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Abstract

The rank of an abelian variety is its most important invariant, determining the
structure of its rational points, however there is no known algorithm to compute
it. A procedure to find it, which works for some abelian varieties, is by descent,
which involves computing a Selmer group. The Selmer groups of the variety give
an upper bound, and the difference from the correct rank can be explained by the
Tate—Shafarevich group, which measures the failure of a local-to-global principle.
This thesis deduces results about Selmer and Tate—Shafarevich groups from the
existence of certain isogenies. We give results about the size of the Tate—Shafarevich
group in the cases of abelian varieties with complex multiplication, and elliptic
curves over dihedral extensions. We also show that the Selmer groups and certain

other invariants do not determine the isomorphism class of an abelian variety.



Impact Statement

Understanding the rational points on curves is a key question in number theory. Apart
from conic sections, which are well-understood, the simplest case is elliptic curves,
which are a type of cubic equation. The points on an elliptic curve have a structure,
and there is a finite set of points which can be used to generate all of them. Finding
the structure of these points is a remarkably difficult question, and the subject of the
Birch—Swinnerton-Dyer conjecture, which is one of the Millenium Prize problems.

A consequence of this conjecture is the p-parity conjecture. This gives a
prediction for the size of Selmer groups, which are a tool to give an upper bound
on the number of generators necessary to give all of the points on an elliptic curve.
Some cases of p-parity are known, and have been used by Bhargava and Shankar
to show that a positive proportion of elliptic curves over the rationals satisfy the
Birch—Swinnerton-Dyer conjecture. This work on Selmer groups earned Bhargava a
Fields Medal in 2014. One result of this thesis is a proof of the p-parity conjecture
for a class of abelian varieties, which are a generalisation of elliptic curves.

The Selmer groups give an upper bound for the number of generators needed,
but sometimes this is more than the true number. Another result of this thesis controls
the difference between these in certain settings, and in some cases this allows us to
compute the structure of the points faster than standard algorithms.

Outside of mathematics, number theory has had many applications in cryp-
tography. In particular, elliptic curves, abelian varieties and isogenies are used in
some of the most modern encryption methods. These applications are not the main
motivation for this thesis, and we do not discuss any consequences of the results, but

they may be of interest to researchers in cryptography.
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Chapter 1

Introduction

The study of Diophantine equations, or equations to be solved in rational numbers,
goes back to the Ancient Greeks. In modern terms, number theorists study the points
on an algebraic variety. Quadratic equations in two variables give rise to conic
sections, and their points have long been well-understood. The next step is elliptic
curves. The idea of adding two points on a cubic curve by the chord and tangent
process had been known since the seventeenth century, and turns the rational points
on the curve into a group. Answering a question of Poincaré, in the 1920s Mordell

and Weil proved the following:

Theorem 1.0.1 (Mordell-Weil). The group of points of an elliptic curve E over a

number field K form a finitely-generated abelian group. In particular,
E(K) 2 Z™E/K) 5 E(K)iors,

where tK(E /K) € Z> is the rank of the curve, and E (K)o is a finite group.

The rank of the elliptic curve is a crucial property, telling us whether or not
the curve has infinitely many points, and if so what their structure is. Computing
ranks is one of the biggest open problems in number theory. While the torsion can
be computed practically, the rank is less well-understood, and there is no known
algorithm to find ranks which is guaranteed to terminate, or even to tell us whether
or not the rank is 0 and hence E(K) is finite. Whether the rank of curves over Q is

bounded or can be arbitrarily large is also an open problem. The aim of this thesis is
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to better understand ranks and related invariants.

Example 1.0.2 (The congruent number problem). As an example, consider the
following problem, which was first considered over a thousand years ago and remains
open.

Given an integer n, is there a right-angled triangle with rational side lengths
and area n?

Equivalently, can we solve a® + b? = ¢? and ab = 2n in rational numbers? If so,
we call n congruent. It turns out that this can be transformed into a question about

3

elliptic curves, and 7 is congruent if and only if the elliptic curve y* = x> — n?x has

positive rank.

Elliptic curves are the simplest case of abelian varieties, which are a type of
higher-dimensional varieties with an abelian group structure. Much of the theory
of elliptic curves carries across to abelian varieties, principally the fact that they
also satisfy the Mordell-Weil theorem. Therefore understanding their ranks is also
an important problem in number theory, and the ultimate motivation for the work
presented in this thesis.

The next part of this chapter deals with classical material about abelian varieties,
and the current state of our knowledge. Specifically, Section 1.1 deals with the Birch—
Swinnerton-Dyer conjecture, and Section 1.2 with the Selmer and Tate—Shafarevich
groups and the parity conjecture. Section 1.3 gives the statements of our main results.
These are divided in to three areas: Selmer groups of abelian varieties with complex
multiplication; the growth of the Tate—Shafarevich group under dihedral field ex-
tensions; and the extent to which arithmetic properties determine the isomorphism
class of an abelian variety. These correspond to Chapters 3, 4 and 5 of the thesis
respectively. Section 1.4 details the structure of the remainder of the thesis, and

finally Section 1.5 lists the notation used.

1.1 The Birch-Swinnerton-Dyer Conjecture

Based on computational evidence, in the 1960s Birch and Swinnerton-Dyer devel-

oped a conjecture which linked the rank of an elliptic curve E to the number of
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points on the reduction of £ modulo primes. This was refined by Tate, and extended
to abelian varieties. Proving this just for elliptic curves over QQ is now a Millennium
Prize problem, one of the most significant open problems in all of mathematics, and
it has been a key part of research on elliptic curves ever since it was conjectured. It
tells us that an analytic object, the L-function, encodes the rank of the abelian variety

as well as other important properties.

Conjecture 1.1.1 (Birch—-Swinnerton-Dyer [10], Tate [94]). Let A be an abelian

variety over a number field K. Then

(i) The L-function L(A,s) has a meromorphic continuation to C, and has a zero

of order tk(A/K) at s = 1.
(ii) The Tate—Shafarevich group of A/K is finite.
(iii) The residue is given by a formula

L(A
fim —_LA:5)

lim gy — BSDA/K),

where BSD(A/K) is defined in terms of arithmetic invariants of A including
[II(A/K)].

Here the L-function of an abelian variety is a meromorphic function, which is
defined as an infinite product of terms at primes and converges on a right half-plane.
The analytic continuation of L was shown by Deuring [37] to hold for elliptic curves
with complex multiplication, and is also known for abelian varieties with complex
multiplication. It took until 2001 for analytic continuation to be proven for all elliptic
curves over (Q, as a result of the modularity theorem of Breuil, Conrad, Diamond,
Taylor and Wiles [16].

Progress has been made on some cases of the conjecture. For instance, Koly-
vagin, Gross—Zagier and others proved, assuming modularity, that when A is an
elliptic curve over QQ and the L-function is non-zero or has a trivial zero at 1, parts
(1) and (ii) hold ([51,56] — see [34] for a complete proof). Bhargava and Shankar

have shown that a positive proportion of curves over (Q have rank 0, for which
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Bhargava won a Fields Medal. Combining their work with that of Skinner and Urban
relating to L-functions [90], they showed that a positive proportion of elliptic curves
over (Q have analytic rank 0, and so by Kolyvagin’s result satisfy part (i) of the
Birch—-Swinnerton-Dyer conjecture. Evidence for part (i) modulo 2 also exists in the
form of parity results, which will be discussed in Section 1.2. Further evidence for
this conjecture is the analogous conjecture for abelian varieties over function fields.
In this setting the full conjecture follows from finiteness of the ¢-primary part of I11,
for any prime £. This is known for both elliptic curves [70,94], and abelian varieties
[53].

There is extensive numerical evidence for this conjecture, at least in the case of
elliptic curves over Q with low rank. Part (i) has been verified for all elliptic curves
over Q with conductor less than 140000 (this is 614308 isogeny classes, all with rank
at most 3) [29], and the full theorem has been verified for all curves with conductor
at most 5000 and analytic rank at most 1 [30,67]. Keller and Stoll have also been

able to verify this for some modular abelian surfaces [54].

Beyond these known cases and the numerical evidence, a key reason to believe
the conjecture is a theorem of Cassels [20]. He observed that if A and B are isogenous
elliptic curves, then they must have the same rank and the same L-function. He
then proved that, while the individual invariants are not preserved by isogenies, the

conjectured formula for lim,_,; L(A,s) /(s — 1)*(4/K)

will give the same result, i.e.
if the conjecture holds for A, it must hold for B. Tate generalised this to abelian
varieties [94]. This relationship between the invariants of isogenous varieties has
had further applications, as it combines information about the rank with local data,
which is easier to compute. One of its most significant applications is towards the

proof of the parity conjectures described below. This relation between invariants is

one of the main tools we use in Chapter 3 of this thesis.

1.2 Finding the Rank

To find the rank of an abelian variety, one often computes a Selmer group, which

gives an upper bound. This upper bound may not be tight, and the difference is



1.2. Finding the Rank 18

explained by the mysterious Tate—Shafarevich group. Alternatively, we may ask for
the parity of the rank (whether it is odd or even), and there is a conjectural result
which makes this much easier to compute. These three related objects are the main

focus of this thesis.

Selmer Groups

Given an isogeny f : A — B of abelian varieties, we can define the f-Selmer group

of A, Sel¢(A/K). Formally, this is defined as the kernel of a map

H'(Gg,Al¢]) — [] H'(Gk,,A)[d]
places v
(see Section 2.3). It also has an interpretation in terms of coverings of A which are
everywhere locally soluble. This was introduced by Cassels in 1962 [17], and named
in honour of earlier work by Selmer on the problem of finding the rank of an elliptic
curve. Knowing the size of a Selmer group allows us to give an upper bound on the
rank. Fortunately, the Selmer group is finite and can be computed, at least in theory

and often in practice.

Remark 1.2.1. This finiteness result is part of one proof of the Mordell-Weil
theorem. Indeed if we let A = B and f be the multiplication by n isogeny, it shows
A(K)

that AR 18 finite.

Computing the rank of an elliptic curve is usually done by a descent method.
This uses Selmer groups to give an upper bound, and a search for points to find a
lower bound. The difficulty comes from the fact that the upper bound will not always
equal the rank; the difference between them is explained by the Tate—Shafarevich
group of A. More precisely, for the isogeny [n], the Selmer group of A has a
subgroup isomorphic to %, with a quotient isomorphic to the n-torsion in the
Tate—Shafarevich group. Working out which part of a Selmer group represents
points on the curve, and which part tells us about the Tate—Shafarevich group, is
a key problem which would quantify the disparity between this upper bound and

the rank. No algorithm to do this in general is known. Computing multiple Selmer

groups for different isogenies can give us some more information, but this is still not
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guaranteed to give the correct bound, and becomes difficult in practice, especially
for higher-dimensional abelian varieties.
In this thesis we will focus on the n-Selmer group of an abelian variety, i.e. the

Selmer group corresponding to the multiplication by n isogeny.

Tate—Shafarevich Groups

The Tate—Shafarevich group of an abelian variety A/K is a difficult object to study. It
represents a ‘gap’ in the arithmetic of an abelian variety over a number field compared
to the arithmetic of the variety over all the completions of that field. The non-trivial
elements can be viewed as homogeneous spaces for the variety, up to isomorphism
over K, which have no points over K but have points over the completion K, at all
places v. It therefore measures the failure of a local-to-global principle, since it is
trivial when this principle holds for all homogeneous spaces for A. It can also be

defined as the kernel of the map

H'(Gg,A)— [] H'(Gk,.A
places v

(see Section 2.2). If we knew the size of the p-part of LI, then computing the
p-Selmer group would tell us the rank. If at least the p-primary part is finite, then by
finding the p"-Selmer groups for large n, we could eventually get the correct bound.

In 1940, Lind [62] was the first to give an example of a homogeneous space
representing a non-trivial element of this group, and Selmer [83] gave several more
in the 1950s. The group was introduced in its modern sense by Lang—Tate [60]
and Shafarevich [82] in the late 1950s. Since at least the 1960s it has been widely
believed to be finite (though it is unclear who first conjectured this), and a number
of results have been proven conditional on this, including the parity conjecture for

elliptic curves [42].

Parity Conjectures
Rather than compute the rank exactly, we can instead look at its parity. There is
a conjectural expression for this, which can be seen as the rank part of the Birch—

Swinnerton-Dyer conjecture modulo 2. While the Birch—Swinnerton-Dyer conjecture



1.2. Finding the Rank 20

gives a formula for the rank, it still requires us to understand the L-function, a difficult
analytic object which may not even be defined at s = 1. One way mathematicians
have tried to avoid the L-function issue is to combine it with another conjecture,

which predicts that the L-function satsifies a functional equation.

Conjecture 1.2.2 (Hasse-Weil (see [85])). Let A/K be an abelian variety of dimen-
sion n, and let d = [K : Q|. The L-function of A has a meromorphic continuation to
C, and satisfies

L*(A,s) =w(A/K)L*(A,2 —35).

Here w(A/K) € {£1} is called the global root number and
L*(A,s) = N/i/z\AK]”S(ZE)*"‘ZSF(S)”‘ZL(A,s),

where Ny is the conductor of A and Ak the discriminant of K.

As the extra terms linking L and L* are easily controlled around s = 1, we can
combine this with the first part of the Birch—Swinnerton-Dyer conjecture to give
a result which does not include L-functions. This is a conjecture involving purely
arithmetic data, so it may be more approachable both in terms of attempting to prove

it, and in terms of using it to predict the parity of the rank.

Conjecture 1.2.3 (Parity). Let A/K be an abelian variety. Then
(—=)™E) = w(A/K).

The advantage of this conjecture is that w(A/K) can be calculated in terms of
local data, which is often much simpler to understand and calculate than global data.
The global root number is a product of local root numbers, which are defined in
a non-constructive way in terms of a certain Weil representation. Details can be
found in Section 2 of [11]. We will not need the full definition as they have been
classified for elliptic curves and most abelian varieties [11,80], and so can be easily
computed from a Weierstrass model of an elliptic curve. This conjecture has many

applications, which often come from the fact that when the root number is —1, the
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parity conjecture implies that the rank is positive. One such example is a partial
solution to the congruent number problem mentioned in Example 1.0.2. Assuming
the parity conjecture, one can show that n is a congruent number whenever n =35,
6 or 7 (mod 8). Cowland Kellock and Dokchitser [28] detail this and many more
applications.

While there is much numerical evidence for the parity conjecture in the case
of elliptic curves, and it is known for the complex multiplication case as both sides
have been shown to equal 1, not many general results are known unconditionally. A
more approachable equivalent, which is known in a number of cases, is the p-parity
conjecture, which replaces the rank of an elliptic curve with information about its
p"-Selmer groups. Given a prime p, we will define a new invariant rk,(A/K), the p™-
Selmer rank, which is equal to rk(A/K) if III(A/K) is finite (more precisiely, they
are equal exactly when III(A/K)[p™] is finite). For a full definition, see Definition
2.3.3.

Conjecture 1.2.4 (p-Parity). Let A/K be an abelian variety. Then
(=)™ /K = y(A/K).

It appears that Selmer [84] was the first to consider parities of ranks. He studied
2-descent on certain families of elliptic curves, and conjectured that "The number of
generators indicated by a first descent differs from the true number of generators by
an even number." This is equivalent to saying that tko(E/K) = rk(E/K) (mod 2).
Birch and Stephens considered p-parity, and proved 2-parity for elliptic curves of
the form y2 = x3 — Dx in 1966 [9].

In summary, to compute ranks by descent we must compute a Selmer group.
This gives an upper bound, which exceeds the rank by an amount determined by
IIT(A/K). TI(A/K) is widely believed to be finite, and if it is then the parity
conjecture is true for elliptic curves. In general, all we can prove unconditionally
are cases of p-parity, which tell us about the p"-Selmer groups of abelian varieties

instead of their ranks.
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Known results

A number of cases of the p-parity conjecture are now known. For elliptic curves,
it has been proven in the cases of curves over Q [41] and other totally real fields
[42,50,75], and curves over number fields which admit a p-isogeny [22]. For an
elliptic curve over a number field K, 2-parity is known over quadratic extensions
of K [42,58,59], and a similar result is now known for Jacobians of hyperelliptic

curves satisfying some local conditions [73].

In the case of elliptic curves E with complex multiplication, we have
Endk (E) ®z Q equal to an imaginary quadratic field. It follows that the rank is
even (see Proposition 3.0.2). In this case, one can also show that the root number
w(E/K) is always 1, so the parity conjecture holds. To prove p-parity, we must show
that the p™-Selmer rank is even. For primes which are inert or ramified in this field,
we can view the Selmer groups as modules over the endomorphism ring, and deduce
p-parity. The split case is harder; Cesnavicius proved it by reducing the problem to a
case where he could show that the elliptic curve must admit a p-isogeny, and used

his p-parity result for this situation [22].

Less is known for general abelian varieties. For odd primes p, the p-parity
conjecture is known for abelian varieties A admitting an isogeny of degree pdim(A),
with some restrictions [27]. For p = 2, it is known for principally polarised abelian

surfaces with some conditions on the 2-torsion and reduction at 2 [45].

The weaker result that finiteness of I1I implies the parity conjecture is known
more generally, including for elliptic curves over all number fields [42], and
semistable principally polarised abelian surfaces satisfying local conditions [45].

The known cases of p-parity have had important applications. For instance,
Bhargava and Shankar used the case of elliptic curves over QQ (in an alternative
form, which states that dimp, Sel,(E/Q) — dimp,E(Q)[p] is even if and only if
w(E/Q) = 1) to show that a positive proportion of elliptic curves satisfy the Birch—
Swinnerton-Dyer conjecture [8].

While we still know little about the Tate—Shafarevich group, there has been

some progress. At the time Birch and Swinnerton-Dyer made their conjecture, there
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was no known example where I1I was provably finite. The first examples where this
could be proven were given by Rubin [81] in 1987, and more are now known due to
Kolyvagin. It is however simpler to show that ITI[p*] is finite using descent methods,

and this has been done for many elliptic curves ([88] X.5).

In 1962, Cassels discovered a bilinear pairing on III for elliptic curves, and
proved that it was alternating [18]. From this he could deduce that if III is finite,
it must have square order, and the same is true of III[p™]. This has applications,
including towards parity results, and will be used in the results of Chapter 4. Tate
generalised the pairing to abelian varieties [93]. While it was widely believed that
[T would also have square order in this case, this need not be true, as the pairing
may not be alternating. For principally polarised abelian varieties, Flach showed in
1990 that it is skew-symmetric [48]. In 1999, Poonen and Stoll showed that for a
principally polarised abelian variety A/K, III(A/K) is a square or twice a square
(and explained when each occurs) [79]. In 2024 Konstantinou proved that, in general,

the order could be n times a square for any square-free n [57].

While the exact size of III is hard to determine, a number of results showing
that I1I can become arbitrarily large are also known. Cassels showed that there are
elliptic curves E over Q with III(E/Q)[3] arbitrarily large [19]. It is conjectured
that for all primes p, there is an elliptic curve over (Q such that ITI has an element of
order p. It is known that there is such an abelian variety, as a consequence of a result
of Kloosterman that for any prime there is an elliptic curve over some number field

with I having an element of order p [55].

Much research has been done on the behaviour of the Selmer and Tate—
Shafarevich groups under field extensions, especially those with dihedral Galois
groups. For example, Bartel considered dihedral extensions of (Q, and showed that
if we fix a prime p and a quadratic number field M # Q(,/p), there is a dihedral
extension F'/Q of order 2p containing M, and an elliptic curve E /Q, with Sel,(E /F)
arbitrarily large [2]. Mazur and Rubin have proven a local formula which tells us
about parity in the Selmer groups in D, »-extensions F /k, for elliptic curves E /k,

and applied this to give a lower bound (under mild local conditions) on rk,(E/F)
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when rk,(E/F¢") is odd [65]. Chetty has proven this local formula is equivalent to
the parity conjecture in a number of cases [25]. Vavasour and Wuthrich have shown
that in some cases of D, ,-extensions F /k, with intermediate quadratic extension K,
and elliptic curves E /k, the Galois module structure of Z, ®z E(F) is determined
by rk(E /k), tk(E/K) and local data [95]. They also give a lower bound in some
cases for ITI[p] over C),-extensions of Q. The behaviour of elliptic curves in dihedral
extensions has also had applications towards proving parity results [41,44].

Mazur and Rubin have considered the question of to what extent the Selmer
groups determine an elliptic curve. They looked at the family of Selmer groups
Sel,(E;/K) for a fixed integer n, where Ej is the quadratic twist of a curve E /K by
d. They showed that it is possible for two elliptic curves over K to have the same
Selmer groups in this family and not be isogenous [66]. Chiu has shown that if two
elliptic curves have the same size Selmer groups Sel,(E/F ), where F ranges over
all finite extensions of K and p over all but finitely many primes, then they must be
isogenous [26]. This relies on a result of Faltings, which says that for any prime ¢,

the rational /-adic Tate module determines the isogeny class of an abelian variety.

1.3 Results of the Thesis

In this thesis we will consider isogenies between abelian varieties, and what infor-
mation we can obtain about Selmer groups from them. We will prove three main
results.

The first theorem will be about abelian varieties with complex multiplication.
These are abelian varieties which have a large number of self-isogenies. It is known
that they have even rank and root number 1. We will use these isogenies to give

some information about IIT in this case.

Theorem 1.3.1 (= Theorem 3.0.5). Let A/K be an abelian variety with complex

multiplication, and p a prime. Then there is an even integer 8, such that
LLI(A/K)[p™] 2 G x (Qp/Zp)

where G is a finite group.
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Once we have defined rk,(A/K), it will be clear that this is equivalent to
showing that rk,(A/K) is even, and hence to the p-parity conjecture.

As mentioned in Section 1.2, Cesnavi¢ius has proved this result for elliptic
curves. His method does not generalise to abelian varieties as we do not have a
corresponding p-parity result for abelian varieties admitting a p-isogeny. We give
an alternative proof of this, considering the action of an isogeny and its dual on I1I,
which works for all abelian varieties with complex multiplication.

The second main result tells us about the size of III assuming its finiteness.
It is still hard to give information about the size of III for elliptic curves, beyond
it being a square. We will consider how the size of I1I behaves under dihedral
extensions, which is a setting of interest, as discussed in Section 1.2. We will do
this by constucting isogenies between two abelian varieties whose Tate—Shafarevich

groups are linked to that of an elliptic curve E over different fields.

Theorem 1.3.2 (= Theorem 4.0.1). Suppose E [k is an elliptic curve, F /k an exten-
sion with Galois group D,, with n odd, and K the quadratic subfield of F. Assume
I(E/F)[p™] is finite. Then if p{ n is prime,

UL(E/F)[p™]| = I(E/K)[p~]| (mod Q*).

We also show similar results for even n, and for the p-part of 111 (Proposition
4.1.4). As Cassels showed that |ILI(E/F)[p™]| is a square, this tells us which of the
two cases we are in. When using a p-Selmer group to find the rank of elliptic curves,
the method involves determining the p-part of 111, so we can use this theorem and
(assuming finiteness) produce a formula for the rank modulo 4, assuming we know
the size of a Selmer group. This sometimes allows us to find the rank of E /F with
less calculation done over F (either finding points or proving none exist). Example

4.1.6 shows how this can have an application.

In the same setting we also consider the Gal(F/K)-module structure of
III(E/F), and prove that, for p # 2, III(E/F)[p™] is isomorphic to X & X for

some module X (Theorem 4.2.3). This is analogous to the argument that properties
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of the Cassels—Tate pairing imply that I1I has square order. We will show that for
certain p and n this gives an alternative proof for Theorem 1.3.2. We then explain
why we might expect this to have an application to a parity result for (p, E(F) ®yC),
where F is a D;,4-extension, p is a representation of D, and (_,_) is the usual
inner product on representations of D54, but show that this method cannot give the
desired result.

The final main result of this thesis considers how much Selmer groups and
other invariants tell us about the isomorphism class of the abelian variety. Again,
we consider dihedral extensions. We use Weil restrictions of curves over these
extensions to define two abelian varieties with the same Mordell-Weil and Selmer
groups, but unfortunately these examples turn out to be isomorphic, at least for
low-degree extensions. However, a related construction gives examples which are
not isomorphic.

More precisely, the main result is:

Theorem 1.3.3 (= Theorem 5.0.2). There exist abelian varieties A and B defined

over Q, which are not isomorphic, but over every number field F satisfy

* A(F) and B(F) are isomorphic groups

Sel,(A/F) and Sel,(B/F) are isomorphic groups for every n
» II(A/F) and I11(B/F) are isomorphic groups
* Reg(A/F) = Reg(B/F)

* T)A = TyB as Gp-modules, where { is any prime and T)A is the Tate module of
A.

This is different to the situation for elliptic curves, where the same list of
invariants do determine the isogeny class of elliptic curves over Q (Corollary 5.3.3),
but not over number fields (Theorem 5.3.6). This result is analogous to the work
of Mazur, Rubin and Chiu discussed in Section 1.2, which used Selmer groups to

determine the isogeny class of an elliptic curve.
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1.4 Structure of the Thesis

In Chapter 2 of this thesis, we discuss the background material that will be assumed
in later chapters. We will discuss abelian varieties, and their duals and polarisations.
Then we give the main results and definitions about the Tate—Shafarevich and Selmer
groups of an abelian variety. We give the statement of the Birch—Swinnerton-Dyer
conjecture, including the prediction for the residue of the L-function, and explain
Cassels’ Theorem. Then we discuss twists of abelian varieties, and how we can
generate isogenies between them, and finally state some algebraic lemmas which

will be useful.

The rest of the thesis is divided into three chapters, one for each of the main
theorems discussed in Section 1.3. In Chapter 3 we discuss abelian varieties with
complex multiplication. The main result of this chapter is Theorem 1.3.1, p-parity
for abelian varieties with complex multiplication. Cesnavicius’ proof for the elliptic
curve case required an application of p-parity, in the case of elliptic curves admitting a
p-isogeny; we present a new, simpler proof of p-parity in the complex multiplication

case, and generalise it to abelian varieties.

To pass from a Selmer group to information about the Mordell-Weil group, we
must attempt to understand the Tate—Shafarevich group. Chapter 4 looks specifically
at the Tate—Shafarevich group of elliptic curves over number fields, and how it grows
in dihedral extensions. Specifically, we prove Theorem 1.3.2, and a similar result
for even n. We show how this can help compute ranks over dihedral extensions of
Q. We also discuss the Galois module structure of the Tate—Shafarevich group, and
show that the theory of modules allows us to deduce the main result in some cases.
In the other cases, the main theorem gives us some information about the module
structure. In Section 4.3 we discuss the potential to apply this to a generalisation of
the parity conjecture, but show that Brauer relations in D5, cannot give us the result

we hope for.

In Chapter 5 we explore how much Selmer groups and other invariants can tell
us about isomorphism classes of abelian varieties. The main result is Theorem 1.3.3.

This gives a long list of invariants which does not determine the abelian variety up to
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isomorphism. We show this by giving examples, and also give examples showing
an equivalent result for elliptic curves over number fields. We prove that, in the
setting of elliptic curves over Q, this list of invariants does in fact determine the
isomorphism class. We also attempt to construct an example of two non-isomorphic
abelian varieties with the same invariants using a Brauer relation in D5, but we
find instead that the products of Weil restrictions must be isomorphic, at least for

small pgq.

1.5 Notation

Let K be a number field, L an extension of K and & a subfield of K. Suppose A and B
are abelian varieties over K, and f : A — B an isogeny defined over K. The following
table sets out some notation we will use relating to these. Definitions for some terms

can be found in Chapter 2 as linked.

K The algebraic closure of K

Gk The Galois group of K/K

A(K) The points of A defined over K

A(K)ors The torsion subgroup of A over K

Alf] The kernel of f on A

A(K)[f] The kernel of f on A(K), and similarly for other groups on
which f induces a homomorphism

A The dual abelian variety of A

f The dual isogeny of f

f The conjugate isogeny of f - see Section 2.1.2

Sel,(A/K) The n-Selmer group of A/K - see Definition 2.3.1

III(A/K) The Tate—Shafarevich group of A/K - see Definition 2.2.1

IT4(A/K) The set of divisible elements of II1(A/K) - see Definition
222

T,4(A/K) The quotient I1I(A/K)/II14(A/K)

Op The multiplicity of Q,/Z, in I114(A/K)[p] for a prime p

Jaw) The map induced by f on points of A(L)
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fin The map induced by f on III(A/K), and similarly for sub-
groups and quotients of I1I

[n] The multiplication by » map on an abelian variety or group

Gln| The kernel of [n] on G

G[n™] The union of G[nX] over positive integers k

C, The cyclic group of order n

D», The dihedral group of order 2n

Lp) The localisation of Z at p

Resg /i (A) The Weil restriction of A from K to & - see Section 2.5

Ar The base change of A to L

M, (Z) The set of n X n matrices over Z

GL,(Z) The subset of M,,(Z) consisting of matrices with determi-

nant +1

If L/K is Galois with Galois group G, and H < G, let LH be the fixed field of L under
the automorphisms in H. Similarly if p is a representation of G, let p’ be the fixed

part of p under the action of H.



Chapter 2

Background Material

This chapter covers the necessary background material to the thesis, and does not
contain any new results. We cover the key properties of abelian varieties, their
Selmer and Tate—Shafarevich groups, the full form of the Birch—-Swinnerton-Dyer
conjecture, and the construction of some abelian varieties and isogenies which we

will need later.

2.1 Abelian Varieties

Abelian varieties are a generalisation of elliptic curves to higher dimensions. Specifi-
cally, an abelian variety is a smooth projective algebraic variety, with a group law
where addition and the inverse map are given by morphisms. The Mordell-Weil

theorem also holds for abelian varieties.

Theorem 2.1.1. Let A/K be an abelian variety over a number field. Then
A(K) = 77K 5 A(K ) ors,

where tk(A/K) is a non-negative integer and A(K )iors is finite.

Many more of the definitions and theorems about elliptic curves have analogues
for abelian varieties.
Most of the results in this section can be found in any set of notes on abelian

varieties over number fields, for example [71].
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2.1.1 The Dual Variety

Given an abelian variety A/K, there is a dual variety of the same dimension, A /K.
This satisfies double duality: A=A Ttis functorial, that is, if we have an isogeny
f: A — B, then there is also an isogeny f : B — A, which is defined over K, and if
we have another isogeny g : B — C, then g/o\f = fog. Note that deg(f) = deg(f)
([38] Section 9).

In the case of elliptic curves, we have £ 22 E, but this is not true in general.
This means that some results about elliptic curves do not directly transfer to abelian
varieties, and we must replace some copies of a variety with its dual. For example,
the Weil pairing on elliptic curves is a map E[m| x E[m] — W, where L, is the
group of m™ roots of unity. The analogous pairing for abelian varieties is a map
A[m] x A[m] — W, ([71] Chapter 1 Section 13).

A polarisation of A is an isogeny A : A — A, satsifying some additional condi-
tions. The only one of these conditions which will be relevant to this thesis is that A
(which by the above is also an isogeny A — A) is equal to A ([38] Section 9). All
abelian varieties admit a polarisation. Those which admit a polarisation which is an

isomorphism are called principally polarisable; this includes elliptic curves.

2.1.2 The Conjugate Isogeny

In the elliptic curve case, dual isogenies have the additional property that, given
an isogeny f : E — E', fo f = [deg(f)] (where we implicitly use the principal
polarisations to view f as an isogeny E' — E rather than E/ — E). This is not
true in general, even when we have a principal polarisation. This is because the
degree of fo f is deg(f)?, whereas the degree of [deg(f)] is deg(f)24™A). The
analogous concept is the conjugate isogeny. This is an isogeny f with the property
that fo f = [deg(f)] ([38] Section 8).

Because of the existence of the conjugate isogeny, we can invert isogenies in
Homg (A, B) ®7 Q. This allows us to show that fo fo f = fo[deg(f)] = [deg(f)]o f.
and by cancelling f we get f o f = [deg(f)] also. Given a polarisation A, inverting
isogenies also allows us to define the Rosati involution on Endg (A) ®7z Q as the map

f ff=2A"1o foA. The property that =2 implies that this is an involution.
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2.2 The Tate-Shafarevich Group

The constructions for the Tate—Shafarevich and Selmer groups, and many of their
properties, are exactly the same as for elliptic curves, which can be found in [88]

Section X.4.

Definition 2.2.1. The Tate—Shafarevich group of an abelian variety A/K is the
kernel of the map H'(Gg,A) — [1,H'(Gk,,A). Equivalently, it is the group of
homogeneous spaces (up to K-isomorphism) for A/K that possess a K, -rational point

for every place v of K ([93] Section 3).

The Tate—Shafarevich group is abelian and a torsion group, so can be expressed
as a product of its p-primary parts III(A/K)[p*]. Each of these is of the form
G x (Q,/Z,)%, where G is a finite group and 8, is an integer (this follows from the
fact that ITI(A/K)[p"] is a finite group for every integer n). It is conjectured that I1I
is finite, which would imply that J, is always 0. While computing I1I(A/K)[p™]
can often be done in practice by descent methods, showing that I1I is finite is much

harder.

Definition 2.2.2. The subgroup of divisible elements of III(A/K) is the set of
elements o for which, given any positive integer N, we can find a f € I1I(A/K)
satisfying N = a. Denote this set by I114(A/K), and denote III(A/K)/I4(A/K)
by Mlna(A/K).

Remark 2.2.3. We can see that II14(A/K) = @, pﬁme((@p/Zp)5/’. If 11T is finite,
this is trivial. Note also that ITTI(A/K) = I14(A/K) & I,4(A/K).

Cassels introduced a pairing on II1(E /K) for elliptic curves E, now called the
Cassels—Tate pairing [18]. This is a map III(E/K) x III(E/K) — Q/Z which is
bilinear, alternating and Galois-equivariant. We will denote it by (_,_). The kernel
on either side is the set of divisible elements of I11, i.e. if (&, ) = 0 for all 3, then

o € II14(A/K). The following is a consequence of this.

Theorem 2.2.4. If II(E/K)[p™] is finite, then it is isomorphic to G @ G for some
group G (see [18] Lemma 4). Therefore if I11(E /K) is finite, it has square order:
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This conclusion comes from the fact that any finite abelian group with a non-
degenerate alternating pairing is of this form, shown in [78] Lemma 4 or [35] Lemma
5.2. This is analogous to the fact that a finite-dimensional vector space with a

non-degenerate alternating pairing has even dimension.

Corollary 2.2.5. IfIII(E/K)[p™] is finite, then |ILI(E/K)[p]| and |IIL(E/K)[p~]|

are square.

For more general abelian varieties a similar pairing exists, though it now takes
pairs in IIT(A/K) x ITII(A/K) ([93] Section 3). A choice of polarisation gives
a pairing on II1(A/K), though this is no longer alternating. If it is a principal
polarisation then the pairing will at least be skew-symmetric, which implies that
the order of III(A/K), if finite, is a square or twice a square ([48] Corollary after
Theorem 2).

2.3 Selmer Groups

Selmer groups of elliptic curves are discussed in [88] Section X.4. The definitions

and exact sequences work in the same way for abelian varieties.
Suppose we have an isogeny ¢ : A — A’, defined over K. We have a short exact

sequence of Gx-modules

040 =A% A 0.
Taking Galois cohomology, we get the exact sequence
0 — A(K)[9] = A(K) & A'(K) — H'(Gk,A[9]) — H'(Gk,A) 5 H' (G, A).
From this we get

0— A'(K)/9(A(K)) = H' (Gk,A[¢]) — H' (Gx,A)[9] = 0.

We can do the same thing for each completion K, of K. Note that as there is a map
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H'(Gg,A) — H'(Gg,,A), for each place v we have a map

H' (G, A[9]) — H'(Gk,A)[¢] — H' (Gx,, A)[#].

Definition 2.3.1. The ¢-Selmer group of A, Sely (A) is the kernel of the map

H'(Gk,A[9) » [] H'(Gk,,A)[$].

places v

Theorem 2.3.2. There is an exact sequence
0—A'(K)/¢(A(K)) — Sely(A) — LLI(A/K)[9] — O.

If we apply this to the isogeny [n] for some integer n, the left hand term becomes
A(K)/nA(K). Computing this allows us to find the rank of A(K), as long as we
can find its n-torsion. So computing the Selmer group is of interest. Fortunately,
it is finite ([68] Proof of Lemma 2), and effectively computable. It is often also
computable in practice, at least in the case of elliptic curves and isogenies of low
degree. The difficulty in finding the rank, therefore, is in understanding which
subgroup tells us about the points of A, and which quotient is the Tate—Shafarevich
group. Without this, what we get is instead an upper bound on the rank of A(K).

It is also useful to consider a family of Selmer groups at once. If IIT(A/K)[p™]
is finite, then if we consider Sel,»(A/K) as n increases, the exact sequence shows
that once 7 is sufficiently large, it will always increase in size by a factor of prk(A)

tk(A/K)+8p which will

when 7 increases by 1. In general, it will grow by a factor of p
motivate our definition of the p®-Selmer rank rk,(A/K).
We can consider this family of Selmer groups by taking direct limits in the exact

sequence of Theorem 2.3.2. This gives
0= A(K) ®z,(Qp/Zp) — lim Sel n (A) — II(A/K)[p™] — 0.
n

We can then give a definition of 1k, (A/K).
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Definition 2.3.3 (p™-Selmer rank). Let A be an abelian variety over a number field

K, and let p be a prime. Then
1k, (A/K) := dimg, (HomZp(@Selpn (A),Qp/Zp) ®z, Qp)-

This construction (a form of Pontryagin duality) is used to give a vector space
whose dimension is unaffected by the torsion points or the non-divisible part of I1I.
We will show in Section 2.7.2 that this is equal to rk(A/K) + J,, which we can treat

as an alternative definition. Throughout we will use the notation
X,(A/K) ;= Homg, (liQSelpn (A),Q,/Z,),
n

and &), (A/K) := X,(A/K) ®z, Qp. We will also use an equivalent for II14, and
define

Y,(A/K) = Homgz,, (I4(A/K)[p™],Qp/Zp)

and YV,(A/K) :=Y,(A/K)®z,Q,. We will show in Section 2.7.2 that, as a Q,-vector

space, this has dimension Jp,.

2.4 The Birch—-Swinnerton-Dyer Conjecture

Attached to an abelian variety, there is an analytic object called the L-function. This
can be defined as a product of local factors at the primes of K, and converges on a
right half-plane. It is believed to encode a number of properties of the abelian variety,
as conjectured by Birch and Swinnerton-Dyer.

Recall the following definition.

Definition 2.4.1. Given a prime p, the Tate module of an abelian variety A/K is
the module T/A := @nA[K”]. It is a Z¢[Gg|-module. We will also define the vector
space VA := T}A ®z, Q.

The local L-factor is defined in terms of the characteristic polynomial of a
Frobenius element on the dual of V;A. Its definition is not required for the work

presented in this thesis, but is given below for completeness.
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Definition 2.4.2. Let A/K be an abelian variety and v a non-archimedean place of K.

Then the local L-factor of A at vis L,(A,s) := x,(¢g,*) ™', where
2(X) == det(1 — 6, X|((V,A)*)P).

Here I, is the inertia group at v, g, is the size of the residue field of K, / is a rational
prime not dividing ¢, or the Tamagawa number ! of A at v and (V;A)* denotes the

dual vector space to V;A. The element o, € Gk, is any choice of Frobenius element.

Definition 2.4.3. The L-function of an abelian variety A/K is

L(A,s) =] ]L(A,s5).

We now state Conjecture 1.1.1 more precisely:

Conjecture 2.4.4 (Birch—Swinnerton-Dyer [10], Tate [94]). For any abelian variety
A over a number field K,

(i) L(A,s) has meromorphic continuation to C, and has a zero of order rk(A/K)

ats = 1.

(ii) TII(A/K) is finite.

LiAs)  _ Reg(A/K)[IIA/K)\QA/K)
R = KK AR BOD(A/K).

(iii) limg

Here the regulator is defined in terms of the canonical height pairing (_, ) :
A(K) x A(K) — R. This is a height function on A, analogous to the canonical height
on an elliptic curve, which depends on an element of A and is bilinear. The regulator
is the determinant of the matrix ({(a;,b;)); j, where {a;} is a set of generators for
A(K)/A(K)tors, and {b;} is a set of generators for A(K)/A(K)irs. Q(A/K) is a
volume term, and incorporates data about the abelian variety over local fields. For
example, when A is an elliptic curve over Q, it is the product of the Tamagawa

numbers at all primes, as well as the real period. In general, it is a product including

!The Tamagawa number of A at v is |A(K,) /Ao (K,)|, where Ag(K,) is the set of points mapped to
the identity component of the special fibre of the Neron model of A.
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Tamagawa numbers, a period term at the infinite places, the discriminant of K/Q
and an adjustment for the fact that we do not have a global minimal differential. For

full definitions of both of these terms, see [72] Section 1.7; in the notation of that

HVES Hy (A,CO) .
e

As evidence for this conjecture, Cassels showed that if elliptic curves A and B

are isogenous over K, then BSD(A/K) = BSD(B/K) ([20] Theorem 1.3). This is

chapter the volume term is

consistent with the fact that L(A,s) = L(B,s), and shows that if the conjecture holds
for A then it also holds for B. Tate generalised this result to abelian varieties ([94]
Theorem 2.1). It is not true that the individual terms in the definition of BSD(A/K)
are invariant under isogeny, but their ratios are linked by the kernels and cokernels of

the isogeny and its dual on K, on the completions of K and on III. More precisely,

Proposition 2.4.5. Let f : A — B be an isogeny of abelian varieties over K, and

assume 111(A/K) is finite. Then the following hold:

(i) — ReeA/K)  IB(K)unlB(K)on] _ erliu)|eoker(i)
A(K)ors||A(K)iors| ~ Reg(B/K) " Jeoker(fgg))|  Iker(fa))l *
(ii) II(B/K) is also finite, and }ggg;g} = It:gﬁ%}

Iker(fax,))|

(iii) & ‘g?g =1L Teoker (s 1 where the product is taken over all places v of K

(note that all but finitely many of the terms are 1).

Theorem 2.4.6. Let f : A — B be an isogeny of abelian varieties over K. Then,

independent of finiteness of 111,

|ker(AA )l .]coker(fA(K))] [ker( firr | H ker(fa(k,))l 1
|coker(}§ DI ker(fag)l [ker(fin |coker(fak,))l

Therefore if 11(A/K) is finite, BSD(A/K) = BSD(B/K).

This form of the result is due to Tate, though not stated explicitly ([94] Theorem
2.1 and discussion). For a more explicit statement see Milne ([72] Proof of Theorem

1.7.3).
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2.5 Weil Restrictions and Twists of Abelian Varieties

Given an abelian variety A over a number field L, with a subfield K, we can define the
Weil Restriction Resy /x (A). This is an abelian variety defined over K, which satisfies
the property that Resy /x(A)(S) = A(S ®k L) for any K-algebra S; in particular,
Res; /x(A)(K) = A(L). This property uniquely determines Res; /x(A). It is an
abelian variety of dimension [L : K]dim(A).

Example 2.5.1. It is perhaps easier to understand this concept by way of an example.

3 _ x, and we want to find

Suppose E is the elliptic curve over Q(i) given by y* = x
its Weil restriction to Q. We can do this by writing x = a+ bi, y = c + di, where
a,b,c,d € Q. Then the solutions to E over Q(i) are the solutions to the equation
(c+di)> = (a+bi)> — (a+ bi) for rational a,b,c and d. By expanding, we see that

the solutions to this are precisely the solutions to

A —d*=d—3ab*—a

2c¢d = 3a*b—3b> — b

over the rationals. As we have two equations in four variables, we can see that this is
a surface over (Q, and we can define the group law by substituting into the equations
for the group law on E.

In this example E has coefficients in (Q, which is the field we are restricting to.
This is the context in which we will use Weil restriction, though the same method

works in general.

Remark 2.5.2. For our purposes the construction and uniqueness of the Weil restric-
tion will not be very important. We can think of it as an abelian variety over K of

dimension [L : K]dim(A), which satisfies Theorem 2.5.3 and Res; /x (A)(K) = A(L).

Theorem 2.5.3 ([69] Section 1). Fix a finite extension of number fields L/K, and
let A/L be an abelian variety. Let B = ResL/K(A). Then we have equalities
Q(A/L) = Q(B/K), Reg(A/L) = Reg(B/K), I1I(A/L) = I11(B/K), and similarly
for the torsion subgroups. It follows that the Birch—Swinnerton-Dyer conjecture

holds for A/L if and only if it holds for B/K.
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In the cases we will need, we can also construct these Weil restrictions more

explicitly, as a special case of a construction of Milne ([69] Section 2).

Definition 2.5.4. A K/K form of an abelian variety A defined over a number field K
is an abelian variety A’ /K, together with an isomorphism y : Ag — A’;, where Ag is

the base change of A to K.

These forms are in bijection with the group H'!(Gg, Autg(A)), where Gk acts
on Autg(A) by ¢ — c¢o~!. In the case where all the automorphisms of A are
defined over K, this becomes the trivial action. The map from forms to cohomology
is as follows: given Y as above and ¢ € Gg, we set s(6) = y~'owo~!. The map
s: Gx — Autg(A) is a cocycle.

Suppose we have a Z[Gg|-module M with Gk acting through a finite quotient,
with an isomorphism of groups y), : Z" — M. Now define sy; : Gk — GL,(Z) by
su(o) = l//lljll yy- Here yy; is the map given by applying o to the image of yyy; if
we view Z" as a trivial Galois module this is analogous to the construction of s(0)
above. In general, GL,(Z) is naturally viewed as a subgroup of Autg(A”") for an
abelian variety A /K, but note that they are isomorphic when Endg(A) = Z, as in the
case of an elliptic curve without complex multiplication over any number field. Thus
sy can be viewed as a cocycle in H' (Gg, Autg(A")), and so (M, W) determines a
form of A", which we will denote (M ® A, W4 )-

The map (M, yyr) — (M ®A, Wy z4) extends to a functor. That is, if N is also
an n-dimensional Z[Gg|-module with Gk acting through a finite quotient, then a
Gk-module homomorphism ¢ : M — N induces a morphism @4 from M ®A to N ®A,
which is defined over K. The map is such that vy Lo Yy € Endyz(Z") corresponds to

l//ﬁé A04Wmza € Endg(A"). Where ¢ has finite cokernel, ¢4 is an isogeny.

Lemma 2.5.5 (= [69] Prop. 6(a)). Suppose M and N are Z|Gk|-modules, isomorphic
as groups to 7", and on which Gk acts via a finite quotient. Suppose ¢ : M — N is a
homomorphism of Z|Gk|-modules with finite cokernel. Then ¢4 : M QA — N QA is

an isogeny defined over K, and its degree is |coker(¢)[24m(4),

Remark 2.5.6. The Weil restriction is a special case of this construction. If A is

defined over K, and L/K is Galois with Galois group G, then Gk can act via its
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quotient G /G, = G, so any Z[G]-module is also a Z[Gg|-module. Viewing Z[G|
in this way, Res; /x (A) = Z[G] ® A ([69] Section 2). For a subfield of L given by L1,
where H is a subgroup of G, Res /¢ (A) = Z[G/H] ® A.

Proposition 2.5.7. Let L/K be a quadratic extension, with L = K(\/d). Let E/K
be an elliptic curve and E, its quadratic twist by d (i.e. if E :y* = f(x), then

E;:dy* = f(x)). Then E x Eg is isogenous to Res; /k(E) by an isogeny of degree 4.

Proof. We will construct two Z|Gg|-modules which are related by a map with
cokernel size 2, and then use Lemma 2.5.5. Throughout, Gg will act via its quotient
G = Gal(L/K); call the non-trivial element of this group ©.

As above, Res; x(E) = Z[G] ® E. The module Z[G] is a rank two Z-module,
with o acting as M| = ((1) (1)) (in the basis (1,0)). As in the example in [69] Section
2, we can show that E; = Z; ® E, where Z, is the set Z viewed as a Z[G]-module
with ¢ acting as multiplication by —1. To do this, use the map y : E — E,; defined
over K by (x,y) — (x,v/dy). Then the cocycle s (in the notation above) maps & to
the automorphism [—1] on E. Similarly using the natural map vy, : Z — Z,, we get
the cocycle sy mapping ¢ to the multiplication by —1 map on Z. So these maps
correspond under the inclusion of Aut(Z) in Autg(E), and E; = Z,QE.

Therefore E X E; = (Z ® Zy) ® E. The module Z @ Z, is a rank two Z-module
with o acting as M, = ((1) 91 ) Take the map from Z[G] to this module given by the
matrix P = (% 1 ) This satisfies PM| = M, P so it is a homomorphism of Z[Gg]-
modules with cokernel of size |det(P)| = 2. Therefore, by Lemma 2.5.5, we have

the required isogeny. [

2.6 Brauer Relations

One key example of the twisting construction in Section 2.5 is the case of Brauer
relations. These will allow us to construct isogenies which give us information about

Selmer groups and other properties of abelian varieties.

Definition 2.6.1. Given a group G, let S denote the set of formal sums of sub-
groups of G up to conjugacy. An element };H; —}) ;H J/ € § is a Brauer relation if
@, Q[G/H)] = @;Q[G/H]] as Q[G]-modules.
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This is equivalent to the condition that EB,-Indgil =@, Indl(l;,(l. If we can
J

replace Q by Zy) in this definition, call it a Z ) -relation.

Example 2.6.2. Let G = Dg. This has a subroup C3 of order 3, and three conjugate
subgroups of order two; denote any one of them by C,. Then G has three irreducible
rational representations, the trivial representation 1, the sign representation €, and a

two-dimensional representation p. We find the decompositions

H | Q[G/H]
1 [1oedp®?
G 1&p
G 1d¢

G 1

and deduce that Q[G/1] ® Q[G/G]®? and Q[G/C,]*? ® Q[G/C3] are isomorphic

representations. We can see that
142G —-2C, — (s,

and its integer multiples, are the only Brauer relations in G. We will see that this is

also a Zy)-relation for any £ # 3.

Lemma 2.6.3 ([3] Section 2.1). Brauer relations occur in all non-cyclic groups.
Specifically, they form a lattice with rank equal to the number of conjugacy classes

of non-cyclic subgroups.

This matches what we have observed for Dg, as Dg has no non-cyclic subgroups
other than itself.
We will also want some results on Zy)-relations. These will help us control the

degree of isogenies constructed.

Lemma 2.6.4 ([3] Proof of Proposition 3.9). The lattice of Z(g)-relations is saturated
in the lattice of Brauer relations. That is, if ® is a Brauer relation and n® is a

ZLy)-relation for some non-zero integer n, then ® is a Brauer relation.
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Definition 2.6.5. Given a prime /, a finite group is ¢-hypo-elementary if it has a

normal Sylow /-subgroup with a cyclic quotient.

Theorem 2.6.6 (Conlon’s Induction Theorem ([3] Theorem 3.8)). If H is a non-
l-hypo-elementary group, then there is a Zy)-relation in H given by nH — 3 n;H;,
where the H; are proper subgroups of H and n # 0.

Lemma 2.6.7. Suppose O is a Brauer relation in the group Dy,, and ¢ a prime which

does not divide n. Then © is a Zy)-relation.

Proof. This is shown in the proof of ([3] Proposition 3.9). We reproduce this proof,
specialised for the case of Dy,, here.

By Lemma 2.6.4, it suffices to show that the rank of the lattice of Z(g) -relations
is equal to the rank of the lattice of Brauer relations. Each conjugacy class of non-
{-hypo-elementary subgroup contains a Brauer relation by Theorem 2.6.6. These
are also Brauer relations for Dy, by transitivity of induction, and they are linearly
independent as each has a unique maximal subgroup which contains all the others.
Therefore by Lemma 2.6.3 it suffices to show that the number of conjugacy classes
of non-/-hypo-elementary subgroups is equal to the number of conjugacy classes of
non-cyclic subgroups of D»,,, or that every ¢-hypo-elementary subgroup is cyclic.

Suppose H is an /-hypo-elementary subgroup of Dy, with ¢t n. If £ # 2, then
¢ 1 n implies that ¢ 1 |H

, so the ¢-Sylow subgroup of H must be trivial and H is
cyclic. If £ =2, then n is odd. Therefore 4 1 |H| and so H must have a normal
subgroup of order 1 or 2. If it is trivial we are done, so assume it has order 2. Let the
non-trivial element of this be s, and let » be an element of D,,, of order n. If *eH,

k

then normality implies r*sr—% = s, but this implies ¥ = 1, so as n is odd r* = 1.

k

Similarly no element of the form r*s can be in H except s itself, so H = (5. ]

Suppose L/K is a Galois extension of fields with Galois group G. Given a
Brauer relation in G, @;Z[G/H,] is a Z|G]-module, and there is a map of Z[G]-
modules to B ; Z|G/H J’] which is injective so has finite cokernel. Therefore applying

Lemma 2.5.5 proves the following:
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Lemma 2.6.8. Suppose L/K is a Galois extension with Galois group G. Consider a
Brauer relation ) ;H; — ) j H ; in G. Then, given an abelian variety A /K, there exists
an isogeny

HResLH,. k(A) = HResLH}/K(A)
! J

defined over K.

If the relation in Lemma 2.6.8 is a Z y)-relation, we have a map of Z[G|-modules
with cokernel of order coprime to ¢. In this case Lemma 2.5.5 tells us that the isogeny

produced is of degree coprime to £ ([2] Section 4).

2.6.1 Regulator Constants

Given a Brauer relation ® in a group G, and a self-dual rational representation p

of G, there is an invariant Ce(p) called the regulator constant. This takes values in
Q* /Q*Z

Definition 2.6.9. Let p be a self-dual rational representation of a finite group G and
O=)H-Y;H ; a Brauer relation in G. Pick a non-degenerate G-invariant bilinear

pairing (_,_) on p taking values in Q. We then define

 Tlicet(ph (L 0lp™)
B 1

- " e Q*/Q*Z
I, det( (. )lp™)

Co(p)

!
j
Here the determinants are taken on some rational basis of the submodule p’%.

If we do the same thing for a Z,)-representation p of G such that p ®z, Q is

self-dual, and ® a Z(g) -relation in G, we get a constant defined in Q*/ Z&Z), i.e. its

¢-adic valuation is well-defined. We will also refer to this as a regulator constant.

Lemma 2.6.10 ([39] Corollary 2.18). Regulator constants are multiplicative in ®

and p, i.e. Co,10,(P) = Co, (P)Co,(p) and Co(p1 @ p2) = Co(p1)Co(p2).

Example 2.6.11. Take the Brauer relation 1 +2G —2C, — C3 in G = Dg, as discussed
in Example 2.6.2, and the sign representation (i.e. Q, with elements of order 2 acting

as multiplication by —1 and the others acting trivially). Use the pairing (x,y) = xy.
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The fixed part under the action of G or (; is trivial, so these give determinant
1. For the trivial subgroup, we need the determinant of the pairing on a basis of Q,
for example {1}. This is clearly 1. For the group C3, we take the determinant of the
same basis but the values of the pairing are divided by 3 so we get 1/3. Therefore

the regulator constant is 3 (mod Q*?).

Lemma 2.6.12 ([3] Lemma 3.6). Let G be a finite group, © a Zy-relation in G and
p a representation of G. Then ord;(Ce(p)) = 0.

This will be useful when showing that a Brauer relation is not a Zy)-relation.

2.7 Algebra

This section introduces some miscellaneous algebraic results which will be used.

2.7.1 Products of rings

Lemma 2.7.1 ([87], Chapter II, Section 3, Theorem 1(iii)). Suppose p is a prime,
and M a number field. Then we have an isomorphism of rings M Q¢ Q, = [1; My,

where the p; are the primes lying above p in M.

We will use this decomposition to study modules over M @ Q,,. To do this, we
will also need the following results, which we will state in terms of more general

rings. All rings are assumed to be commutative rings with unity.

Lemma 2.7.2. Suppose R and S are rings, and A is a module over R X S. Then
A=A X Ajs as R x S modules, where A1 can be viewed as an R-module and A, as

an S-module.

It is simple to check that A} = (1,0)A and A; = (0, 1)A allows us to express A
in this way. We view A; as an R-module by ra = (r,0)a foralla € A C A and r € R,
and similarly for A;.

Applying this to the case where A is an ideal in R x S gives another useful result.

Lemma 2.7.3. Suppose R and S are rings, and I is an ideal in R X S. Then I =1} X I,

where 1| is an ideal in R and I an ideal in S.
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2.7.2 Pontryagin duality

Pontryagin duality is a type of duality defined on locally compact abelian groups, i.e.
abelian topological groups where the topology is Hausdorff and every element has a
compact neighbourhood. This includes finite groups (with the discrete topology), as

well as Q,, and Q,/Z,.

Definition 2.7.4. The Pontryagin dual of a group G is the group Hom(G,R/7Z).
We will only use this in the case of p-groups, so we can replace R/Z by Q,/Z,,.

Proposition 2.7.5 ([1] Introduction). The Pontryagin dual of Q,/7Z,, is Zp.

This duality is an exact contravariant functor. Denote the dual of a group A
by A*, and the dual of a continuous homomorphism f by f*. Given a continuous

homomorphism f : A — B, we can apply exactness to the tautological exact sequence
0 — ker(f) — A — B — coker(f) — 0

to show the following:

>~

Lemma 2.7.6. Suppose f : A — B is a continuous homomorphism. Then coker(f™)

(ker(f))".

Proposition 2.7.7. Given an abelian variety A/K and a prime p, we have

1k, (A/K) =1k(A/K) + 5.

Proof. We begin with the exact sequence
0+ A(K) @2 (Qp/Z,) — lim Sel n(4) — I(4/K) [p] = 0
from Section 2.3, and take Pontryagin duals. This gives an exact sequence
0 — (II(A/K)[p™])" = Xp(A/K) = (A(K) ®2 (Qp/Zp))" — 0,

as in this case the continuous homomorphisms are the Z,-linear ones.
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The group A(K) @z (Q,/Z,) is a product of a finite group and (Q,/Z,)™*4/K).,

. . . rk(A/K)
Its Pontryagin dual is therefore a product of a finite group and Z,,

by Proposition
2.7.5. Similarly ITI(A/K)[p>] is a product of a finite group and (Q,/Z,)%, so its
dual is a product of a finite group and Zg” . Continuity of the maps implies that this
is an exact sequence of Z,-modules. We now take a tensor product with Q,, which

preserves exactness. This gives
0— @? — X,(A/K) — QWK o

and the result follows. L]

Note also that this argument shows that dimg, (Y,(A/K)) = 6, as the result

depends only on the divisible part of I11.



Chapter 3

Abelian Varieties with Complex

Multiplication

In this chapter, we prove that the p-parity conjecture holds for abelian varieties with
complex multiplication. The content of this chapter is based on my paper p™-Selmer

ranks of CM Abelian Varieties, published at [4].

Introduction

The endomorphism ring of an elliptic curve E always contains a copy of Z, as
multiplication by a non-zero integer n is always an isogeny. If there are more
endomorphisms, we say E has complex multiplication. In some ways these curves
are easier to work with. Results such as modularity have been proven much sooner
for these curves. They also have applications, for example in constructing ray class
fields of imaginary quadratic fields.

Throughout this chapter we use ‘complex multiplication” or ‘CM’ to mean

complex multiplication defined over K, rather than over K.

Example 3.0.1. Let K = Q(i) and E /K be given by y?> = x> — x. Then there is an
endomorphism [i] : (x,y) = (—x,iy). We call this map [i] because [i]*> = [~1]. In

fact, Endg (E) = Z]i].

For an elliptic curve with complex multiplication, the endomorphism algebra

will always be isomorphic to an order in the ring of integers of an imaginary quadratic
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field L, that is, a subring O which is a lattice and spans L over Q. We say the elliptic
curve has complex multiplication by L or, more specifically, by O.
A useful example of elliptic curves with complex multiplication being easier to

control is the following well-known result.

Proposition 3.0.2. Elliptic curves with complex multiplication always have even

rank.

Proof. Suppose E /K has complex multiplication by an order O in an imaginary
quadratic field L. Consider the Q-vector space E(K) ®7 Q. Its dimension is tk(E /K).
Now E(K) ®7 Q is also a vector space over O ®7Q =L, and as [L: Q] = 2, its

dimension over Q will be twice its dimension over L. Hence tk(E/K) is even. [

We can check on LMFDB [63] that the curve in Example 3.0.1 has rank 0.

It is not hard to prove that these curves also have root number 1 ([22], Prop.
6.3), so they satisfy the parity conjecture. We might hope that there is an analogous
result for Selmer groups, i.e. that the p™-Selmer ranks are even, and hence the curves
satisfy the p-parity conjecture. This is in fact true ([22] Theorem 1.6), however it
is not so easy to prove. In this paper we will present a new proof of this result, and

generalise it to abelian varieties (Theorem 3.0.5).

Remark 3.0.3. One might hope to find a simple proof of this, similar to the proof
that their ranks are even. After all, we again need to find the rank of a vector space
on which Endg (E) acts. However this does not work. To see why, note that the
p~-Selmer rank can be defined as the rank of a Q,-vector space X. Suppose as
before that Endg(E) = O, an order in an imaginary quadratic field L. Previously,
we used the fact that a Q-vector space on which O acts must have even dimension,
but this fails when we replace Q by Q,,. For example, suppose p = 5 and L = Q(i).
Then L can act on a 1-dimensional Q,-vector space, as i can act as a square root of
—1 in Q5. This proof does work when p is inert or ramified in L, as we do then find
that O ®7 Q) is a quadratic extension of Q,, but for the case when p splits in L, we

will need another proof.
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Recall the following alternative definition from Section 2.3. This is the definition

we will work with in this chapter.

Definition 3.0.4 (p™-Selmer rank). Suppose we have an abelian variety A over a
number field K. Looking at its Tate—Shafarevich group III(A/K), we find its p-
primary part is isomorphic to (finite group) x (Q,/ Zp)é,, for some integer 5,. We

will define the p*-Selmer rank to be tk,(A/K) =rk(A/K) + 5.
The aim of this chapter is to prove the following:

Theorem 3.0.5. Suppose A/K is an abelian variety with complex multiplication (see

Definition 3.0.9), and p a prime. Then tk,(A/K) is even.

The proof of Proposition 3.0.2 generalises to abelian varieties, so rk(A/K) is
even. Therefore Theorem 3.0.5 is equivalent to the statement that the divisible part
of III(A/K) has even Zp-corank, i.e. §, is even. This is in fact expected to be 0, as
IITI(A/K) is conjectured to be finite.

Another reason to expect Theorem 3.0.5 to hold is the p-parity conjecture,
which states that for an abelian variety A over a number field K, with root number
w(A/K),

(=) K) = w(A/K).

In the complex multiplication case, the root number is 1 ([69], Remark 2
after Theorem 4), so Theorem 3.0.5 is equivalent to the p-parity conjecture for
abelian varieties with complex multiplication. The conjecture is known in the case
where A is an elliptic curve over a number field admitting a p-isogeny thanks to
T. and V. Dokchitser ([42] Corollary 5.8) and Cesnavicius ([22] Theorem 1.4).
Cesnavicius then observed that, if A has complex multiplication, we can assume
A has complex multiplication by a ring of integers Oy, as any elliptic curve with
complex multiplication by L is isogenous to one with complex multiplication by Oy,
and this preserves root numbers and rk,,. He showed that in the case where p splits,
this curve admits a p-isogeny, and so it follows that for elliptic curves with complex
multiplication, tk,(A/K) is even. However there is no equivalent p-parity result to

use for abelian varieties, so we must use a different method.
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While we consider CM defined over K, one can also consider abelian varieties
with CM defined over Q. In this setting, the p-parity conjecture has been proven
for elliptic curves over totally real K, but is open in general. For p # 2 this is due
to Nekovér ([74], Theorem 5.10) and for p = 2 Green and Maistret ([50], Theorem
6.5).

From Theorem 3.0.5 we can deduce the following:

Corollary 3.0.6. Suppose A and p are as in Theorem 3.0.5. If III(A/K)[p*] is

infinite, then it contains (Q,/Z,)*.

Corollary 3.0.7. Suppose A/K is a principally polarised abelian variety and p # 2
is a prime. Then dimp,I11(A/K)|p] is even.

This follows from the fact that the Cassels—Tate pairing on I1I,4(A/K)[p™] is
alternating, so I11,4(A/K)[p] has even dimension. I114(A/K)|[p] has dimension §,
which is even by Theorem 3.0.5.

Notation
Throughout this chapter, let A and B be abelian varieties over a number field K and
let A : A — A be some polarisation of A defined over K.

Recall from Section 2.3 the notation Y),(A/K) for Hom(Il14[p>],Q,/Z}), the
Pontryagin dual of Illy[p~]. Let V,(A/K) =Y,(A/K) ®z, Qp. Note that this is a

Q,-vector space of dimension J, and an Endk (A) ®7z Q,-module.

Definition 3.0.8 (CM field). A CM field is a totally complex field with an index two
totally real subfield.

Definition 3.0.9 (CM abelian variety ([23] Definition 1.3.8.1)). A CM abelian
variety over a number field K is an abelian variety A/K where Endg(A) ®7 Q has
a subalgebra P which is a product of CM fields and satisfies [P : Q] = 2dim(A),
together with a fixed embedding P — Endg(A) ®z Q.

For an element o of a CM field M, denote its complex conjugate by &. This is
well-defined by the properties of M.
Note that we only consider complex multiplication defined over K, not over K

(which is sometimes called potential complex multiplication).
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3.1 Self-isogenies

Suppose A and B are abelian varieties over a number field K, and f: A — B an
isogeny between them which is defined over K.
Recall the following theorem discussed in Section 2.4, which implies Cassels’

Theorem.

Theorem 3.1.1 ([72], Proof of 1.7.3, 1.7.3.1). There is some finite set S of places of

K such that
H ker(fax,))] _ ker(fax))l _ |coker(f )| ‘ ker(fi)|
ves lcoker(fak )l lcoker(fak))|  [ker(fy K))| ker(fur)|

Corollary 3.1.2. Suppose that A = B, i.e. f is a self-isogeny. Then

[ker(fm)| = [ker(fim)|.

Proof. In the formula in theorem 3.1.1, the left hand side is equal to the ratio of
the volume terms Q(A/K) and Q(B/K) which appear in the formula for £ (A Lran
predicted by the Birch—Swinnerton-Dyer conjecture (see [72] Section 1.7 for a full
definition; in the notation of that chapter the volume term is W) These
depend only on A and not f so when A = B, this is 1.

Similarly, the next two terms equal the ratio of the regulators of A and B and

the orders of their torsion subgroups. Specifically,

‘ker(fA(K))‘ ) |coker( 1@(K))| _ Reg(B/K)|A(K)tors||A(K)t0rs|
[coker(fag))|  [ker(fa))l  Reg(A/K)|B(K)uors||B(K )iors|”

therefore when A = B this is also 1. OJ

The following variant of this result will be useful.

Lemma 3.1.3. Suppose f is a self-isogeny, and p any prime. Then

[ker(fuaagp=))| = [ker(firrp=))]-
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Proof. For any prime p, the p-adic valuations of the kernels in Corollary 3.1.2 must
be equal. As both kernels decompose as a product over primes [ of their /-primary
subgroups, the p-part of each side comes from III[p™], so we can replace III by

[II[p™] and still have equality. O

Lemma 3.1.4. Suppose f is a self-isogeny. Then we can split the kernels into

divisible and non-divisible parts. Specifically,

[ker (i) [ker(Fuan,ype)) | = TKer(fiany )| ker (frng p))-

Proof. We will show |ker( fii=])| = [ker(firr,[p=))||ker(fi,,[p=))| and similarly for

f. This holds by an application of the snake lemma to the exact sequence
0 — Il4[p~] — Ul[p~] — W [p™] — 0

with the isogeny f, which is valid because f maps I1I4[p*] to I1I4[p*]. We can also
see that |coker(firy,[,=))| = 1, because f has a conjugate isogeny f:A— A. This
has the property that f o f = [deg(f)], and multiplication by an integer is surjective
on II14[p>]. Therefore f is surjective on I14[p™], and the same is true for £, so the

result follows. [

Lemma 3.1.5. Let A/K be an abelian variety, p a prime, and f : A — A an isogeny
defined over K. Then

[ker(fiy(p=))| = [ker( fimy ()]
Proof. By the functoriality and non-degeneracy of the Cassels-Tate pairing on 11,4,

ker(fiaty )| = lcoker(firg,y )|

([72], proof of 1.7.3). Now |coker( fi,,p=1)| and |ker( iy, [p=1)| are equal, because
[IT,4[p™] is a finite group. So the non-divisible parts of the equation in Lemma 3.1.4

cancel out, and we have equality of the divisible parts. ]
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3.2 Complex Multiplication

Recall Y, (A/K) := Hom(Ill4[p*],Qp/Zp) and V,(A/K) :=Y;,(A/K) ®7, Q,. Note
this is an Endg (A) ®7z Q,-module. For ¢ a self-isogeny of A, denote the map induced
on Y,(A/K) by ¢y,, and similarly if ¢ € Endg(A) ®zQ), denote the map induced

on YV,(A/K) by ¢y,

Definition 3.2.1 (Rosati involution). For an abelian variety A with polarisation A, the
Rosati involution is the involution on Endx (A) ®7 Q sending f to fT:=A"1o foA.

We extend this by continuity to Endg(4) ®7 Q).

Lemma 3.2.2. Suppose A/K is a polarised abelian variety, p a prime, and ¢ an
invertible element of Endg (A) ®7 Q,. Then

ord,det(¢y,) = ordpdet(¢§,p).

Proof. We prove this for the case where ¢ is an isogeny of A defined over K, as
opposed to a (Q,-linear combination of these, and the full result follows by linearity.

By Lemma 2.7.6,
|ker(@rrr,[p=1)| = |coker(¢y, )|

Now ¢y, can be represented over Z;, by a matrix P in Smith normal form, with all

diagonal entries non-zero. Then
ord,det(¢y,) = ord,det(P) = ordp|coker(¢y, )|.

It therefore follows from Lemma 3.1.5 that

ord,det(¢y,) = ord,,det((ﬁyp).

Nowasp =AopTod !, ¢3T,p will have the same determinant, and the result follows.
O

Lemma 3.2.3. It suffices to prove Theorem 3.0.5 in the case where

* Endg(A) ®zQ D M, where M is a CM field and [M : Q] = 2dim(A)
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» The Rosati involution corresponds to complex conjugation on M.

Proof. By [23] Propositions 1.3.2.1 and 1.3.6.4, if A is a CM abelian variety then, for
each simple component A; of A, Endg (4;) ®7 Q is a CM field. Then by [23] Lemma
1.3.5.4, the Rosati involution corresponds to complex conjugation on this field, so A;
satisfies the properties given in the lemma. Now rk,(A/K) = Y ;1k,(A;/K), so once
we have proven that the conclusion of Theorem 3.0.5 holds for each A;, we know it

holds for A also. ]

Suppose from now on that A/K satisfies the two conditions in the statement of
Lemma 3.2.3, and let the fixed field of complex conjugation on M be L.

Now V,(A/K) is an M ®g Q,-module. Recall that M ®qg Q,, is isomorphic
to [y, Mp, where the product is over primes p of M lying above p, and M, is
the completion of M at p. We can therefore decompose ),(A/K) into a sum of

Q,-vector spaces
yp(A/K) = @va
plp

where each V,, is an Mj,-vector space, using Lemma 2.7.2.

Lemma 3.2.4. For each prime p|p, we have

dimQP Vp = dime Vﬁ .

Proof. If p = p, we are done, so suppose they are not equal. Then define & to be the
element of M @ Q, = [1p)p Mp which corresponds to p in My, and 1 in all the other

factors. Now we can view ¢ as an element of Endg(A) ®7Q,. Then
ordpdet(0ty (4/k)) = ord,det(p[Vy) = dimg, Vp.

Now by assumption, «' acts as @. It therefore acts as the identity on Vy for q # p,

and as multiplication by p on V5. So by the same argument we have

ordpdet(oc;p (a/k)) = dimg, V3,
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and by Lemma 3.2.2 the result follows. ]

Proof of Theorem 3.0.5. It suffices to show that dimg,V,(A/K) = ¥, dimg, V} is
even. Let L be the fixed field of complex conjugation on M. If p is inert or ramified

in M/L, then [M,, : Q,] is even. Therefore

1s also even.

For the primes p which split in M /L, we have p # p, and, by Lemma 3.2.4,
dimQPVp = dime Vﬁ.

Thus Y, , dimg,V; is even, and so is rk,,(A/K). O

Remark 3.2.5. A similar argument can also be applied directly to p™-Selmer groups
instead of III4. Recall the notation X,(A/K) = Hom(Sel,~(A/K),Q,/Z,) and
Xp(A/K) = Xp(A/K) ®z, Qp. Note that the Qp-rank of X,(A/K) is rk,(A/K).
Then replace Corollary 3.1.2 with Theorem 4.3 from [41]. This tells us that for any
self-isogeny ¢, O(¢) = Q(9), where, for an isogeny y : A — B,

O(y) 1= |coker(y : A(K) /A(K )iors — B(K)/B(K)iors)|[Ker(yim, )|
Section 2 of [40] tells us that
ord,Q(¢) = ord,|coker(¢ : X,(A/K) = X,(A/K))]|.

By the same arguments as in the proof of Lemma 3.2.2, with Y), and )/, replaced by

X, and &), we can show that for any invertible ¢ € Endg(A) ®7 Q,,

ordpdet((])xp) = Ordpdet((ﬁé\fp) = ordpdet((]);p).

Here ¢, denotes the map on &), induced by ¢. Then, by an argument similar to

Lemma 3.2.4 and the proof of Theorem 3.0.5, 1k,(A/K) = dimg, (X),(A/K)) is



3.2. Complex Multiplication 56

even.

Remark 3.2.6. The complex multiplication assumption can be weakened. Suppose
A is an abelian variety with Endg (A) ®z Q D M, for some field M, and suppose the
Rosati involution induces a non-trivial automorphism on M. Then we can still show
that rk,(A) is even. Denote this automorphism by ¢ — ¢, and its fixed field plays the
role of L. Then the proof proceeds in the same way. This includes the case of simple
abelian varieties whose endomorphism algebras (over K) are of Albert type IV (see
[38], Theorem 9.6). The conclusion of Theorem 3.0.5 also holds for products of

these.



Chapter 4

The Tate-Shafarevich Group in

Dihedral Extensions

In this chapter, we provide a formula for the size of the Tate—Shafarevich group
of an elliptic curve over a D, ,-extension of its base field, modulo 4th powers and
primes dividing n. We also consider its Galois module structure, and an application
to computing the rank of the elliptic curve. The content of this chapter is based on

the paper A note on the growth of Sha in dihedral extensions, published at [5].

Introduction

Computing the Tate—Shafarevich group of an elliptic curve is a difficult problem.
It is conjectured to be finite, though this is not known for curves of analytic rank
greater than 1. The main result about its size is due to Cassels, who proved that if it
is finite, it must have square order ([18] Theorem 1.1). This has some applications,
for example to the parity conjecture, so we might hope that knowing the size of 111
more precisely could allow us to say more about parity. This will be discussed in
Section 4.3. Knowing the size of III can also help extract the rank of an elliptic
curve from a Selmer group. Example 4.1.6 will show how this can help compute a
rank quickly, conditional on finiteness of I1I.

Elliptic curves over dihedral extensions of the base field have been of interest
for a number of reasons. Dihedral extensions can be used to prove that finiteness

of III implies the parity conjecture for elliptic curves, with the order of 111 being
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a key ingredient in this proof. In the Dy,» case, Mazur and Rubin were able to
give an expression for the rank of the p part of the p”-Selmer group of E, where
p is a representation of D, in terms of local data ([65] Theorem A). In a field
extension, the Galois module structure of III and the Cassels—Tate pairing on it
can place constraints on the size of III. In this chapter, we show that under some
circumstances we can determine the order of ITI modulo 4™ powers, in terms of the

order of I1I over smaller number fields. More precisely, we prove the following:

Theorem 4.0.1. Let E be an elliptic curve over a number field k and F [k a dihedral

extension of degree 2n. Let p be a prime not dividing n and assume 1LL(E/F)[p™] is
finite 1. Then

* ifnis odd, and K is the quadratic extension of k contained in F, then there is

an integer t such that
[ULHE/F)[P™]| _

|IL(E/K) [p~]|

* ifniseven, and K|, Ky and K3 are the three quadratic extensions of k contained

in F, then there is an integer t such that

(E/F) 7] _
[T /K =) [T /K)o [T E ) )]~

In some cases, this can be done purely from the Galois module structure, by
an argument combining the Cassels—Tate pairing with the action of the Galois
group. However, to prove this in all cases we need another method, and constructing
isogenies will give that method.

The following remarks show why these conditions are required. As computing
the exact order of I1I is difficult, for the sake of examples we use the analytic order
of I1I, which is the order predicted by the Birch—-Swinnerton-Dyer conjecture. The

data for the number fields and curves over Q comes from LMFDB [63].

Remark 4.0.2. Although the conclusion for odd n compares two Tate—Shafarevich

groups in a cyclic extension F /K, we do need this to be contained in a dihedral

"Note that II1[p>] is finite over subfields of F by [41] Remark 2.10.
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extension to get the result — it is not true for all cyclic extensions. For example, over
the extension of Q given by adjoining a root of x> —x? — 2x+ 1, which is cyclic
of degree 3, consider the curve y* +y = x> — x> — 10x — 20 (LMFDB label 11.a2).
Using Magma [15], we can calculate the analytic order of III over this extension.
We find it is equal to 25, whereas III(E /Q) is trivial. Therefore the 5°-part of 111

changes by a non-fourth-power.

Remark 4.0.3. The conclusion also does not hold if p|n. For example, take the curve
y? +xy+y=x>—351233x — 80149132 (LMFDB label 210.b1) over the number
field given by adjoining a root of x® — 30x* 4 225x> — 200, which is a Dg-extension
of Q. The analytic order of III is 4 over the quadratic extension and 2!93® over the
Dg-extension [15]. This is equal to 283° times the order of IIT over the quadratic

extension, so the 3-part changes by a non-fourth-power.

We can also say something about the Galois module structure of III. This is
based on a lemma of Chetty, which he used in studying the structure of I1I for abelian
varieties with endomorphisms other than multiplication by an integer, e.g. those with

complex multiplication [24].

Theorem 4.0.4. Suppose E. k,F,n and p are as in Theorem 4.0.1, and K is a
quadratic subextension of F [k with H := Gal(F /K) = C,.. Suppose also that p is odd.
Assume that I1IL(E /F)[p*] is finite. Then, as Z,[H)-modules, I1(E /F)[p*] = X &X
for some submodule X, and I1(E /K)[p=] = X" @ XH.

Moreover, when n is odd and p* = —1 mod n has a solution, |X|/|X?| is a

square.

Remark 4.0.5. Note that the second part of Theorem 4.0.4 reproves Theorem 4.0.1
in this case, but not all cases. The isogeny argument goes further than what we get

from just viewing III as a Galois module.

The size of 111 is a key ingredient in proving that its finiteness implies parity, and
it is natural to ask whether knowing the size more precisely tells us anything more. If
we have an extension K /k with Galois group G, and p is a self-dual representation of

G, then we can ask about (p, E(K) ®z C), where (_,_) is the usual inner product on
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representations of G. There is an equivalent to the parity conjecture for these twists,
which follows from finiteness of I1I in some cases. However this is not known for a

number of dihedral groups, the smallest being Dy,.

Definition 4.0.6. An Artin representation for a number field k is a continuous
finite-dimensional complex representation of Gal(k/k). Continuous means it factors

through the Galois group of some finite extension K /k.

Conjecture 4.0.7 (Parity for twists). Let K /k be an extension of number fields with
Galois group G, and p a self-dual Artin representation of Gal(k/k) which factors
through G. Let E /k be an elliptic curve. Then

(_1><p,E(K)®ZC> =w(E/k,p),

where w(E [k,p) € {£1} is the root number for the twist of E by p.

As in the case of root numbers of elliptic curves, these root numbers have been
classified in a number of cases ([43] Theorem 1). A particularly simple case is the

following formula.

Theorem 4.0.8 ([43] Corollary 2). Let E/Q be an elliptic curve with conductor N
and p a self-dual Artin representation of Gal(Q/Q) with conductor coprime to N.

Then
(04

w(E/Q.p) = w(E/Q)"™)sign(ap) (12).

where (—) is the Jacobi symbol, o = 1 if det(p) = 1 and otherwise it is an integer
such that det(p) factors through Q(,/0p).

Example 4.0.9 (= [28] Example 2.19). Let E/Q be given by
YAy=x —x
and let F' be the field obtained by adjoining a root of

A0+ =3+ 110 =3 + 11 =3 + 6% —x + 1,



61

a Djp-extension. Let € be the sign representation and p; and p, the two-dimensional
irreducible complex representations of Dyg.

We will compute the root number w(E /Q, py) (where by an abuse of notation
we let p; denote the Artin representation which factors through Gal(F/Q) and is
equal on this group to p;). Now dim(p;) = 2, so w(E/Q)4m(P1) = 1. Next we
compute 0, . As det(p;) = €, we need the quadratic subextension of F, which is
Q(+/—47). Therefore sign(@,) = —1. Finally the conductor of E is 37, and we
compute (537) = 1. Therefore w(E/Q,p;) = —1.

This conjecture has applications to finding the rank.

Example 4.0.10 (= [28] Example 2.19). Let E and F be as in Example 4.0.9. E has
root number —1 over F and all of its subfields, so parity tells us that E/F has odd
rank over all of these. We can also find that rk(E /Q) = 1, but together these facts
only give a bound of tk(E/F) > 1.

Parity for twists will allow us to do better. By decomposing the representation

in to irreducibles we can write
E(F)@z;C =1%o opPopi,

for integers a, b, ¢ and d. By comsidering the dimensions, we see that tk(E /F) =
a+b+2c+2d,and 1 =1k(E/Q) = a.

As the representation is defined over (Q, it must have rational character, so we
must have ¢ = d. As computed in Example 4.0.9 the root number for p; is —1, so

assuming parity for this twist we have ¢ > 1. Therefore tk(E/F) > a+4c > 5.

The p-parity conjecture is known for twists of elliptic curves and semistable
principally polarised abelian varieties when G = D;,» and p = 1® o @ det(o ), where
o is a two-dimensional representation ([7] Theorem 1.3.2, [36] Theorem 1.10, [42]
Theorem 6.7). This has an application. Suppose A/Q is a semistable principally
polarised abelian variety, and satisfies the parity conjecture over QQ and all quadratic
extensions of Q. Then, assuming III is finite, parity holds for A over all number

fields ([44] Theorem 1.1). We will ask in Section 4.3 whether understanding 111
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better in dihedral extensions leads to a parity result for twists in D;,,-extensions, but

unfortunately find that it does not.

Notation

Unless otherwise specified, let F/k be a dihedral extension of number fields of
degree 2n, with quadratic subextensions K (for odd n) or K1, K> and K3 (for even n),
as in the statement of Theorem 4.0.1. Let p be a prime not dividing 7.

We will assume that III(E/F)[p>] is finite.

4.1 The size of 111

Brauer relations induce isogenies between products of Weil restrictions of elliptic
curves (see Lemma 2.6.8). By considering the degree of the induced isogeny, we
will show that the Tate—Shafarevich groups of two abelian varieties differ only in

n, and relate these back, by factors which are 4th powers, to the

their p-parts for p

terms we want.
Lemma 4.1.1. In D, there are Brauer relations
e 142Dy, —2C, — C,, when n is odd, and
s 1+2D,,—2C, —C,+ D, — D!, when n is even,
where, if D, = (r,s|r" = s*> = 1,srs = 1), we let Cy = (s), C, = (r), D, = (r?,s)
and D!, = (r*,sr).

Proof. Note that C[G/H| = Indgl. For H = 1, we get the regular representation,
and for H = G we get the trivial representation.

In the odd case, the irreducible representations are the trivial representation 1,
the sign representation €, and % two-dimensional representations which we will

denote pyq, ... Pt Therefore we have

CDw/1]=212edp?@...ap73
2
C[D2y/Day] =1

C[D2,/1]&C[D2y /Do) 1P G e @ p 7 & 6,7
2
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Now we will compute Indgzz” 1 using Frobenius reciprocity. For each irreducible
representation ¢ of D»,, we have (Indlc);"l, o) =1, Reslc)j”q)). Computing Reslc);”q)
for ¢ =1, we get the trivial representation on C,, so <Indlc)22”1, 1) = 1. Doing the
same for ¢ = €, we get the non-trivial irreducible representation on C,, so € does
not appear in Indgzz"l. Restricting each representation p; gives a sum of the trivial

and non-trivial representations on C; 2, so each appears once. Therefore
ClD2n/Co] 2 IndZ> 1= 1 py 6. B Pl
Similarly we find that
C[D2/Ca] 2 Indp*1 =1 &€

We conclude that C[Dy,, /1] ® C[D2, /D2, = C[D,, /C,] ® C[D,,/C>]#2.

Now as these representations are realisable over (Q and isomorphic over C, they
are isomorphic over Q ([86] Ch. 12, Prop. 33 and discussion). Therefore we have
the desired Brauer relation.

The proof for the even case proceeds similarly. We now have three non-trivial
one-dimensional representations, €], & and &3, with kernels C,,, D,, and D/, respec-
tively. The rest of the irreducible representations are two-dimensional p; as before.

We find the induced representation from C, has irreducible summands 1, & and
all the two-dimensional representations. Inducing from each subgroup of order n,

we get 1@ g; for the g with kernel equal to the subgroup in question. Therefore
C[D2y /1] ® C[D2y/D2y) P & C[D2y /Dn) 2 1% &) D 52 @ &30 (P pi) 2.

We get the same result for C[Da,/C,] ® C[D2,/C2]"* ® C[D,,/D)]. Putting this

together and proceeding as before, we get the desired Brauer relation. ]

Lemma 4.1.2. For the Brauer relations } ;H; — ). ;H j’ given in Lemma 4.1.1, there

2To see this, it may help to view p; as a two-dimensional representation where s acts as a reflection
and r as a rotation by a multiple of 27”
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are isogenies, defined over k, between A = [];Respn,  (E) and B =T]; ResFH} i (E)

of degree coprime to p, where p is any prime not dividing n.

Proof. By Lemma 2.6.7, these are Z,)-relations. By ([3], discussion at the start
of Section 3), this is equivalent to saying there is an injection of ZD,,-lattices,
Z[S1] — Z[S,] with finite cokernel of order d, with p { d. Here S| = | |; D»,,/H; and
Sy = |_|j Dz,l/H;-. Then by Lemma 2.6.8 this induces an isogeny A — B of degree d?,

which is coprime to p. The same holds for an isogeny B — A. ]

Lemma 4.1.3. Let A, B and p be as in Lemma 4.1.2. Then
|LL(A/k)[p™]| = |LL(B/k)[p”]|.

Proof. As we have an isogeny ¢ : A — B of degree d°, with p{d, it has a conjugate
isogeny ¢ satisfying ¢ o ¢ = ¢ o ¢ = [d?]. The isogeny ¢ induces a homomorphism
II(A/k)[p=] — LI(B/k)[p™], which is an isomorphism because [d?] is. O

Proof of Theorem 4.0.1. In the case where n is odd, Lemma 4.1.3 tells us that
LL(E/F)[p™]|[LL(E /k) [p]|* = [LL(E/K) [p*]|[LLL(E/F ) [p~] .

When the Tate—Shafarevich group of an elliptic curve is finite, it has square order, so
[II(E/F)[p]| = [IL(E/K)[p™]| (mod Q**).

In the case where 7 is even, the same argument tells us that, modulo 4th powers,

[LI(E/F)[p™|||TL(E/FPr) [p~]| = |TL(E/Fn) [p~]|[TL(E/F) [p]],

again using the squareness of the order of III. These fixed fields are the three

quadratic subextensions of F /k, so we can write this as
[LL(E/F)[p™]| = [LL(E/K))[p™]|[LL(E/K>) [p~]||LLL(E /K3)[p]|  (mod Q**).

]
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We can prove a similar statement about ITII(E/F)[p], which has an application

to computing rk(E /F).

Proposition 4.1.4. Suppose E /k, K, F, n and p are as in Theorem 4.0.1. If n is odd,
then
[UL(E/F)[p]| = UL(E/K)[p]| (mod Q™).

If n is even, then
LL(E/F)[p]| = [IL(E/K)) [p]|[IL(E/K>) [p)||ILL(E/K3)[p]]  (mod Q).

Proof. The proof is the same as that of Lemma 4.1.3 and Theorem 4.0.1. We can
show that (in the notation of Lemma 4.1.3) II1(A /k)[p] = I11(B/k)[p]. This tells us
that

LI(E/F)[p] ® UL(E/k)[p)** = IL(E/K)[p] & LLL(E /F %) [p]*2.

By Corollary 2.2.5, III(E /k)[p] and ITII(E /F©)[p] have square order, and the con-

clusion follows. The proof for even n proceeds in the same way. ]

Corollary 4.1.5. Let E /k be an elliptic curve. Assume 1LL(E /F) is finite. Then

(EJF) — |Selp(E/F)| mod O
= /K P EEE] M)

prk

This is a consequence of Proposition 4.1.4 and the exact sequence in Theorem
2.3.2. It reduces the calculation of the rank modulo 4 to some slightly easier
computations (assuming finiteness of I1I). If we can find points to give a lower
bound on the rank, and use the Selmer group to give an upper bound that is close to

this, computing the rank modulo 4 may be enough to give the exact answer.

Example 4.1.6. Let E/Q be given by y> = x> — 7x — 6 (LMFDB label 40.a2) and
F be the extension given by adjoining a root of x8 + 34x* +289x 4-983. F/Q is
a Dg-extension with intermediate field Q(m) Using Magma [15], we can
calculate in a few seconds (on a typical laptop) that E (F )iors = E(Q)tors = C2 © G,
that Sely(E /Q(v/—983)) 2 C5 and that Sel,(E/F) = CS. From this, we deduce that
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HI(E/Q(+/—983))[2] is trivial. Applying Corollary 4.1.5, we find that rk(E /F)
must be a multiple of 4. The Selmer group gives an upper bound of 4. We can very
quickly compute some points of low height which are not in the torsion subgroup, so
the rank must equal 4.

Attempting to do this using Magma’s inbuilt rank functions, which will use
the Selmer group to give an upper bound of four and then search until it has four
independent points, could not compute the rank in an hour. The difficulty is in
finding a third linearly-independent point, as there are none with low height. Once a
third is found, the usual finiteness assumption tells us that III(E/F)|[2] is a square,
so we would know that the rank is 4. Applying Corollary 4.1.5 instead avoids this

difficult search over a degree 6 number field.

Remark 4.1.7. For p # 2, we can determine I1I from calculations on curves over k.
This is because the Weil restriction Resg (E) is related to E x E; by a 4-isogeny,
where E is the quadratic twist of E by some d € k such that K = k(+/d) (Proposition
2.5.7). By the same proof as Lemma 4.1.3, we therefore have |III(E/K)[p~]| =
|IL(Eq/K) [p~]| TL(E /) [p~]]-

In the case where k = QQ, this can make computation more practical. For
example, consider the curve E : y> +xy +y = x> — 5334x — 150368 (LMFDB label
30.al) and the number field F given by a root of x'° 4 5x8 + 15x6 +20x* 4-25x> 4 15,
a Djp-extension of Q. The intermediate quadratic field is K = @(\/—_15 ) [63]. We
can compute the 3”-part of I1I for E and E_5 over (Q by computing Selmer groups
—in this case Magma [15] will show that they are both trivial. Hence the 3*-part of
II(E/F) has order 3* for some ¢ (if it is finite). This can be verified analytically,
again using Magma. It tells us that the analytic order of III(E/F) is 6560.999998.
This strongly suggests that the true value is 6561 = 3%, which would match our

conclusion.

Remark 4.1.8. If we replace E by an abelian variety A, the same arguments work,
except we no longer know that III(A)[p*] has square order. If A is principally
polarised, and p # 2, this is still true and we can make the same conclusion. In

general, we can conclude that |ITII(A/F)[p~]| = |ILI(A/K)[p*]| (mod Q*?) for odd
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n, and analogously for even n.

4.2 Galois Module Structure

In some cases, the same result follows from the work of Chetty, which also gives
information about the Galois module structure of I1I. Let n, p and H = C,, be as in

Theorem 4.0.4, and assume that III(E/F)[p*] is finite.
Lemma 4.2.1. Z,[C,| is a direct sum of local rings with principal maximal ideals.

Proof. The ring Z,[C,] is isomorphic to Z,[T]/(T" —1). By the Chinese Remainder
Theorem, this is a direct sum of rings Z,[T|/®4(T) for cyclotomic polynomials
®, with d|n. These further split into direct sums because ®; = [, Pz, a product
of irreducible polynomials over Z,. Finally Z,[T|/P;;(T) is the ring of integers
of Q,[T]/P4i(T) ([87], Ch. IV, Section 4, Prop. 16), a local field, so has principal

maximal ideal. L]

Recall the following result, Proposition 2.8 from [24]. Note that as stated there
it has an error, specifically it may be false if the codomain of the pairing has an
element of order 2. Here we restrict to a codomain Q,/Z, for p odd, where this

does not occur. This can be proven in exactly the same way as in [24].

Proposition 4.2.2. Let p be an odd prime. Suppose A is a commutative ring which
is a direct sum of local rings with principal maximal ideals, and such that Q,/Z,,
is an A-module. Let M be a finite A-module. Suppose [_, | M xM — Q,/Z,
is a non-degenerate skew-symmetric pairing with [ax,y| = [x,ay| for all x,y € M
and a € A. Then there exist submodules M' and M" of M, with M = M' ®M" and
M =M,

Theorem 4.2.3 (= Theorem 4.0.4). Suppose p is odd. Then U1(E/F)[p”] =X & X
as ZpH]-modules, for some submodule X, and IN(E /K)[p~] = X" & X 1.
Moreover, when n is odd and ord,(p) is even for all primes q dividing n,

1X|/1XH]| is a square.

Note that if p? = —1 mod » has a solution, the latter condition holds.
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Proof. We will apply Lemma 4.2.1 and Proposition 4.2.2 to the ring A = Z,[H],
M =1I(E/F)[p”] and Q,/Z, an A-module with H acting trivially. The pairing
will be [x,y] := (x,sy), where (_,_) is the Cassels—Tate pairing on III(E/F) and
s is a lift of the non-trivial element of Gal(K /k) to Gal(F /k) (i.e. an element of
order 2 corresponding to a reflection in D,,,). This pairing is non-degenerate because
the Cassels—Tate pairing is, and skew-symmetric because of the skew-symmetry
and Galois equivariance of the Cassels—Tate pairing. Now, given a € H, we have
(ax,sy) = (x,a”'sy) = (x,say), where the first equality is Galois equivariance, and
the second is because Gal(F /k) is dihedral. Therefore our pairing satisfies the
condition [ax,y] = [x,ay| for all a € H, and by bilinearity this holds for all a € A.
Applying the proposition, we can conclude that III(E/F)[p”] = X & X.

Note that [II(E /F)[p™]¥ = II(E/K)[p™] as p{ |H| = n (see e.g. [78], Lemma
11).

Now by Lemma 4.2.1, HI(E /F)[p*] is a direct sum of Z,[T|/P, ;(T )-modules.
Suppose that 7 is odd and ord,(p) is even for all g|n. We will show that [M|/|M|
is a square for all Z,[T] /Py ;(T)-modules M, from which it follows that |X|/|X] is
a square.

First consider the modules with d # 1. The condition implies that ord,(p) is

even for all d|n, because for any ¢|d, ord,(p)|ords(p). This equals the degree of
P, ; (this is true for the factorisation of a cyclotomic polynomial over I, by e.g.
[61] Theorem 2.47, and we can lift the factorisation to Z, by Hensel’s lemma). For
a uniformiser 7, finite Z,[T|/P;;(T)-modules are direct sums of modules of the
form Z,[T]/(n“,P;;(T)) for some a ([46] Chapter 12 Theorem 6). As p {d, the

adeg(Fyi) which is a

cyclotomic extension of Z,, is unramified, so these have size p
square as deg(P; ;) is even. They have no fixed part because a generator of H acts as
multiplication by {;, a root of Py ;, and 1 — {; is a unitin Z,[T|/Py;(T).

When d = 1, we have Z,-modules with C, acting trivially, so M = MES and

|M|/|M%| is again a square. O

Remark 4.2.4. In the case where there is a prime g|n with ord,(p) odd, we may

have some Z,[H|-modules M; with size an odd power of p, with no fixed part. By
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Theorem 4.0.1 we can conclude that if each of these M; appears in the decomposition

of III(E /F)[p*] with multiplicity 2a;, then }; a; is even.

Remark 4.2.5. In the case where n = g is a prime, the latter part of Theorem 4.2.3
holds when p has even order modulo g. If g varies and we fix p, this happens for a
set of primes with Dirichlet density 2/3 ([52], Section 3). It will happen less often
when »n has more factors, as more conditions must hold.

If instead we fix ¢ and vary p, the condition will hold for at least half of the
residue classes modulo g (more precisely, by considering the cyclic group Fy of
order g — 1, we can see that the proportion is 1 — 2—n2(a-1)y So again we can apply

the second part of Theorem 4.2.3 in at least half of cases.

4.3 Application to Parity

Beyond the parity conjecture, we are also interested in the parity conjecture for
twists. In this setting, we consider an elliptic curve E /k, and a Galois field extension
K /k with Gal(K /k) = G. It is natural to ask what we can say about the structure
of the representation E(K) ®7 C, i.e. if p is an irreducible representation of G, can
we find (p,E(K) ®z C)? It turns out that there is an equivalent to the root number,
which is conjectured to predict its parity. This conjecture is known to follow from
finiteness of I1I for the representations of some dihedral groups, with the smallest

case not yet proven being being D.s.

Example 4.3.1. Consider the curve E and number field F from Example 4.1.6.
We have a Dg-extension of number fields F/Q. This has one two-dimensional
irreducible representation p. We find using Theorem 1 of [43] that this twist has
root number 1, so assuming finiteness of 111 it has even parity. This tells us that
tk(E/F) = rk(E/Q(v/—983)) = 0 mod 4, which is the same result we deduced

from finiteness of III in that example.

We can approach such results using a Brauer relation. The idea is to relate a
ratio of regulators to local data, specifically the Tamagawa numbers and valuations

of %, where o is a fixed k-rational differential, and w9 is a minimal differential
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at a place v. Then we aim to relate this local data to the root numbers, to show it
gives the same overall result. The method is shown in [39] Section 1.iv. We will
sketch how this method works, and why one might hope to improve on it with better
knowledge of the size of I1I.

Taking a Brauer relation, we will apply Lemma 2.6.8 together with isogeny-
invariance of BSD to relate regulators to local data. Suppose E /k is an elliptic curve,
K /k is a Galois extension with Galois group G, and }';n;H; is a Brauer relation in G.

Then we get an isogeny

[T Resg, i (E)" — T Resga, i (E) ™.

n;>0 n;<0
Assuming finiteness of 111, and applying isogeny-invariance to this, we get

Reg(E/K™)"Q(E/K™)"|LLL(E /K
1 [E(E /K)o -

1

1.

In a Brauer relation, the terms in €2, other than Tamagawa numbers and the valuations
of a differential discussed earlier, cancel out ([41] Section 2.2). Let the product of
these remaining terms for a given curve E /K™ be C(E /K™). If we work modulo

squares, the Tate—Shafarevich and torsion terms vanish. We can then conclude that

HReg(E JKHm = HC(E JKHN% - (mod Q*2),

As a coarse example of the utility of this method, if we can calculate the local terms
C(E/K") and show that the right hand side is not a square, then rk(E/K) is not 1.
Note that the local terms can be calculated using Tate’s algorithm. The following

theorem will allow us to say something more precise.

Theorem 4.3.2 (= [41] Corollary 2.13). We can express the ratio of regulators purely
in terms of regulator constants. Specifically, if ® is a Brauer relation in Gal(K /k),
and E(K) ®7Q = @, p;", where the p; are irreducible rational representations of

Gal(K /k), then the ratio of regulators in ® is equal to []Ce(p;i)™.

This implies that if Cg(p;) is not square, we have a hope of expressing the
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parity of n; in terms of local data and relating this to the root numbers. The main
limiting factor here is I1I, about which we only say that its order is a square. If we
know more about how III grows in dihedral extensions, we might hope to get more
information. Of course, we will also have to deal with the other terms more precisely.
The torsion subgroups can be calculated in practice for elliptic curves over fairly
large fields, so they are not a major problem. Regulator constants can also be defined
as rational numbers, rather than rational numbers modulo squares, as long as we
consider E(K)/E(K)ors as an integral representation of G rather than a rational one
([3], comment after Theorem 2.6). Hence if we know something about |I11| modulo
fourth powers, as in Theorem 4.0.1, we might hope to do something similar and get
more information, such as in cases where the regulator constant is trivial modulo
rational squares.

We will consider applying this refined method to representations of the simplest
dihedral groups where parity is not already known, those of the form D,,, for primes

p and gq.

Notation. Let p and ¢ be odd primes, and as before let K3, be a Galois extension of
Q with Galois group D,,,. Fix a subfield L,, of degree pqg, and a subfield L, C L,
of degree p. Let K3, K3, and K», be the subfields of degree 2, 2p and 2q respectively.

There is a faithful irreducible representation of D, ,,, which we cannot in general
prove parity for. If we want to use this technique to prove parity for this represen-
tation, the simplest case is when this is the only irreducible rational representation
which appears in E(K>,,) @7 Q. Equivalently, E has no points over K3, or K»,, but
gains rank over K»,. If we can prove for some curve in this setting that the ratio of

regulators is not 1, then we may be able to prove results towards parity.

Remark 4.3.3. Root number considerations do allow this setting to occur, so to prove
a parity result we would have to be able to deal with this case. Take K = Q(v/—7).
By class field theory, it has extensions of degree 3, dihedral over QQ, one of which
ramifies at 5 only, and one at 41 only. Their compositum contains a degree 3

extension which ramifies at both; let this be Kg. Similarly we can construct a degree
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7 extension K14 which ramifies at 13 and 41. The compositum of these is dihedral of
degree 42 over Q. It ramifies at 5, 13 and 41 with ramification indices 3, 7 and 21
respectively, and residue degree 2. It is also ramified at 7.

If we find an elliptic curve with rank 0 over QQ, multiplicative reduction at 5, 13
and 41 and good reduction elsewhere, the formula in Theorem 1 of [43] tells us that
the root numbers for the twists are —1 for exactly the representations we want. The

curve with LMFDB label 2665.b1 has these properties [63].

Lemma 4.3.4. The Brauer relations in Dy, are

® = {e} + 2Dy, — Cpg — 2C5
®p = Cq+2D2pg — Cpqg —2D2yg

@)q = Cp =+ 2D2pq — Cpq — 2D2p

and Z-linear combinations of these.

Proof. It is simple to check that these are all Brauer relations and linearly indepen-
dent, and in D5, there are three conjugacy classes of non-cyclic subgroups so there
are three independent Brauer relations. Therefore these form a rational basis for the
module of Brauer relations. In any Brauer relation, the multiplicity of ® will equal
that of {e}, so will be an integer, and similarly for the others, so these three relations

form a lattice basis. L]

Now we are interested in the setting where E has rank over K3, but not K, or
K>,. Here the ratio of regulators arising from ®,, and ©, is 1. So to get a non-trivial
ratio of regulators, without loss of generality we can use the relation ®. So our aim

18 to use data about the torsion, ITI and local data to show that

Reg(E /Kapg)Reg(E /Q)?
Reg(E/K2)Reg(E /Lyy)?

£1

Unfortunately this will never be the case.
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Proposition 4.3.5. Let E be an elliptic curve over Q, and let p, g and K>p, be as

above. Suppose E has positive rank over Ky, but not K>, or Ka4. Then

Reg(E/szq)Reg(E/Q)z o

Reg(E/K)Reg(E/Lpg)?

Proof. First consider the p-adic valuation. The ratio

Reg(E /Kypg)Reg(E/Ly)*
Reg(E/Lyq)*Reg(E/Kap)

comes from a Brauer relation in the D,, extension K3,,/L,. Hence it is a rational

number, and its p-adic valuation is 0 by Lemma 2.6.7. The ratio

Reg(E /K»p)Reg(E/Q)?
Reg(E/K>)Reg(E/Ly)?

is 1, because all of these regulators are 1 as the ranks are 0. We are interested in
the product of these, which must also have p-adic valuation 0. Similarly the g-adic
valuation is 0. The other primes give valuation 0 by Lemma 2.6.7. Therefore the

ratio is 1. [

As the regulator constant is always 1 in this case, we cannot hope to use this
method with Brauer relations in D5, to get a parity result for the faithful irreducible

representation of Dy,.



Chapter 5

Abelian Varieties with the Same

Arithmetic Properties

In this chapter, we consider how much Selmer groups and other invariants tell us
about the isomorphism class of an abelian variety. We give a list of invariants
which determines the isomorphism class of an elliptic curve over Q, but does not
for abelian varieties of higher dimension. Some of the content of this chapter (in the
introduction and Sections 5.1, 5.2 and 5.3) is based on the paper Non-Isomorphic

Abelian Varieties with the Same Arithmetic. A pre-print of this is available at [6].

Introduction

A natural question to ask about abelian varieties is which invariants we can use to
distinguish them. For example, if we have two varieties A and B defined over QQ, and

A(F) = B(F) for every number field F, must A and B be isomorphic over Q?

Question 5.0.1. Is there a list of invariants which, if they are equal for two abelian
varieties A and B over a number field &, guarantee that A and B are isomorphic over

k? If so, which invariants do we need?

Here the invariants are properties of the curve which are not changed by iso-
morphism over k. This excludes properties like the discriminant, which depend on
the model chosen.

Mazur and Rubin considered a similar question in [66], asking what the Selmer

groups Sel,(E;/k) can tell us, for a fixed integer n and where E, is the quadratic
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twist of an elliptic curve E /k by d. They found that two non-isogenous curves could
have isomorphic n-Selmer groups for all E;, and gave sufficient conditions for this
phenomenon to occur. It has since been shown by Chiu ([26] Theorem 1.8) that if
two elliptic curves have the same size p-Selmer groups for all but finitely many p
and over all finite extensions of k, they are isogenous. Chiu used a result of Faltings
([47] Corollary 1 after Theorem 4), which tells us that if the (rational) Tate modules
of two abelian varieties are isomorphic for some prime, then the varieties must be
isogenous. We consider the related question of determining elliptic curves up to
isomorphism.

The main focus of this chapter is to prove the following theorem.

Theorem 5.0.2. There exist abelian varieties A and B defined over Q which are not

isomorphic to each other but satisfy the following, over every number field F:

* The n-Selmer groups of A and B are isomorphic.

* The Tamagawa numbers c,(A) = ¢,(B), for every finite place v of F.

The Tate—Shafarevich groups 111(A/F) = I11(B/F).
* The L-functions L(A/F,s) = L(B/F,s).

* The conductors of A and B are equal.

e The regulators Reg(A/F) = Reg(B/F).

* For every prime {, the Tate modules T;(A) = T;(B).

Here ‘isomorphic’ means isomorphism of groups, except for the Tate modules which

are also isomorphic as Gr-modules.

In other words, if we wish to distinguish abelian varieties by their arithmetic
properties, this list is insufficient. We will be able to give an explicit construction for

these varieties A and B.
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Remark 5.0.3. Theorem 5.0.2 tells us that knowing all the p-Selmer groups over
every finite extension of k does not force the varieties to be isomorphic. We can
compare this to Chiu’s result ([26] Theorem 1.8), which tells us that, for elliptic

curves, knowing these for all but finitely many p guarantees that they are isogenous.

Remark 5.0.4. For elliptic curves, the j-invariant tells us whether they are isomor-
phic over k, but not whether they are isomorphic over k. We will also consider elliptic
curves, and show that the properties listed in Theorem 5.0.2 do determine whether

elliptic curves are isomorphic over @, but there are number fields where they do not.

Remark 5.0.5. This is analogous to questions about other mathematical objects,
for example number fields. It is known that there exist non-isomorphic number
fields with the same zeta function, class groups, regulators, discriminants, adele
rings and other properties ([92] Proposition 3.7 and Remark 3.11). Another example
is a certain eigenvalue problem on regions of the plane, which models what pure
tones a drum of that shape can produce. In this case, the list of eigenvalues does not

determine the shape of the region ([49] Section 1).

5.1 Properties of A and B

In this section we prove the following proposition:

Proposition 5.1.1. Suppose A and B are abelian varieties over a number field k,
and that there exist isogenies defined over k from A to B of degree coprime to {, for
all primes . Then A and B have the same properties as listed in the statement of

Theorem 5.0.2, for all number fields F containing k.

Lemma 5.1.2. Suppose f is a functor from abelian varieties to the category of
abelian groups G with G[n] and G /nG finite for all positive integers n. Suppose also
that f([n]) = [n] for all n. Then for any isogeny @, defined over k, of degree coprime

to !, |ker(f(9))| and |coker(f(@))| are finite and coprime to .

Proof. This follows from the existence of conjugate isogenies. Given ¢ : X — Y,

there exists ¢ : ¥ — X such that ¢ o ¢ = [deg(¢)] on X and ¢ o ¢ = [deg(¢)] on Y.
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Now f($) o f(9) = [deg(9)]. so ker(f(9)) < ker([deg(9)]). As deg(9) is
coprime to ¢, the order of ker([deg(¢)]) is coprime to ¢, so the kernel of ¢ has the

required property. Similarly f(¢)o f(9) = [deg(9)]. so im(f(¢)) > im([deg(¢)])
and coker(f(¢)) is a quotient of coker(|deg(¢)]). Therefore the cokernel also has
the required property. [

Note that this is a generalisation of Lemma 4.1.3. For that case, the only
subgroups or quotient groups of I11[p™] with order coprime to p are trivial, so the

groups have to be the same size.

Lemma 5.1.3. Suppose f is a functor as in Lemma 5.1.2, and which maps to finite
groups. Let A and B be abelian varieties over a number field k, and suppose that for
every prime {, there exists an isogeny from A to B, defined over k, of degree coprime

to L. Then f(A) = f(B).

Proof. We first prove a weaker result, that [f(A)| = | f(B)|. Suppose ¢ : A — B is an

isogeny. Then, by considering the exact sequence

0 —ker(f(9)) = f(A) = f(B) — coker(f(¢)) — 0,

we see that

f(A)] _ [ker(f(¢))|
[f(B)] |coker(f(9))|"

By the previous lemma, if we pick a ¢ of degree coprime to a prime ¢, the right

hand side has /-adic valuation 0. By doing this for a range of isogenies of different
degrees, we can show that it is equal to 1, so |f(A)| = | f(B)|.

Now consider X — f(X)[n] for some integer n. This is a functor meeting
the required conditions to apply the weaker result, so |f(A)[n]| = | f(B)[n]| for all

n. By the structure theorem for finite abelian groups, this is enough to show that

f(A) = f(B). O

Lemma 5.1.4. Let A and B be as in Lemma 5.1.3. Suppose f is a functor as in

Lemma 5.1.2, and which maps to finitely-generated groups. Then f(A) = f(B).
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Proof. The groups f(A) and f(B) must have the same rank, as the cokernels of the
maps between them are finite. Then we can apply Lemma 5.1.3 to their torsion

parts. O]

Proof of Proposition 5.1.1. The Mordell-Weil groups and n-Selmer groups are iso-
morphic by a direct application of Lemmas 5.1.3 and 5.1.4, and so are the Tamagawa
numbers as ¢,(A) = |A(F,)/Ao(F,)|, where Ao(F,) is the set of points mapped to
the identity component of the special fibre of the Neron model of A. The Tate—
Shafarevich groups are isomorphic as they are determined by the finite groups
III(A/F)[¢"] for all primes ¢ and positive integers n, and we can apply Lemma 5.1.3
to these. The equality of the L-functions and conductors holds for any pair of abelian
varieties with an isogeny between them.

To prove that the regulators are equal, note that given an isogeny ¢ : A — B,

~ Y

Reg(A/F)  |coker(¢ : A(F)/A(F )tors — B(F)/B(F )tors)|
B (F)/A(F )tors)|

¢
Reg(B/F) |coker(¢ : B(F)/B(F)iors —

2>

where B and ¢ are the duals of B and ¢ ([14] Section 2.2). By picking suitable
isogenies, we can use Lemma 5.1.2 to show that the right hand side is coprime to
any prime, and hence the regulators are equal.

Finally, for the Tate modules 7;(A) and 7;(B), pick an isogeny ¢ of degree
coprime to ¢. The map [deg(¢)] is an isomorphism on 7;(A) and T;(B), so the proof
of Lemma 5.1.2 implies that ¢ induces an isomorphism of Tate modules as groups.
Because ¢ commutes with the action of Gr on points, it does on the Tate module

also, so they are isomorphic as Z[Gr]-modules.

]

Remark 5.1.5. This equality of properties would also be true if A and B were

isomorphic, but we shall show that this does not have to be the case.

5.2 Existence of Abelian Varieties

Theorem 5.2.1. There exist abelian varieties A and B, defined over Q, which are

not isomorphic over Q, but for any prime { there exists an isogeny between them,
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defined over Q, of degree coprime to /.

Combined with Proposition 5.1.1, this proves Theorem 5.0.2. We will construct
abelian varieties with isogenies between them by considering Z[G]-modules, as
discussed in Section 2.5 and in [69]. One example where this can give the right

properties is for Z[C)]-modules.

5.2.1 Modules in the Same Genus

Let p be a prime, K the p™ cyclotomic field, and Og = Z[{] its ring of integers,
where { is a primitive p root of unity. Let G be the group C,, generated by an

element g. Note that an ideal in Ok is a Z[G|-module, with g acting as multiplication

by C.

Lemma 5.2.2. Two ideals in Ok are isomorphic as Z|G|-modules if and only if they

are in the same ideal class.

Proof. See Curtis—Reiner ([31], Section 74). [l

Thus if we pick two ideals which are not in the same ideal class, we have two
Z[G]-modules which are not isomorphic. This can be done for any p > 23 ([96]
Theorem 11.1).

Definition 5.2.3 (Genus). Two Z[G]-modules M and N are in the same genus if, for
all primes ¢, M ®7 Zy = N ®z Zy as Z;|G]-modules.

Lemma 5.2.4. Let M and N be ideals in Ok. Then M and N are in the same genus.

Proof. M ®y, Zy is a Z¢[G]-module, and in fact it is an ideal in Z[{] ®z Z; =

Z[X) . . . . . L . .
Xt X1 This cyclotomic polynomial factorises into distinct irreducible
factors Py,...,P over Zy. The only prime that divides the discriminant of

1+X+...+XP"Vis p, so for £ # p the polynomials Pi,...,P; are coprime. If
{=p,then 1 +X+...+X P=1 g irreducible so t = 1. Therefore in either case we
have

2|8 @72y =
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Therefore by Lemma 2.7.3, the ideal M ®z Z; is a product of ideals M; in %?(—[})5)].

Considering the Z-rank of these tells us that M; is never the zero ideal, as

p—1=1kg(M) =rkg,(M®7Z) = Zrng(Mi) < Zrkz[ (ii%) =p—1L

Zy[X]
P(X)

is the ring of integers of the cyclotomic extension Qu[X] ([87] Ch.

Each ring PX)

IV, §4, Prop. 16 and 17), a local field, so is a principal ideal domain. Therefore
Zy[X]

M; is a non-zero principal ideal so is isomorphic to 5 as Z|G]-modules !, so

M Q7 Zy = Z[C] ®7 Zy¢. The same is true for N ®z Z, and the result follows. H

Example 5.2.5. We can make the construction above explicit, and verify computa-
tionally that we have two modules in the same genus which are not isomorphic. Let K
be the 23" cyclotomic field, and let Ok be its ring of integers. Let ¢ be a 23" root of
unity. Let I be the ideal of Ok generated by 2 and 14§24+ 4+ &>+ £6 + £104-¢ 1,
i.e. one of the primes above 2, which is not principal. We will show explicitly that
Ok and I are not isomorphic as Z|G]-modules, but are in the same genus.

We will use the basis {{/:0 <i <21} for Og. A generator g which acts as

multiplication by { is represented by a matrix

=
I
elolsleolsleoleleoleleleleleleleolelelelo el o]
[slolelolelalelaleoleleoleleleleleleleolalo o)
slolsloleleolelolelelelelelelelelelel el )
slolelolelaleleleoleleolelelelelelal o Xoke )
slolsleoleleolelelelelelelelelelelfelelele o)
slolelolelaoleloleoleleolelelelelfeXeleXoke )
slolaleoleleolelelelelelelelel feloXelo el o)
slolelolelolelaleoleleoleleol YeleleXelaXoke )
sloleleoleloleleleleleleljelelelelelo el e)
slolelolelaoleleleoleleol joleleleleXoleXoka )
sloleleolelelelelelel jeleleleleleXoloYeke )
eloleloleleolelaleoljeleleleleleleXeleXoka )
sloleleoleleolelel jeleoleleleleleloXelo Yol )
eloleloleloleleoleleoleleleleleleXeleXoka )
[sleoleleoleleoldoleleleoleleleleleleXoloYole )
eloleleolel elololeleoleleleleleleXelaXoka )
sloleleol doleloleleleleleleleleloXoloYoke )
sleoleldeloleloleoleloleleleleleleXeleXoke )
sleol JolelaleloleleleoleleleleleloXoleYole )
el ololelolelololeloleleleleleleXelaXoke o)
[ =leleoleleleleleleleleleleleleloXolo Yok o)
e e Y B
Pt k. ko ko

We can compute a lattice basis for the ideal / with Magma [15]. In the same basis as

Z

! Analogously to Lemma 5.2.2, if M; is a principal ideal it is of the form o Pf([))(()] for some non-zero
o e %’i—[jﬂ, which gives an isomorphism.
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before, it is the columns of the matrix

inleleljelelolol ool slelslelelelelelelely)
—O—O— OO0 —O—— OO —O
imialelolol sslolelollelelelelelelelelolele)
OO~ O~ OO ——O0OO0OOOOOOO—OOO
O~ O~ OO—— OO0 —0OO0O0O
imialelololelelolslelelelelelelelojelelelaele)
OO = OO —O OO0 —OO0O0OoOO
OO~ OO OO0 —OOoOoOOoOoOoO
T O O OO OO — O OO0 OOO
OO0 O ———O—O—O0OO0OOoOoOOoOoOoO
O OO O—O—O OO0 OOO
[elelelelelelelelele] o [eleleleleleleleolelelw)
OO OO OOACOOOOOOoOoOoOoOoO
COOOOOOOAOOCOOOOOOoOoOOoOoOoo
OO0 OOACOOOOOOOOoOoOoOoOoO
COOOOOACOCOOOOOOOOoOoOoOoOoo
OO OOACOOOOOOOOOOoOoOoOoOoO
COOOACOCOOOOOOOOOOoOoOooOoo
OO ACOOOOOOOOOOOOoOoOoOoOoO
COACOCOOOOOOOOOOOOoOooooo
CACOOOOOOOOOOOOOOoOoOoOoOoO
[g\[elelelelelelelelelelelelelelelolelolololw]

I
S

Thus the action of g on the ideal /, in a basis given by the columns of M, is

given by

o
[

— — — —
| [=}elelelw) | (=) | OO OO OO —

— —_ -
— —
| OPOOO000O | © | O—00o000000o—0o

— p— — —

| TocoToocoTo~ooococooo—~oo
o CCOoo0co0000o00oOoO—~000
Yottt e ettt Y R Y = P T P Y R )
T occocoocTooo—ocooo—oo0o00
Yttt ettt Y T e Y T R e R P
CoCCOoOo0c o000 oO—~0000oOO
o p— —

| Toco T Joocoo~o—~ococooocooo
CoCCOoo0cOooco0O—~000000oOoO
o o p— o

| TocoT ] ToTonocococococococooo
Sttt o R o Y Y e o A Y R Y
o000 —~000000000oOD
o000 ~0000000OO0OOD
o0 —00000000000oOD
0O~ 00000000000 OD
Sl = T o Yt o Y f = Y= R = = R b
Sttt t et Yt Y e A Y R )
o C—00 0000000000000 OO
Sl ottt Yt Y e A = R W)
O~ 000 0000000000000 OO

M 'AM

A/

Magma can test that this matrix is similar to A, and produces a matrix B with
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the property that B~'AB = A’. The B it produces is not M, but

10000000000000 O 0OO000 O O
61000000000303 0 03003 2 2
5610000000053 5 3 05305 2 1
4561000000045 7 5 34534 4 1
3456100000034 8 7 56456 3 3
3345610000033 7 8 77648 5 2
3334561000063 9 7 86769 4 2
2333456100086109 75677 3 4
2233345610098 9 109 75655 6
2223334561089109 109755 4 8
1222333456198 8 109 7977 6 8
1122233345689 7 8105798 7 9
01122233345985 7 845765 17
00112223334794 5 73454 4 5
0001122233367 6 4 52343 2 4
00001122233564 6 41232 2 3
00000112223453 4 61121 1 2
0000001122234 2 3 431100 1
0000000112223 1 2 323100 O
0000000011212 1 1 21230-1-1
0000000001111 0 1 10122~-1-2
0000000000101 0 0 10011 1 =2

So we have A’ = B"'AB = M~'AM. The two matrices B and M are defined
over Z and have determinants 126823 - 2665931 and 2'! respectively, so for each
prime ¢ one of them will provide an isomorphism over Z,. Therefore the modules
are in the same genus. However we can verify using Oscar [77] that A and A’ are not

conjugate in GLj;(Z) and so the integral representations are not isomorphic.

5.2.2 Abelian Varieties from Modules

For the construction of abelian varieties from these Z|G|-modules, we follow the
construction of Milne detailed in Section 2.5. Recall that given a Z[G;]-module
M and an abelian variety A/k, we can construct an abelian variety M ® A. This is

defined over k, but over k it becomes isomorphic to a power of A. Recall Lemma

2.5.5:

Lemma 5.2.6 (= [69] Prop. 6(a)). Suppose M and N are Z|Gy]-modules, isomorphic
as groups to 7", and on which Gy, acts via a finite quotient. Suppose ¢ : M — N is a
homomorphism of Z|Gy|-modules with finite cokernel. Then ¢4 : M @A — N QA is

an isogeny defined over k, and its degree is |coker(¢)|24imA),

The following result is a partial converse to this lemma.

Lemma 5.2.7. Suppose A/k is an abelian variety with End;(A) = Z. Then if M and

N are as in Lemma 5.2.6, and M ® A is isogenous to N ® A by an isogeny of degree d
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over k, then there is a homomorphism of 7|Gy|-modules from M to N with cokernel
of size dl/2dim(A) particular, if M Q@ A and N ® A are isomorphic over k, then M

and N are isomorphic as Z|Gy]-modules.

Proof. First, let us fix some notation. By the construction of M ® A, detailed in
Section 2.5, we have isomorphisms Yy : Z" — M and Yyea @ (Ap)" = (M ®A);
defined over k, and similarly for N. Denote the ring isomorphism Endz(Z") —
Endj(A") used in the construction of M ® A and N ® A by p (this also induces an
isomorphism between the corresponding automorphism groups). For now, let the
action of o € Gy on a module or variety X be written as yx (o), and then define

cocycles from Gy to Aut(Z") and Autz(A") by

su(0) =y, o xm(0) oWy xzn (o)

M2A(C) = Wizba © X4y, (0) 0 Waea o ay(0))

and similarly for N. Note that we view Z" as a trivial Galois module. These may
also be written as sy (0) = W, W& and syea(0) = l//&é% W14+ BY construction
of M®A, p(sym) = spyea and likewise for N. Henceforth, we will drop the notation
Xx-

Now suppose there is an isogeny ¢4 : M @ A — N ® A defined over k. We will
reverse the construction from Section 2.5, and show that there is a Z[Gy]-module
homomorphism ¢ : M — N.

We define ¢ to be the map satisfying v, Yoy =p~! (1111;;9 A0AVMza). We can
illustrate this with reference to a diagram with two commutative squares. The map
@4 gives rise to an isogeny A" — A" (the second vertical arrow), i.e. an element
of End(A"). Under the isomorphism p, this gives a homomorphism Z" — Z" (the
third vertical arrow), and commutativity defines the map ¢, which is therefore also a
group homomorphism.

M®A +—— A" 7n My

o N A

NRA «—— A" 7" ——— N
YN®A
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Note that if ¢4 is an isogeny, so is w&é 494 Wmea, which therefore corresponds to
a matrix of rank n in Endg(A") = End(Z") = M,(Z). Hence ¢ is surjective and has
finite cokernel, with order determined by Lemma 5.2.6.

Now we must prove that ¢ is a homomorphism of Z[Gy]-modules. We need to
show that c¢ = ¢ o for all o € Gy. To do this, we will use the fact that ¢4 is defined
over k, which is equivalent to the fact that c¢4 = ¢4 0 for all o € Gy.

Note that l//ﬁé 494VMea is an endomorphism of A" defined over k. However,
in our case, because End;(A) = Z, all of these are given by M, (Z) and defined over
k, so this map commutes with the action of Gy. Hence for any o € Gy, we have the

following equality of maps (Az)" — (Az)™

—1 R | —1,,,—1
SNeA(O) UnoaPAWMaA = YnoaOWUNGAC  WyoaPaVMea
—1 —1
= Ynoa O PAVMcAC
-1 —1
= YnoaPAOYMcAC

= ll/ﬁéA OAVpMeASM©A(O),

where the second equality holds because ¢ commutes with ‘/’ﬁé 194 Wmea, and the
third because it commutes with ¢4.

Now apply p~! to this to get

sv(o)wy o = wy ' dymsu (o).

Because Galois acts trivially on Z", this implies

vy covm = vy ooy,

which tells us that ¢ commutes with 6. Hence ¢ is a homomorphism of Z[G]-
modules as required. Moreover, if M ® A and N ® A are isomorphic over k, M and N

are isomorphic as Z[Gy]-modules. O

Proof of Theorem 5.2.1. Let M and N be the two Z[Cy3]-modules which are not

isomorphic but are in the same genus, as in Example 5.2.5. Let ¢ be any prime. As
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M Qy Zy = N Qy Zy, we also have M Q7 Z(@ =N®yz Z(g) ([31], Cor. 76.9). This
implies there is an injective homomorphism M — N with finite cokernel of order
coprime to ¢. Pick a number field L with Gal(L/Q) = C,3, for example Q(&47)7,
and let Gg act on M and N via the corresponding C»3 quotient.

Now pick an elliptic curve E over QQ, with no potential complex multiplication.
By Lemma 5.2.6, M ® E and N ® E are related by an isogeny of degree coprime to ¢

for each /. However, by Lemma 5.2.7 they are not isomorphic over Q. ]

Remark 5.2.8. M ® E and N ® E are defined over Q, and isomorphic over Q to
E??. In fact, they are isomorphic over L, because M and N are isomorphic as

Z|Gr]-modules, where Gy, acts trivially.

Remark 5.2.9. We can do a similar construction for modules over Z[G] for other
G, giving abelian varieties which become isomorphic over extensions with Galois
group G. Examples which work include all cyclic groups C,, with p a prime at least
23, as Q(Cp) always has class number greater than 1 ([96] Theorem 11.1). We can
also use any group with non-trivial locally free class group (see Definition 5.4.6), as
for these groups there exists a Z[G]-module in the genus of Z[G] but not isomorphic
to it. The smallest of these is Qg. This set includes all non-abelian, non-dihedral
groups other than A4, As and S4 ([33], Theorem 50.29), with Ci, and Dy being the

smallest abelian and dihedral examples respectively.

5.3 Elliptic Curves

It is natural to ask whether we can have a similar example with elliptic curves. In
this section we shall show that this is possible over number fields, but not over Q.
We will begin by showing a converse to Proposition 5.1.1, specifically that if all the
Tate modules of two abelian varieties are isomorphic, then for any prime ¢ we have

an isogeny between them of degree coprime to /.

Lemma 5.3.1. Suppose A and B are n-dimensional abelian varieties over a number
field k with T)A = T;B as Gy-modules. Then there is an isogeny A — B with degree

coprime to L.
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Proof. Faltings ([47], Section 5 Cor. 1) showed that

Homg, (TA, T;B) = Z; ®z Homy (A, B),

so if TyA = Ty B, there must be an isogeny A — B. Suppose for contradiction that all
isogenies A — B have degrees divisible by /. Now consider the map induced by an
isogeny ¢ on TyA. As it has degree divisible by ¢, ¢ maps some element of A[/] to 0.
So the induced map 7yA — TyB cannot be surjective. As it is not invertible, when
written as a matrix in M»,(Z,) in any basis, it must have determinant divisible by /.

Now Homy(A,B) = (@1, @2, ...,¢) for some isogenies ¢;. Let each ¢; induce
a linear map with matrix M; on the Tate modules. Now any non-zero Z-linear
combination of these M; comes from an isogeny, so must have determinant divisible
by 4.

Suppose TyA and T;B are isomorphic. Then by Faltings’ result the isomor-
phism between them corresponds to some Y; B;¢;, with B; € Z,. This has matrix
Y, BiM;, with determinant P(f,..., ;) which is not divisible by /. Here P is some
polynomial with coefficients in Z;. Now pick o; € Z with a; = f8; (mod /). Then
det(Y,; BiM;) = det(Y; ouM;) (mod /), as the determinant of }; o;M; is P(Qy,...,04)
and P is a polynomial. But Y ; o;M; is the matrix corresponding to }; o;¢; which
has determinant divisible by ¢, because it is an isogeny (or the zero map). This is a

contradiction, so we must have an isogeny of degree coprime to /. U

Remark 5.3.2. Combining this theorem with Proposition 5.1.1, we see that if
T)A = T;B for all primes ¢, then A and B have the same Selmer groups, regulators,

and all the other properties listed in Theorem 5.0.2.

Corollary 5.3.3. If A is an abelian variety with Endi(A) = 7Z, and T)A = T;B as

Gi-modules for all primes ¢, then A and B are isomorphic over k.

Proof. Pick isogenies ¢ : A — B, and ¢’ : B — A. We have an injective
map Endi(A) — Homy(A,B) given by ¥ — ¢ oy, and also an injective map
Homy(A,B) — Endi(A) given by v — ¢’ o y. Hence Homy (A, B) = Z. This must
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be the set of multiples of some isogeny ¢, with all degrees divisible by deg(¢).

Hence by Lemma 5.3.1, ¢ must be an isomorphism. ]

Remark 5.3.4. For elliptic curves E over Q, Endg (E) = Z, so knowing the Tate

modules determines the elliptic curve up to isomorphism.

Proposition 5.3.5. Suppose E and E' are elliptic curves over a number field k, and
Endi(E) is an order of class number 1. Then if T)E = T)E' as Gy-modules for all

primes {, then E and E' are isomorphic over k.

Proof. E and E' are isogenous, so fix an isogeny V¥ : E' — E defined over k. Then
the map Hom(E,E") — Endy(E) given by ¢ — ¢ is an injection. If § € Endi(E),
¢p € Homy(E,E") maps to w¢ 3. Therefore the image of this map is an ideal in
Endy(E), hence generated by some element . Let the preimage of o be ¢;. Then
each element of the ideal is of the form a3, which is the image of ¢; . Thus by
injectivity all elements of Homy (E, E’) are of this form and have degree divisible by
deg(¢1). So as there are isogenies E — E’ of degree coprime to any prime, E and E’

are isomorphic. O

It is however possible to have non-isomorphic elliptic curves with isogenies of
coprime degrees between them. By Corollary 5.3.3 and Proposition 5.3.5, we know
this can only happen for elliptic curves with complex multiplication by an order

which has class number greater than 1. This allows us to prove the following:

Theorem 5.3.6. There exists a number field k, and elliptic curves E and E' defined
over k, which are not isomorphic over k, such that E and E' have the same properties

as listed in Theorem 5.0.2 over all number fields F containing k.

Proof. Take the lattices A = Z[v/—5] and A’ = (2,1++/=5)A. Then E := C/A and
E’ := C/A have complex multiplication by Z[v/—5] ([89], Chapter II Section 1).
By ([89] Proposition 1I.1.2), the corresponding elliptic curves are not isomorphic,
as (2,14 +/=5) is not a principal ideal. However, there is an isogeny of degree
N(a) for any ideal a in the class of (2,14 1/—5), and hence there are isogenies
of degrees 2 and 3 ([89], Corollary II.1.5). These curves are defined and have
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complex multiplication over the Hilbert class field of Q(v/—5), which is Q(i,v/5)
([89] Section I1.2 and Theorem I1.4.3(a)). The isogenies may be defined over some
finite extension. Then, by Proposition 5.1.1, the curves over that extension have the

same properties as listed in Theorem 5.0.2. [

Example 5.3.7. We can construct an example of these elliptic curves entirely ex-
plicitly, giving Weierstrass equations. Using Sage [91], we can approximate the
Jj-invariant of A to a high precision, and then search for polynomials this may satisfy.
We find that the j-invariant is likely to be 632000 +282880+/5. An elliptic curve

with this j-invariant is

Ep :y* = x> — (2395312128000 + 1071214510080v/5)x
—2016549312397312000 + 901828270977 187840V/5.

Sage can compute the 2- and 3-isogenies from this curve. We find that over

Q(i,+/5) it admits a 2-isogeny and two 3-isogenies, all to the same curve
Ey i y? = x + (272250 4 41745V/5)x 4 12644500 — 32369920V/5.

Note that this is consistent with there being one ideal of norm 2, and two of norm 3,
in Z[+/—5]. The elliptic curve E; has j-invariant 632000 — 282880+/5, so unlike the
abelian varieties constructed in Section 5.2, E| and E» are not isomorphic over any
number field. We can verify using Sage that these curves have complex multiplication
by Z[v/—5] by computing the CM discriminant to be —20. We can also calculate
their period lattices and find that the ratios of their generators are very close to v/—5

and %js, matching the pair of elliptic curves used in the proof of Theorem 5.3.6.

5.4 A Welil restriction construction

5.4.1 Brauer Relations
In Section 5.2, we used the twisting construction to produce two isogenous abelian
varieties. Recall that a particularly useful case of this construction is on modules of

the form Z[G/H|. This gives Weil restrictions, whose properties are strongly linked
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to those of the elliptic curve we start with. Therefore we might ask whether we can
do a similar construction with these modules. We will consider dihedral groups of

order D5, as these can give isogenies of different degrees.

Lemma 5.4.1. Let p be an odd prime, and suppose F [k is a D, ,-extension of number
fields, with intermediate fields L and K of degrees p and 2 respectively. Let E be
an elliptic curve over k. Let { be a prime different to p. Then there is an isogeny
Resp ik (E) % E? — Resg /i (E) % ResL/k(E)2 defined over k, whose degree is not

divisible by (. There is a similar isogeny in the other direction.

Proof. This follows from the existence of the Brauer relation {e} +2D,, —C, —2C»

in D;,. We can apply Lemma 4.1.2 to this to get the desired result. [

Now fix an elliptic curve E over k, and a dihedral extension K>, of order 2pgq,
where p # g are distinct odd primes. Let the Galois subextensions be K>, K>, and
K>, and pick non-Galois subfields L, and L, contained in L,,, where in each case
the subscript is equal to the degree over k.

Now define abelian varieties by

A= RCSszq/k(E) X Requ/k(E)z X ReSLp/k<E)2 X Reus/k(E)

B:= Restq/k(E)2 x Resg, /i (E) x Resg, i(E) % E?.

Proposition 5.4.2. For all primes {, there is an isogeny A — B, defined over k, with

degree not divisible by (.

Proof. Suppose ¢ # p. Then K>, /L, is a D> ,-extension, and by Lemma 5.4.1 there

1s an isogeny
ResK2pq/Lq (E) X Requ/Lq (E)2 — ReSqu/Lq (E)2 X ReSqu/Lq (E)

with degree coprime to /. Therefore the same holds when we take the Weil restrictions
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to Q. Similarly there is an isogeny
Rest/k(E)2 x Resg, x(E) = Resg, ik (E) X E?

with degree coprime to ¢, thus there is such an isogeny A — B. In the case ¢ = p, we
instead break it down as Resg, /(E) X Rest/k(E)2 — Restq/k(E)2 x Resg, /k(E)
and Requ/k(E)2 X Resg, i (E) — Resg, /1(E) x E?. Using Lemma 5.4.1 again on

both of these we get an isogeny of degree coprime to . ]

Remark 5.4.3. A slightly different construction works when one of the primes is
equal to 2. There are two non-conjugate subgroups of Dy, isomorphic to Dy; call
them Dj p and Dg q with subgroups of order 2 C5 and Cé’ respectively, chosen such that
the product of their generators is a rotation of order 2. Call the subgroup generated
by this rotation C}, and the union of these three groups C, x C,.

Let K be an extension of k with Galois group Dy,. Now define varieties by

A :=Resg (E)* x ResKng/k(E)z x Res (E)?

K%k
4 2
X Rechzxcz/k(E) X Rechzq/k(E)

L J— 2 2
B.—ReSch/k(E> XReSch/k<E) XReché/k

(E)? x Rech,,/k(E)2 x E*,

Then we can prove the same conclusion as in Proposition 5.4.2 by similar arguments.
We will need an equivalent to Lemma 5.4.1 for the Brauer relation in C; x C;, given
by {e} +2C, xC, —C§ — Cé’ — C’,. Here we can get isogenies of degree coprime to

any prime ¢ # 2, by the same arguments as in Lemma 4.1.2.

The existence of isogenies between these varieties A and B can be seen from a
Brauer relation in D). The next proposition will show that this is the only Brauer

relation in D; ), which works.

Proposition 5.4.4. In the pq odd case, the Brauer relation

0= {e} + 2D2p +2D2q —f—Cpq -2, —Cp - Cq - 2D2pq
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is the only one in D, , which gives an isogeny of degree coprime to any prime /.

Proof. The rank of the lattice of Brauer relations in G is 3 by Lemma 2.6.3. To give
the desired property for all elliptic curves, Lemma 5.2.7 implies that there must be a
homomorphism of Z[G]-modules between ¥, Z[G/H;| and ¥ ; Z|G/H|] with kernel
coprime to any prime £. Therefore the Brauer relation must be a Zy)-relation for all

£, and in particular for p and q.

Now let @, = {e} +2D3, —2C; — C),. ®, is not a Z,,-relation, as its regulator
constant for the trivial module 1 is 1/p. This contradicts Lemma 2.6.12, which tells
us that if it were a Z,,)-relation, it would give a regulator constant with valuation 0.
As the lattice of Z( p)—relations is saturated (Lemma 2.6.4), it must have rank at most
2. Similarly the lattice of Z(q) -relations is also of rank at most 2, however it does
contain ®,. This is because D;), is not g-hypo-elementary, so by Theorem 2.6.6 it
contains a Z(q)-relation, which must be ®, as it is the only Brauer relation in D;),.
As these two lattices of rank at most 2 are saturated and not equal, their intersection

has rank at most 1, so is spanned by ©. U

Proposition 5.4.5. In the case where p =2, the only relations which are both Z)-

and Zq)-relations are multiples of

® = 1+D§,+ D5, +2C, x Co+ Cag— C§ — Cy — Cy — Cy — 2Dy

Note that this is actually half of the relation that gives the A and B defined in
Remark 5.4.3, however it is still a Z(,)- and Z,)-relation by the saturation property,

and the distinction will not matter for the proofs in Section 5.4.2.

Proof. The proof uses the same ideas as the odd case. We now have a four-
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dimensional lattice of Brauer relations, spanned (over the rationals) by ® and

®, :=1+42D5,—C,—2C4
@, :=1+42D5, —C,—2C5

@3 :=142C, x C, —C§ —C5 —Cb.

We know already that © is a Zy)-relation because 20 is, and the lattice of Z3)-
relations is saturated. Also ®; is the Brauer relation appearing in the non-2-hypo-
elementary subgroup D5 4 SO it is a Zy)-relation, and similarly so is ®;. However
O3 is not a Z,)-relation, because its regulator constant for the trivial representation
is % Therefore by the saturation property the lattice of Z;)-relations is (0,01,0;)

(allowing rational multiples, as %(@1 — 0,) is a Brauer relation).

Now if there is another relation which is both a Z;)-relation and a Z,)-relation,
it must be of the form /® + m®; 4+ n®, for rationals I, m and n. Therefore m®; +
n®; must also be a Z,)-relation. If we take its regulator constant with for the
trivial representation, by the multiplicative property (Lemma 2.6.10), we find it to
be q_(m+”), so we must have m +n = 0. Therefore the relation is a multiple of
3(©1—0y) = D4, — D5 —C4+C5.

Now take the one-dimensional representation € where D5 4 Acts trivially and the
other elements act as —1. Its regulator constant for the relation 5 (®; — ©,) is ¢~ .
Therefore to be a Z,)-relation, we must have m = 0, so only © is both a Z;)-relation

and a Z(q)-relation.

5.4.2 Dihedral Modules are Isomorphic

Unfortunately, for small p and g the property proven in Proposition 5.4.2 forces the

corresponding integral representations to be isomorphic.

As before, let p # ¢ be primes and let G be the dihedral group of order 2pq. If
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p and g are odd, define two Z[G]-modules by

M = Z[G/1] @ Z[G/D2p|** & Z[G/ D2y ** ® Z[G /C)pg]

N :=Z[G/C) P @ Z|G/C,) ® Z[G/C,) ® Z[G/G]*2.

If p = 2, take instead the sum of two copies of these, one with each non-conjugate
subgroup D, and corresponding C,. Then A and B, as defined in Section 5.4, are
givenby A =M ®FE and B= N ® E, using the construction in [69] detailed in Section
2.5.

Take E to be such that End;(E) = Z. Now by Proposition 5.4.2 and Lemma
5.2.7, for any prime ¢ there is a map of Z[G]-modules M — N with finite cokernel
of order coprime to ¢. This is equivalent to saying that M ®z Z) = N ®z, Zy)
as Z)|G]-modules, and hence by ([31], Cor. 76.9) that M ®z Z¢ = N ®7z Z; as

Zy¢|G]-modules. This is true for all /, that is, M and N are in the same genus.

Definition 5.4.6 (As in [33], 49.10). Let H be a finite group. The locally free class
group of Z[H] is the set of equivalence classes of Z[H]|-modules in the genus of

Z[H], with the relation X ~ Y if X ® Z[H]" =2 Y & Z[H]™ for some integer m.

Example 5.4.7. The smallest group with non-trivial locally free class group is the
quaternion group (g, which has class group of order 2. The elements can be given

explicitly, as in [64] Section 1.
Proposition 5.4.8. The class group of G is trivial for all pg < 65.

Proof. These can be calculated using the algorithm in [13], for which Bley has made

Magma code available [12]. ]

Given integral representations M|, M, and M3 of a group H, in general we
cannot say that M| & M3 = M, & M3 implies M| = M,. This is unlike the case of
representations over (Q. However, if M, and M3 are both powers of the group ring

Z[H], this cancellation often does hold.

Definition 5.4.9 (As in [76]). Let H be a finite group. We say Z[H] has stably
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free cancellation if, whenever M’ is a finitely-generated Z[H]-module satisfying

M' @ Z[H|™ =2 Z[H|™*", we have M' = Z[H|".
Example 5.4.10. For all abelian groups H, Z|H]| has stably free cancellation.
Proposition 5.4.11. Z[G]| has stably free cancellation.

Proof. By ([76], Introduction), it suffices to show that G does not have a generalised
quaternion group as a quotient, or one of the binary tetrahedral, octahedral or icosahe-
dral groups as a proper quotient. The generalised quaternion groups are groups of the
form (x,y|x*" = y* = 1,x" = y2,y~'xy = x~!) for n > 2, which have order 4n. The
only quotients of D;,, with size divisible by 4 are when p =2, and are C; x C; or
the whole group. The group Dy, is not isomorphic to a generalised quaternion group
as it contains Cp x C,, whereas every abelian subgroup of a generalised quaternion
group is cyclic. The binary tetrahedral, octahedral and icosahedral groups all have

order divisible by 24, so cannot be a proper quotient of Dy, for primes p and g. [
Lemma 5.4.12. If the class group of G is trivial, M ® Z|G] = N ® Z|G].

Proof. Apply ([32], Theorem 31.28) to the faithful lattice Z[G], to deduce that
M @ Z|G] = N & F for some F in the genus of Z[G|. Now F is an element of the
class group of G, which is trivial, so there is some m satisfying F @ Z[G]" = Z[G]"*.

Z[G] has stably free cancellation, so F' = Z[G], which proves the lemma. O

Definition 5.4.13. (As in [33], Definition 45.4) Suppose R is a Dedekind domain
whose field of fractions is a global field K, and A is a simple K-algebra. Let a non-R
prime of K be a prime not arising from a maximal ideal of R. For a prime P of K,
let Ap be the P-adic completion of A. Then A satisfies the Eichler condition over R
unless Ap is a direct sum of non-commutative skew-fields for every non-R prime P.

If A is a finite-dimensional semisimple K-algebra, we say it satisfies the Eichler

condition over R if all its Wedderburn components do.

We will use this only in the case where R = Z and K = Q, so the only non-R
prime is the infinite place. All we need to know is the following lemma, together

with the fact that products of algebras satisfying the Eichler condition also satisfy it.
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Lemma 5.4.14. ([33], Proposition 51.2(ii)) Suppose K = Q and R = 7. Then if D is

a finite dimensional (over Q) division algebra and n > 1, M,,(D) is Eichler over Z.

Proposition 5.4.15. M is an Eichler lattice, that is, Endgg(Q ®z M) satisfies the

Eichler condition over Z.

Proof. Let Q®z M = @; p;", where the p; are irreducible rational representations
of G. In this case we will show each n; > 2, and hence Endg;)(Q ®z M) =
@;M,,(End(p;)). We know End(p;) is a division algebra and so by the previous
lemma we are done.

First consider the odd case, and let the trivial representation be 1, the sign
representation be €, and the sum of all the two-dimensional irreducible complex
representations be p. Then, by the same methods as in the proof of Lemma 4.1.1, we
see that Indg2 (1) = 1@ p, so p is a rational representation. Now Z[G] = 1@ e ® p®2,
and Z[G/Cpq] = 1 @ €. Therefore each of 1, € and p appears in M with multiplicity
at least 2, so the same is true of the irreducible representations p;.

The even case proceeds in a similar way. In the notation of the previous section,
we now have the trivial representation 1, and one-dimensional representations &1,
&, and & with kernels Cyy, D5 p and Dg q respectively. Let p be the sum of the other
complex irreducible representations. We can calculate that Indgg 1)=1®&®p,so
p is a rational representation. We find that Z[G/Co] = 1D &1, Z[G/D5 | = 1 ® &
and Z[G/D} ) = 1@ €. The sum of these, together with Z[G], therefore contains
every irreducible rational representation, with multiplicity at least 2, so M is an

Eichler lattice. O
Theorem 5.4.16. If the class group of G is trivial, then M = N as Z|G|-modules.

Proof. Recall Jacobinski cancellation ([33], Theorem 51.28) tells us that if M is
an Eichler lattice, Z[G] is a direct summand of M and M & Z|G] = N & Z[G], then
M = N. These conditions hold by Proposition 5.4.15, the construction of M and

Lemma 5.4.12 respectively. ]

Remark 5.4.17. This shows that M = N for all pg < 65. However this proof fails

infinitely often, beginning with pg = 65. This is because Cassou-Nogues proved that
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the class group is non-trivial for infinitely many pairs of odd p and ¢ ([21], Section

7).

Corollary 5.4.18. For pg < 65, the abelian varieties A and B are isomorphic. It is
therefore possible for distinct products of Weil restrictions of a single elliptic curve

to be isomorphic.

Question 5.4.19. Are M and N always isomorphic over Z[G]|? If so, are there other
permutation modules in the same genus which are not isomorphic, leading to non-
isomorphic products of Weil restrictions of a curve which cannot be distinguished by

the properties listed in Theorem 5.0.2?
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