Lemma 3.1.5. Let A/K be an abelian variety, p a prime, and f : A→ A an isogeny

defined over K. Then

|ker( f̂Xd[p∞])|= |ker( fXd[p∞])|.

Proof. By the functoriality and non-degeneracy of the Cassels-Tate pairing on Xnd,

|ker( f̂Xnd[p∞])|= |coker( fXnd[p∞])|

([72], proof of I.7.3). Now |coker( fXnd[p∞])| and |ker( fXnd[p∞])| are equal, because

Xnd[p∞] is a finite group. So the non-divisible parts of the equation in Lemma 3.1.4

cancel out, and we have equality of the divisible parts.
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3.2 Complex Multiplication
Recall Yp(A/K) := Hom(Xd[p∞],Qp/Zp) and Yp(A/K) :=Yp(A/K)⊗Zp Qp. Note

this is an EndK(A)⊗ZQp-module. For φ a self-isogeny of A, denote the map induced

on Yp(A/K) by φYp , and similarly if φ ∈ EndK(A)⊗ZQp, denote the map induced

on Yp(A/K) by φYp .

Definition 3.2.1 (Rosati involution). For an abelian variety A with polarisation λ , the

Rosati involution is the involution on EndK(A)⊗ZQ sending f to f † := λ−1 ◦ f̂ ◦λ .

We extend this by continuity to EndK(A)⊗ZQp.

Lemma 3.2.2. Suppose A/K is a polarised abelian variety, p a prime, and φ an

invertible element of EndK(A)⊗ZQp. Then

ordpdet(φYp) = ordpdet(φ †
Yp
).

Proof. We prove this for the case where φ is an isogeny of A defined over K, as

opposed to a Qp-linear combination of these, and the full result follows by linearity.

By Lemma 2.7.6,

|ker(φXd[p∞])|= |coker(φYp)|.

Now φYp can be represented over Zp by a matrix P in Smith normal form, with all

diagonal entries non-zero. Then

ordpdet(φYp) = ordpdet(P) = ordp|coker(φYp)|.

It therefore follows from Lemma 3.1.5 that

ordpdet(φYp) = ordpdet(φ̂Yp).

Now as φ̂ = λ ◦φ † ◦λ−1, φ
†
Yp

will have the same determinant, and the result follows.

Lemma 3.2.3. It suffices to prove Theorem 3.0.5 in the case where

• EndK(A)⊗ZQ⊃M, where M is a CM field and [M : Q] = 2dim(A)
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• The Rosati involution corresponds to complex conjugation on M.

Proof. By [23] Propositions 1.3.2.1 and 1.3.6.4, if A is a CM abelian variety then, for

each simple component Ai of A, EndK(Ai)⊗ZQ is a CM field. Then by [23] Lemma

1.3.5.4, the Rosati involution corresponds to complex conjugation on this field, so Ai

satisfies the properties given in the lemma. Now rkp(A/K) = ∑i rkp(Ai/K), so once

we have proven that the conclusion of Theorem 3.0.5 holds for each Ai, we know it

holds for A also.

Suppose from now on that A/K satisfies the two conditions in the statement of

Lemma 3.2.3, and let the fixed field of complex conjugation on M be L.

Now Yp(A/K) is an M⊗QQp-module. Recall that M⊗QQp is isomorphic

to ∏p|p Mp, where the product is over primes p of M lying above p, and Mp is

the completion of M at p. We can therefore decompose Yp(A/K) into a sum of

Qp-vector spaces

Yp(A/K) =
⊕
p|p

Vp,

where each Vp is an Mp-vector space, using Lemma 2.7.2.

Lemma 3.2.4. For each prime p|p, we have

dimQpVp = dimQpVp̄.

Proof. If p= p̄, we are done, so suppose they are not equal. Then define α to be the

element of M⊗QQp = ∏p|p Mp which corresponds to p in Mp and 1 in all the other

factors. Now we can view α as an element of EndK(A)⊗ZQp. Then

ordpdet(αYp(A/K)) = ordpdet(p|Vp) = dimQpVp.

Now by assumption, α† acts as ᾱ . It therefore acts as the identity on Vq for q 6= p̄,

and as multiplication by p on Vp̄. So by the same argument we have

ordpdet(α†
Yp(A/K)

) = dimQpVp̄,
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and by Lemma 3.2.2 the result follows.

Proof of Theorem 3.0.5. It suffices to show that dimQpYp(A/K) = ∑p|p dimQpVp is

even. Let L be the fixed field of complex conjugation on M. If p is inert or ramified

in M/L, then [Mp : Qp] is even. Therefore

dimQpVp = [Mp : Qp]dimMpVp

is also even.

For the primes p which split in M/L, we have p 6= p̄, and, by Lemma 3.2.4,

dimQpVp = dimQpVp̄.

Thus ∑p|p dimQpVp is even, and so is rkp(A/K).

Remark 3.2.5. A similar argument can also be applied directly to p∞-Selmer groups

instead of Xd. Recall the notation Xp(A/K) = Hom(Selp∞(A/K),Qp/Zp) and

Xp(A/K) = Xp(A/K)⊗Zp Qp. Note that the Qp-rank of Xp(A/K) is rkp(A/K).

Then replace Corollary 3.1.2 with Theorem 4.3 from [41]. This tells us that for any

self-isogeny φ , Q(φ) = Q(φ̂), where, for an isogeny ψ : A→ B,

Q(ψ) := |coker(ψ : A(K)/A(K)tors→ B(K)/B(K)tors)||ker(ψXd)|.

Section 2 of [40] tells us that

ordpQ(φ) = ordp|coker(φ : Xp(A/K)→ Xp(A/K))|.

By the same arguments as in the proof of Lemma 3.2.2, with Yp and Yp replaced by

Xp and Xp, we can show that for any invertible φ ∈ EndK(A)⊗ZQp,

ordpdet(φXp) = ordpdet(φ̂Xp) = ordpdet(φ †
Xp
).

Here φXp denotes the map on Xp induced by φ . Then, by an argument similar to

Lemma 3.2.4 and the proof of Theorem 3.0.5, rkp(A/K) = dimQp(Xp(A/K)) is
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even.

Remark 3.2.6. The complex multiplication assumption can be weakened. Suppose

A is an abelian variety with EndK(A)⊗ZQ⊃M, for some field M, and suppose the

Rosati involution induces a non-trivial automorphism on M. Then we can still show

that rkp(A) is even. Denote this automorphism by φ 7→ φ̄ , and its fixed field plays the

role of L. Then the proof proceeds in the same way. This includes the case of simple

abelian varieties whose endomorphism algebras (over K) are of Albert type IV (see

[38], Theorem 9.6). The conclusion of Theorem 3.0.5 also holds for products of

these.



Chapter 4

The Tate–Shafarevich Group in

Dihedral Extensions

In this chapter, we provide a formula for the size of the Tate–Shafarevich group

of an elliptic curve over a D2n-extension of its base field, modulo 4th powers and

primes dividing n. We also consider its Galois module structure, and an application

to computing the rank of the elliptic curve. The content of this chapter is based on

the paper A note on the growth of Sha in dihedral extensions, published at [5].

Introduction
Computing the Tate–Shafarevich group of an elliptic curve is a difficult problem.

It is conjectured to be finite, though this is not known for curves of analytic rank

greater than 1. The main result about its size is due to Cassels, who proved that if it

is finite, it must have square order ([18] Theorem 1.1). This has some applications,

for example to the parity conjecture, so we might hope that knowing the size of X

more precisely could allow us to say more about parity. This will be discussed in

Section 4.3. Knowing the size of X can also help extract the rank of an elliptic

curve from a Selmer group. Example 4.1.6 will show how this can help compute a

rank quickly, conditional on finiteness of X.

Elliptic curves over dihedral extensions of the base field have been of interest

for a number of reasons. Dihedral extensions can be used to prove that finiteness

of X implies the parity conjecture for elliptic curves, with the order of X being
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a key ingredient in this proof. In the D2pn case, Mazur and Rubin were able to

give an expression for the rank of the ρ part of the p∞-Selmer group of E, where

ρ is a representation of D2pn , in terms of local data ([65] Theorem A). In a field

extension, the Galois module structure of X and the Cassels–Tate pairing on it

can place constraints on the size of X. In this chapter, we show that under some

circumstances we can determine the order of X modulo 4th powers, in terms of the

order of X over smaller number fields. More precisely, we prove the following:

Theorem 4.0.1. Let E be an elliptic curve over a number field k and F/k a dihedral

extension of degree 2n. Let p be a prime not dividing n and assume X(E/F)[p∞] is

finite 1. Then

• if n is odd, and K is the quadratic extension of k contained in F, then there is

an integer t such that
|X(E/F)[p∞]|
|X(E/K)[p∞]|

= p4t .

• if n is even, and K1, K2 and K3 are the three quadratic extensions of k contained

in F, then there is an integer t such that

|X(E/F)[p∞]|
|X(E/K1)[p∞]||X(E/K2)[p∞]||X(E/K3)[p∞]|

= p4t .

In some cases, this can be done purely from the Galois module structure, by

an argument combining the Cassels–Tate pairing with the action of the Galois

group. However, to prove this in all cases we need another method, and constructing

isogenies will give that method.

The following remarks show why these conditions are required. As computing

the exact order of X is difficult, for the sake of examples we use the analytic order

of X, which is the order predicted by the Birch–Swinnerton-Dyer conjecture. The

data for the number fields and curves over Q comes from LMFDB [63].

Remark 4.0.2. Although the conclusion for odd n compares two Tate–Shafarevich

groups in a cyclic extension F/K, we do need this to be contained in a dihedral

1Note that X[p∞] is finite over subfields of F by [41] Remark 2.10.
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extension to get the result – it is not true for all cyclic extensions. For example, over

the extension of Q given by adjoining a root of x3− x2− 2x+ 1, which is cyclic

of degree 3, consider the curve y2 + y = x3− x2−10x−20 (LMFDB label 11.a2).

Using Magma [15], we can calculate the analytic order of X over this extension.

We find it is equal to 25, whereas X(E/Q) is trivial. Therefore the 5∞-part of X

changes by a non-fourth-power.

Remark 4.0.3. The conclusion also does not hold if p|n. For example, take the curve

y2 + xy+ y = x3− 351233x− 80149132 (LMFDB label 210.b1) over the number

field given by adjoining a root of x6−30x4 +225x2−200, which is a D6-extension

of Q. The analytic order of X is 4 over the quadratic extension and 21036 over the

D6-extension [15]. This is equal to 2836 times the order of X over the quadratic

extension, so the 3∞-part changes by a non-fourth-power.

We can also say something about the Galois module structure of X. This is

based on a lemma of Chetty, which he used in studying the structure of X for abelian

varieties with endomorphisms other than multiplication by an integer, e.g. those with

complex multiplication [24].

Theorem 4.0.4. Suppose E,k,F,n and p are as in Theorem 4.0.1, and K is a

quadratic subextension of F/k with H :=Gal(F/K)∼=Cn. Suppose also that p is odd.

Assume that X(E/F)[p∞] is finite. Then, as Zp[H]-modules, X(E/F)[p∞]∼= X⊕X

for some submodule X, and X(E/K)[p∞]∼= XH⊕XH .

Moreover, when n is odd and pa ≡ −1 mod n has a solution, |X |/|XH | is a

square.

Remark 4.0.5. Note that the second part of Theorem 4.0.4 reproves Theorem 4.0.1

in this case, but not all cases. The isogeny argument goes further than what we get

from just viewing X as a Galois module.

The size of X is a key ingredient in proving that its finiteness implies parity, and

it is natural to ask whether knowing the size more precisely tells us anything more. If

we have an extension K/k with Galois group G, and ρ is a self-dual representation of

G, then we can ask about 〈ρ,E(K)⊗ZC〉, where 〈_,_〉 is the usual inner product on
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representations of G. There is an equivalent to the parity conjecture for these twists,

which follows from finiteness of X in some cases. However this is not known for a

number of dihedral groups, the smallest being D42.

Definition 4.0.6. An Artin representation for a number field k is a continuous

finite-dimensional complex representation of Gal(k̄/k). Continuous means it factors

through the Galois group of some finite extension K/k.

Conjecture 4.0.7 (Parity for twists). Let K/k be an extension of number fields with

Galois group G, and ρ a self-dual Artin representation of Gal(k̄/k) which factors

through G. Let E/k be an elliptic curve. Then

(−1)〈ρ,E(K)⊗ZC〉 = w(E/k,ρ),

where w(E/k,ρ) ∈ {±1} is the root number for the twist of E by ρ .

As in the case of root numbers of elliptic curves, these root numbers have been

classified in a number of cases ([43] Theorem 1). A particularly simple case is the

following formula.

Theorem 4.0.8 ([43] Corollary 2). Let E/Q be an elliptic curve with conductor N

and ρ a self-dual Artin representation of Gal(Q̄/Q) with conductor coprime to N.

Then

w(E/Q,ρ) = w(E/Q)dim(ρ)sign(αρ)
(

αρ

N

)
,

where
( ·
·
)

is the Jacobi symbol, αρ = 1 if det(ρ) = 1 and otherwise it is an integer

such that det(ρ) factors through Q(
√

αρ).

Example 4.0.9 (= [28] Example 2.19). Let E/Q be given by

y2 + y = x3− x,

and let F be the field obtained by adjoining a root of

x10− x9 +6x8−3x7 +11x6−3x5 +11x4−3x3 +6x2− x+1,
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a D10-extension. Let ε be the sign representation and ρ1 and ρ2 the two-dimensional

irreducible complex representations of D10.

We will compute the root number w(E/Q,ρ1) (where by an abuse of notation

we let ρ1 denote the Artin representation which factors through Gal(F/Q) and is

equal on this group to ρ1). Now dim(ρ1) = 2, so w(E/Q)dim(ρ1) = 1. Next we

compute αρ1 . As det(ρ1) = ε , we need the quadratic subextension of F , which is

Q(
√
−47). Therefore sign(αρ) = −1. Finally the conductor of E is 37, and we

compute
(−47

37

)
= 1. Therefore w(E/Q,ρ1) =−1.

This conjecture has applications to finding the rank.

Example 4.0.10 (= [28] Example 2.19). Let E and F be as in Example 4.0.9. E has

root number −1 over F and all of its subfields, so parity tells us that E/F has odd

rank over all of these. We can also find that rk(E/Q) = 1, but together these facts

only give a bound of rk(E/F)≥ 1.

Parity for twists will allow us to do better. By decomposing the representation

in to irreducibles we can write

E(F)⊗ZC∼= 1⊕a⊕ ε
⊕b⊕ρ

⊕c
1 ⊕ρ

⊕d
2 ,

for integers a, b, c and d. By comsidering the dimensions, we see that rk(E/F) =

a+b+2c+2d, and 1 = rk(E/Q) = a.

As the representation is defined over Q, it must have rational character, so we

must have c = d. As computed in Example 4.0.9 the root number for ρ1 is −1, so

assuming parity for this twist we have c≥ 1. Therefore rk(E/F)≥ a+4c≥ 5.

The p-parity conjecture is known for twists of elliptic curves and semistable

principally polarised abelian varieties when G∼=D2pn and ρ = 1⊕σ⊕det(σ), where

σ is a two-dimensional representation ([7] Theorem 1.3.2, [36] Theorem 1.10, [42]

Theorem 6.7). This has an application. Suppose A/Q is a semistable principally

polarised abelian variety, and satisfies the parity conjecture over Q and all quadratic

extensions of Q. Then, assuming X is finite, parity holds for A over all number

fields ([44] Theorem 1.1). We will ask in Section 4.3 whether understanding X
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better in dihedral extensions leads to a parity result for twists in D2pq-extensions, but

unfortunately find that it does not.

Notation

Unless otherwise specified, let F/k be a dihedral extension of number fields of

degree 2n, with quadratic subextensions K (for odd n) or K1,K2 and K3 (for even n),

as in the statement of Theorem 4.0.1. Let p be a prime not dividing n.

We will assume that X(E/F)[p∞] is finite.

4.1 The size of X
Brauer relations induce isogenies between products of Weil restrictions of elliptic

curves (see Lemma 2.6.8). By considering the degree of the induced isogeny, we

will show that the Tate–Shafarevich groups of two abelian varieties differ only in

their p-parts for p|n, and relate these back, by factors which are 4th powers, to the

terms we want.

Lemma 4.1.1. In D2n, there are Brauer relations

• 1+2D2n−2C2−Cn when n is odd, and

• 1+2D2n−2C2−Cn +Dn−D′n when n is even,

where, if D2n = 〈r,s|rn = s2 = 1,srs = r−1〉, we let C2 = 〈s〉, Cn = 〈r〉, Dn = 〈r2,s〉

and D′n = 〈r2,sr〉.

Proof. Note that C[G/H] ∼= IndG
H1. For H = 1, we get the regular representation,

and for H = G we get the trivial representation.

In the odd case, the irreducible representations are the trivial representation 1,

the sign representation ε , and n−1
2 two-dimensional representations which we will

denote ρ1, . . . ,ρ n−1
2

. Therefore we have

C[D2n/1]∼= 1⊕ ε⊕ρ
⊕2
1 ⊕ . . .⊕ρ

⊕2
n−1

2

C[D2n/D2n]∼= 1

C[D2n/1]⊕C[D2n/D2n]
⊕2 ∼= 1⊕3⊕ ε⊕ρ

⊕2
1 ⊕ . . .⊕ρ

⊕2
n−1

2
.
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Now we will compute IndD2n
C2

1 using Frobenius reciprocity. For each irreducible

representation φ of D2n, we have 〈IndD2n
C2

1,φ〉= 〈1,ResD2n
C2

φ〉. Computing ResD2n
C2

φ

for φ = 1, we get the trivial representation on C2, so 〈IndD2n
C2

1,1〉 = 1. Doing the

same for φ = ε , we get the non-trivial irreducible representation on C2, so ε does

not appear in IndD2n
C2

1. Restricting each representation ρi gives a sum of the trivial

and non-trivial representations on C2
2, so each appears once. Therefore

C[D2n/C2]∼= IndD2n
C2

1∼= 1⊕ρ1⊕ . . .⊕ρ n−1
2
.

Similarly we find that

C[D2n/Cn]∼= IndD2n
Cn

1 = 1⊕ ε.

We conclude that C[D2n/1]⊕C[D2n/D2n]
⊕2 ∼= C[D2n/Cn]⊕C[D2n/C2]

⊕2.

Now as these representations are realisable over Q and isomorphic over C, they

are isomorphic over Q ([86] Ch. 12, Prop. 33 and discussion). Therefore we have

the desired Brauer relation.

The proof for the even case proceeds similarly. We now have three non-trivial

one-dimensional representations, ε1, ε2 and ε3, with kernels Cn, Dn and D′n respec-

tively. The rest of the irreducible representations are two-dimensional ρi as before.

We find the induced representation from C2 has irreducible summands 1, ε2 and

all the two-dimensional representations. Inducing from each subgroup of order n,

we get 1⊕ εi for the εi with kernel equal to the subgroup in question. Therefore

C[D2n/1]⊕C[D2n/D2n]
⊕2⊕C[D2n/Dn]∼= 1⊕4⊕ ε1⊕ ε

⊕2
2 ⊕ ε3⊕ (

⊕
ρi)
⊕2.

We get the same result for C[D2n/Cn]⊕C[D2n/C2]
⊕2⊕C[D2n/D′n]. Putting this

together and proceeding as before, we get the desired Brauer relation.

Lemma 4.1.2. For the Brauer relations ∑i Hi−∑ j H ′j given in Lemma 4.1.1, there

2To see this, it may help to view ρi as a two-dimensional representation where s acts as a reflection
and r as a rotation by a multiple of 2π

n .
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are isogenies, defined over k, between A = ∏i ResFHi/k(E) and B = ∏ j Res
F

H′j/k
(E)

of degree coprime to p, where p is any prime not dividing n.

Proof. By Lemma 2.6.7, these are Z(p)-relations. By ([3], discussion at the start

of Section 3), this is equivalent to saying there is an injection of ZD2n-lattices,

Z[S1]→ Z[S2] with finite cokernel of order d, with p - d. Here S1 =
⊔

i D2n/Hi and

S2 =
⊔

j D2n/H ′j. Then by Lemma 2.6.8 this induces an isogeny A→ B of degree d2,

which is coprime to p. The same holds for an isogeny B→ A.

Lemma 4.1.3. Let A, B and p be as in Lemma 4.1.2. Then

|X(A/k)[p∞]|= |X(B/k)[p∞]|.

Proof. As we have an isogeny φ : A→ B of degree d2, with p - d, it has a conjugate

isogeny φ̃ satisfying φ̃ ◦φ = φ ◦ φ̃ = [d2]. The isogeny φ induces a homomorphism

X(A/k)[p∞]→X(B/k)[p∞], which is an isomorphism because [d2] is.

Proof of Theorem 4.0.1. In the case where n is odd, Lemma 4.1.3 tells us that

|X(E/F)[p∞]||X(E/k)[p∞]|2 = |X(E/K)[p∞]||X(E/FC2)[p∞]|2.

When the Tate–Shafarevich group of an elliptic curve is finite, it has square order, so

|X(E/F)[p∞]| ≡ |X(E/K)[p∞]| (mod Q∗4).

In the case where n is even, the same argument tells us that, modulo 4th powers,

|X(E/F)[p∞]||X(E/FDn)[p∞]| ≡ |X(E/FD′n)[p∞]||X(E/FCn)[p∞]|,

again using the squareness of the order of X. These fixed fields are the three

quadratic subextensions of F/k, so we can write this as

|X(E/F)[p∞]| ≡ |X(E/K1)[p∞]||X(E/K2)[p∞]||X(E/K3)[p∞]| (mod Q∗4).
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We can prove a similar statement about X(E/F)[p], which has an application

to computing rk(E/F).

Proposition 4.1.4. Suppose E/k, K, F, n and p are as in Theorem 4.0.1. If n is odd,

then

|X(E/F)[p]| ≡ |X(E/K)[p]| (mod Q∗4).

If n is even, then

|X(E/F)[p]| ≡ |X(E/K1)[p]||X(E/K2)[p]||X(E/K3)[p]| (mod Q∗4).

Proof. The proof is the same as that of Lemma 4.1.3 and Theorem 4.0.1. We can

show that (in the notation of Lemma 4.1.3) X(A/k)[p]∼=X(B/k)[p]. This tells us

that

X(E/F)[p]⊕X(E/k)[p]⊕2 ∼=X(E/K)[p]⊕X(E/FC2)[p]⊕2.

By Corollary 2.2.5, X(E/k)[p] and X(E/FC2)[p] have square order, and the con-

clusion follows. The proof for even n proceeds in the same way.

Corollary 4.1.5. Let E/k be an elliptic curve. Assume X(E/F) is finite. Then

prk(E/F) ≡
|Selp(E/F)|

|X(E/K)[p]||E(F)[p]|
(mod Q∗4).

This is a consequence of Proposition 4.1.4 and the exact sequence in Theorem

2.3.2. It reduces the calculation of the rank modulo 4 to some slightly easier

computations (assuming finiteness of X). If we can find points to give a lower

bound on the rank, and use the Selmer group to give an upper bound that is close to

this, computing the rank modulo 4 may be enough to give the exact answer.

Example 4.1.6. Let E/Q be given by y2 = x3−7x−6 (LMFDB label 40.a2) and

F be the extension given by adjoining a root of x6 + 34x4 + 289x2 + 983. F/Q is

a D6-extension with intermediate field Q(
√
−983). Using Magma [15], we can

calculate in a few seconds (on a typical laptop) that E(F)tors = E(Q)tors ∼=C2⊕C2,

that Sel2(E/Q(
√
−983))∼=C2

2 and that Sel2(E/F)∼=C6
2 . From this, we deduce that
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X(E/Q(
√
−983))[2] is trivial. Applying Corollary 4.1.5, we find that rk(E/F)

must be a multiple of 4. The Selmer group gives an upper bound of 4. We can very

quickly compute some points of low height which are not in the torsion subgroup, so

the rank must equal 4.

Attempting to do this using Magma’s inbuilt rank functions, which will use

the Selmer group to give an upper bound of four and then search until it has four

independent points, could not compute the rank in an hour. The difficulty is in

finding a third linearly-independent point, as there are none with low height. Once a

third is found, the usual finiteness assumption tells us that X(E/F)[2] is a square,

so we would know that the rank is 4. Applying Corollary 4.1.5 instead avoids this

difficult search over a degree 6 number field.

Remark 4.1.7. For p 6= 2, we can determine X from calculations on curves over k.

This is because the Weil restriction ResK/k(E) is related to E×Ed by a 4-isogeny,

where Ed is the quadratic twist of E by some d ∈ k such that K = k(
√

d) (Proposition

2.5.7). By the same proof as Lemma 4.1.3, we therefore have |X(E/K)[p∞]| =

|X(Ed/k)[p∞]||X(E/k)[p∞]|.

In the case where k = Q, this can make computation more practical. For

example, consider the curve E : y2 + xy+ y = x3−5334x−150368 (LMFDB label

30.a1) and the number field F given by a root of x10+5x8+15x6+20x4+25x2+15,

a D10-extension of Q. The intermediate quadratic field is K =Q(
√
−15) [63]. We

can compute the 3∞-part of X for E and E−15 over Q by computing Selmer groups

– in this case Magma [15] will show that they are both trivial. Hence the 3∞-part of

X(E/F) has order 34t for some t (if it is finite). This can be verified analytically,

again using Magma. It tells us that the analytic order of X(E/F) is 6560.999998.

This strongly suggests that the true value is 6561 = 38, which would match our

conclusion.

Remark 4.1.8. If we replace E by an abelian variety A, the same arguments work,

except we no longer know that X(A)[p∞] has square order. If A is principally

polarised, and p 6= 2, this is still true and we can make the same conclusion. In

general, we can conclude that |X(A/F)[p∞]| ≡ |X(A/K)[p∞]| (mod Q∗2) for odd
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n, and analogously for even n.

4.2 Galois Module Structure
In some cases, the same result follows from the work of Chetty, which also gives

information about the Galois module structure of X. Let n, p and H ∼=Cn be as in

Theorem 4.0.4, and assume that X(E/F)[p∞] is finite.

Lemma 4.2.1. Zp[Cn] is a direct sum of local rings with principal maximal ideals.

Proof. The ring Zp[Cn] is isomorphic to Zp[T ]/(T n−1). By the Chinese Remainder

Theorem, this is a direct sum of rings Zp[T ]/Φd(T ) for cyclotomic polynomials

Φd with d|n. These further split into direct sums because Φd = ∏i Pd,i, a product

of irreducible polynomials over Zp. Finally Zp[T ]/Pd,i(T ) is the ring of integers

of Qp[T ]/Pd,i(T ) ([87], Ch. IV, Section 4, Prop. 16), a local field, so has principal

maximal ideal.

Recall the following result, Proposition 2.8 from [24]. Note that as stated there

it has an error, specifically it may be false if the codomain of the pairing has an

element of order 2. Here we restrict to a codomain Qp/Zp for p odd, where this

does not occur. This can be proven in exactly the same way as in [24].

Proposition 4.2.2. Let p be an odd prime. Suppose A is a commutative ring which

is a direct sum of local rings with principal maximal ideals, and such that Qp/Zp

is an A-module. Let M be a finite A-module. Suppose [_,_] : M×M → Qp/Zp

is a non-degenerate skew-symmetric pairing with [ax,y] = [x,ay] for all x,y ∈ M

and a ∈ A. Then there exist submodules M′ and M′′ of M, with M ∼= M′⊕M′′ and

M′ ∼= M′′.

Theorem 4.2.3 (= Theorem 4.0.4). Suppose p is odd. Then X(E/F)[p∞]∼= X⊕X

as Zp[H]-modules, for some submodule X, and X(E/K)[p∞]∼= XH⊕XH .

Moreover, when n is odd and ordq(p) is even for all primes q dividing n,

|X |/|XH | is a square.

Note that if pa ≡−1 mod n has a solution, the latter condition holds.
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Proof. We will apply Lemma 4.2.1 and Proposition 4.2.2 to the ring A = Zp[H],

M = X(E/F)[p∞] and Qp/Zp an A-module with H acting trivially. The pairing

will be [x,y] := (x,sy), where (_,_) is the Cassels–Tate pairing on X(E/F) and

s is a lift of the non-trivial element of Gal(K/k) to Gal(F/k) (i.e. an element of

order 2 corresponding to a reflection in D2n). This pairing is non-degenerate because

the Cassels–Tate pairing is, and skew-symmetric because of the skew-symmetry

and Galois equivariance of the Cassels–Tate pairing. Now, given a ∈ H, we have

(ax,sy) = (x,a−1sy) = (x,say), where the first equality is Galois equivariance, and

the second is because Gal(F/k) is dihedral. Therefore our pairing satisfies the

condition [ax,y] = [x,ay] for all a ∈ H, and by bilinearity this holds for all a ∈ A.

Applying the proposition, we can conclude that X(E/F)[p∞]∼= X⊕X .

Note that X(E/F)[p∞]H ∼=X(E/K)[p∞] as p - |H|= n (see e.g. [78], Lemma

11).

Now by Lemma 4.2.1, X(E/F)[p∞] is a direct sum of Zp[T ]/Pd,i(T )-modules.

Suppose that n is odd and ordq(p) is even for all q|n. We will show that |M|/|MCn|

is a square for all Zp[T ]/Pd,i(T )-modules M, from which it follows that |X |/|XH | is

a square.

First consider the modules with d 6= 1. The condition implies that ordd(p) is

even for all d|n, because for any q|d, ordq(p)|ordd(p). This equals the degree of

Pd,i (this is true for the factorisation of a cyclotomic polynomial over Fp by e.g.

[61] Theorem 2.47, and we can lift the factorisation to Zp by Hensel’s lemma). For

a uniformiser π , finite Zp[T ]/Pd,i(T )-modules are direct sums of modules of the

form Zp[T ]/(πa,Pd,i(T )) for some a ([46] Chapter 12 Theorem 6). As p - d, the

cyclotomic extension of Zp is unramified, so these have size padeg(Pd,i), which is a

square as deg(Pd,i) is even. They have no fixed part because a generator of H acts as

multiplication by ζd , a root of Pd,i, and 1−ζd is a unit in Zp[T ]/Pd,i(T ).

When d = 1, we have Zp-modules with Cn acting trivially, so M = MCn , and

|M|/|MCn | is again a square.

Remark 4.2.4. In the case where there is a prime q|n with ordq(p) odd, we may

have some Zp[H]-modules Mi with size an odd power of p, with no fixed part. By
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Theorem 4.0.1 we can conclude that if each of these Mi appears in the decomposition

of X(E/F)[p∞] with multiplicity 2ai, then ∑i ai is even.

Remark 4.2.5. In the case where n = q is a prime, the latter part of Theorem 4.2.3

holds when p has even order modulo q. If q varies and we fix p, this happens for a

set of primes with Dirichlet density 2/3 ([52], Section 3). It will happen less often

when n has more factors, as more conditions must hold.

If instead we fix q and vary p, the condition will hold for at least half of the

residue classes modulo q (more precisely, by considering the cyclic group F∗q of

order q−1, we can see that the proportion is 1−2−v2(q−1)). So again we can apply

the second part of Theorem 4.2.3 in at least half of cases.

4.3 Application to Parity
Beyond the parity conjecture, we are also interested in the parity conjecture for

twists. In this setting, we consider an elliptic curve E/k, and a Galois field extension

K/k with Gal(K/k) = G. It is natural to ask what we can say about the structure

of the representation E(K)⊗ZC, i.e. if ρ is an irreducible representation of G, can

we find 〈ρ,E(K)⊗ZC〉? It turns out that there is an equivalent to the root number,

which is conjectured to predict its parity. This conjecture is known to follow from

finiteness of X for the representations of some dihedral groups, with the smallest

case not yet proven being being D42.

Example 4.3.1. Consider the curve E and number field F from Example 4.1.6.

We have a D6-extension of number fields F/Q. This has one two-dimensional

irreducible representation ρ . We find using Theorem 1 of [43] that this twist has

root number 1, so assuming finiteness of X it has even parity. This tells us that

rk(E/F) ≡ rk(E/Q(
√
−983)) = 0 mod 4, which is the same result we deduced

from finiteness of X in that example.

We can approach such results using a Brauer relation. The idea is to relate a

ratio of regulators to local data, specifically the Tamagawa numbers and valuations

of ω

ω0
v
, where ω is a fixed k-rational differential, and ω0

v is a minimal differential
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at a place v. Then we aim to relate this local data to the root numbers, to show it

gives the same overall result. The method is shown in [39] Section 1.iv. We will

sketch how this method works, and why one might hope to improve on it with better

knowledge of the size of X.

Taking a Brauer relation, we will apply Lemma 2.6.8 together with isogeny-

invariance of BSD to relate regulators to local data. Suppose E/k is an elliptic curve,

K/k is a Galois extension with Galois group G, and ∑i niHi is a Brauer relation in G.

Then we get an isogeny

∏
ni>0

ResKHi/k(E)
ni → ∏

ni<0
ResKHi/k(E)

−ni.

Assuming finiteness of X, and applying isogeny-invariance to this, we get

∏
i

Reg(E/KHi)niΩ(E/KHi)ni|X(E/KHi)|ni

|E(E/KHi)tors|2ni
= 1.

In a Brauer relation, the terms in Ω, other than Tamagawa numbers and the valuations

of a differential discussed earlier, cancel out ([41] Section 2.2). Let the product of

these remaining terms for a given curve E/KHi be C(E/KHi). If we work modulo

squares, the Tate–Shafarevich and torsion terms vanish. We can then conclude that

∏
i

Reg(E/KHi)ni ≡∏
i

C(E/KHi)ni (mod Q∗2),

As a coarse example of the utility of this method, if we can calculate the local terms

C(E/KHi) and show that the right hand side is not a square, then rk(E/K) is not 1.

Note that the local terms can be calculated using Tate’s algorithm. The following

theorem will allow us to say something more precise.

Theorem 4.3.2 (= [41] Corollary 2.13). We can express the ratio of regulators purely

in terms of regulator constants. Specifically, if Θ is a Brauer relation in Gal(K/k),

and E(K)⊗ZQ∼=
⊕

i ρ
ni
i , where the ρi are irreducible rational representations of

Gal(K/k), then the ratio of regulators in Θ is equal to ∏CΘ(ρi)
ni .

This implies that if CΘ(ρi) is not square, we have a hope of expressing the



4.3. Application to Parity 71

parity of ni in terms of local data and relating this to the root numbers. The main

limiting factor here is X, about which we only say that its order is a square. If we

know more about how X grows in dihedral extensions, we might hope to get more

information. Of course, we will also have to deal with the other terms more precisely.

The torsion subgroups can be calculated in practice for elliptic curves over fairly

large fields, so they are not a major problem. Regulator constants can also be defined

as rational numbers, rather than rational numbers modulo squares, as long as we

consider E(K)/E(K)tors as an integral representation of G rather than a rational one

([3], comment after Theorem 2.6). Hence if we know something about |X| modulo

fourth powers, as in Theorem 4.0.1, we might hope to do something similar and get

more information, such as in cases where the regulator constant is trivial modulo

rational squares.

We will consider applying this refined method to representations of the simplest

dihedral groups where parity is not already known, those of the form D2pq for primes

p and q.

Notation. Let p and q be odd primes, and as before let K2pq be a Galois extension of

Q with Galois group D2pq. Fix a subfield Lpq of degree pq, and a subfield Lp ⊂ Lpq

of degree p. Let K2, K2p and K2q be the subfields of degree 2, 2p and 2q respectively.

There is a faithful irreducible representation of D2pq, which we cannot in general

prove parity for. If we want to use this technique to prove parity for this represen-

tation, the simplest case is when this is the only irreducible rational representation

which appears in E(K2pq)⊗ZQ. Equivalently, E has no points over K2p or K2q, but

gains rank over K2pq. If we can prove for some curve in this setting that the ratio of

regulators is not 1, then we may be able to prove results towards parity.

Remark 4.3.3. Root number considerations do allow this setting to occur, so to prove

a parity result we would have to be able to deal with this case. Take K2 =Q(
√
−7).

By class field theory, it has extensions of degree 3, dihedral over Q, one of which

ramifies at 5 only, and one at 41 only. Their compositum contains a degree 3

extension which ramifies at both; let this be K6. Similarly we can construct a degree
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7 extension K14 which ramifies at 13 and 41. The compositum of these is dihedral of

degree 42 over Q. It ramifies at 5, 13 and 41 with ramification indices 3, 7 and 21

respectively, and residue degree 2. It is also ramified at 7.

If we find an elliptic curve with rank 0 over Q, multiplicative reduction at 5, 13

and 41 and good reduction elsewhere, the formula in Theorem 1 of [43] tells us that

the root numbers for the twists are −1 for exactly the representations we want. The

curve with LMFDB label 2665.b1 has these properties [63].

Lemma 4.3.4. The Brauer relations in D2pq are

Θ = {e}+2D2pq−Cpq−2C2

Θp =Cq +2D2pq−Cpq−2D2q

Θq =Cp +2D2pq−Cpq−2D2p

and Z-linear combinations of these.

Proof. It is simple to check that these are all Brauer relations and linearly indepen-

dent, and in D2pq there are three conjugacy classes of non-cyclic subgroups so there

are three independent Brauer relations. Therefore these form a rational basis for the

module of Brauer relations. In any Brauer relation, the multiplicity of Θ will equal

that of {e}, so will be an integer, and similarly for the others, so these three relations

form a lattice basis.

Now we are interested in the setting where E has rank over K2pq but not K2p or

K2q. Here the ratio of regulators arising from Θp and Θq is 1. So to get a non-trivial

ratio of regulators, without loss of generality we can use the relation Θ. So our aim

is to use data about the torsion, X and local data to show that

Reg(E/K2pq)Reg(E/Q)2

Reg(E/K2)Reg(E/Lpq)2 6= 1.

Unfortunately this will never be the case.
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Proposition 4.3.5. Let E be an elliptic curve over Q, and let p, q and K2pq be as

above. Suppose E has positive rank over K2pq but not K2p or K2q. Then

Reg(E/K2pq)Reg(E/Q)2

Reg(E/K2)Reg(E/Lpq)2 = 1.

Proof. First consider the p-adic valuation. The ratio

Reg(E/K2pq)Reg(E/Lp)
2

Reg(E/Lpq)2Reg(E/K2p)

comes from a Brauer relation in the D2q extension K2pq/Lp. Hence it is a rational

number, and its p-adic valuation is 0 by Lemma 2.6.7. The ratio

Reg(E/K2p)Reg(E/Q)2

Reg(E/K2)Reg(E/Lp)2

is 1, because all of these regulators are 1 as the ranks are 0. We are interested in

the product of these, which must also have p-adic valuation 0. Similarly the q-adic

valuation is 0. The other primes give valuation 0 by Lemma 2.6.7. Therefore the

ratio is 1.

As the regulator constant is always 1 in this case, we cannot hope to use this

method with Brauer relations in D2pq to get a parity result for the faithful irreducible

representation of D2pq.



Chapter 5

Abelian Varieties with the Same

Arithmetic Properties

In this chapter, we consider how much Selmer groups and other invariants tell us

about the isomorphism class of an abelian variety. We give a list of invariants

which determines the isomorphism class of an elliptic curve over Q, but does not

for abelian varieties of higher dimension. Some of the content of this chapter (in the

introduction and Sections 5.1, 5.2 and 5.3) is based on the paper Non-Isomorphic

Abelian Varieties with the Same Arithmetic. A pre-print of this is available at [6].

Introduction
A natural question to ask about abelian varieties is which invariants we can use to

distinguish them. For example, if we have two varieties A and B defined over Q, and

A(F)∼= B(F) for every number field F , must A and B be isomorphic over Q?

Question 5.0.1. Is there a list of invariants which, if they are equal for two abelian

varieties A and B over a number field k, guarantee that A and B are isomorphic over

k? If so, which invariants do we need?

Here the invariants are properties of the curve which are not changed by iso-

morphism over k. This excludes properties like the discriminant, which depend on

the model chosen.

Mazur and Rubin considered a similar question in [66], asking what the Selmer

groups Seln(Ed/k) can tell us, for a fixed integer n and where Ed is the quadratic
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twist of an elliptic curve E/k by d. They found that two non-isogenous curves could

have isomorphic n-Selmer groups for all Ed , and gave sufficient conditions for this

phenomenon to occur. It has since been shown by Chiu ([26] Theorem 1.8) that if

two elliptic curves have the same size p-Selmer groups for all but finitely many p

and over all finite extensions of k, they are isogenous. Chiu used a result of Faltings

([47] Corollary 1 after Theorem 4), which tells us that if the (rational) Tate modules

of two abelian varieties are isomorphic for some prime, then the varieties must be

isogenous. We consider the related question of determining elliptic curves up to

isomorphism.

The main focus of this chapter is to prove the following theorem.

Theorem 5.0.2. There exist abelian varieties A and B defined over Q which are not

isomorphic to each other but satisfy the following, over every number field F:

• A(F)∼= B(F).

• The n-Selmer groups of A and B are isomorphic.

• The Tamagawa numbers cv(A) = cv(B), for every finite place v of F.

• The Tate–Shafarevich groups X(A/F)∼=X(B/F).

• The L-functions L(A/F,s) = L(B/F,s).

• The conductors of A and B are equal.

• The regulators Reg(A/F) = Reg(B/F).

• For every prime `, the Tate modules T`(A)∼= T`(B).

Here ‘isomorphic’ means isomorphism of groups, except for the Tate modules which

are also isomorphic as GF -modules.

In other words, if we wish to distinguish abelian varieties by their arithmetic

properties, this list is insufficient. We will be able to give an explicit construction for

these varieties A and B.
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Remark 5.0.3. Theorem 5.0.2 tells us that knowing all the p-Selmer groups over

every finite extension of k does not force the varieties to be isomorphic. We can

compare this to Chiu’s result ([26] Theorem 1.8), which tells us that, for elliptic

curves, knowing these for all but finitely many p guarantees that they are isogenous.

Remark 5.0.4. For elliptic curves, the j-invariant tells us whether they are isomor-

phic over k̄, but not whether they are isomorphic over k. We will also consider elliptic

curves, and show that the properties listed in Theorem 5.0.2 do determine whether

elliptic curves are isomorphic over Q, but there are number fields where they do not.

Remark 5.0.5. This is analogous to questions about other mathematical objects,

for example number fields. It is known that there exist non-isomorphic number

fields with the same zeta function, class groups, regulators, discriminants, adele

rings and other properties ([92] Proposition 3.7 and Remark 3.11). Another example

is a certain eigenvalue problem on regions of the plane, which models what pure

tones a drum of that shape can produce. In this case, the list of eigenvalues does not

determine the shape of the region ([49] Section 1).

5.1 Properties of A and B
In this section we prove the following proposition:

Proposition 5.1.1. Suppose A and B are abelian varieties over a number field k,

and that there exist isogenies defined over k from A to B of degree coprime to `, for

all primes `. Then A and B have the same properties as listed in the statement of

Theorem 5.0.2, for all number fields F containing k.

Lemma 5.1.2. Suppose f is a functor from abelian varieties to the category of

abelian groups G with G[n] and G/nG finite for all positive integers n. Suppose also

that f ([n]) = [n] for all n. Then for any isogeny φ , defined over k, of degree coprime

to `, |ker( f (φ))| and |coker( f (φ))| are finite and coprime to `.

Proof. This follows from the existence of conjugate isogenies. Given φ : X → Y ,

there exists φ̃ : Y → X such that φ̃ ◦φ = [deg(φ)] on X and φ ◦ φ̃ = [deg(φ)] on Y .
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Now f (φ̃) ◦ f (φ) = [deg(φ)], so ker( f (φ)) ≤ ker([deg(φ)]). As deg(φ) is

coprime to `, the order of ker([deg(φ)]) is coprime to `, so the kernel of φ has the

required property. Similarly f (φ) ◦ f (φ̃) = [deg(φ)], so im( f (φ)) ≥ im([deg(φ)])

and coker( f (φ)) is a quotient of coker([deg(φ)]). Therefore the cokernel also has

the required property.

Note that this is a generalisation of Lemma 4.1.3. For that case, the only

subgroups or quotient groups of X[p∞] with order coprime to p are trivial, so the

groups have to be the same size.

Lemma 5.1.3. Suppose f is a functor as in Lemma 5.1.2, and which maps to finite

groups. Let A and B be abelian varieties over a number field k, and suppose that for

every prime `, there exists an isogeny from A to B, defined over k, of degree coprime

to `. Then f (A)∼= f (B).

Proof. We first prove a weaker result, that | f (A)|= | f (B)|. Suppose φ : A→ B is an

isogeny. Then, by considering the exact sequence

0→ ker( f (φ))→ f (A)→ f (B)→ coker( f (φ))→ 0,

we see that
| f (A)|
| f (B)|

=
|ker( f (φ))|
|coker( f (φ))|

.

By the previous lemma, if we pick a φ of degree coprime to a prime `, the right

hand side has `-adic valuation 0. By doing this for a range of isogenies of different

degrees, we can show that it is equal to 1, so | f (A)|= | f (B)|.

Now consider X → f (X)[n] for some integer n. This is a functor meeting

the required conditions to apply the weaker result, so | f (A)[n]| = | f (B)[n]| for all

n. By the structure theorem for finite abelian groups, this is enough to show that

f (A)∼= f (B).

Lemma 5.1.4. Let A and B be as in Lemma 5.1.3. Suppose f is a functor as in

Lemma 5.1.2, and which maps to finitely-generated groups. Then f (A)∼= f (B).
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Proof. The groups f (A) and f (B) must have the same rank, as the cokernels of the

maps between them are finite. Then we can apply Lemma 5.1.3 to their torsion

parts.

Proof of Proposition 5.1.1. The Mordell–Weil groups and n-Selmer groups are iso-

morphic by a direct application of Lemmas 5.1.3 and 5.1.4, and so are the Tamagawa

numbers as cv(A) = |A(Fv)/A0(Fv)|, where A0(Fv) is the set of points mapped to

the identity component of the special fibre of the Neron model of A. The Tate–

Shafarevich groups are isomorphic as they are determined by the finite groups

X(A/F)[`n] for all primes ` and positive integers n, and we can apply Lemma 5.1.3

to these. The equality of the L-functions and conductors holds for any pair of abelian

varieties with an isogeny between them.

To prove that the regulators are equal, note that given an isogeny φ : A→ B,

Reg(A/F)

Reg(B/F)
=
|coker(φ : A(F)/A(F)tors→ B(F)/B(F)tors)|
|coker(φ̂ : B̂(F)/B̂(F)tors→ Â(F)/Â(F)tors)|

,

where B̂ and φ̂ are the duals of B and φ ([14] Section 2.2). By picking suitable

isogenies, we can use Lemma 5.1.2 to show that the right hand side is coprime to

any prime, and hence the regulators are equal.

Finally, for the Tate modules T`(A) and T`(B), pick an isogeny φ of degree

coprime to `. The map [deg(φ)] is an isomorphism on T`(A) and T`(B), so the proof

of Lemma 5.1.2 implies that φ induces an isomorphism of Tate modules as groups.

Because φ commutes with the action of GF on points, it does on the Tate module

also, so they are isomorphic as Z[GF ]-modules.

Remark 5.1.5. This equality of properties would also be true if A and B were

isomorphic, but we shall show that this does not have to be the case.

5.2 Existence of Abelian Varieties
Theorem 5.2.1. There exist abelian varieties A and B, defined over Q, which are

not isomorphic over Q, but for any prime ` there exists an isogeny between them,
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defined over Q, of degree coprime to `.

Combined with Proposition 5.1.1, this proves Theorem 5.0.2. We will construct

abelian varieties with isogenies between them by considering Z[G]-modules, as

discussed in Section 2.5 and in [69]. One example where this can give the right

properties is for Z[Cp]-modules.

5.2.1 Modules in the Same Genus

Let p be a prime, K the pth cyclotomic field, and OK = Z[ζ ] its ring of integers,

where ζ is a primitive pth root of unity. Let G be the group Cp, generated by an

element g. Note that an ideal inOK is a Z[G]-module, with g acting as multiplication

by ζ .

Lemma 5.2.2. Two ideals in OK are isomorphic as Z[G]-modules if and only if they

are in the same ideal class.

Proof. See Curtis–Reiner ([31], Section 74).

Thus if we pick two ideals which are not in the same ideal class, we have two

Z[G]-modules which are not isomorphic. This can be done for any p ≥ 23 ([96]

Theorem 11.1).

Definition 5.2.3 (Genus). Two Z[G]-modules M and N are in the same genus if, for

all primes `, M⊗ZZ`
∼= N⊗ZZ` as Z`[G]-modules.

Lemma 5.2.4. Let M and N be ideals in OK . Then M and N are in the same genus.

Proof. M ⊗Z Z` is a Z`[G]-module, and in fact it is an ideal in Z[ζ ]⊗Z Z`
∼=

Z`[X ]
(1+X+...+X p−1)

. This cyclotomic polynomial factorises into distinct irreducible

factors P1, . . . ,Pt over Z`. The only prime that divides the discriminant of

1+X + . . .+X p−1 is p, so for ` 6= p the polynomials P1, . . . ,Pt are coprime. If

`= p, then 1+X + . . .+X p−1 is irreducible so t = 1. Therefore in either case we

have

Z[ζ ]⊗ZZ`
∼=

Z`[X ]

P1(X)
× . . .× Z`[X ]

Pt(X)
.
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Therefore by Lemma 2.7.3, the ideal M⊗Z Z` is a product of ideals Mi in Z`[X ]
Pi(X) .

Considering the Z`-rank of these tells us that Mi is never the zero ideal, as

p−1 = rkZ(M) = rkZ`
(M⊗ZZ`) = ∑

i
rkZ`

(Mi)≤∑
i

rkZ`

(
Z`[X ]

Pi(X)

)
= p−1.

Each ring Z`[X ]
Pi(X) is the ring of integers of the cyclotomic extension Q`[X ]

Pi(X) ([87] Ch.

IV, §4, Prop. 16 and 17), a local field, so is a principal ideal domain. Therefore

Mi is a non-zero principal ideal so is isomorphic to Z`[X ]
Pi(X) as Z`[G]-modules 1, so

M⊗ZZ`
∼= Z[ζ ]⊗ZZ`. The same is true for N⊗ZZ` and the result follows.

Example 5.2.5. We can make the construction above explicit, and verify computa-

tionally that we have two modules in the same genus which are not isomorphic. Let K

be the 23rd cyclotomic field, and letOK be its ring of integers. Let ζ be a 23rd root of

unity. Let I be the ideal ofOK generated by 2 and 1+ζ 2+ζ 4+ζ 5+ζ 6+ζ 10+ζ 11,

i.e. one of the primes above 2, which is not principal. We will show explicitly that

OK and I are not isomorphic as Z[G]-modules, but are in the same genus.

We will use the basis {ζ i : 0 ≤ i ≤ 21} for OK . A generator g which acts as

multiplication by ζ is represented by a matrix

A =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



.

We can compute a lattice basis for the ideal I with Magma [15]. In the same basis as

1Analogously to Lemma 5.2.2, if Mi is a principal ideal it is of the form α
Z`[X ]
Pi(X) for some non-zero

α ∈ Z`[X ]
Pi(X) , which gives an isomorphism.
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before, it is the columns of the matrix

M =



2 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1
0 2 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0
0 0 2 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0
0 0 0 2 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1
0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0
0 0 0 0 0 2 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0
0 0 0 0 0 0 2 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 2 0 0 0 1 1 0 1 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 2 0 0 0 1 1 0 1 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 2 0 1 0 0 1 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 1 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

Thus the action of g on the ideal I, in a basis given by the columns of M, is

given by

A′ = M−1AM =



0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 −1 0 0 −1 −1 −1 2
1 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 −1 0 0 −1 0 0 3
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 1 0 0 0 0 0 −1 0 −1 0 0 0 0 0 −1 0 0 2
0 0 0 0 0 1 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 −1 2
0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 −1 0 0 0 −1 −1 3
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 −1 −1 −1 3
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



.

Magma can test that this matrix is similar to A, and produces a matrix B with
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the property that B−1AB = A′. The B it produces is not M, but



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0 0 3 0 3 0 0 3 0 0 3 2 2
5 6 1 0 0 0 0 0 0 0 0 5 3 5 3 0 5 3 0 5 2 1
4 5 6 1 0 0 0 0 0 0 0 4 5 7 5 3 4 5 3 4 4 1
3 4 5 6 1 0 0 0 0 0 0 3 4 8 7 5 6 4 5 6 3 3
3 3 4 5 6 1 0 0 0 0 0 3 3 7 8 7 7 6 4 8 5 2
3 3 3 4 5 6 1 0 0 0 0 6 3 9 7 8 6 7 6 9 4 2
2 3 3 3 4 5 6 1 0 0 0 8 6 10 9 7 5 6 7 7 3 4
2 2 3 3 3 4 5 6 1 0 0 9 8 9 10 9 7 5 6 5 5 6
2 2 2 3 3 3 4 5 6 1 0 8 9 10 9 10 9 7 5 5 4 8
1 2 2 2 3 3 3 4 5 6 1 9 8 8 10 9 7 9 7 7 6 8
1 1 2 2 2 3 3 3 4 5 6 8 9 7 8 10 5 7 9 8 7 9
0 1 1 2 2 2 3 3 3 4 5 9 8 5 7 8 4 5 7 6 5 7
0 0 1 1 2 2 2 3 3 3 4 7 9 4 5 7 3 4 5 4 4 5
0 0 0 1 1 2 2 2 3 3 3 6 7 6 4 5 2 3 4 3 2 4
0 0 0 0 1 1 2 2 2 3 3 5 6 4 6 4 1 2 3 2 2 3
0 0 0 0 0 1 1 2 2 2 3 4 5 3 4 6 1 1 2 1 1 2
0 0 0 0 0 0 1 1 2 2 2 3 4 2 3 4 3 1 1 0 0 1
0 0 0 0 0 0 0 1 1 2 2 2 3 1 2 3 2 3 1 0 0 0
0 0 0 0 0 0 0 0 1 1 2 1 2 1 1 2 1 2 3 0 −1 −1
0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 2 2 −1 −2
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 −2



.

So we have A′ = B−1AB = M−1AM. The two matrices B and M are defined

over Z and have determinants 126823 · 2665931 and 211 respectively, so for each

prime ` one of them will provide an isomorphism over Z`. Therefore the modules

are in the same genus. However we can verify using Oscar [77] that A and A′ are not

conjugate in GL22(Z) and so the integral representations are not isomorphic.

5.2.2 Abelian Varieties from Modules

For the construction of abelian varieties from these Z[G]-modules, we follow the

construction of Milne detailed in Section 2.5. Recall that given a Z[Gk]-module

M and an abelian variety A/k, we can construct an abelian variety M⊗A. This is

defined over k, but over k̄ it becomes isomorphic to a power of A. Recall Lemma

2.5.5:

Lemma 5.2.6 (= [69] Prop. 6(a)). Suppose M and N are Z[Gk]-modules, isomorphic

as groups to Zn, and on which Gk acts via a finite quotient. Suppose φ : M→ N is a

homomorphism of Z[Gk]-modules with finite cokernel. Then φA : M⊗A→ N⊗A is

an isogeny defined over k, and its degree is |coker(φ)|2dim(A).

The following result is a partial converse to this lemma.

Lemma 5.2.7. Suppose A/k is an abelian variety with Endk̄(A)∼= Z. Then if M and

N are as in Lemma 5.2.6, and M⊗A is isogenous to N⊗A by an isogeny of degree d
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over k, then there is a homomorphism of Z[Gk]-modules from M to N with cokernel

of size d1/2dim(A). In particular, if M⊗A and N⊗A are isomorphic over k, then M

and N are isomorphic as Z[Gk]-modules.

Proof. First, let us fix some notation. By the construction of M⊗A, detailed in

Section 2.5, we have isomorphisms ψM : Zn→M and ψM⊗A : (Ak̄)
n→ (M⊗A)k̄

defined over k̄, and similarly for N. Denote the ring isomorphism EndZ(Zn)→

Endk̄(A
n) used in the construction of M⊗A and N⊗A by ρ (this also induces an

isomorphism between the corresponding automorphism groups). For now, let the

action of σ ∈ Gk on a module or variety X be written as χX(σ), and then define

cocycles from Gk to Aut(Zn) and Autk̄(A
n) by

sM(σ) = ψ
−1
M ◦χM(σ)◦ψM ◦χZn(σ−1)

sM⊗A(σ) = ψ
−1
M⊗A ◦χ(M⊗A)k̄

(σ)◦ψM⊗A ◦χ(Ak̄)
n(σ−1)

and similarly for N. Note that we view Zn as a trivial Galois module. These may

also be written as sM(σ) = ψ
−1
M ψσ

M and sM⊗A(σ) = ψ
−1
M⊗Aψσ

M⊗A. By construction

of M⊗A, ρ(sM) = sM⊗A and likewise for N. Henceforth, we will drop the notation

χX .

Now suppose there is an isogeny φA : M⊗A→ N⊗A defined over k. We will

reverse the construction from Section 2.5, and show that there is a Z[Gk]-module

homomorphism φ : M→ N.

We define φ to be the map satisfying ψ
−1
N φψM = ρ−1(ψ−1

N⊗AφAψM⊗A). We can

illustrate this with reference to a diagram with two commutative squares. The map

φA gives rise to an isogeny An → An (the second vertical arrow), i.e. an element

of Endk̄(A
n). Under the isomorphism ρ , this gives a homomorphism Zn→ Zn (the

third vertical arrow), and commutativity defines the map φ , which is therefore also a

group homomorphism.

M⊗A An Zn M

N⊗A An Zn N

φA

ψM⊗A

ψM

φ

ψN⊗A

ψN
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Note that if φA is an isogeny, so is ψ
−1
N⊗AφAψM⊗A, which therefore corresponds to

a matrix of rank n in Endk̄(A
n)∼= End(Zn)∼= Mn(Z). Hence φ is surjective and has

finite cokernel, with order determined by Lemma 5.2.6.

Now we must prove that φ is a homomorphism of Z[Gk]-modules. We need to

show that σφ = φσ for all σ ∈Gk. To do this, we will use the fact that φA is defined

over k, which is equivalent to the fact that σφA = φAσ for all σ ∈ Gk.

Note that ψ
−1
N⊗AφAψM⊗A is an endomorphism of An defined over k̄. However,

in our case, because Endk̄(A)∼= Z, all of these are given by Mn(Z) and defined over

k, so this map commutes with the action of Gk. Hence for any σ ∈ Gk, we have the

following equality of maps (Ak̄)
n→ (Ak̄)

n:

sN⊗A(σ)ψ−1
N⊗AφAψM⊗A = ψ

−1
N⊗AσψN⊗Aσ

−1
ψ
−1
N⊗AφAψM⊗A

= ψ
−1
N⊗AσφAψM⊗Aσ

−1

= ψ
−1
N⊗AφAσψM⊗Aσ

−1

= ψ
−1
N⊗AφAψM⊗AsM⊗A(σ),

where the second equality holds because σ commutes with ψ
−1
N⊗AφAψM⊗A, and the

third because it commutes with φA.

Now apply ρ−1 to this to get

sN(σ)ψ−1
N φψM = ψ

−1
N φψMsM(σ).

Because Galois acts trivially on Zn, this implies

ψ
−1
N σφψM = ψ

−1
N φσψM,

which tells us that φ commutes with σ . Hence φ is a homomorphism of Z[Gk]-

modules as required. Moreover, if M⊗A and N⊗A are isomorphic over k, M and N

are isomorphic as Z[Gk]-modules.

Proof of Theorem 5.2.1. Let M and N be the two Z[C23]-modules which are not

isomorphic but are in the same genus, as in Example 5.2.5. Let ` be any prime. As
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M⊗ZZ`
∼= N⊗ZZ`, we also have M⊗ZZ(`)

∼= N⊗ZZ(`) ([31], Cor. 76.9). This

implies there is an injective homomorphism M→ N with finite cokernel of order

coprime to `. Pick a number field L with Gal(L/Q) ∼= C23, for example Q(ζ47)
+,

and let GQ act on M and N via the corresponding C23 quotient.

Now pick an elliptic curve E over Q, with no potential complex multiplication.

By Lemma 5.2.6, M⊗E and N⊗E are related by an isogeny of degree coprime to `

for each `. However, by Lemma 5.2.7 they are not isomorphic over Q.

Remark 5.2.8. M⊗E and N⊗E are defined over Q, and isomorphic over Q̄ to

E22. In fact, they are isomorphic over L, because M and N are isomorphic as

Z[GL]-modules, where GL acts trivially.

Remark 5.2.9. We can do a similar construction for modules over Z[G] for other

G, giving abelian varieties which become isomorphic over extensions with Galois

group G. Examples which work include all cyclic groups Cp with p a prime at least

23, as Q(ζp) always has class number greater than 1 ([96] Theorem 11.1). We can

also use any group with non-trivial locally free class group (see Definition 5.4.6), as

for these groups there exists a Z[G]-module in the genus of Z[G] but not isomorphic

to it. The smallest of these is Q8. This set includes all non-abelian, non-dihedral

groups other than A4, A5 and S4 ([33], Theorem 50.29), with C12 and D80 being the

smallest abelian and dihedral examples respectively.

5.3 Elliptic Curves
It is natural to ask whether we can have a similar example with elliptic curves. In

this section we shall show that this is possible over number fields, but not over Q.

We will begin by showing a converse to Proposition 5.1.1, specifically that if all the

Tate modules of two abelian varieties are isomorphic, then for any prime ` we have

an isogeny between them of degree coprime to `.

Lemma 5.3.1. Suppose A and B are n-dimensional abelian varieties over a number

field k with T`A∼= T`B as Gk-modules. Then there is an isogeny A→ B with degree

coprime to `.
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Proof. Faltings ([47], Section 5 Cor. 1) showed that

HomGk(T`A,T`B)∼= Z`⊗Z Homk(A,B),

so if T`A∼= T`B, there must be an isogeny A→ B. Suppose for contradiction that all

isogenies A→ B have degrees divisible by `. Now consider the map induced by an

isogeny φ on T`A. As it has degree divisible by `, φ maps some element of A[`] to 0.

So the induced map T`A→ T`B cannot be surjective. As it is not invertible, when

written as a matrix in M2n(Z`) in any basis, it must have determinant divisible by `.

Now Homk(A,B) = 〈φ1,φ2, . . . ,φt〉 for some isogenies φi. Let each φi induce

a linear map with matrix Mi on the Tate modules. Now any non-zero Z-linear

combination of these Mi comes from an isogeny, so must have determinant divisible

by `.

Suppose T`A and T`B are isomorphic. Then by Faltings’ result the isomor-

phism between them corresponds to some ∑i βiφi, with βi ∈ Z`. This has matrix

∑i βiMi, with determinant P(β1, . . . ,βt) which is not divisible by `. Here P is some

polynomial with coefficients in Z`. Now pick αi ∈ Z with αi ≡ βi (mod `). Then

det(∑i βiMi)≡ det(∑i αiMi) (mod `), as the determinant of ∑i αiMi is P(α1, . . . ,αt)

and P is a polynomial. But ∑i αiMi is the matrix corresponding to ∑i αiφi which

has determinant divisible by `, because it is an isogeny (or the zero map). This is a

contradiction, so we must have an isogeny of degree coprime to `.

Remark 5.3.2. Combining this theorem with Proposition 5.1.1, we see that if

T`A∼= T`B for all primes `, then A and B have the same Selmer groups, regulators,

and all the other properties listed in Theorem 5.0.2.

Corollary 5.3.3. If A is an abelian variety with Endk(A) ∼= Z, and T`A ∼= T`B as

Gk-modules for all primes `, then A and B are isomorphic over k.

Proof. Pick isogenies φ : A → B, and φ ′ : B → A. We have an injective

map Endk(A) → Homk(A,B) given by ψ 7→ φ ◦ ψ , and also an injective map

Homk(A,B)→ Endk(A) given by ψ → φ ′ ◦ψ . Hence Homk(A,B)∼= Z. This must
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be the set of multiples of some isogeny φ̄ , with all degrees divisible by deg(φ̄).

Hence by Lemma 5.3.1, φ̄ must be an isomorphism.

Remark 5.3.4. For elliptic curves E over Q, EndQ(E) ∼= Z, so knowing the Tate

modules determines the elliptic curve up to isomorphism.

Proposition 5.3.5. Suppose E and E ′ are elliptic curves over a number field k, and

Endk(E) is an order of class number 1. Then if T`E ∼= T`E ′ as Gk-modules for all

primes `, then E and E ′ are isomorphic over k.

Proof. E and E ′ are isogenous, so fix an isogeny ψ : E ′→ E defined over k. Then

the map Homk(E,E ′)→ Endk(E) given by φ 7→ ψφ is an injection. If β ∈ Endk(E),

φβ ∈ Homk(E,E ′) maps to ψφβ . Therefore the image of this map is an ideal in

Endk(E), hence generated by some element α . Let the preimage of α be φ1. Then

each element of the ideal is of the form αβ , which is the image of φ1β . Thus by

injectivity all elements of Homk(E,E ′) are of this form and have degree divisible by

deg(φ1). So as there are isogenies E→ E ′ of degree coprime to any prime, E and E ′

are isomorphic.

It is however possible to have non-isomorphic elliptic curves with isogenies of

coprime degrees between them. By Corollary 5.3.3 and Proposition 5.3.5, we know

this can only happen for elliptic curves with complex multiplication by an order

which has class number greater than 1. This allows us to prove the following:

Theorem 5.3.6. There exists a number field k, and elliptic curves E and E ′ defined

over k, which are not isomorphic over k̄, such that E and E ′ have the same properties

as listed in Theorem 5.0.2 over all number fields F containing k.

Proof. Take the lattices Λ = Z[
√
−5] and Λ′ = (2,1+

√
−5)Λ. Then E :=C/Λ and

E ′ := C/Λ′ have complex multiplication by Z[
√
−5] ([89], Chapter II Section 1).

By ([89] Proposition II.1.2), the corresponding elliptic curves are not isomorphic,

as (2,1+
√
−5) is not a principal ideal. However, there is an isogeny of degree

N(a) for any ideal a in the class of (2,1+
√
−5), and hence there are isogenies

of degrees 2 and 3 ([89], Corollary II.1.5). These curves are defined and have
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complex multiplication over the Hilbert class field of Q(
√
−5), which is Q(i,

√
5)

([89] Section II.2 and Theorem II.4.3(a)). The isogenies may be defined over some

finite extension. Then, by Proposition 5.1.1, the curves over that extension have the

same properties as listed in Theorem 5.0.2.

Example 5.3.7. We can construct an example of these elliptic curves entirely ex-

plicitly, giving Weierstrass equations. Using Sage [91], we can approximate the

j-invariant of Λ to a high precision, and then search for polynomials this may satisfy.

We find that the j-invariant is likely to be 632000+282880
√

5. An elliptic curve

with this j-invariant is

E1 : y2 = x3− (2395312128000+1071214510080
√

5)x

−2016549312397312000+901828270977187840
√

5.

Sage can compute the 2- and 3-isogenies from this curve. We find that over

Q(i,
√

5) it admits a 2-isogeny and two 3-isogenies, all to the same curve

E2 : y2 = x3 +(−272250+41745
√

5)x+12644500−32369920
√

5.

Note that this is consistent with there being one ideal of norm 2, and two of norm 3,

in Z[
√
−5]. The elliptic curve E2 has j-invariant 632000−282880

√
5, so unlike the

abelian varieties constructed in Section 5.2, E1 and E2 are not isomorphic over any

number field. We can verify using Sage that these curves have complex multiplication

by Z[
√
−5] by computing the CM discriminant to be −20. We can also calculate

their period lattices and find that the ratios of their generators are very close to
√
−5

and 1+
√
−5

2 , matching the pair of elliptic curves used in the proof of Theorem 5.3.6.

5.4 A Weil restriction construction

5.4.1 Brauer Relations

In Section 5.2, we used the twisting construction to produce two isogenous abelian

varieties. Recall that a particularly useful case of this construction is on modules of

the form Z[G/H]. This gives Weil restrictions, whose properties are strongly linked
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to those of the elliptic curve we start with. Therefore we might ask whether we can

do a similar construction with these modules. We will consider dihedral groups of

order D2pq, as these can give isogenies of different degrees.

Lemma 5.4.1. Let p be an odd prime, and suppose F/k is a D2p-extension of number

fields, with intermediate fields L and K of degrees p and 2 respectively. Let E be

an elliptic curve over k. Let ` be a prime different to p. Then there is an isogeny

ResF/k(E)×E2 → ResK/k(E)×ResL/k(E)2 defined over k, whose degree is not

divisible by `. There is a similar isogeny in the other direction.

Proof. This follows from the existence of the Brauer relation {e}+2D2p−Cp−2C2

in D2p. We can apply Lemma 4.1.2 to this to get the desired result.

Now fix an elliptic curve E over k, and a dihedral extension K2pq of order 2pq,

where p 6= q are distinct odd primes. Let the Galois subextensions be K2, K2p and

K2q, and pick non-Galois subfields Lp and Lq contained in Lpq, where in each case

the subscript is equal to the degree over k.

Now define abelian varieties by

A := ResK2pq/k(E)×ResLq/k(E)
2×ResLp/k(E)

2×ResK2/k(E)

B := ResLpq/k(E)
2×ResK2q/k(E)×ResK2p/k(E)×E2.

Proposition 5.4.2. For all primes `, there is an isogeny A→ B, defined over k, with

degree not divisible by `.

Proof. Suppose ` 6= p. Then K2pq/Lq is a D2p-extension, and by Lemma 5.4.1 there

is an isogeny

ResK2pq/Lq(E)×ResLq/Lq(E)
2→ ResLpq/Lq(E)

2×ResK2q/Lq(E)

with degree coprime to `. Therefore the same holds when we take the Weil restrictions
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to Q. Similarly there is an isogeny

ResLp/k(E)
2×ResK2/k(E)→ ResK2p/k(E)×E2

with degree coprime to `, thus there is such an isogeny A→ B. In the case `= p, we

instead break it down as ResK2pq/k(E)×ResLp/k(E)2→ ResLpq/k(E)2×ResK2p/k(E)

and ResLq/k(E)2×ResK2/k(E)→ ResK2q/k(E)×E2. Using Lemma 5.4.1 again on

both of these we get an isogeny of degree coprime to `.

Remark 5.4.3. A slightly different construction works when one of the primes is

equal to 2. There are two non-conjugate subgroups of D4q isomorphic to D2q; call

them Da
2q and Db

2q with subgroups of order 2 Ca
2 and Cb

2 respectively, chosen such that

the product of their generators is a rotation of order 2. Call the subgroup generated

by this rotation C′2, and the union of these three groups C2×C2.

Let K be an extension of k with Galois group D4q. Now define varieties by

A := ResK/k(E)
2×Res

K
Da

2q/k
(E)2×Res

K
Db

2q/k
(E)2

×ResKC2×C2/k(E)
4×ResKC2q/k(E)

2

B := Res
KCa

2/k
(E)2×Res

KCb
2/k

(E)2×Res
KC′2/k

(E)2×ResKCq/k(E)
2×E4.

Then we can prove the same conclusion as in Proposition 5.4.2 by similar arguments.

We will need an equivalent to Lemma 5.4.1 for the Brauer relation in C2×C2 given

by {e}+2C2×C2−Ca
2−Cb

2−C′2. Here we can get isogenies of degree coprime to

any prime ` 6= 2, by the same arguments as in Lemma 4.1.2.

The existence of isogenies between these varieties A and B can be seen from a

Brauer relation in D2pq. The next proposition will show that this is the only Brauer

relation in D2pq which works.

Proposition 5.4.4. In the pq odd case, the Brauer relation

Θ = {e}+2D2p +2D2q +Cpq−2C2−Cp−Cq−2D2pq
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is the only one in D2pq which gives an isogeny of degree coprime to any prime `.

Proof. The rank of the lattice of Brauer relations in G is 3 by Lemma 2.6.3. To give

the desired property for all elliptic curves, Lemma 5.2.7 implies that there must be a

homomorphism of Z[G]-modules between ∑iZ[G/Hi] and ∑ jZ[G/H j] with kernel

coprime to any prime `. Therefore the Brauer relation must be a Z(`)-relation for all

`, and in particular for p and q.

Now let Θp = {e}+2D2p−2C2−Cp. Θp is not a Z(p)-relation, as its regulator

constant for the trivial module 1 is 1/p. This contradicts Lemma 2.6.12, which tells

us that if it were a Z(p)-relation, it would give a regulator constant with valuation 0.

As the lattice of Z(p)-relations is saturated (Lemma 2.6.4), it must have rank at most

2. Similarly the lattice of Z(q)-relations is also of rank at most 2, however it does

contain Θp. This is because D2p is not q-hypo-elementary, so by Theorem 2.6.6 it

contains a Z(q)-relation, which must be Θp as it is the only Brauer relation in D2p.

As these two lattices of rank at most 2 are saturated and not equal, their intersection

has rank at most 1, so is spanned by Θ.

Proposition 5.4.5. In the case where p = 2, the only relations which are both Z(2)-

and Z(q)-relations are multiples of

Θ = 1+Da
2q +Db

2q +2C2×C2 +C2q−Ca
2−Cb

2−C′2−Cq−2D4q.

Note that this is actually half of the relation that gives the A and B defined in

Remark 5.4.3, however it is still a Z(2)- and Z(q)-relation by the saturation property,

and the distinction will not matter for the proofs in Section 5.4.2.

Proof. The proof uses the same ideas as the odd case. We now have a four-
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dimensional lattice of Brauer relations, spanned (over the rationals) by Θ and

Θ1 := 1+2Da
2q−Cq−2Ca

2

Θ2 := 1+2Db
2q−Cq−2Cb

2

Θ3 := 1+2C2×C2−Ca
2−Cb

2−C′2.

We know already that Θ is a Z(2)-relation because 2Θ is, and the lattice of Z(2)-

relations is saturated. Also Θ1 is the Brauer relation appearing in the non-2-hypo-

elementary subgroup Da
2q, so it is a Z(2)-relation, and similarly so is Θ2. However

Θ3 is not a Z(2)-relation, because its regulator constant for the trivial representation

is 1
2 . Therefore by the saturation property the lattice of Z(2)-relations is 〈Θ,Θ1,Θ2〉

(allowing rational multiples, as 1
2(Θ1−Θ2) is a Brauer relation).

Now if there is another relation which is both a Z(2)-relation and a Z(q)-relation,

it must be of the form lΘ+mΘ1 +nΘ2 for rationals l, m and n. Therefore mΘ1 +

nΘ2 must also be a Z(q)-relation. If we take its regulator constant with for the

trivial representation, by the multiplicative property (Lemma 2.6.10), we find it to

be q−(m+n), so we must have m+ n = 0. Therefore the relation is a multiple of
1
2(Θ1−Θ2) = Da

2q−Db
2q−Ca

2 +Cb
2 .

Now take the one-dimensional representation ε where Da
2q acts trivially and the

other elements act as −1. Its regulator constant for the relation m
2 (Θ1−Θ2) is q−m.

Therefore to be a Z(q)-relation, we must have m = 0, so only Θ is both a Z(2)-relation

and a Z(q)-relation.

5.4.2 Dihedral Modules are Isomorphic

Unfortunately, for small p and q the property proven in Proposition 5.4.2 forces the

corresponding integral representations to be isomorphic.

As before, let p 6= q be primes and let G be the dihedral group of order 2pq. If
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p and q are odd, define two Z[G]-modules by

M := Z[G/1]⊕Z[G/D2p]
⊕2⊕Z[G/D2q]

⊕2⊕Z[G/Cpq]

N := Z[G/C2]
⊕2⊕Z[G/Cp]⊕Z[G/Cq]⊕Z[G/G]⊕2.

If p = 2, take instead the sum of two copies of these, one with each non-conjugate

subgroup D2q and corresponding C2. Then A and B, as defined in Section 5.4, are

given by A = M⊗E and B = N⊗E, using the construction in [69] detailed in Section

2.5.

Take E to be such that Endk̄(E) ∼= Z. Now by Proposition 5.4.2 and Lemma

5.2.7, for any prime ` there is a map of Z[G]-modules M→ N with finite cokernel

of order coprime to `. This is equivalent to saying that M⊗Z Z(`)
∼= N ⊗Z Z(`)

as Z(`)[G]-modules, and hence by ([31], Cor. 76.9) that M⊗Z Z`
∼= N⊗Z Z` as

Z`[G]-modules. This is true for all `, that is, M and N are in the same genus.

Definition 5.4.6 (As in [33], 49.10). Let H be a finite group. The locally free class

group of Z[H] is the set of equivalence classes of Z[H]-modules in the genus of

Z[H], with the relation X ∼ Y if X⊕Z[H]m ∼= Y ⊕Z[H]m for some integer m.

Example 5.4.7. The smallest group with non-trivial locally free class group is the

quaternion group Q8, which has class group of order 2. The elements can be given

explicitly, as in [64] Section 1.

Proposition 5.4.8. The class group of G is trivial for all pq < 65.

Proof. These can be calculated using the algorithm in [13], for which Bley has made

Magma code available [12].

Given integral representations M1, M2 and M3 of a group H, in general we

cannot say that M1⊕M3 ∼= M2⊕M3 implies M1 ∼= M2. This is unlike the case of

representations over Q. However, if M2 and M3 are both powers of the group ring

Z[H], this cancellation often does hold.

Definition 5.4.9 (As in [76]). Let H be a finite group. We say Z[H] has stably
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free cancellation if, whenever M′ is a finitely-generated Z[H]-module satisfying

M′⊕Z[H]m ∼= Z[H]m+n, we have M′ ∼= Z[H]n.

Example 5.4.10. For all abelian groups H, Z[H] has stably free cancellation.

Proposition 5.4.11. Z[G] has stably free cancellation.

Proof. By ([76], Introduction), it suffices to show that G does not have a generalised

quaternion group as a quotient, or one of the binary tetrahedral, octahedral or icosahe-

dral groups as a proper quotient. The generalised quaternion groups are groups of the

form 〈x,y|x2n = y4 = 1,xn = y2,y−1xy = x−1〉 for n≥ 2, which have order 4n. The

only quotients of D2pq with size divisible by 4 are when p = 2, and are C2×C2 or

the whole group. The group D4q is not isomorphic to a generalised quaternion group

as it contains C2×C2, whereas every abelian subgroup of a generalised quaternion

group is cyclic. The binary tetrahedral, octahedral and icosahedral groups all have

order divisible by 24, so cannot be a proper quotient of D2pq for primes p and q.

Lemma 5.4.12. If the class group of G is trivial, M⊕Z[G]∼= N⊕Z[G].

Proof. Apply ([32], Theorem 31.28) to the faithful lattice Z[G], to deduce that

M⊕Z[G] ∼= N⊕F for some F in the genus of Z[G]. Now F is an element of the

class group of G, which is trivial, so there is some m satisfying F⊕Z[G]m∼=Z[G]m+1.

Z[G] has stably free cancellation, so F ∼= Z[G], which proves the lemma.

Definition 5.4.13. (As in [33], Definition 45.4) Suppose R is a Dedekind domain

whose field of fractions is a global field K, and A is a simple K-algebra. Let a non-R

prime of K be a prime not arising from a maximal ideal of R. For a prime P of K,

let AP be the P-adic completion of A. Then A satisfies the Eichler condition over R

unless AP is a direct sum of non-commutative skew-fields for every non-R prime P.

If A is a finite-dimensional semisimple K-algebra, we say it satisfies the Eichler

condition over R if all its Wedderburn components do.

We will use this only in the case where R = Z and K =Q, so the only non-R

prime is the infinite place. All we need to know is the following lemma, together

with the fact that products of algebras satisfying the Eichler condition also satisfy it.
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Lemma 5.4.14. ([33], Proposition 51.2(ii)) Suppose K =Q and R = Z. Then if D is

a finite dimensional (over Q) division algebra and n > 1, Mn(D) is Eichler over Z.

Proposition 5.4.15. M is an Eichler lattice, that is, EndQ[G](Q⊗Z M) satisfies the

Eichler condition over Z.

Proof. Let Q⊗Z M ∼=
⊕

i ρ
ni
i , where the ρi are irreducible rational representations

of G. In this case we will show each ni ≥ 2, and hence EndQ[G](Q⊗Z M) ∼=⊕
i Mni(End(ρi)). We know End(ρi) is a division algebra and so by the previous

lemma we are done.

First consider the odd case, and let the trivial representation be 1, the sign

representation be ε , and the sum of all the two-dimensional irreducible complex

representations be ρ . Then, by the same methods as in the proof of Lemma 4.1.1, we

see that IndG
C2
(1) = 1⊕ρ , so ρ is a rational representation. Now Z[G]∼= 1⊕ε⊕ρ⊕2,

and Z[G/Cpq]∼= 1⊕ ε . Therefore each of 1, ε and ρ appears in M with multiplicity

at least 2, so the same is true of the irreducible representations ρi.

The even case proceeds in a similar way. In the notation of the previous section,

we now have the trivial representation 1, and one-dimensional representations ε1,

ε2 and ε3 with kernels C2q, Da
2q and Db

2q respectively. Let ρ be the sum of the other

complex irreducible representations. We can calculate that IndG
Ca

2
(1) = 1⊕ε2⊕ρ , so

ρ is a rational representation. We find that Z[G/C2q]∼= 1⊕ ε1, Z[G/Da
2q]
∼= 1⊕ ε2

and Z[G/Db
2q]
∼= 1⊕ ε3. The sum of these, together with Z[G], therefore contains

every irreducible rational representation, with multiplicity at least 2, so M is an

Eichler lattice.

Theorem 5.4.16. If the class group of G is trivial, then M ∼= N as Z[G]-modules.

Proof. Recall Jacobinski cancellation ([33], Theorem 51.28) tells us that if M is

an Eichler lattice, Z[G] is a direct summand of M and M⊕Z[G]∼= N⊕Z[G], then

M ∼= N. These conditions hold by Proposition 5.4.15, the construction of M and

Lemma 5.4.12 respectively.

Remark 5.4.17. This shows that M ∼= N for all pq < 65. However this proof fails

infinitely often, beginning with pq = 65. This is because Cassou-Noguès proved that
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the class group is non-trivial for infinitely many pairs of odd p and q ([21], Section

7).

Corollary 5.4.18. For pq < 65, the abelian varieties A and B are isomorphic. It is

therefore possible for distinct products of Weil restrictions of a single elliptic curve

to be isomorphic.

Question 5.4.19. Are M and N always isomorphic over Z[G]? If so, are there other

permutation modules in the same genus which are not isomorphic, leading to non-

isomorphic products of Weil restrictions of a curve which cannot be distinguished by

the properties listed in Theorem 5.0.2?
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