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Abstract 

Background:  We investigate the flow of genetic information from DNA to RNA to pro‑
tein as described by the Central Dogma in molecular biology, to determine the impact 
of intermediate genomic levels on plant protein expression.

Results:  We perform genomic profiling of rosette leaves in two Arabidopsis acces‑
sions, Col-0 and Can-0, and assemble their genomes using long reads and chromatin 
interaction data. We measure gene and protein expression in biological replicates 
grown in a controlled environment, also measuring CpG methylation, ribosome-asso‑
ciated transcript levels, and tRNA abundance. Each omic level is highly reproducible 
between biological replicates and between accessions despite their ~1% sequence 
divergence; the single best predictor of any level in one accession is the corresponding 
level in the other. Within each accession, gene codon frequencies accurately model 
both mRNA and protein expression. The effects of a codon on mRNA and protein 
expression are highly correlated but independent of genome-wide codon frequencies 
or tRNA levels which instead match genome-wide amino acid frequencies. Ribosome-
associated transcripts closely track mRNA levels.

Conclusions:  DNA codon frequencies and mRNA expression levels are the main 
predictors of protein abundance. In the absence of environmental perturbation 
neither gene-body methylation, tRNA abundance nor ribosome-associated transcript 
levels add appreciable information. The impact of constitutive gene-body methylation 
is mostly explained by gene codon composition. tRNA abundance tracks overall amino 
acid demand. However, genetic differences between accessions associate with dif‑
ferential gene-body methylation by inflating differential expression variation. Our 
data show that the dogma holds only if both sequence and abundance information 
in mRNA are considered.
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Background
Numerous studies in plants, fungi, and animals have found only moderately strong 
relationships between protein and mRNA expression levels, with correlations typically 
around 0.5–0.6 [1–3]. This phenomenon is thought to be a consequence of several fac-
tors, principally, different rates of synthesis and degradation of mRNA and proteins [4], 
compounded with buffering and cross-talk between different spatial and temporal con-
texts of expression, protein length [5], measurement bias and inaccuracy [6], and, poten-
tially, how the data are processed.

Recent advances in genomics technologies have made it possible to assemble genomes 
almost perfectly, to quantify DNA methylation and other epigenetic marks, and to meas-
ure protein and transcript expression accurately at scale. We can now leverage these 
advances to massively extend the accuracy and depth of “omic” data sets, to dissect 
their relationships and shed light on the mRNA-protein correlation problem. Specifi-
cally, by integrating these data across omic levels we can now test if the flow of informa-
tion supports the direction of the Central Dogma from lower to higher levels, namely 
genome → epigenome → transcriptome → proteome (here we have added epigenetics to 
the Central Dogma’s flow between genome and transcriptome; the genomic impacts of 
the environment are assumed to act via the epigenome). Modeling between omic levels 
for the same gene addresses inter-level correlations, while modeling across genes within 
each level reveals factors acting differentially between genes.

If we use lower omic levels (primary DNA sequence features and epigenetic marks) to 
predict higher levels (transcriptome, proteome), and ultimately phenotype—and thereby 
follow the Central Dogma—[7], then three questions are particularly relevant.

First, which features of the underlying DNA sequence are most predictive of higher 
omic levels? Second, how much of the information about protein expression levels 
encoded in the basal genome sequence is mediated through intermediate epigenetic 
and transcriptomic levels, and does it pass through multiple causal pathways? Third, in 
plants, what is the role of constitutive gene-body CpG methylation (gbM) in control-
ling gene and protein expression? In contrast to environmentally modulated gbM, it has 
been suggested that constitutive gbM might not impact gene expression in plants at all, 
although it appears to be evolutionarily conserved [8], under selection [9], and to play 
a role in adaptation [10]. Furthermore, is it unclear how constitutive gbM in a specific 
gene is set [11, 12].

Large-scale population-based studies can reveal how genetic and environmental vari-
ation impact expression of different omic levels, but if our focus is on modeling the 
Central Dogma there is a strong case for examining smaller systems where genotype 
and environment are tightly controlled and in which each omic level is measured in 
many biological replicates as reproducibly as possible. Here, we employed the second 
approach.

We first asked if lower omic levels predict higher levels, and whether the information 
they encode is unique to that level, using the fraction of variation across genes in a focal 
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omic level that is explained by variation in lower levels as our metric. We then asked 
if the influence of gbM on higher omic levels is subsumed by the information encoded 
by genome sequence, specifically in gene codon frequencies, if these codon frequencies 
affect mRNA and protein expression in similar ways, whether the impact of each type 
of codon is related to its genome-wide frequency, and how the levels of tRNAs relate to 
mRNA and protein expression. Finally, we analyzed genetically encoded differences in 
methylation and expression, to test whether the former are related to the latter, which 
types of differences are most important, and what this tells us about the causal effects 
of methylation. Our analysis uncovers some unexpected yet important relationships 
between omic levels, while showing others are insignificant under the experimental con-
ditions employed here.

Results
We performed detailed genomic profiling of two Arabidopsis thaliana accessions: Col-0 
(the reference) and Can-0. The latter accession originates from the Canary Islands and 
is phenotypically adapted to an environment quite different from the central European 
origin of Col-0 [13]. Can-0 has about double the number of sequence differences from 
Col-0 compared to most other accessions [14] and has been variously characterized as 
a relict by [15] and as “admixed” and distinct from four main genetic clusters (Europe, 
Madeira, Asia, Africa) identified by long-read sequencing of 70 accessions in [16]. Can-0 
and Col-0 therefore represent genetically distinct lineages of Arabidopsis, so identifying 
evolutionarily shared characteristics between these accessions, in contrast to those that 
differ, may answer some of the questions described above.

We re-assembled the accessions’ genomes and measured constitutive CpG gbM for 
each gene. We re-annotated each assembled genome to produce accurate data across 
omic levels, aiming to eliminate reference bias. To try to eliminate environmental per-
turbations, we grew multiple biological replicates of each accession under the same 
climate-controlled, long-day environment in growth chambers. We quantified mRNA, 
tRNA, ribosome-associated transcripts, and protein abundances in rosette leaves of 
defined developmental age.

Col‑0 and Can‑0 genome assembly and annotation

We produced high-quality de novo assemblies of the Col-0 and Can-0 genomes, from a 
combination of long (HiFi, ONT) and short (Illumina) reads, using Omni-C chromatin 
interaction data to confirm our assemblies and orient scaffolds (Fig. 1A). Seventeen and 
five gaps remain in our assemblies of Col-0 and Can-0, respectively, all within rDNA 
arrays and centromeres (Fig.  1B). We observed excessively high depth of coverage of 
both ONT and HiFi reads in these repeat regions, suggesting the numbers of tandem 
repeats in centromeres may be underestimated and, potentially, variable between nuclei 
(Fig. 1A). Outside of large tandem repeats, Omni-C data indicate that the assemblies are 
structurally accurate (as shown by the Pretext contact maps in Additional file 1: Fig. S1 
(Col-0) and Additional file 1: Fig. S2 (Can-0), as do the BUSCO and QV gene content 
statistics (in Additional file 2: Table S1)).

We aligned our Col-0 sequence to five published Col-0 assemblies, namely the old refer-
ence TAIR10 [13], Col-CEN [17], Col-XJTU [18], Col-Lian [16], and the new community 
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reference Col-CC (GenBank reference GCA_028009825.2). The numbers of differences, 
as computed by dna_diff [19], between our Col-0 assembly and the others are shown in 
Fig. 2 and are generally small, e.g., there are only about 10,000 SNP differences between the 
Col-0 assemblies (compared to 682,351 SNP differences between Col-0 and Can-0), and 
almost all the observed differences are in the numbers of tandem repeats. Some differences 

Fig. 1  Assembly of Col-0 and Can-0 genomes. A Circos plot comparing the Col-0 (orange set, left) and Can-0 
(blue set, right) genomes. Links in the middle show genomic rearrangements. Purple links: inversions, orange 
links: translocations between different chromosomes. Light blue: HiFi coverage, light green: ONT coverage. 
Gray line panel: GC content of the genome. Dark green line: repeat density, orange filled panel: percent CpG 
methylation. B Cartoons of chromosome (chr) assemblies of Col-0 (left) and Can-0 (right) showing gene 
densities, the positions of assembly gaps (green) and indicating where the assemblies reached into the 
telomeres (orange dots)
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are likely to be artifacts from different assembly algorithms; indeed, our Col-0 most closely 
resembles the Col-XJTU assembly, where the same software and similar pipelines were 
employed (Additional file 2: Table S2). Comparison of Col-CC and Col-Cen shows similar 
numbers of differences (Fig. 2), so our Col-0 assembly is not unusual.

We also compared our Can-0 assembly to that reported in [16] (named Can-Lian here) 
and again found similar numbers and patterns of differences as observed between differ-
ent long-read Col-0 assemblies (Fig. 2, Additional file 2: Table S2). We conclude that all 
these assemblies have similar accuracies and that the differences represent in part algo-
rithmic artifact. However, we cannot exclude the possibility of small numbers of genuine 
sequence differences (e.g., under ten thousand SNPs) in the germplasm sequenced, par-
ticularly in unstable tandem repeat regions.

Henceforth, “Col-0” and “Can-0” refer to our assemblies and annotations of these 
accessions, unless otherwise stated. Where we calculate the same statistic in Col-0 and 
Can-0, the numbers are reported as an ordered pair. For example, our assemblies’ lengths 
(Col-0: 133.23 Mb, Can-0: 133.09 Mb) and N50 values (18.4 Mb, 12.5 Mb) are very simi-
lar to those obtained in [17, 18]. We conservatively estimate the sequence divergence of 
Col-0 and Can-0 at over 1%, based on the total of 1,243,716 SNP and single base indels 
within their alignable regions; it is greater, if harder to quantify, should the unaligned 
regions be included.

We annotated both genomes, using ab  initio gene prediction applied to both short-
read (Illumina) and long-read (Iso-Seq) RNAseq data from rosette leaves sampled at 
the 9-leaf stage. We annotated 28,763 and 28,532 protein-coding genes. These counts 
include duplicated genes within each accession. If we exclude duplicates, then there are 
24,325 pairs of orthologous genes between Col-0 and Can-0 of which 23,081 are also 

Fig. 2  Counts of differences between our Can-0 (blue background) and Col-0 (yellow background) 
assemblies and with four other Col-0 and one other Can-0 assemblies, namely Can-Lian, Col-Lian, Col-CEN, 
Col-XJTU, Col-TAIR, the TAIR10 reference, and Col-CC: the community consensus assembly. Pink background 
shows comparisons between selected other Col-0 assemblies. Y-axis shows the log10 counts of the respective 
differences
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annotated in Araport11 [20]. Several hundred genes are unique to each annotation, as 
shown in the Venn diagram in Fig. 3. The gene and transposable element annotations of 
the Col-0 and Can-0 genomes along with the predicted mRNA and peptide sequences 
are available from Figshare [21].

We annotated 47,596 and 45,756 alternatively spliced isoforms (Additional file  3: 
Table S3). Taking the primary isoform in each accession, in total 20.3% of Col-0:Can-0 
orthologous coding sequences are identical at the amino acid level, and 52.7% differ at 
no more than six codons (see below). However, 7.0% differ by more than 100 codons. 
Since 35.1% of orthologous gene pairs have different numbers of annotated isoforms, 
there is some ambiguity in these statistics.

mRNA and protein expression levels are highly reproducible but relatively poorly 

correlated

We quantified the abundance of mRNAs, ribosome-associated RNAs, and proteins in 
Col-0 and Can-0 rosette leaves raised in growth chambers, under identical long-day con-
ditions harvested at the same 9-leaf developmental stage (Additional file  4: Table  S4). 
By minimizing environmental and temporal variation, we thereby focused on internal 
sources of variation in gene and protein expression and ribosome association. After 
quality control (see Methods), we identified 17,414 mRNA-expressed genes in common 
between Col-0 and Can-0.

Fig. 3  Venn diagram showing overlaps between genes annotated in Col-0, Can-0, and Araport11. The 
numbers shown are the counts of genes in the different intersections. For example, there are 289 genes only 
found in the Col-0 annotation, while 1373 genes are common to Col-0 and Araport but absent from Can-0
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Proteins were analyzed using a label-free data-independent acquisition (DIA) work-
flow, employing intensity-based absolute quantification (iBAQ; [22]) to derive compara-
tive protein abundance from mass spectrometry data between the two accessions. This 
enabled quantification of 8915 proteins common to Col-0 and Can-0. Both mRNA and 
protein expression were detected in both accessions for 7771 ortholog pairs, while a 
further 9633 pairs had mRNA expression in both accessions but no observed protein 
expression. To some extent, this reflects the comparatively lower coverage of proteomic 
data, but it also suggestive of extensive post-transcriptional control. Interestingly, 28 
genes had protein but no mRNA expression in Col-0 (and 32 in Can-0), perhaps indicat-
ing RNA instability. If we only retain genes with expression observed in all replicates, 
then there are 7721 genes expressed in mRNA and protein in both accessions and 7494 
expressed in mRNA but not protein in both accessions; no genes were expressed in pro-
tein but not mRNA.

Both mRNA and protein measures were highly reproducible across biological repli-
cates (Additional file 5: Table S5); for genes with both mRNA and protein expression, 
correlations of log-transformed mRNA levels between 5 replicates within an accession 
all exceed 0.98, as did correlations between 4 replicate protein levels within an accession 
(all correlations are between log-transformed data unless otherwise stated). Correla-
tions between accessions are also very high; all mRNA replicates exceed 0.95, despite the 
presence of many differentially expressed genes (discussed later). The strength of these 
mRNA correlations is slightly lower for genes without protein, although all correlations 
between replicates still exceed 0.94. Correlation of protein expression between acces-
sions always exceed 0.91 among replicates.

We then combined the expression levels across replicates for each gene by taking 
Geometric means. Looking across genes within each accession, the most abundantly 
expressed genes and proteins greatly exceed the respective median level: 2151-fold, Col-
0; 1370-fold, Can-0 for mRNA and 640-fold; 591-fold, respectively, for protein (Fig. 4A, 
B). We report fold changes relative to the median rather than the full dynamic range 
of expression because the latter is strongly biased by genes expressed at near-zero lev-
els. Protein dynamic range is well established to exceed that of RNA but is not gener-
ally captured in proteomics workflows, and especially not in tissues such as leaves which 
are dominated by a few highly abundant proteins [23, 24]. Most of the highly expressed 
genes and proteins are involved in photosynthesis, as would be expected for leaf tissue.

To analyze correlations within and between mRNA and protein expression, we 
focused on the 7771 ortholog pairs of genes with mRNA and protein expression in both 
Col-0 and Can-0. After log transformation, the correlation between mRNA and protein 
within an accession was (0.664, 0.647), about 50% higher than without log transforma-
tion (Table 1, Fig. 4A, B), and similar to that reported in maize leaves [1]. Despite dif-
ferences in measurement and analysis methodologies, the most accurate predictor of 
protein expression is not mRNA from the same accession but rather protein from the 
other accession (Table 1). We return to this point below.

The distributions of mRNA levels are markedly different depending on whether 
protein expression is also observed or not (Fig.  4C, D), with the former following an 
approximately lognormal distribution while the latter has a complex mRNA distribution, 
comprising a spike of genes with very low expression and a shoulder of intermediate 
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expression, with a thin tail of highly expressed genes. The spike of genes with near-
zero expression is due to those genes not being expressed in all replicates. Addi-
tional file  1: Fig. S3 shows the same distributions in Fig.  4C and D after omitting the 
9633 − 7494 = 2139 imperfectly replicated genes. It is possible that some of the imper-
fectly replicated genes represent artifacts, or are transiently expressed, or expressed in 
very rare cell types.

Isoform complexity does not affect mRNA‑protein correlation

We next asked if alternative splicing affected the correlation between mRNA and pro-
tein. Although we could estimate the relative abundance of expressed mRNA iso-
forms for each gene from RNAseq data, it was not possible to estimate protein isoform 

Fig. 4  The distribution of mRNA and protein expression, scaled so that the median level of expression of 
genes with both protein and mRNA expression is equal to 1. Scatter plots of mRNA (x-axis) vs protein (y-axis) 
expression for orthologous genes in Col-0 (A) and Can-0 (B). Dotted red lines show medians. Histograms 
of mRNA expression for genes with (pale red) or without (gray) detectable protein expression in Col-0 (C) 
and Can-0 (D). The black curves indicate lognormal densities fitted to the mRNA + protein histograms using 
robust estimates of mean and standard deviation. Expression scales are logarithmic throughout.

Table 1  Pearson correlations between mean expression levels of mRNA and protein in Col-0 and 
Can-0 across 7771 genes. Blue background: correlations between raw expression values. Orange 
background: correlations between log-transformed values, using the transformation y = log10(x + 1), 
i.e., adding a pseudo count of 1 unit



Page 9 of 40Zhong et al. Genome Biology          (2025) 26:319 	

abundance in the same way, due to the sparsity of coverage of tryptic peptides. How-
ever, if isoforms of the same gene differ in their contribution to protein abundance, we 
reasoned that genes with a single isoform should exhibit a different (and likely higher) 
mRNA-protein correlation than genes with multiple isoforms. We therefore grouped the 
genes into subsets based on the numbers of their annotated isoforms and re-computed 
correlations within each subset. The forest plot in Additional file  1: Fig. S4 shows the 
mRNA-protein correlations for genes with up to 7 isoforms annotated in Col-0 and Can-
0. The plot does not reveal any discernible trend between the correlation and the num-
ber of isoforms in either accession (the anomalous result for 7 isoforms likely represents 
sampling variation due to the few genes involved). We conclude that alternative splicing 
does not measurably impact the correlation between mRNA and protein levels.

Ribosome‑associated transcript levels closely resemble standard mRNA expression 

for genes with protein expression

We next asked if transcripts associated with ribosomes were better correlated with pro-
tein expression. Ribosome-associated RNAs were quantified in six biological replicates 
each of Col-0 and Can-0 rosettes using 3′Ribo-seq [25] (expression levels are in Addi-
tional file 4: Table S4). In total, 17,513 of their 1–1 orthologs had detectable ribosome-
associated transcripts (ribo-mRNA hereafter) in both accessions. Within the 7771 genes 
with protein expression, ribosome-associated transcripts behaved very similarly to the 
mRNA data described above; 7620 (97.9%) genes were also associated with ribosomes, 
and the correlation of log-transformed ribo-mRNA and mRNA expression levels was 
0.9530 (Col-0), 0.9574 (Can-0). Correlation between the six biological replicates always 
exceeded 0.97 within an accession (and exceeded 0.94 between accessions, Additional 
file 5: Table S5). Their correlation with protein expression was (0.6490, 0.6415), very sim-
ilar to that observed for mRNA determined by RNA-seq.

Within the 9673 genes for which mRNA but no protein was quantified, the pattern is 
slightly different. Of these, 6812 (70.4%) are ribosome associated, and the correlation of 
expression levels between mRNA and ribo-mRNA among these genes remained high, at 
(0.9303, 0.9451). All correlations between replicates within an accession exceeded 0.89 
but between accessions, the correlations were lower with a minimum of 0.67. Only 59 
genes are expressed in ribo-mRNA but absent from mRNA. Among the 29.6% of genes 
without ribo-mRNA expression, average mRNA expression was reduced by factors of 
(5.6, 5.4). In particular, the spikes of genes with very low expression seen in Fig. 4C and 
D are absent among ribosome-associated transcripts. Apart from this difference, the 
ribo-mRNA expression levels and patterns were essentially interchangeable with those 
of mRNA, and so for the remainder of this study we use the mRNA expression data.

Constitutive CpG methylation is reproducible across assay type and between accessions

We measured CpG methylation using both bisulfite-converted Illumina reads and 
ONT long reads, the latter collected as a by-product of generating sequence for de 
novo genome assembly. As Fig. 1A (orange track) shows, uniformly high levels (> 75%) 
of CpG methylation occur throughout the centromeres but methylation is variable in 
other regions of chromosomes. Across CpG sites, the correlation between bisulfite and 
ONT gbM values was 0.94 in both Col-0 (2.6 M sites) and in Can-0 (2.8 M) despite the 
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different growth conditions (Additional file 1: Fig. S4). As the coverage of ONT data is 
superior to bisulfite sequencing and methylation readouts are less prone to GC bias [26], 
we therefore used ONT CpG methylation values in all further analyses.

We then computed gene-body methylation (gbM) for every annotated gene as the 
mean percentage methylation across all CpG dinucleotides within the genomic interval 
spanned by the gene, including exons and introns. We also quantified methylation in 
flanking regions around each gene for differential expression analysis (described later). 
The genome-wide distributions of gbM in Col-0 and Can-0 across gene expression cat-
egories (i.e., protein and mRNA, only mRNA, or no expression) are shown in Fig. 5. All 
three distributions share a mode in gbM around 12%, but with differing upper tails.

The correlation between gbM in Col-0 and Can-0 is slightly higher in genes with pro-
tein and mRNA detected ( R = 0.890 ) than in genes with only mRNA ( R = 0.830 ). Fig-
ure 4 also plots the distribution of (6195, 6042) other genes without any expression at 
mRNA or protein. These contain subsets of (838, 952) genes where gbM exceeds 70%, 
and which are concentrated in the shoulders of the highly methylated centromeres of 
each chromosome, i.e., matching the local CpG methylation levels (Fig. 5). Additional 
file 1: Fig. S6 shows the spatial distribution of GbM for those Col-0 genes without any 
expression, categorized by gbM. However, most genes in all three categories have low 
levels of gbM under 25%; all modes are close to 10%. Thus, constitutive gbM varies only 
slightly across most genes. We discuss its impact on expression later, after first consider-
ing codon composition effects.

Codon composition affects expression

Codon composition is known to affect both mRNA and protein expression [27–29]. We 
modeled its explanatory power in our data in order to establish its role in the informa-
tion flow underlying the Central Dogma and to test the hypothesis that more frequent 
codons are associated with increased expression [30]. In our analysis, we represented 
the coding sequence of each protein-coding gene by a vector of the 61 non-terminator 
codon frequencies, hereafter abbreviated to CDS.

Fig. 5  Distribution of gbM in A Col-0 and B Can-0 genes, categorized according to whether both protein 
and mRNA were detected (pink) or only mRNA detected (gray), or not expressed (blue)
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We modeled mRNA and protein expression of each gene in terms of these codon fre-
quencies by fitting linear multiple regression models to the log-transformed expression 
levels, thereby estimating the expression effect (regression coefficient) of each codon. 
Under this model, if the codon c with multiple regression coefficient βc occurs Ngc times 
in gene g , then its predicted log expression level is yg = µ+ cNgcβc

 , where µ is the 
average expression level. Codons with positive codon effects increase expression and 
negative effects decrease it. The codon expression effects and their standard errors are 
shown in Additional file 6: Table S6.

We defined the standardized effect of each codon on expression as its expression 
effect divided by the standard error. Among 7771 ortholog pairs with mRNA and pro-
tein expression in both accessions, standardized effects are highly correlated between 
mRNA and protein in both accessions ( R = 0.800, 0.800 ) (Fig. 6A, B, Additional file 1: 
Fig. S7). These codon expression effects are also highly reproducible between Col-0 and 
Can-0 (R = 0.99 for both mRNA and protein). If we estimate mRNA effects by restricting 

Fig. 6  Codon effects on mRNA and protein expression. A Scatter plot of 61 codon effects on log Col-0 mRNA 
expression (x-axis, represented as the T-statistic for each codon) vs the corresponding effects on log Col-0 
protein expression. Each point is labeled with the codon and encoded amino acid, and all codons with the 
same amino acids share the same color. Models were fitted to genes with both protein and mRNA expression 
in Col-0. B Similar analysis for Can-0. C Similar analysis comparing codon effects on mRNA expression in 
Col-0 estimated for genes with both mRNA and protein expression (x-axis) and for genes with only mRNA 
expression (y-axis). D Same plot as for C but in Can-0
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attention to genes for which protein was not quantified, then the resulting mRNA codon 
effects are markedly less correlated with those modeled from genes with both protein 
and mRNA ( R = 0.505, 0.498 , Fig. 6C, D).

We next asked if these codon expression effects are related to global codon frequen-
cies. We computed global codon proportions, either by summing the genomic gene 
codon frequencies to give proportions independent of expression level, or by weight-
ing the gene codon frequencies by mRNA or protein expression, thereby taking account 
of expression level. We then compared these proportions with the codon effects. The 
standardized codon effects for mRNA and protein expression are uncorrelated with 
overall codon abundance, defined as the relative fractions of codons across genes with 
both protein and mRNA expression (Fig. 7A, B; neither of the correlations of 0.065 and 
0.235 are significant at p < 0.05). Thus, more commonly used codons are not associated 
with higher gene or protein expression.

We also tested if codon frequencies correlate with gbM by fitting the same multiple 
regression models with gbM as the dependent variable in place of mRNA or protein 

Fig. 7  Lack of correlation between standardized codon effects in Col-0 and gbM and codon abundance. 
In each scatter plot, each point represents a codon and is color-coded by the encoded amino acid. 
Standardized codon effects on gbM (y-axis) vs codon effects on mRNA expression (A) and protein expression 
(B). C, D y-axis is codon abundance, defined as the fraction of codons in all genes with mRNA and protein 
expression, x-axis: codon effect on mRNA expression estimated by multiple linear regression
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expression. Figure 7C and D show that there is only weak correlation between the codon 
effects for expression and those for gbM. We return to the relationship between gbM 
and codons later.

tRNA abundance tracks global amino acid frequency

We next asked how tRNA abundance relates to codon expression effects, to codon abun-
dance and gene expression. The genetic code is redundant, with 20 standard amino acids 
specified by 61 sense codons in eukaryotes. Isoacceptor tRNAs comprise families that 
accept the same amino acid, but which differ in their anticodon sequence, reflecting the 
fact that all amino acids other than methionine and tryptophan are specified by more 
than one codon. Isodecoder tRNAs carry the same anticodon but differ at their primary 
sequence at sites other than the anticodon. In common with other eukaryotes, Arabi-
dopsis encodes tRNAs for only 45 sense codons plus the initiator tRNA-Methionine, the 
remainder employing third-base wobble base-pairing to effect translation [31–33] with 
specific tRNAs translating these missing codons [33] (Additional file 7: Table S7).

We measured tRNA abundance using modification-induced misincorporation tRNA 
sequencing (mim-tRNAseq) [34, 35] in Col-0 and Can-0 leaves grown and harvested 
under the same environmental conditions used to quantify mRNA and protein expres-
sion. Using the genomic tRNA database (GtRNAdb, [36]) annotation of Arabidopsis 
tRNA genes, we queried expression at 642 nuclear-encoded tRNA genes that also had 
Araport11 gene identifiers (Additional file 7: Table S7), representing 224 distinct tRNA 
isodecoders. We observed non-negligible expression for 157 of these isodecoders. For 
each of the 46 anticodons, we calculated the relative expression across all isodecoders.

Nuclear-encoded tRNA abundance levels are highly reproducible between Col-0 and 
Can-0 (R = 0.988; Fig.  8A). Within an accession, the relationship between codon fre-
quencies and tRNA isodecoder abundance (Fig. 8B, R = 0.397 ) is obscured by the pres-
ence of codons without dedicated tRNAs (the vertically stacked codons on the left of 
Fig. 8B); some codons with no specific tRNA gene still have strong standardized effects. 
Figure  8C shows the correlation increases to 0.561 when we merge frequencies for 
codons translated by the same tRNAs. When we further aggregate tRNA abundance and 
overall codon usage by the encoded amino acid to produce isoacceptor frequencies, the 
correlation increases to 0.754 (Fig. 8D; results for Can-0 are very similar), and reaches 
0.811 when amino acid frequencies are further weighted by protein abundance (a very 
similar relationship occurs when amino acid frequencies are weighted by mRNA abun-
dance instead, because these are very highly correlated R = 0.979 ). Figure 8D shows the 
most discordant amino acid is tryptophan (W), which has higher tRNA expression than 
expected given its low frequency. Interestingly, tryptophan is the only amino acid apart 
from methionine encoded by a single codon. Additionally, it is encoded by UGG, which 
is in the same codon box as the UGA stop codon. High levels of its matching tRNA may 
be needed for it to compete with release factor, which may sample UGG codons.

In contrast to the strong relationship between tRNA and amino acid abundance, tRNA 
abundances are unrelated to codon expression effects. The correlations between tRNA 
abundances and the mRNA codon effects are ( 0.286, 0.283 ) (scatter plots in Additional 
file 1: Fig. S8 A, B) and correlations with protein codon effects are ( 0.249, 0.234 ) (scat-
ter plots in Additional file  1: Fig. S8 C, D). These correlations are of only borderline 
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statistical significance (mRNA: P < 0.025 , protein: P < 0.057 ). For comparison, the cor-
relation of 0.811 with amino acid frequencies satisfies P < 10−14 . All codon-related sta-
tistics (regression coefficients and their standard errors, and tRNA abundance data) are 
in Additional file 7: Supplemental Table S7.

Modeling across omic levels reveals significant codon composition effects on expression 

and gbM

We next asked which genomic features predict mRNA and protein expression levels 
across genes within each accession. To model mRNA expression, the explanatory factors 
we considered were coding sequence DNA composition (referred to as CDS hereafter) 
and gene-body CpG DNA methylation (gbM, defined as the mean percentage of meth-
ylated CpGs within introns and exons). For protein gene expression, we additionally 

Fig. 8  Relationships between tRNA abundance and codon and amino acid frequencies. Codons and tRNAs 
are color-coded by encoded amino acid; the corresponding amino acid for each codon is specified in single 
letter code following a colon (i.e., in the format AAC:N; asparagine). Pearson correlation coefficients are shown 
in top left of each plot. A Col-0 tRNA isodecoder percentage (x-axis) vs Can-0 tRNA isodecoder percentage 
(y-axis). B Col-0 tRNA isodecoder percentage (x-axis) vs Col-0 codon frequency percentage. C Same as B 
except that codons without specific tRNAs are merged with the codons responsible for their translation to 
amino acids. D Col-0 codon fraction across all annotated genes (x-axis) vs Col-0 tRNA abundance aggregated 
by encoded amino acid (AA). Equivalent plots for Can-0 are very similar. If codon frequencies are re-weighted 
by the protein expression levels, the plot are very similar with slightly higher correlations
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considered mRNA expression as an explanatory factor. We also modeled gbM in terms 
of CDS. Taken together, these models encapsulate the Central Dogma’s information flow.

We fitted multiple linear regression models, where the focal dependent variable could 
be gbM, mRNA, or protein, across various subsets of expressed genes, and the inde-
pendent variables the lower omic levels measured in the same genes. For this modeling, 
to investigate the hypothesis that mRNA levels capture all the information in the under-
lying DNA sequence relevant to protein expression, we reparametrized CDS codon fre-
quencies as the combination of three, biologically interpretable, nested components of 
increasing complexity, namely protein length (the sum of all codon frequencies), then 
the 20 amino acid frequencies (the Sums of frequencies for those codons representing 
a given amino acid, requiring 19 additional parameters), and finally codon usage within 
each amino acid (representing the deviations from the baseline effect for an amino acid, 
comprising 41 extra parameters). The first two of these components are linear combi-
nations of the codon frequency counts, and the third accounts for variation due to the 
choice of codon within an amino acid class. For clarity, we refer to “codon frequencies” 
when interpreting CDS as a model of the 61 codon counts (i.e., as in the previous sec-
tions) and “codon usage” when interpreting it after separating out protein length and 
amino acid frequency.

Thus, depending on the parameterization used, the same model can be reinterpreted 
to provide different insights, while yielding identical predicted effects and explaining 
the same total variance. This reparameterization was used to test the effects of adding 
increasing information about sequence composition on constitutive gbM, mRNA, or 
protein expression within a single analysis of variance.

Each model is expressed in the form Y ~ A + B + …, where Y is the target omic 
level and A, B … are explanatory omic levels. For example, the model Col-pro-
tein ~ CDS + gbM + mRNA means that protein expression across the genes with protein 
and mRNA expression in Col-0 is modeled in terms of first codon frequencies (CDS), 
then gene-body methylation (gbM) and finally mRNA expression measured in those 
genes. The order in which levels are included in a model affects how much variation is 
explained by each level (i.e., the modeling is greedy, so each level is assigned the max-
imum possible variation after allowing for the previously fitted levels) thereby reveal-
ing confounding between levels. For example, fitting gbM either alone or after fitting 
CDS reveals how much variation in gene expression is solely attributable to gbM. We 
also subdivided the genes into two classes; those 7771 with both measurable mRNA 
and protein expression—the difference is due to a few genes with multiple annotated 
stop codons which were excluded—and those 9633 with only mRNA expression and 
denoted mRNA* or gbM* in Fig. 9 and Additional file 8: Table S8. Both mRNA and pro-
tein expression were log-transformed prior to fitting the linear models which therefore 
represent multiplicative effects on expression. Figure 9 legend describes the dependent 
and explanatory omic levels in detail.

The analyses are summarized as bar plots in Fig. 9, where the horizontal extent of each 
bar indicates the fraction of variance in the target omic level attributable to the corre-
sponding component in the model, after fitting the preceding terms to the left in the bar. 
For comparison, we also show the results of modeling an omic level in one accession by 
the corresponding level in the alternate accession (tan bars: gbM, pink bars: mRNA, and 
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yellow bars: protein). The results for Col-0 (Fig. 9 upper) and Can-0 (Fig. 9 lower) are 
extremely similar, illustrating the robustness of our results to genetic perturbation.

The p value of each variance component from its corresponding partial F-test is given 
in Additional file  8: Table  S8; virtually all components are extremely significant with 
analysis of variance p values often much smaller than 10−10 even when the fraction of 
variance explained is too small to be visible. That is, statistical significance is necessary 
but not sufficient to imply biological importance. Multiple linear regression models are 
“greedy”: the order in which explanatory variables are fitted in the model determines 
how much variance each explains.

We consider the impact of explanatory omic levels on mRNA and protein expression 
in Central Dogma order. The simplest explanatory variable, protein length, is known to 

Fig. 9  Bar plots of variance explained by multiple linear regression models. Each row represents one model. 
The model is specified on the left, the color indicating whether Col-0 (black) or Can-0 (brown) is the target 
omic level (dependent variable). Each model is represented by a formula Y ~ A + B + …, where Y is the 
target and A, B … are explanatory omic levels. The targets for the Col-0 analyses are as follows: Col-protein: 
log-transformed protein expression, Col-mRNA: log-transformed mRNA expression for genes also with 
protein expression; Col-mRNA*: log-transformed mRNA expression for genes without protein expression; 
Col-gbM: percent gene-body methylation for genes also with protein expression; Col-gbM*: percent 
gene-body methylation for genes without protein expression. Similar names apply for the Can-0 analyses. 
The explanatory omic levels are as follows: CDS: coding DNA sequence composition (partitioned into protein 
length, amino acid usage, and codon usage); gbM: percent gene-body methylation; mRNA: log-transformed 
mRNA expression; gbM.alt, mRNA.alt, protein.alt: expression of gbM/mRNA/protein in the alternative 
accession (i.e., Can-0 if the target accession is Col-0). The bar plot for each analysis represented the fraction 
of variance explained by each term in the model, using the color-coding given in the legend. CDS effects 
are partitioned into protein.length, amino.acid.usage, and codon.usage; the horizontal extent of each bar 
represents the fraction of variance due to the corresponding variable, after first fitting the preceding variables 
in the formula from left to right
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be anticorrelated with expression [37]. In Col-0, we find protein length alone explains 
7.7% of the variation in mRNA expression (double that explained by gbM at 3.5%) and 
6% of protein expression variation. The statistics in Can-0 are mRNA: 8.1% and protein: 
11.1%. The next component of sequence composition, amino acid usage, explains signifi-
cant additional variance in mRNA (5.7%, 5.8%) and in protein expression (12.8%, 12.7%), 
after accounting for sequence length, although spread across 19 parameters. Codon 
usage explains further variance (mRNA:6.0%, 5.3%; protein: 6.8%, 6.7%) but spread over 
far more (41) parameters. Overall, CDS effects on mRNA expression (19.5%, 19.2%), are 
lower than protein expression (25.6%, 24.9%), and the relative impacts of the three CDS 
components also differ. When we model mRNA expression of just genes without protein 
expression (denoted mRNA* in Fig. 9), the fractions of variance explained by CDS are 
halved (10.1%, 9.4%). The impacts of mRNA alone on protein level variation are found 
by squaring the correlations in Table 1 and Fig. 4, yielding (44.1%, 41.9%), which are also 
almost identical to the combined effects of gbM and mRNA (Additional file 8: Table S8), 
showing that gbM effects on protein expression are also mediated by mRNA levels.

We then modeled constitutive gbM as a function of CDS. Among genes with both 
mRNA and protein expression, we find CDS effects account for close to half (42.0%, 
42.0%) of gbM variance. However, these fractions are more than halved (18.1%, 14.8%) 
among genes with only mRNA expression. Modeling gbM in one accession by the corre-
sponding level in the alternative accession (shown as tan colored bars in Fig. 9) explains 
far more of the variance (79.4% for genes with protein and 68.6% for those without) con-
firming constitutive gbM is highly reproducible (as expected, given the reproducibility 
of the underlying CpG methylations reported above) but that 58% of this variation is 
unexplained by codon frequencies.

We next treated gbM as an explanatory level to model mRNA and protein expression. 
When considered in isolation (i.e., excluding CDS effects), gbM has a relatively small 
but nonetheless statistically significant impact on mRNA expression in genes with both 
protein and mRNA expression, explaining (3.5%, 4.2%) of mRNA variance, but a negli-
gible impact on the expression of genes without protein (0.1%, 0.1%). When CDS effects 
are fitted before considering gbM, virtually all the effects of gbM are ablated; under a 
constant environment, the impact of constitutive gbM on mRNA expression mediates a 
small fraction of sequence composition effects.

If mRNA expression is added after CDS and gbM, in total half of the variation in pro-
tein expression can be explained (51.9%, 49.8%), and which exceeds that when only gbM 
and mRNA are included (44.1%, 42.0%). Thus, part of the information encoded in CDS 
relevant to protein expression is not mediated through mRNA, in contradiction to the 
Central Dogma. Both CDS and mRNA account for non-negligible and independent frac-
tions of protein expression variance. While there is considerable confounding between 
mRNA and CDS (because CDS explains much mRNA variance), it is clear that, at mini-
mum, mRNA expression explains an additional 51.7 − 25.7 = 26.0% of Col-0 variance 
that cannot be accounted for by CDS and gbM, and CDS explains, at minimum, an addi-
tional 51.7 − 44.1 = 7.6% of Col-0 variance that cannot be explained by mRNA and gbM.

Similarly to modeling gbM, much greater fractions of variation are explained by mod-
eling Col-0 mRNA by Can-0 mRNA (and vice versa) (94.5%, 94.5%) or Col-0 protein by 
Can-0 protein (83.8%, 83.8%). Thus, while our simple regression models are powerful, 
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they do not capture all the information, and there is unexplained yet reproducible 
variation.

Comparisons between accessions

Our analysis has so far has emphasized the strong similarities between Col-0 and Can-
0, despite their ~1% genetic difference. In this section, we ask how differential mRNA 
or protein expression between the accessions relates to differences in CDS and to CpG 
methylation and other features.

Sequence differences between orthologs reduce expression correlations

We first investigated if the high correlations observed between the same omic level 
measured in Col-0 and Can-0 (Fig. 9) are affected by sequence differences. Among the 
24,325 annotated ortholog pairs of protein-coding genes, the median protein lengths 
are (349, 348) amino acids, and the median difference in codon frequencies between 
orthologous genes in Col-0 and Can-0 (i.e., the Sum of absolute differences in the counts 
of each of the 61 non-terminator codons) is 6 codons. Additional file 1: Fig. S9 shows 
the inter-accession mRNA-mRNA and protein–protein correlations when the genes 
with both protein and mRNA expression in both accessions are grouped according to 
their codon frequency differences. The plot shows that there is a slow but steady reduc-
tion in mRNA-mRNA correlation as the numbers of codon differences increases, but 
that the protein–protein correlation reduces dramatically when there are over 50 codon 
differences.

Differentially expressed genes and proteins

There are 7,585 differentially expressed (DE) mRNAs at FDR < 0.05 among the 17,771 
orthologous Col-0:Can-0 gene pairs at which we could make a determination using 
EdgeR, ignoring protein expression status. In the subset of 7060 genes with differential 
determinations for both mRNA and protein, we observed 866 DE proteins (FDR < 0.05) 
and 2850 DE mRNAs (FDR < 0.05; EdgeR did not determine DE status for all genes, 
so these subsets are slightly smaller than those in the previous sections) (Additional 
file 9: Table S9). Figure 10A plots the log2 fold change in expression (logFC) for mRNA 
vs protein, color-coded by DE FDR. It shows that logFC is broadly consistent between 
mRNA and protein, although there are many genes which are DE for only mRNA or 
only protein. Of the DE mRNAs and DE proteins, 579 (20% of DE mRNAs and 67% of 
DE proteins) are in common (Fisher’s exact test < 10−32), as shown in the Venn diagram 

(See figure on next page.)
Fig. 10  Differential expression (DE) and differential gene-body methylation (gb DML). A Scatter plots of log2 
fold change (logFC) for mRNA (x-axis) vs protein (y-axis) for 5698 ortholog pairs between Col-0 and Can-0 
with DE determinations in protein and mRNA. Points are color-coded according to whether the pairs are DE 
at both protein and mRNA, only protein, only mRNA, or neither (all determinations using FDR < 0.05). B Venn 
diagram of overlaps of mRNA and protein DE and gb DML. Numbers are counts of DE gene pairs within each 
subset (e.g., there are 2026 pairs that are only DE mRNA, 524 + 55 = 579 that are both DE mRNA and protein, 
and 55 that are DE mRNA and protein and gb DML). C Distributions of absolute log2 fold change in mRNA 
expression between Col-0 and Can-0, for genes with (orange) or without (green) gb DML. In A and C, the 
figures are truncated to omit the small fractions of absolute log2 values exceeding 3.0
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Fig. 10  (See legend on previous page.)
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in Fig. 10B. Gene Ontology (GO) enrichment analysis [38] reveals distinct but overlap-
ping enrichments between DEGs (Additional file 1: Fig. S10) and DEPs (Additional file 1: 
Fig. S11). Proteins and transcripts associated with glucosinolate biosynthesis exhibited 
increased abundance in Can-0, whereas proteins associated with immunity (“hypersen-
sitive response,” “cell death,” “response to biotic stimulus”) and abscission were increased 
in abundance in Col-0.

Genetic and epigenetic correlates of differential expression

We distinguish between a differentially methylated locus, DML—a single syntenic CpG 
dinucleotide at which methylation differs between Col-0 and Can-0—and a differentially 
methylated region (DMR), in which average methylation differs across the CpG dinu-
cleotides within the region. If a gene body overlaps with at least one DML or DMR, this 
gene body is defined to be also DML or DMR. We used the same definition to classify 
intron and exon regions, and genomic contexts up- or downstream of the gene body, and 
for structural variants (SV) as discussed below. The Venn diagram in Fig. 10B shows the 
overlaps with gb DML genes at 5% FDR. Of the 688 genes with gb DML, 336 (49%) are 
DE for mRNA or protein, or both.

We compared DML and DMR gene classifications with the corresponding absolute 
values of logFC expression, reporting − log10 p values (logP) of the Mann–Whitney tests, 
which are robust non-parametric tests of differences in the average ranks of the abso-
lute logFC of expression between genes with or without differential methylation. This 
analysis therefore does not require differential transcript or protein expression to exceed 
any specific FDR threshold but instead considers trends. The results are summarized in 
Fig. 11 (Additional file 9: Table S9).

Despite the high gbM correlation between Col-0 and Can-0 at orthologous genes 
( R = 0.89 ), the presence of DML or DMR within or nearby a gene body strongly associ-
ates with absolute log-fold changes in mRNA expression (Fig. 11). DML and DMR inside 
gene bodies, or within 100 bp upstream, have the highest impact on differential mRNA 
expression. In general, the presence of even a single CpG methylation difference (i.e., 
DML) is a stronger predictor of gene expression difference than is DMR, apart from 
intronic DML which is not significant for mRNA abundance (logP= 0.61 ), but highly 
significant for intronic DMR (logP= 122 ). Figure  10B shows the overlaps between DE 
mRNAs and proteins and gb DML. We found that the corresponding signed Mann–
Whitney tests (i.e., where we did not take absolute values of logFC) were markedly less 
significant. Figure 10C shows the distributions of absolute log-fold changes for mRNA 
expression for genes with or without gb DML. Although the distributions appear broadly 
similar, they have highly a significantly different Mann–Whitney statistic (logP = 79). 
Thus, although differential methylation is strongly statistically associated with differen-
tial expression, it does not reliably predict the direction of change.

We then used the same methodology to test if sequence differences are associ-
ated with absolute differences in mRNA and protein expression. We tested for asso-
ciations between the presence of SNPs or small (< 10 bp) indels, structural variations 
(SV, defined as indels > 10  bp), or nearby transposable elements (TE). Gene-body 
SVs are strongly associated with differential mRNA abundance (Fig.  11A)—intronic 
SVs have the second strongest association with differential mRNA expression of any 
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feature tested, logP = 117, only slightly less than that for intronic DMR (logP = 122); 
this is because the presence of intronic SVs and DMR frequently co-occur (contin-
gency table odds ratio of 62.2, logP = 1873), suggesting intronic SVs cause intronic 
DMR. It is unclear if these SVs alter expression directly or are mediated by modulat-
ing methylation.

Interestingly, distant structural variants also have strong associations with differen-
tial gene expression. Differences in TE between the accessions have modest associations 
with changes in mRNA expression and again, absolute differences are more strongly cor-
related than signed differences, and are most strongly associated when they are 500–
1000 bp upstream or downstream of the gene (maximum logP = 12.3). Differential TE 
seem to be uncorrelated with absolute differential protein expression, however.

Fig. 11  Impact of differential methylation, structural variation, and indels on differential (A) mRNA and (B) 
protein expression between Col-0 and Can-0. The x-axis represents a schematic gene, comprising upstream, 
gene-body (subdivided into intronic and exonic components) and downstream genomic contexts. The y-axis 
represents the variation categories DML: differentially methylated loci, DMR: differentially methylated regions, 
SV: structural variations, indels: short insertion-deletions, and TE: transposable elements. The number in each 
is the negative log10 p value of the unsigned Mann–Whitney test of association between the category in 
the given genomic context and differential expression (except for TE which shows the logP of the Spearman 
rank correlation test reflecting the fact that differential TE abundance is measured quantitatively). The orange 
shade of the cell indicates the strength of association, from dark (strong) to pale (weak)
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Discussion
It is a remarkable fact that although most genes are encoded only once in the nuclear 
genome, their constitutive expression levels vary by orders of magnitude [24]. In the 
Arabidopsis thaliana rosette leaves studied here, the most highly expressed genes exceed 
the median level by over 1,000-fold for mRNA and over 500-fold for protein. The key 
questions address these levels’ reproducibility, and how they are set and maintained. 
We have shown here that in two genetically divergent accessions of Arabidopsis thali-
ana, these levels are indeed highly reproducible between biological replicates grown in 
a controlled environment, and that a simple multiple linear regression model based on 
gene codon frequencies is unexpectedly powerful at modeling both mRNA and protein 
expression levels. A gene’s constitutive expression is thus partially determined by its 
internal codon composition, which presumably evolved to express it at its optimal level 
by selecting codons adaptively and tuning tRNA abundance to match overall demand for 
amino acids. The diagram in Fig. 12 summarizes our findings as a flow chart showing the 
relative importance of different omic levels to expression.

Codon and tRNA effects on expression

Codon frequencies alone account for about 19% of the variance of mRNA expression 
and about 25% of protein expression. Augmenting the codon model of protein expres-
sion with mRNA expression levels almost doubles the variance explained to about 46%. 
Interestingly codon frequencies only explain 9% of variance among genes with mRNA 
but no protein expression, suggesting their expression is controlled differently.

Fig. 12  Genomic information pathways and their numerical linkages as observed in this study, in relation to 
the Central Dogma. The boxes show different omic levels in Col-0 and Can-0. Black arrows indicate the flow of 
information implied by the Central Dogma starting from CDS (peach) via gbM (green) to mRNA (light blue), 
ribosome-associated mRNA (yellow) and finally protein (pink). The strength of Pearson correlation between 
levels is shown both by the numbers and by the thickness of the corresponding black arrows and represents 
the correlation between quantitative expression levels (except in the case of CDS where is represents the 
correlation derived from the multiple regression codon frequency model, i.e., the square root of the fraction 
of variance explained). The merged arrows connecting CDS, gbM, and mRNA to protein show the result of 
combining information into a single model; note that their combined correlation of 0.720 is less than the 
sum of their individual effects. The correlation of tRNA levels (lilac) with genome-wide codon and amino acid 
frequencies is shown on the left. The correlations between corresponding Col-0 and Can-0 omic levels are 
shown next to the gray double-headed arrows
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When interpreting these results, it helps to bear in mind that the total fraction of var-
iance explained by a model equals the squared correlation between the observed and 
fitted values. That is, correlations are larger than their equivalent variance fractions; 
19% variance is equivalent to a correlation of 0.46 . In Fig. 12, all the numerical linkages 
between omic levels are shown on the correlation scale. However, it is more meaningful 
to report variance fractions when decomposing a multi-component model in an analy-
sis of variance (Fig. 9). In addition, we report results after log-transforming expression, 
so our models are multiplicative on the original measurement scale. The impact on the 
original scale of expression of the codon c with gene frequency n will be proportional to 
βn
c  , where βc is both the regression coefficient we estimate and the multiplicative impact 

of a single copy of the codon on the original measurement scale.
If full sequence information from each gene is used for prediction (i.e., including the 

order of bases), instead of being Summarized as the 61 codon frequencies as was done 
here, it is possible to train large language models with millions of parameters to pre-
dict expression patterns and genomic annotations [39, 40]. In a different Arabidopsis 
data set, and encoding each gene sequence by its sequence of codons, mRNA prediction 
accuracies of between R2

= 0.2− 0.4 were achieved, depending on the model used [7]. 
Thus, there is additional, exploitable, information encoded in the order of the codons in 
each gene. Nonetheless, it is remarkable how well Our simple, biologically interpretable, 
model performs. We find that a given codon has similar impacts on mRNA and protein 
expression; the correlations between the 61 non-terminator codon effects on mRNA vs 
protein expression ( R = 0.80 , Fig.  6A, B) exceed those of the actual expression meas-
ures ( R = 0.64 − 0.66 , Fig. 4A, B), suggesting that an underlying biological mechanism is 
being isolated.

While codon effects could point towards tRNAs as mediators for their effects on pro-
tein translation, our analyses support the hypothesis that codons which increase protein 
translation also reduce mRNA decay, driving mRNA stability and hence mRNA abun-
dance [41–43]. Interestingly, we find that tRNA abundance is uncorrelated with codon 
expression effects but instead tracks overall codon abundance (Fig. 8B, C). Furthermore, 
the aggregated tRNA abundance across all tRNAs specifying a given amino acid (i.e., 
isoacceptors) tracks the overall frequency of that amino acid across the proteome even 
more strongly than at the codon level (Fig.  8D). Our results suggest that tRNA abun-
dance adapts dynamically to the overall demand for amino acids but that differences in 
translation efficiencies between tRNAs do not measurably affect abundance of specific 
genes. In summary, codons interact with two distinct phenomena—their frequency 
relates to tRNA abundance, but independently of their impact on expression.

The correlations we observed between tRNA abundance and codon usage resemble 
those reported in humans [33]. In addition, our codon expression effects resemble those 
from studies in human cell lines [44], where a combination of sequence features (includ-
ing protein length and predicted mRNA decay rate) and mRNA expression explained 
about two thirds of the variance in expression of 512 proteins. Another study of mRNA 
half-lives in human and mouse [45] also identified codon frequencies and protein length 
as key factors. Although we did not measure mRNA decay rates, it is likely that Our 
models of mRNA levels are implicitly modeling them. In fact, of the 18 codons impacting 
mRNA half-lives in humans in [37], Our data in Additional file 1: Fig. S7 share the same 
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sign in at least 16 cases, a statistically significant coincidence ( P < 0.008 , see Additional 
file 11: Text T1), and suggesting these codon effects may be evolutionarily conserved.

Our data were all collected under uniform unstressed conditions, so we could not 
measure the impact of stress on codon usage, which affects the translation of specific 
codons [46]. Ideally, this study should be repeated across more genomes, tissues, and 
environments to take account of expression quantitative trait loci, cell-type effects, and 
environmental variation. The two genomes used here are from the set of 19 founders 
of the Arabidopsis MAGIC population of recombinant inbred lines descended from 
these founders [14, 47]. Work is underway by our group to analyze omic levels across the 
founders and the MAGIC population, which will enable us to test if our conclusions hold 
in the presence of significantly more genetic variation.

Our codon model is mathematically equivalent to the combination of protein length, 
amino acid frequency, and codon usage. Once refactored in this way, we find mRNA 
expression decreases with gene length, and that the choice of encoded amino acids and 
the choice of codon each have significant but smaller impacts than protein length. The 
relative impacts of these factors on protein expression are subtly different: for example, 
gene length is less important than amino acid choice. In addition, among genes with 
mRNA but without protein expression the impacts of all three factors are much reduced 
(Fig. 9).

It is noteworthy that a codon’s impact on expression is entirely unrelated to its genome-
wide frequency among expressed genes; it is not true that highly expressed genes prefer-
entially use high frequency codons. Therefore, to increase the expression of a protein by 
editing its codon composition, one should select optimal codons based on their effects 
estimated from a model like that fitted here but derived from expression data from the 
species of interest. If the close similarity of codon effects on mRNA and protein expres-
sion that we observed generalizes to other species, then it might be sufficient to train 
codon models on mRNA expression alone, which is experimentally more tractable, and 
then extrapolate to protein expression. However, there will be important nuanced effects 
of codon usage for individual genes. Synonymous substitutions can influence diverse 
mechanisms related to gene expression and protein homeostasis including transcrip-
tional regulation, mRNA lifetime, translation initiation efficiency, translation elongation 
rate, and downstream effects on protein folding and degradation [29].

Constitutive gene‑body methylation effects

When the environment is controlled, our results minimize the role of constitutive gene-
body methylation in regulating expression [12], despite its high conservation between 
accessions. Augmenting codon models of mRNA or protein expression with constitu-
tive gbM makes only a negligible improvement. Indeed, constitutive gbM itself is largely 
predicted by local codon frequencies, explaining about 44% of gbM variation under 
unstressed environmental conditions. At most, constitutive gbM mediates a small frac-
tion of the information in codon frequencies—explaining about 3–4% of mRNA and 
protein variation in the absence of codon frequency data—but does not contribute new 
information. Since constitutive gbM is highly conserved between accessions, it is indeed 
plausible that it is driven by local sequence context.
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Many codons with strong effects on gbM do not contain CpG dinucleotides. This sug-
gests that non-CpG local sequence context drives CpG gbM. Additionally, while protein 
length is the major determinant of gbM variation in genes that exhibit both protein and 
mRNA expression, it is irrelevant among genes with only mRNA expression, illustrating 
major differences in the genetic architecture of gbM depending on protein expression.

However, we caution against the view that constitutive gbM is irrelevant to expres-
sion. First, the distribution of gbM is tightly concentrated around 10% (Fig. 5A, B) with 
little variation and hence limited opportunity to influence expression. However, there is 
a distinct subset of several hundred centromere-associated genes without any mRNA 
or protein expression in rosettes for which gbM exceeds 75%. The expression of these 
genes—concentrated in the shoulders of the centromeres—might be actively silenced by 
these high gbM levels, but this does not explain how a further ~5000 genes are neither 
expressed nor highly methylated, and indeed highly methylated genes may simply be 
passively reflecting high methylation levels around the centromeres.

Second, differential methylation, both in gene bodies and elsewhere, is strongly asso-
ciated with differential mRNA expression between Col-0 and Can-0. The presence of a 
single differentially methylated CpG (DML) is generally a better indicator of DE than is 
the average difference of methylation (DMR), but the direction of the change in expres-
sion is uncertain; unsigned association tests which ignore the direction of the DE are 
more significant than signed tests. Thus, DML are markers of perturbations in methyla-
tion due to local sequence differences, which increase the variance in expression rather 
than its direction (Fig. 10C). Differential methylation outside of gene bodies influences 
mRNA expression less than does gbM DML and has markedly less impact on protein 
expression (Fig. 11). Lastly, differences in transposable elements between the accessions 
are very weakly associated with differential expression of nearby genes (Fig. 11).

Genes that express protein and mRNA differ from those that only express mRNA

The distribution and causal modeling of mRNA expression is very different for genes 
which also exhibit protein expression, compared to those for which protein was not 
detected in our proteomics workflow. It is not true that moderately high mRNA expres-
sion necessarily implies any protein expression (Fig. 4). In fact, many genes without pro-
tein expression have higher mRNA levels than those with protein. This discordance has 
been noted in other species [1–6]. Those genes expressing both mRNA and protein have 
an overall distribution close to lognormal. Taken together with the log transformations 
used here, we suggest that these genes expression levels result from a balance between 
independent multiplicative processes of synthesis and decay. In contrast, genes without 
protein expression have a more complex distribution.

Surprisingly, using ribosome-associated mRNA expression levels does not change the 
picture, at least in regard to genes with both protein and mRNA expression. The only 
noteworthy difference appears in genes with mRNA expression but not protein—about 
30% of which do not appear to be associated with the ribosome. However, it should be 
noted that 3′RiboSeq merely quantifies transcripts associated with ribosomes, with-
out distinguishing between monosomes and polysomes and does not indicate whether 
the transcripts are actively translated. It may be that stronger correlations with protein 
expression translatome data could be obtained from ribosome profiling in which it is 
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possible to accurately determine the average number of ribosomes per mRNA and thus 
estimate the relative translation levels of a transcript [48].

Omic differences between genomes

Our study emphasizes the similarities between accessions. However, our analysis of their 
differences reveals some unexpected results. In particular, differential methylation—as 
a result of sequence differences—is a marker for differential expression, although the 
direction of the effect is unpredictable—it seems to act by increasing the variance of 
expression (Fig. 10C). Further modeling is required to turn this observation into a pre-
dictor of how sequence differences translate into omic effects.

We observed more genes with differential mRNA than protein expression. This may 
reflect the limitations of quantitative proteomics which do not readily permit sampling 
of the entire proteome, but it may also indicate buffering of the proteome. The discrep-
ancy may also be related to the fact that protein expression is estimated (here) from 
peptide DIA data and is therefore subject to different measurement issues and different 
algorithmic processing steps than RNAseq data. If this step introduces biases, they are 
likely to be the same within genes across replicates, thereby contributing to differences 
between genes, and consequently mRNA/protein correlations. Even with these experi-
mental and methodological issues, it is remarkable how closely estimated codon mRNA 
expression effects resemble protein effects (Fig. 6).

The best predictor of expression in one accession is expression in a different accession

Despite the success of the codon models in Fig. 9, the expression of gbM, mRNA, or pro-
tein in a given focal accession is more strongly correlated with orthologous expression 
in the other, genetically distant, accession than with lower omic levels within the focal 
accession. This orthologous expression fidelity remains unexplained. Possibly this is due 
to active homeostatic feedback mechanisms and the conserved effects of transcription 
factors on the control of expression under unstressed conditions. In a future study, it 
will be interesting to determine to what extent this predictive power is maintained in the 
presence of a stimulus such as a stress or a developmental cue. Another interesting ques-
tion is what underlies the residual variation in constitutive protein and mRNA expres-
sion that is unexplained by the models used here. This is not due to measurement noise, 
because the reproducibility between biological replicates is so high. Rather, this might 
reflect factors such as differences in protein and mRNA degradation, related to the adap-
tation of the two accessions to different environments.

Long‑read genome assemblies and annotations are accurate but not yet perfect

Comparisons of our assemblies of Col-0 and Can-0 with published long-read assem-
blies of these accessions show that although they agree with high fidelity over most of 
the genome, some differences, concentrated within tandem repetitive regions remain. 
Typically, assemblies of the reference accession Col-0 disagree at about a few thou-
sand SNP positions (Fig. 3). These discrepancies are partially due to algorithmic dif-
ferences in the assembly pipelines but might also reflect some genuine variation in 
the germplasm sequenced in each study. Similarly, the identification of gene orthologs 



Page 27 of 40Zhong et al. Genome Biology          (2025) 26:319 	

between accessions depends on how paralogy within an accession is defined; ortholo-
gous genes can have different numbers of isoforms and so are arguably no longer true 
orthologs.

The Central Dogma revisited

Our study is incompatible with a naive interpretation of the Central Dogma’s flow of 
information; it is not true that all the relevant information in CDS is mediated via mRNA 
abundance levels alone to modulate protein levels. One potential explanation is that our 
measurements of mRNA and protein expression are at single time points but represent 
the difference between synthesis and degradation integrated over the recent past. Poten-
tially more information would be available if expression were measured at different time 
points due to, e.g., diurnal cycles. Some alternative explanations seem unlikely: First, 
our ribo-Seq levels are no better correlated with protein abundance than are standard 
RNA-seq levels, providing no support for the hypothesis that we are somehow biased 
away from relevant mRNA expression measurements by including transcripts not asso-
ciated with ribosomes. Second, our data are from bulk tissue and not single cells. If it 
were technically possible to measure mRNA and protein from the same cells, we might 
observe stronger correlation between mRNA and protein, but it is difficult to see how 
this would explain how the additional information in CDS is actioned, because the latter 
is constant across cells. Third, tRNA abundance cannot explain the discrepancy.

Our CDS modeling summarizes just the gene codon frequencies, implicitly mod-
eling gene length as well as gene amino acid frequencies and codon usage bias. As 
Fig. 9 shows, all three of these components are informative. We must therefore con-
clude that these codon frequencies are relevant to protein expression but in a manner 
not mediated by transcript levels alone.

It is known that on average protein and mRNA expression reduces with gene length 
[32], and our data supports this, but like other studies we report mRNA and protein 
abundance levels as normalized estimates of the numbers of copies of these molecules, 
independent of their length. This might explain why the component of CDS due to gene 
length is so relevant in our models. We do not have a complete mechanistic explanation 
for why amino acid frequencies and codon usage are also important. Regardless, since all 
the codon information in a CDS is also present in the sequence of its mRNA transcript, 
the Central Dogma still holds if the definition of information includes both abundance 
level and sequence. In a sense, this is closer to Francis Crick’s original conception [49].

Conclusions
This study demonstrates how simple sequence features underlie much of the variation in 
expression of different omic levels and, in part, how these levels depend on each other, 
when and where it is helpful to measure a level, and when we can substitute one that is 
difficult to measure by a more tractable alternative. In particular, we have shown that, 
in the absence of environmental stress, the levels of constitutive methylation and tRNA 
abundance and their effects on expression are consequences of underlying sequence fea-
tures. Finally, the Central Dogma’s flow of information must be treated as multifactorial.
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Methods
Plant growth

Seeds of the Arabidopsis thaliana accessions Col-0 and Can-0 were obtained from the 
Eurasian Stock Centre (formerly NASC). Seeds were sown on pre-soaked Levington 
F2 plus sand mix and stratified for 5 days at 5  °C before transferring to a controlled 
environment room. For long-read whole genome sequencing, plants were grown in 
short-day conditions: 10 h under fluorescent bulbs at 250 µmol/m2/s, 23 °C and 65% 
relative humidity, followed by 14 h darkness at 18 °C with 75% relative humidity, and 
harvested shortly before bolting. Unless otherwise indicated, for all other assays, 
plants were grown in long-day conditions: 16 h under LED Lights at 150 µmol/m2/s, 
22 °C and 65% relative humidity, followed by 8 h darkness at 18 °C with 75% relative 
humidity and harvested at the 9-leaf stage.

Illumina whole genome DNA sequencing

DNA from a single leaf of each accession was extracted using the DNeasy Plant Mini 
kit (Qiagen, Manchester, UK) with on-column RNase treatment. Library preparation 
and Illumina sequencing (150  bp paired end reads) was performed by the Earlham 
Institute, UK. Read quality was checked using Fastqc [50], and sequencing adapters 
were trimmed using BBduk [51] with options “ktrim = r k = 23 mink = 11 hdist = 1 tpe 
tbo.” To retain only good quality reads, a further round of quality trimming was con-
ducted by BBduk with options “qtrim = r trimq = 10 minlen = 50.”

Long‑read whole genome DNA sequence

Col-0 and Can-0 plants were grown under short-day conditions until shortly before 
bolting and a single rosette for each genotype (~2 g tissue) was harvested and snap 
frozen in liquid nitrogen. High-molecular weight (HMW) DNA was extracted using a 
NucleoBond HMW DNA extraction kit (Macherey–Nagel, Dueren, Germany) as per 
the manufacturer’s instructions. DNA quality control was performed using agarose 
gel electrophoresis, UV spectrophotometry (NanoDrop Technologies, USA), and the 
FP-1002 Genomic DNA 165 kb kit for FEMTO Pulse systems (Agilent technologies, 
Stockport, UK). DNA was quantified using Qubit high sensitivity DNA quantifica-
tion kit (Thermo Fisher, Altrincham, UK). HMW DNA was sent to the Long Read 
Sequencing Facility (LRS) at University College London (London, UK) for library 
preparation and sequencing.

Libraries for sequencing using Oxford Nanopore Technologies (Oxford, UK, hereaf-
ter abbreviated to ONT or Nanopore) were prepared by using the ONT SQK-LSK109 
ligation kit and sequenced on an ONT PromethION instrument. Initial sequenc-
ing of Can-0 produced an excessive number of short reads (< 10 kbp); therefore, the 
Short Read Eliminator Kit (SS-100–101-01; Circulomics Inc, USA) was used to pro-
gressively remove reads < 25 kbp in the Col-0 library before sequencing. Basecall-
ing for ONT data was conducted using guppy_basecaller function in Guppy 5.0.16 
[52], with options “-c dna_r9.4.1_450bps_sup_prom.cfg –min_qscore 9 –min_score 40 
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–trim_barcodes.” We obtained 22.5 Gb data for Can-0 (150x), with a read N50 value 
around 26 kbp, and 30.3 Gb data (202x) for Col-0, with read N50 value around 33 kbp.

LRS also prepared libraries for PacBio HiFi sequencing (Pacific Biosciences of Califor-
nia, Inc. hereafter PacBio HiFi). DNA fragments were firstly sheared to ~17 kb by using 
Megaruptor 3 (Diagenode Inc.), and then the SMRTbell® Express Template Prep Kit 2.0 
was used for constructing sequencing libraries. Libraries were sequenced on a PacBio 
Sequel II. Basecalling was performed by SMRT Link version 9.0.0.92188 [53] followed by 
circular consensus sequencing (CCS) analyses to generate HiFi sequences. For Can-0, we 
obtained 2.9 Gbp HiFi Q20 reads with a read N50 value of 14.5 kbp, and for Col-0 1.45 
Gbp HiFi Q20 reads with a read N50 value of 14 kbp.

Genome assembly

For each accession, we first assembled the ONT and HiFi long-read data separately and 
then merged the assemblies. Nanopore data were initially assembled by using NECAT 
[54] with default settings except that “CNS_OUTPUT_COVERAGE” was changed to 40. 
The contigs generated by NECAT were polished by Nanopore reads using Racon v1.4.20 
[55] with options “-m 8 -x −6 -g −8 -w 500,” followed by Medaka 1.4.4 [56] with options 
“-m r941_prom_sup_g507,” and finally polished with Illumina reads by Pilon 1.24 [57] 
with options “–changes –fix all.” In all the polishing steps, minimap2 [58] was used to 
map long reads to the contigs, and bwa-mem2 [59] was used to map Illumina short-read 
sequences. PacBio HiFi reads were assembled by hifiasm with option “-l 0.”

To combine the higher continuity from Nanopore-based contigs with the higher accu-
racy from PacBio HiFi-based contigs, we used quickmerge [60] setting the Nanopore 
assemblies (after three polishing steps described above) as “hybrid_assembly” and the 
HiFi-read assemblies as “self_assembly,” and the N50 value of the polished Nanopore-
read assemblies as the minimum length cutoff (-l) of contigs to be merged. After the 
merging, we performed two rounds of polishing the merged assemblies with PacBio HiFi 
reads using racon. The alignment of HiFi reads to the merged assemblies was conducted 
with pbmm2 [61]. Where the merged assembly did not retain a similar N50 value to the 
Nanopore-read assembly, we patched the Nanopore assembly to the merged assembly 
using RagTag patch [62]. Finally, polished merged assemblies were placed on the correct 
chromosomes using the published Col-0-CEN assembly [17] by using RagTag scaffold 
[62]. After scaffolding, we ran another round of final polishing of the scaffold by hap-
lotype-aware polishing tool Hapo-G [63]. At each round of polishing and merging, the 
N50 values of assemblies or scaffolds were estimated by QUAST [64], the quality value 
(QV) of assemblies or scaffolds estimated by Merqury [65], and the number of Bench-
marking Universal Single-Copy Orthologs (BUSCO) for estimating completeness and 
duplication calculated by BUSCO [66, 67]. Every round of polishing increased the QV of 
the assemblies or scaffolds.

Omni‑C sequence analysis

Genome-wide chromatin interaction data for Col-0 and Can-0 was generated using a 
Dovetail® (now Cantata Bio, USA) Omni-C® Kit. Plants were grown under long-day 
conditions for 19  days and then dark-treated for 48  h before leaf tissue was snap fro-
zen in liquid nitrogen. Five hundred milligrams of tissue was ground into a fine powder 
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with liquid nitrogen using a mortar and pestle and the assay performed as per the man-
ufacturer’s instructions for plants. Briefly, chromatin was fixed with formaldehyde and 
nuclease treated. An aliquot was de-crosslinked, and DNA purified with a DNA Clean 
& Concentrator-5 kit (Zymo Research, Irvine, CA, USA). DNA yield and fragment size 
were determined using a Bioanalyzer high sensitivity dsDNA kit (Agilent Technolo-
gies, Milton Keynes, UK) and Qubit high sensitivity DNA quantification kit (Thermo 
Fisher, Altrincham, UK). The remaining lysate was then processed with reactions for 
end-polishing, ligation of a biotinylated oligonucleotide bridge, intra-aggregate ligation, 
and cross-link reversal, respectively. The DNA was purified and quantified using a Qubit 
high sensitivity DNA quantification kit (Thermo Fisher, Altrincham, UK) before pro-
ceeding with library preparation. Streptavidin enrichment of the biotinylated bridge was 
performed, and the final libraries were indexed and amplified by PCR. Illumina NovaSeq 
PE150 sequencing was performed by Novogene Co. Ltd (Cambridge, UK), on a Novaseq 
6000 instrument. The 150 bp paired-end Omni-C reads were aligned to the merged and 
polished scaffolds. Read deduplication and finding contact points was performed by fol-
lowing the Dovetail Omni-C kit document at https://​omni-c.​readt​hedocs.​io/​en/​latest/​
index.​html. PretextMap [68] and PreTextView [69] were used to generate and view the 
final contact map, to monitor and confirm the structure of scaffolds. Supplemental Fig-
ures S1 and S2 were generated from the contact maps using PretextSnapshot [70].

ONT methylation data generation and differential methylation analysis

Because of the larger amount of leaf tissue required, plants for ONT sequencing were 
grown under short-day conditions, whereas long-day conditions were used for bisulfite 
sequencing to enable direct comparisons with the RNA-seq and proteomics datasets. 
ONT fast5 files were processed with Megalodon v2.4.1 [71] and Guppy (GPU version 
5.0.16_linux64) [52] with the option “–guppy-config dna_r9.4.1_450bps_sup_prom.cfg –
remora-modified-bases dna_r9.4.1_e8 Sup 0.0.0 5mc CG 0” to generate the raw methyla-
tion data. The R package NanoMethViz [72] was used to visualize the ONT methylation 
data, and as well to prepare input files for DSS [73] for differential methylation calling 
between Col-0 and Can-0. The threshold p value for calling differentially methylated 
loci (i.e., at individual nucleotides) was set to 0.01, and the threshold of p value for call-
ing differentially methylated regions (e.g., across gene bodies) was 0.05. The correlation 
between bisulfite and nanopore methylation results was performed by the “megalodon_
extras validate compare_modified_bases” function in the megalodon package. We quan-
tified each methylated CpG dinucleotide as the percentage of methylated bases from 
reads covering that CpG position.

Comparative multi‑omic analyses

Comparative assays were performed on Can-0 and Col-0 grown under long-day con-
ditions (described above) until the emergence of the 9th rosette leaf. Leaves 3–8 were 
harvested and frozen in liquid nitrogen. Each biological replicate comprised five plants, 
pooled and homogenized by grinding with a mortar and pestle in liquid nitrogen.

https://omni-c.readthedocs.io/en/latest/index.html
https://omni-c.readthedocs.io/en/latest/index.html
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Whole‑genome bisulfite sequencing (WGBS)

DNA was extracted from three biological replicates of pooled leaf tissue using a DNeasy 
Plant Mini Kit (Qiagen, Manchester, UK). WGBS Libraries were constructed from 10 ng 
DNA using a Pico Methyl-Seq™ Library Prep Kit for Illumina-based Sequencing (Zymo 
Research, Irvine, CA, USA). DNA quality control was performed using agarose gel elec-
trophoresis and UV spectrophotometry (NanoDrop Technologies, USA). Quantification 
of extracted DNA was performed using a Qubit high sensitivity DNA quantification kit 
(Thermo Fisher, Altrincham, UK). The quality and quantity control of WGBS Libraries 
employed an Agilent DNA 1000 Kit (Agilent technologies, Milton Keynes, UK) and Agi-
lent 2100 Bioanalyzer. All kit workflows were performed according to manufacturers’ 
instructions. Libraries were sequenced by Novagene (150 bp paired end reads, using a 
NovaSeq instrument). The bisulfite reads were firstly trimmed by 10 bp at each end by 
trim_galore [74], and then bismark [75] was run for read mapping, deduplication, and 
extraction of methylation information. The script dname_bed_corr.sh from dna_me_
pipeline [75] was used to check the correlation of methylation between samples. Loci 
covered by fewer than 10 reads were removed.

Short‑read transcriptome sequencing (RNA‑seq)

RNA was extracted from five biological replicates of pooled leaf tissue using a Plant 
RNeasy Mini Kit (Qiagen, Manchester, UK) as per the manufacturer’s recommenda-
tions. DNase treatment was performed using a TURBO DNA-free kit (Invitrogen, now 
ThermoFisher Scientific). RNA quantification and analysis of integrity employed an 
Agilent RNA 6000 Nano Kit (Agilent technologies, Milton Keynes, UK) and the Agi-
lent 2100 Bioanalyzer. Illumina NovaSeq PE150 sequencing was performed by Novo-
gene Co. Ltd, UK. The sequencing data were trimmed and filtered by BBduk [51] with 
options “qtrim = rl trimq = 10 maq = 10” to achieve clean and good quality sequences. 
mRNA expression levels were summed across all isoforms for a given gene using kallisto 
[76] to produce normalized transcripts per million (TPM) values within each replicate; 
the expression of a gene across replicates was estimated by the log10 of their Geometric 
mean, after adding a pseudocount of 1.0 to avoid negative infinite values.

tRNA quantification (mim‑tRNAseq)

RNA was isolated from two biological replicates of pooled leaf tissue using phenol/chlo-
roform extraction. Tissue was cryo-pulverized in liquid nitrogen using a Geno/Grinder® 
(Spex SamplePrep 2010 USA) and 1 mL of TRIzol™ Reagent was added to 300–400 μL 
tissue powder, followed by incubation at RT for 5 min. RNA was extracted by the addi-
tion of 0.2 vol chloroform, incubation at RT for 2  min and centrifugation at 12,000  g 
for 15  min at 4  °C. The upper aqueous phase was extracted with an equal volume of 
chloroform and the RNA precipitated by addition of ice-cold 100% ethanol. Following 
centrifugation at 12,000 g for 20 min at 4 °C, the pellet was washed in 80% (v/v) ethanol, 
air-dried, and resuspended in RNAse-free water. RNAs were sequenced using modifica-
tion-induced misincorporation tRNA sequencing (mim-tRNAseq) [34, 35].

Data analysis was performed using the bioinformatics pipeline in [34]. In brief, the 
sequences were trimmed with cutadapt version 4.1 [77]; a first step trims the GAT​ATC​



Page 32 of 40Zhong et al. Genome Biology          (2025) 26:319 

GTC​AAG​ATC​GGA​AGAGC adapter in 3′, a second step trims the two bases due to the 
circularization (-u 2), and a last run cuts the remaining adapter in 5′: CTT​GAC​GAT​
ATC​). Only reads longer than 25 bp with quality > 25 were retained for mim-tRNAseq 
analysis. The package mim-tRNAseq version 1.1.7 [34] was used with the parameters “–
species Atha–cluster-id 0.95–threads 15–min-cov 0.0005–max-multi 4–remap–remap-
mismatches 0.075.” We determined the Araport11 ids of the resulting tRNA genes based 
matching their TAIR10 coordinates.

Ribosome profiling

Ribonucleic complexes from each accession were solubilized from six biological rep-
licates of pooled leaf tissue and clarified as per [25]. Polysomes were separated on a 
Sucrose gradient with absorbance measured at 254 nm using a UV-1 monitor (Pharma-
cia, Uppsala, Sweden). Ribosome profiling (3′Riboseq) was performed as described in 
[78] with pooling of monosome and polysomes. Ribosome-associated RNA was precipi-
tated using sodium acetate and ethanol and purified using a Zymo quick RNA column 
(Zymo Research, Irvine, CA) and the integrity assessed using an Agilent Bioanalyzer 
2100. mRNA Libraries were prepared by Novogene Co. Ltd., UK, and sequenced using 
NovaSeq to produce paired end 150 bp reads. Data was analyzed as for RNA-seq, with 
additional filtering to remove ribosomal RNAs and tRNAs using sequences from [79].

Quantitative proteomics

Protein extraction, reduction, alkylation, and digestion

Total protein was extracted from four biological replicates of pooled leaf tissue. Tissue 
samples (100  mg) were cryo-pulverized in Liquid nitrogen using a mortar and pestle. 
Protein was precipitated by the addition of 5 mL pre-chilled 10% (w/v) trichloroacetic 
acid (TCA) in acetone, followed by incubation at −20 °C overnight. The precipitated pro-
tein pellet was washed three times with chilled acetone. TCA-precipitated pellets were 
solubilized and reduced in 100 μL of urea containing buffer [8 M urea, 50 mM triethyl-
ammonium bicarbonate (TEAB), 10  mM dithiothreitol, 1× protease inhibitor cocktail 
(Roche, Mannheim, Germany)] at 25 °C for 1 h. Protein was alkylated by the addition of 
2-chloroacetamide to achieve a final concentration of 55 mM, followed by incubation at 
25 °C for 30 min. In-solution protein digestion was performed in three sequential steps: 
for the first digest, 2 μg of Lys-C (Promega, Madison, WI) was added to give a 1:100, w/w 
enzyme-protein ratio, followed by incubation at 37 °C for 4 h. For the second digest, 700 
μL of 50 mM TEAB was added to reduce the urea concentration below 1 M, and 2 μg of 
trypsin (Promega) was added. The mixture was incubated at 37 °C overnight, followed 
by the addition of a further 2 μg of trypsin for the third digest and a 4-h incubation at 
37 °C. The digests were acidified with 1% trifluoroacetic acid (TFA) and desalted using 
50 mg SepPak tC18 cartridges (Waters Corporation, Borehamwood, UK). The cartridge 
was washed with 0.1% TFA solution and eluted in two steps: (i) 300 μL 25% acetonitrile 
(ACN) in 0.1% formic acid (FA); (ii) twice with 300 μL 50% ACN in 0.1% FA. The eluates 
were lyophilized and stored at −20  °C. Peptide amount was determined using a Pierce 
Quantitative Colorimetric Peptide Assay kit (Thermo Fisher Scientific, Hemel Hemp-
stead, UK).
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Mass spectrometry

The proteomics data was acquired using a timsTOF HT mass spectrometer 
(Bruker Daltonics, Bremen, Germany) coupled with a nanoElute 2 UHPLC system 
(Bruker Daltonics). Peptides (750 ng) were loaded onto a PepMap Neo trap column 
(300 µm × 5 mm, 5 µm particle size, Thermo Scientific) and separated on a µPAC Neo 
analytical column (500 mm × 180 μm, 16 μm pillar length, Thermo Scientific) using 
a 60-min non-linear gradient consisting of 5%–17% solvent B over 42 min at a flow 
rate of 300 nL/min, followed by an increase to 26% for 14  min and 37% for 4  min. 
The mobile phases comprised 0.1% FA in water as solvent A and 0.1% FA in ACN as 
solvent B. The eluates were ionized using a Captive Spray source via a ZDV Sprayer 
emitter (20 µm, Bruker Daltonics). The mass spectrometer was set to dia-PASEF scan 
mode spanning 100–1700 m/z in positive ion mode. The ion mobility (IM) range was 
set to 0.85–1.23 1/K0 [V s/cm2], and both the ramp time and the accumulation time 
were set to 100 ms, corresponding to a ramp rate of 9.42 Hz. The variable collision 
energy was applied depending on the IM, ranging from 20 eV at 0.60 1/K0 to 59 eV 
at 1.6 1/K0. The dia-PASEF windows were optimized for the Arabidopsis proteome 
profile using py_diAID version 0.0.19 [80]. Ten dia-PASEF scans were divided into 3 
IM windows with a mass range of 300–1200 Da, corresponding to an estimated cycle 
time of 1.17 s.

Proteome data analysis

The mass spectra from Col-0 and Can-0 were searched separately against their own 
sequence databases using DIA-NN v1.8.2 beta 27 [81]. The Col-0 and Can-0 protein 
sequence databases derived from de novo assemblies were used to generate in silico 
spectral libraries, which contain predicted retention times and predicted ion mobility 
(1/K0) values. A maximum of one missed cleavage was permitted with a minimum 
peptide length of 7 amino acids. Dynamic modifications considered oxidized methio-
nine, acetylation at the protein N-terminus, and methionine loss at the protein N-ter-
minus. Carbamidomethylation of cysteine was designated as a fixed modification. The 
“match between runs” option was utilized to minimize missing identifications. The R 
package DIAgui version 1.4.2 [82] was used to generate iBAQ values [22] from the 
protein intensity, filtered at both precursor and gene levels at 1% FDR, using only pro-
teotypic peptides. The protein matrices from Col-0 and Can-0 were combined using 
the Hierarchical Orthologous Group (HOG) classification, which identifies ortholo-
gous genes between accessions (see below). The iBAQ value for gene i was normalized 
using the equation:

Long‑read transcriptome sequencing (Iso‑seq)

Iso-seq data were generated from Can-0 and Col-0 rosette leaves grown under long-
day conditions (described above) to support genome annotation only. Total RNA was 
extracted from one biological replicate of pooled leaf tissue, using a Plant RNeasy 

normalized iBAQ(i) =
iBAQ(i)
∑

iBAQ
× 109
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Mini Kit (Qiagen, Manchester, UK) as per the manufacturer’s recommendations. 
Quantification of RNA and analysis of integrity was performed using an Agilent RNA 
6000 Nano Kit (Agilent Technologies, Stockport UK). PacBio Iso-Seq™ SMRTbell® 
Libraries were constructed by Novogene Co. Ltd, UK, with the Express Template Prep 
Kit 2.0 for sequencing on Sequel® II System. Sequencing data were analyzed accord-
ing to the Isoseq3 instructions [83], including consensus sequence generation by ccs 
[84], primer removal and demultiplexing by lima, trimming the polyA tail and con-
catemer by isoseq. The clustering step suggested by the Isoseq3 workflow was omitted.

Genome annotation

The finalized genome assemblies of Col-0 and Can-0 were first scanned by EDTA [85] 
with options “–sensitive 1 – evaluate 1 –anno 1” to mask and annotate repeats, using the 
RepBase [86] transposable element (TE) database (version 27.01) of A. thaliana as the 
curated TE library and the known coding sequences of A. thaliana (Araport11 [20]). The 
sequences of annotated repeats were aligned against the Araport11 coding sequences 
using blastn [87], to ensure that no gene sequences overlapped with the repeats identi-
fied by EDTA.

After cleaning and QC, the Illumina RNAseq reads for Col-0 and Can-0 were each 
aligned to their respective assembled genomes by STAR​ [88] with option “–outSAM-
strandField intronMotif” to generate RNAseq alignment.bam files. The.bam files together 
with the soft-masked genomes generated by EDTA were then input to Braker1 [89] for 
gene prediction and annotation. We used the option “–UTR​ = on –augustus_args = "–
species = arabidopsis"” to apply the Augustus [90] pre-trained gene model of Arabidopsis 
for ab initio gene prediction and UTR annotation. We used Braker2 to annotate genes 
using the Uniprot A. thaliana proteome database [91], and the long-read protocol from 
Braker to generate a version of annotation that incorporated our PacBio Isoseq data. We 
mapped the filtered Iso-Seq reads to the genome by minimap2 [92] with option “-ax 
splice -uf –secondary = no -C5” following the long-read protocol from Braker [93]. The 
three gene annotations respectively from Braker1, Braker2, and long-read protocol were 
then merged and filtered by Tsebra [94] with the option “long_reads_filtered.cfg.”

We used the PASA pipeline [95] to refine these Tsebra annotations. First, Trinity [96] 
produced genome-guided and de novo assembled transcriptomes from both Isoseq 
and Illumina RNAseq. Secondly, we ran the PASA pipeline using default options with 
two rounds of annotation updates on the Tsebra annotation. To make sure that we have 
the most complete gene set for the accessions, we also augmented our updated anno-
tations with the lifted over annotation from Tair10 which was produced by Liftoff [97] 
with default settings. This final step was performed by the function agat_sp_comple-
ment_annotations.pl from AGAT​ v.0.9.2 [98] using the PASA updated annotation as 
the reference and adding any additional genes from lifted over annotations. Functional 
annotation for the finalized annotations was conducted by InterProScan [99] on https://​
usega​laxy.​eu [100]. We used AGAT​ to integrate functional and homology annotations 
into GFF format. Finally, we used BUSCO to estimate the completeness of the annotated 
transcriptomes, and AGAT​ to correct small problems in the annotation such as duplica-
tion of genes with different identifiers and changing gene IDs.

https://usegalaxy.eu
https://usegalaxy.eu
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We identified orthologous genes using OMA standalone [101]. We downloaded the 
OMA database orthologs from the five Brassica species (Arabis alpina, Arabidop-
sis lyrate, Arabidopsis thaliana (Tair10), Brassica napus, Brassica oleracea, Brassica 
rapa subsp. Pekinensis) and combined them with the TAIR10, Col-0, and Can-0 pro-
tein sequences into Hierarchical Orthologous Groups (HOG) using pyHam [102]. For 
HOGs containing more than one gene from the same accession, gene DNA sequences 
were used to identify the most similar homologs inter-accessions by reciprocal blastn 
[87, 103] searches. If were more than two genes from each same accession in a HOG, we 
used DNA sequence of each gene to search for the genes pairs between accessions that 
are the most similar, to find the 1-to-1 homologous genes.

Quality control of gene annotations

We applied quality control filters to remove duplicated genes, genes longer than 6 kb, 
and genes without a 1–1 ortholog between the two accessions, leaving 22,606 genes. 
Of these genes, 18,226 were expressed in Col-0 (and 772 only in Col-0) and 18,200 
expressed in Can-0 (746 only in Can-0). Here a gene is “expressed” if at least one 
RNAseq read aligned unambiguously to its gene sequence in at least one biological rep-
licate. There were 17,454 ortholog pairs with mRNA expression in at least one replicate 
in both accessions. After removing genes with premature stop codons, 17,414 expressed 
genes remained for analysis. If we further only retain those genes with expressed mRNA 
in all five biological replicates in each accession, then there are 15,669 in Col-0, 15,669 in 
Can-0, and 15,215 in both. Our downstream analyses do not employ this additional filter 
except where noted.

Comparative genomics

Our assemblies of Col-0 and Can-0 were aligned using minimap2 [92]. Synteny statistics 
were calculated by dna_diff [19]. High-confidence variants including indels below 10 bp 
were called by clair3 [104] and structural variants were called using pbsv [105] with HiFi 
reads.

Definition of expressed genes

For mRNA, we define a gene to be expressed if it is detected by alignment of Our 
mRNAseq data to our gene models. Since Our RNAseq data have sequencing satura-
tion rates of 63% to 71%, we believe that only a few expressed genes expressed are not 
detected.

For protein, expressed means proteins quantified by MS. Low-abundance proteins 
under the limit of detection or those with physiochemically undetectable sequences 
were not classified as expressed. Note that we do not apply any numerical cutoff to these 
definitions. However, we additionally report genes expressed in all biological replicates 
for certain analyses (e.g., Additional file 1: Fig. S3).

Differential expression analysis

Clean RNAseq data from Col-0 and Can-0 were fed into Trinity v2.14.0 [96] for 
RNAseq quantification and differential expression analysis, using default parameters 
with Col-0 as the reference genome. We used kallisto [76] for pseudo-alignment of 
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RNAseq reads and quantification of gene and isoform expression. The output from 
kallisto was used as input for EdgeR [106] for normalization and differential expres-
sion analysis. The gene expression within each replicate sample was normalized by 
calculating transcripts per million (TPM), and inter-sample normalization was per-
formed by calculating Trimmed Mean of M-values (TMM) in EdgeR. We used a FDR 
threshold of 0.05 to identify genes or transcripts that are differentially expressed 
between Col-0 and Can-0.

The normalized iBAQ proteome values were log-transformed and missing values 
imputed with random values from a normal distribution (width 0.3, down shift 1.8) using 
Perseus v1.6.15.0 [107]. DE proteins were determined using Student t-test with threshold 
of 0.05 for the Benjamini–Hochberg adjusted p value (FDR) and a twofold change.

Testing relationships between annotations and expression

Relationships between a dichotomous annotation difference between Col-0 and Can-0 
(such as differential gbM or the presence/absence of a TE upstream of a gene) and con-
tinuous mRNA or protein expression were tested by first subdividing the genes into 
two subsets corresponding to those genes with and without the specified attribute (e.g., 
whether or not the gene is differentially methylated) and then testing if the mean of the 
absolute values of the log2 fold change of mRNA or protein expression in the two subsets 
differed, using a non-parametric Mann–Whitney test implemented in R. Statistical sig-
nificance was reported as logP, the negative log10(p value) of the test. This methodology 
does not assume any particular direction of effect between annotation and expression.
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